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Abstract

The current Li-ion battery risks battery damage such as swelling caused by temperature change
or leakage caused by external force since it uses a liquid electrolyte solution. There has
been a resurgence of research interest in Na-ion battery chemistries in recent years because
of its potential cost advantages. The main advantages of solid-state electrolytes (SSEs)are
that they do not corrode, combust, leak or cause short internal circuit-like their liquid
counterparts. Moreover, solid electrolytes are inert toward metallic Li and act as a separator,
helping resist dendrite growth. Different classes of electrolytes with different microstructures
and characteristics exhibit specific advantages, so we cannot identify whether crystalline or
amorphous electrolytes are preferable to inorganic solid electrolytes. We provide a overview
of structure and electrochemical properties of Na3OCl, highlighting its unique antiperovskite
structural stability and the key factors that contribute to its excellent ion transport property.
The structural phase transition of the high-symmetry cubic phase of antiperovskite Na3OCl
is investigated by computing the phonon band structures of 14 different polymorphs with
distinct types of ONa6 octahedral tilting. The resulting P-T phase diagram shows that, at high
temperature and low pressure, the high-symmetry cubic structure with Pm3̄m symmetry is the
most stable phase. At low temperature and high pressure, on the other hand, the monoclinic
structure with P21/m symmetry becomes the most stable phase. The energy barriers falling in
the range from 0.30 to 0.34 eV are not much different in phases. While the crystalline structure
and ion dynamics of sodium oxyhalide and hydroxyhalide systems have been well-studied, the
lack of precise characterization of their amorphous counterparts hinders understanding their
atomic-scale properties. In this research, molecular dynamics simulations were conducted
using first-principles within the Car-Parrinello scheme to investigate the structure and ion
dynamics of amorphous Na3−xOHxCl (x= 0, 0.5, 1) antiperovskites. The results showed
that the amorphous Na3OCl structure is significantly different from its crystalline form, with
limited intermediate-range order and short-range order dominated by four-fold Na atoms.
However, the amorphous Na3OCl did not show evidence of phase separation unlike previous
models of glassy Li3OCl. Remarkable Na ion dynamics and high ionic conductivity were
observed in the amorphous Na3OCl, indicating its potential as a promising SSE that rivals
those of defective crystalline phases. Hydroxyl OH− anions played a crucial role in enhancing



x

ion mobility and efficient transport in the amorphous Na3−xOHxCl systems. Overall, this study
provides a better understanding of the interplay between structure, bonding, and ion transport
in amorphous sodium-rich oxyhalide and hydroxyhalide antiperovskites, which may lead to
their practical use in next-generation SSEs.
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Chapter 1

Introduction

1.1 Motivation

The electrification of transportation and large-scale energy storage necessitates the
development of new high-performance, low-cost batteries capable of meeting the demands of
next-generation technology. Presently, commercial batteries are unable to entirely fulfill these
requirements, highlighting the need for advancements in battery technology. A crucial aspect
in enhancing battery performance and safety lies in the discovery, design, and optimization
of solid electrolytes, which form the foundation of solid-state batteries. Traditional lithium-
ion batteries, employing liquid electrolyte solutions, suffer from vulnerabilities such as
swelling due to temperature changes or leakage caused by external forces. To overcome
these limitations, extensive research has focused on exploring materials capable of addressing
these weaknesses. The scientific community was encouraged by the successful application of
inorganic solid-state electrolytes (SSEs) in batteries and their immense potential in energy-
related applications. Inorganic SSEs offer inherent stability and safety features, making them
an attractive avenue for replacing liquid electrolytes. Furthermore, incorporating inorganic
SSEs in batteries presents an opportunity to introduce physical barriers that prevent the
propagation of lithium dendrites. This enables the development of new battery chemistries,
including lithium metal batteries, lithium-air systems, and lithium-sulfur systems, which
possess exceptionally high energy densities.[1] The demand for batteries with high power and
energy densities further underscores the necessity for advanced lithium-ion and lithium-air
battery technologies. By substituting solid electrolytes for organic liquid electrolytes, future
high-energy batteries have the potential to be safer. Consequently, inorganic SSEs for batteries
have garnered significant attention from both the scientific and industrial communities. It is
believed that these materials will play a pivotal role in transforming energy usage in the near
future.[2]
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Despite recognizing the advantages of non-flammable solid electrolytes their practical
application faces challenges associated with poor ionic conductivities, as well as chemical
and electrochemical stabilities. Despite the wide variety of inorganic materials available,
finding a suitable electrolyte for solid-state batteries remains a complex task. In contrast to
the rapid ion transport facilitated by solvated ions in liquid electrolytes, the behavior of ions
in crystalline solids is fundamentally different. Ion diffusion in inorganic materials depends
on the hopping of ions between neighboring accessible sites, which involves overcoming
higher energy barriers due to geometric restrictions and electrostatic interactions. This
limitation hampers effective ion conduction in the majority of inorganic materials. To
address these obstacles, extensive research has been conducted over the past few decades
to discover new solid electrolyte materials. The search has encompassed various systems,
including crystalline, glassy, polymer, and composite materials.[3] Among the candidates,
lithium- and sodium- rich antiperovskite solid electrolytes have recently emerged as highly
intriguing materials for solid-state batteries. These materials exhibit strong ionic conductivity,
broad electrochemical windows, stability, low cost, and structural diversity. As a result,
recent developments in experimental and atomistic modeling techniques have focused on
understanding and optimizing the properties of lithium- and sodium-rich antiperovskite solid
electrolytes. The aim is to tune the ionic conductivity through structural manipulation.

This thesis aims to contribute to the advancement of solid-state battery technology through
an exploration of recent progress in atomistic modeling techniques employed in the study
of sodium-rich antiperovskite solid electrolytes. By harnessing the power of computational
approaches, a comprehensive understanding of the behavior and properties of these materials
can be achieved. This understanding, in turn, will facilitate the design and development of
high-performance solid-state batteries. Sodium-rich antiperovskite solid electrolytes have
garnered significant attention due to their unique properties, such as high ionic conductivity,
wide electrochemical stability window, and cost-effectiveness. To fully exploit the potential of
these materials, a comprehensive understanding of their atomic-level behavior and transport
mechanisms is crucial. Atomistic modeling techniques offer a powerful tool to delve into the
intricate details of sodium-rich antiperovskite solid electrolytes. By simulating the behavior of
atoms and ions within the solid network, computational approaches provide insights into the
underlying mechanisms governing ionic conductivity, structural stability, and electrochemical
performance. Through atomistic modeling, it becomes possible to explore the effects of
various factors, including material composition, defects, interfaces, and external conditions,
on the overall performance of solid electrolytes. By utilizing computational approaches in this
thesis, a deep understanding of the atomic-scale behavior of sodium-rich antiperovskite solid
electrolytes is achieved and thoroughly discussed.
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1.2 Brief review on perovskite- and antiperovskite-based
batteries

Michael Faraday discovered a conduction phenomenon in lead fluoride (PbF2) and silver
sulfide in the 1830s, which is when inorganic solid-state electrolyte (SSE) research began
(Ag2S). In 1914, silver iodide (AgI), the first superionic conductor, was found to have
exceptional ionic conductivity that was comparable to that of the liquid phase. [4] Fast sodium
ion transportation capabilities were discovered in alumina (Na2O.11Al2O3) in the 1960s.
This material was then used to create high-temperature sodium-sulfur batteries that were
employed in South Africa and Japan in the 1980s. Rechargeable batteries were popular and
the subject of in-depth research at this time. Due to their strong ionic conductivity and superior
electrode wetting, liquid electrolytes have been the foundation of most batteries for the past
200 years. They are vulnerable to flammability, leakage, limited electrochemical stability
voltage windows, and corrosion. Due to the expanding demand for longer durability and more
consistent safety from the rising electric vehicle market and grid-scale energy storage, these
limitations have recently become more noticeable.

Numerous inorganic compounds with extrinsic structure flaws and good ionic
conductivities have been created as a result of advancements in crystal structure engineering.
These materials primarily consist of two sublattices: a sublattice of mobile ions (Li+ or
Na+ ) and a backbone made of immobile ligands joined by polyhedra. Based on the
primary backbone composition, there are sulfide, oxide, halide, nitride, and hydride SSEs,
all of which have undergone extensive research and optimization for better ionic conductivity
through composition change. It is important to note that research on these SSEs with
different compositions relies on knowledge of intrinsic crystal structures, which encourages
the development of high-performance electrolytes via logical design. It has been discovered
that not all inorganic materials, but only a small subset of them, are capable of conducting
Li+ or Na+ ions. The most researched materials include those that are LISICON-like (lithium
superionic conductor), argyrodite, garnet, NASICON-like (sodium superionic conductor), and
perovskite structures. [3, 5–9]

Antiperovskite is an inorganic material research has recently become more and more
interested in a novel structural type because it exhibits a remarkable range of physical
and chemical characteristics, including superconductivity, negative thermal expansion,
luminescence, and catalysis.[10] Antiperovskite (A3XY) is similar to perovskite (ABX3)
with reversed cation (A,B) and anion (X,Y) positions. More recently, excellent ionic
conduction in solid compounds was introduced with the help of the structural characteristics
of antiperovskites. Compounds that are antiperovskite Li3OA (X = Cl, Br) have been



4 Introduction

created and synthesized.[11] They demonstrated lithium diffusion activation energies of
as little as 0.2–0.3 eV, ionic conductivities of >10−3 S/cm at ambient temperature, and
even superionic conduction of >10−2 S/cm at temperatures above 250 °C. In contrast, the
perovskite structure family’s greatest lithium-ion conductivity ranged from 10−3 to 10−4

S/cm and had an activation energy of roughly 0.4 eV. The major difference results from
the antiperovskite’s radically different cation position from the perovskite’s, which creates
a unique local environment for mobile ions and alters their mobility. Actuality, the body-
centered cubic (bcc) packed arrangement of the anion sublattice of antiperovskites has been
proposed to promote high ionic mobility in all kinds of structural families. [12]

Two key benefits of solid-state batteries over traditional Li-ion batteries are frequently
cited. First, the separation of the electrodes with the solid electrolyte increases safety by
preventing Li buildup, which can result in short-circuiting.[13–16] The second is the increase
in energy density brought on by using a Li-metal anode.[17–20] These benefits have not yet
been fully realized, and there are still several fundamental obstacles to be addressed, such as
interfacial resistance, electrochemical stability, using a metal anode, and maintaining physical
contact with solid particles.[21, 22] The battery technology of the 2030s, according to some,
but the research challenge of the 2020s, are solid-state batteries.

Advanced lithium-ion and lithium-air battery technologies are required due to the
increased demand for batteries with high power and energy densities.[1] Future high-energy
batteries may be safer thanks to the potential replacement of organic liquid electrolytes with
solid electrolytes. Despite the widespread recognition of the benefits of non-flammable solid
electrolytes, their poor ionic conductivities and poor chemical and electrochemical stabilities
hinder their usage in actual applications. Over the past few decades, there has been a
continuous quest for new materials for solid electrolytes in an effort to address these issues.

Since metallic lithium anodes and lithium-based solid electrolytes have the capacity to
operate well together at high voltage and deliver improved performance in terms of specific
energy and power capacity, these materials are appealing for battery applications. In addition
to having strong ionic conductivity, it must also meet a number of other requirements to be
technologically advantageous in electrochemistry applications: In order to operate reliably
over a wide temperature range, it must satisfy the following characteristics: (a) low electronic
conductivity with minimal self-discharge for long shelf life; (b) large working windows in
voltage and current; (c) stable operation at temperatures between 100 °C and 300 °C; (d)
low leakage, low electrode corrosion, and good thermomechanical strength to allow for easy
packaging with the ability to withstand harsh environments; and (e) low cost, lightweight, and
low toxicity. [11]

By increasing the energy density and safety of the Li ion battery, practical development
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of all-solid-state Li ion batteries employing Li metal anodes could greatly expand the
applicability of electric cars. Superionic Li+ conductors, also known as solid-state highly
conducting Li+ electrolytes, are currently available in a variety of good forms, some of
which display conductivities that surpass those of the liquid electrolytes used in traditional
Li ion batteries. Unfortunately, the power density and/or cycle life of the most recent all-
solid-state Li ion battery generations are constrained. It is commonly accepted that the
main reason of these restrictions is the accumulation of interfacial impedances brought on by
problems with electrochemical and mechanical instability at the electrode-SSE interfaces.If
multielectrolyte layers are used to prevent electrochemical or mechanical instabilities at the
electrode interfaces, it is still possible that fundamental space-charge issues at ideal interfaces
could still restrict either discharge or charge power density. This is especially true if these
instabilities are related to electrochemistry or mechanical instability. [21, 23] There is still a
lot of work being done to incorporate Li metal anodes in traditional liquid electrolyte Li ion
or LiS batteries, even if all-solid-state batteries are not going to be practical in the near future.
These would nevertheless, at the very least, need a thin, dense solid electrolyte separator that
is Li stable and stiff enough to prevent the growth of Li dendrites during cycling.[24]

1.3 The potential of antiperovskite electrolytes: a pathway
towards high-performance SSE

The discovery of Li3OA electrolytes has impacted the field of solid-state batteries, offering
exciting possibilities for the development of high-performance solid-state electrolytes.
Antiperovskite structure electrolytes have emerged as a focal point of extensive research,
leading to significant advancements in recent years. Impressive enhancements in ionic
conductivity have been achieved, with Li-based antiperovskites reaching 2.5×10−2 S/cm
and Na-based antiperovskites achieving 4.4×10−3 S/cm in various demonstrated in full
cells.[25, 26] The antiperovskite structure exhibits versatile physicochemical characteristics
that can be easily optimized through chemical, structural, and electrical techniques. This
attribute opens up the possibility of substantial breakthroughs towards practical solid-state
batteries based on antiperovskite electrolytes. However, despite the remarkable progress made
thus far, antiperovskite electrolyte research is still in its early stages, and several challenges
need to be addressed to further advance this field

One of the challenges is the limited understanding of structural variations within
antiperovskite electrolytes. Exploring and comprehending the diverse structural aspects
are essential for tailoring their properties to meet specific requirements. Additionally, the
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impact of grain boundaries and their effects on overall performance remains an important
area for investigation. The stability of interfaces in full-cell systems utilizing antiperovskite
electrolytes is another crucial aspect that requires further understanding. To overcome these
challenges and maximize the potential of antiperovskite electrolytes, it is imperative to engage
in comprehensive analysis covering various aspects. This includes the fundamental structure
and synthesis of antiperovskite electrolytes, as well as their performance in devices, informed
by previous structural studies and recent advancements in electrolyte technology.[2]

The discovery of X3BA antiperovskites that conduct ions can be traced back to the
1960s, when Reuter et al. described the Ag3SI compound as a conductor of Ag+ [27, 28].
Müller et al. [29] investigated the obtained Na3OBr as a high-temperature Na+ conductor,
and found that it had an ionic conductivity in the range of 10−5 to 10−4 S/cm at a high
temperature of 230 °C. This was the first Na+ conducting antiperovskite structure with the
standard X3BA stoichiometry to be reported. Zhao et al.[11] devised and created the first
Li+ conducting X3BA-type antiperovskite in 2012, which they named Li3OCl. Due to its
good Li+ conduction under ambient conditions, Li3OCl was used as a room-temperature Li+

conductor. The idea for the new electrolyte was developed based on years of research on the
mineral NaMgF3, which has also been noted for its superionic conductivity (of the F- anion) at
high temperatures. Li3OCl (also known as ClOLi3), a "electronically-inverted" antiperovskite,
was created with the idea that it would enable Li+ superionic conduction by imitating F−

conduction in NaMgF3. The produced Li3OCl and a modified version of Li3OCl0.5Br0.5

demonstrated ionic conductivities of 0.85×10−3 and 1.94×10−3 S/cm, respectively, and at the
temperature above 250 °C, it attained superionic conducting of > 10−2 S/cm. The effective use
of Li3OA electrolyte as room-temperature ionic conductors proved the efficency and viability
of the X3BA antiperovskite structure for ionic conduction, which launched major research
efforts on the subject that have been very productive.

Before the first report of the traditional Li3OA antiperovskites, a number of Li3OA
analogues, namely the Li3−n(OHn)A (n < 3; A = Cl, Br, I) compounds, had been investigated
as Li+ conductors. Li3−n(OHn)A lithium halide hydrates (LiAH2O or Li(OH2)A) are an
example of this series. The first order transition from orthorhombic to cubic symmetry
causes the ionic conductivity of LiBrH2O to abruptly climb to 2 orders of magnitude
greater when the temperature is above 33 °C. The difficulty of usually poor conductivities
at room temperature persists despite significant efforts to increase the ionic conductivity
of these antiperovskite structures, such as the addition of inorganic particles (e.g., Al2O3,
SiO2) [30] These compounds’ applicability in solid-state lithium metal batteries is further
restricted by the discovery that they are unstable in contact with lithium metal and the
antiperovskite LiA–H2O electrolytes have so received less focus. Another member of the
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Li3−n(OHn)A antiperovskite series that was created from the LiOH-LiA binary molten salts
and investigated as SSEs around the same time as LiAH2O development is the lithium
halide hydroxide, or Li2(OH)A. Li2(OH)A has a higher Li concentration than LiAH2O
because two-thirds of the Li sites are filled, while Li2(OH)A still has 33% of structural
Li vacancies. It is intriguing that the Li2(OH)A series likewise experiences the first-order
phase change that was found in the LiAH2O system. But in Li2(OH)A, the transition occurs
at a significantly lower temperature, Since the cubic phase is still present in Li2(OH)Br
even at temperatures below 50 °C, it is most likely because the crucial phase transition
temperature has not been recorded for Li2(OH)Br.[31] On the other hand, Li2(OH)I has a high
transition temperature and exhibits only orthorhombic symmetry over the relevant temperature
range. Because cubic Li2(OH)Cl antiperovskites exhibit strong ionic conductivity above the
transition temperatures, it has become a research priority to inhibit the phase transition into
noncubic phases in order to preserve the high conductivity at low temperatures. [32] Common
deprotonation reagents include metallic Li and butyllithium. These reagents have been used to
create a number of antiperovskite compounds, including Li2.17(OH0.83)Cl, Li1.16(OH1.84)Cl,
and Li1.04(OH1.96)Br, which all have noninteger H numbers in their chemical formulas.
Comparing these deprotonated samples to the comparable beginning antiperovskites with
integer H values, it was found that the crucial phase transition temperatures were much
lower.[31]

As a result of their simple synthesis, reasonable ionic conductivities, and low electronic
conductivities (2 orders of magnitude lower than the LiAH2O equivalent), Li2(OH)A
electrolytes are currently of substantial research interest. Furthermore, unlike flawless Li3OA
antiperovskites, Li2(OH)A antiperovskites have intrinsic Li vacancies. With the advent of
Li2(OH)0.9F0.1Cl, the ionic conductivity of the Li2(OH)A series has grown to 3.5×10−5 S/cm
at 25 °C and 1.9×10−3 S/cm at 100 °C.[32] It is anticipated that Li2(OH)A antiperovskite
electrolytes with faster ionic conduction will be synthesized via structure engineering and
composition optimization, even though there is still a gap between the current conductivity
and the requirements for solid-state battery application. This is because the intrinsic structural
features are advantageous for doing so while the present attempts are much less than those for
conventional electrolytes investigation.

It should be emphasized that the absence of intrinsic defects—which act as the charge
carriers in ionic conduction—in the ideal X3BA antiperovskite structures may be seen as a
disadvantage for ionic conduction. The Li3OCl product was actually generated as a LiCl-
depleted form, as Zhao et al. showed in their initial work from 2012, proving this point. They
also suggested a number of approaches, including mixing, doping, and depletion, for defect
engineering in antiperovskite electrolytes. [11]
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Large polyatomic units have also been used to substitute the single ions on crystallographic
sites, modifying the structure of Li/Na antiperovskite electrolytes. As a matter of fact, BH−

4

is one of the well-known "superhalogens," which have been proposed to replace halogen ions
due to their identical chemistry but higher electron affinity than halogens. To make perovskites
for high-stability solar cells, BH−

4 and certain other superhalogens have been employed to
lower the halogen concentration.[33, 34] Although the first polyatomic ion structure in Na+

antiperovskite electrolytes was originally described in Na3O(NO2) and Na3O(CN) electrolytes
about 30 years ago, the synthesis of strongly conducting Na3O(BH4) may be a significant step
forward in the development of Na+ antiperovskite electrolytes.[29, 31] Ionic conductivities at
the near level for crystalline antiperovskite electrolytes were only possible before the report of
Na3O(BH4) at very high temperatures. The electrochemical stability window and air stability,
however, were not reported.

The creation of layered antiperovskite electrolytes, including Li7O2Br3 and Na4OI2,
indicates that research on Li/Na antiperovskite electrolytes has expanded to include structural
alteration in addition to composition change. [35, 36] Large polyatomic units have also been
used to substitute the single ions on crystallographic sites, modifying the structure of Li/Na
antiperovskite electrolytes. On the basis of a computer simulation, Fang et al. presented a
new Li antiperovskite structure in 2017 called Li3O(BH4), which contains BH−

4 polyatomic
ions on the A-sites.[34] All of the aforementioned polyatomic ions have a charge number of -1
and were made to partially or entirely replace the A-site halogen ions in conventional X3BA
antiperovskite electrolytes. Keep in mind that this is not the only option available. In actuality,
the previously stated Li2(OH)A series could be viewed as modified Li3OA antiperovskite
structures with OH- group substitutions on the B-sites. Moreover, polyatomic ions with charge
number negative two, such as SO2−

4 and SeO2−
4 , could likewise replace the original B-site

oxygen anions in X3BA structures.[37] In this scenario, the initial halogen ions would enter
B-sites and the massive polyatomic ions would relocate to A-sites, resulting in the inverse
antiperovskite structures. An antiperovskite structure made of Na3(SeO4)F0.5Cl0.5 showed
a low activation energy of 0.137 eV and a high Na+ conductivity of 8.167×10−3 S/cm at
ambient temperature. Additionally, it demonstrated reasonable air stability and a sizable
electrochemical stability window (up to 4.215 V versus Na+/Na).

In subsequent paper, M. H. Braga, J. B. Goodenough (2019 Nobel laureate in
Chemistry) and collegues described a variety of divalent-cation-doped Li3OCl antiperovskites
(Li3−2xMxOCl, where M is Mg, Ca, Sr, or Ba), which, when synthesized in glassy form,
could provide a record-breaking ionic conductivity at the time (2.5×10−2 S/cm at 25 °C
and 2.4×10−1 S/cm at 100 °C).[38, 39] It was hypothesized that the glassy sample’s open
structure enabled ionic hopping and contributed to its high conductivity. The ability to form
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the glassy materials into dense films devoid of grain boundaries and holes is extraordinary.
The high conductivity of the electrolyte sheets may also be a result of this. Additionally,
it was proposed that the doping of divalent cations might produce vacancies and reduce the
activation energy of Li+ transport. The significantly decreased activation energy of the glassy
samples is the result of these alterations (e.g., 0.06 eV of Li2.99Ba0.005OCl compared with 0.49
eV of Li3OCl). A substantial band gap of 4.74 eV was also visible in the predicted electronic
band structure of the glassy sample, indicating a broad range of electrochemical stability. The
glassy sample’s electronic conductivity was 1.05×10−8 S/cm, which is less than the 5.5×10−8

S/cm of the standard LLZO electrolyte. It is thought that the decreased electronic conductivity
is advantageous for dendrite-free Li plating.[40] Following the concept of a glassy electrolyte,
Braga et al. created a number of doped Li- and Na-based glassy analogs and used them in
both complete cells and Li-Li symmetric cells, both of which showed incredible performance.
[39, 41]

Over past decade Li- and Na-rich antiperovskite solid electrolytes (SEs) have arisen to
become particularly promising candidate materials for solid-state batteries on the basis of
their structural flexibility, high ionic conductivity, wide electrochemical window and stability.
However, attempts to reproduce the laboratory synthesis have had mixed success and the
structure and ion conduction mechanism in glassy antiperovskite electrolytes is still under
debate.[42, 43] Hanghofer et al. followed Braga’s experiment to synthesize the Li3OCl-
based glass, but only a low ionic conductivity close to that of lithium halide hydroxides
was obtained.[44] Through further investigation, they queried the existence of Li3OCl glass
and speculated that the ultra-high ionic conductivity in Li3OCl glass was derived from the
amorphous LiCl·H2O, which was reported to have a high conductivity up to 10−1 S/cm.
Tian et al. [45] reported the successful use of an electrolyte composite made of amorphous
Li3OCl as a matrix embedding Li6.75La3Zr1.75Ta0.25O12 (LLZTO) garnet-type oxide particles
exhibiting a high room temperature conductivity of 2.27×10−4 S/cm and an extremely wide
electrochemical stability window up to 10 V. The amorphous Li3OCl acting as a binder, filler
and bridge promotes the formation of an integrated composite electrolyte and continuous ionic
conductive network among LLZTO particles. Furthermore, the Li3OCl with excellent affinity
to lithium metal in-situ reacts with the lithium metal to form a stable and dense interfacial
layer, which greatly decreases the interfacial resistance between the composite electrolyte and
lithium metal.[45] Combining the garnet-type electrolyte with amorphous antiperovskytes is
a promising way to develop the compact garnet-type electrolyte at low temperature for solid-
state lithium-ion batteries.[46]



10 Introduction

1.4 The glassy state of matter

The investigation of amorphous and glassy antiperovskite electrolytes has garnered significant
interest in recent years. In this subsection, we provide a concise overview of the main
definitions that characterize the glassy state of matter from a chemical and physical
perspective. This discussion is particularly relevant to understand the unique properties and
behavior of disordered antiperovskite electrolytes

The nature of a material’s connectivity among its constituent parts determines whether it
exists in a liquid or solid state, with solids exhibiting higher connectivity compared to fluids.
Non-crystalline substances, such as amorphous solids and glasses, lack the long-range atomic
and molecular periodic order characteristic of crystals. However, while glasses undergo a
glass transition, amorphous solids do not possess a distinct transition point.[47]

Amorphous solids are characterized by a lack of crystal structure, with their molecules or
atoms arranged without long-range order. Instead, they exhibit a short-range order within their
structure and in some cases a non-negligible intermediate range order. These materials are
formed when a highly viscous liquid is rapidly cooled, preventing the formation of traditional
crystalline lattices. Glass, specifically, is a non-crystalline solid that retains a disordered
structure and exhibits a continuous transformation into a liquid state upon heating, according
to Arun K. Varshneya’s definition.[48] Glass possesses mechanical rigidity and elasticity, can
be scratched or cracked, and appears solid on a typical observation time scale. However, it
demonstrates viscous flow and gradually relaxes into a supercooled liquid state, resembling the
behavior of a liquid rather than a traditional solid. Amorphous solids are isotropic, meaning
they lack directional preferences in their structure. Despite their lack of long-range order,
amorphous materials consist of interconnected structural blocks that can resemble the basic
units found in the corresponding crystalline phase of the same compound.[49]

Understanding the unique properties and behavior of glassy materials is crucial for various
scientific and technological applications. The exploration and utilization of glassy electrolytes
have garnered significant interest along the years due to the possible advantages offered by
their non-crystalline structure. In some cases, compared to their crystalline counterparts,
glassy electrolytes exhibit enhanced structural flexibility, leading to improved performance,
particularly in terms of conductivity.
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1.5 Experiment and modelling state of art of Li3OCl and
Na3OCl as electrolye material

Crystalline Li3OCl antiperovskite is reknowned for its high ionic conductivity, reaching nearly
1 mS/cm at room temperature (RT), making it a very promising solid electrolyte. The
material’s remarkable conductivity is attributed to its low activation energy of 0.26 eV, which
facilitates efficient ion transport.[11] While its amorphous phase has been studied by Braga et
al., resulting in a enhanced ionic conductivity of 0.25 mS/cm, the energy barrier was reported
to be slightly higher at 0.42 eV.[38] In modelling sign, c-Li3OCl also attract many studies
while only one work on the glass phase has been reported nanoscale phase seperation of Li2O
and LiCl and formation of hydroxyl group to form LixOH1−xCl phase. Na3OCl sample was
successfully synthesized by Hipller in 1990[50] and currently by Ahiavi in 2020 [51].

Glassy Li3OCl- and Na3OCl-based antiperovskites have also been reported, with a glass
transition temperature between 390- 450 K and a conductivity on the order of 10−2 S/cm at
ambient temperature. Braga and Goodenough’s teams first discovered glassy Li3OCl- and
Na3OCl-based antiperovskites in 2014, which led to the study of cation- and anion-doped
X3OA and glassy (or amorphous) antiperovskite electrolytes beyond the stoichiometric X3OA
crystalline systems.[38] However, attempts to reproduce the initial laboratory synthesis have
been unsuccessful, raising questions about the structure and ion conduction mechanism of
glassy antiperovskite electrolytes. Hanghofer et al. questioned Braga et al.’s initial findings,
suggesting that the high conductivity of Li+ ions was due to impurities, sample stability, and
the creation of LiCl.H2O resulting from the presence of H2O.[44]

Ab initio and classical molecular dynamics simulations have provided some evidence
of a subnanoscale phase separation phenomenon within Li3OCl, resulting in the formation
of distinct Li2O and LiCl phases, as well as an intermixing phase. This subnanoscale
separation has been found to play a crucial role in promoting the high conductivity of Li
ions and enabling a non-zero mobility of Cl ions within the material. The creation of
such subnanoscale separation was reported to enhance the overall ionic transport properties
of Li3OCl. In a similar vein, Na3OCl has attracted significant attention in recent studies
employing both experimental and computational approaches. In particular, the computational
reports have proven effective in investigating the structural and dynamic properties of Na3OCl.
By employing these methods, researchers have explored various aspects of Na3OCl crystalline
phase, allowing for a comprehensive understanding of its behavior and properties

To gain a better understanding of the transport mechanisms underlying its conductivity
performance, a thorough study of the atomic structure is crucial. Recent studies on the use
of antiperovskites for solid-state batteries emphasized the need for quantitative structural
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assessment of X3OA systems to prevent any misunderstanding of the correlations between
their structure and performance. In general, crystalline X3OA compounds have well-
understood structures and ion dynamics processes, whereas amorphous antiperovskites lack
quantitative structural characterizations in both hydrogen-free and hydroxylated phases (such
as oxyhalide X3OA versus hydroxyhalide X3−xOHxA). he lack of understanding of Na3OCl
antiperovskite crystalline and amorphous phase structural stability hinders the analysis of
material properties, highlighting the need for a project primarily focused on the structural
analysis of Na-based antiperovskite Na3OCl to clarify its structural properties and ionic
transport mechanisms.

1.6 Project ambition, positioning and objectives

As outlined in the previous sections, antiperovskite materials have recently emerged as
promising electrolyte candidates for solid-state batteries due to their synthetic flexibility,
competing for ionic conductivity, and interesting electrochemical stability window. In
particular, Li-rich and Na-rich antiperovskite electrolytes have attracted significant attention
due to their potential use in high-energy-density batteries. However, the lack of understanding
of their structural properties and the ongoing debate about their structure, especially regarding
the amorphous phase, have hindered their development and optimization.

In this context, computational modeling has become an essential tool for understanding
the complex behavior of electrolyte materials, which is critical for their successful
implementation in practical applications. First, computational modeling allows the prediction
of thermodynamic and kinetic properties, such as phase stability, formation energy, and
reaction rates. These properties are crucial for understanding the stability and performance
of the materials under different conditions and for predicting their behavior in practical
applications. Furthermore, one of the main challenges for the detailed comprehension of
the behaviour of antiperovskite electrolytes is the lack of experimental data on their structure.
This has led to a debate about their amorphous or crystalline nature. Computational modeling
can help resolve this issue by predicting the structure and properties of different antiperovskite
electrolyte models and comparing them to experimental data.

In recent years, several computational approaches have been developed to model
antiperovskite electrolytes, including density functional theory (DFT) and molecular
dynamics (MD). These approaches have been used to study the structural, mechanical, and
electrochemical properties of various antiperovskite electrolyte systems and to predict their
performance in solid-state batteries.

In the following are outlined the specific scientific objectives of this Ph.D. work:
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1. Structural stability, phase transition, P-T diagram, and Na ions migration energy barrier
of crystalline phases of antiperovskite Na3OCl by DFT-based calculations.

2. Unveiling the structural and ions dynamics of amorphous Na3−xOHxCl (x =0, 0.5, 1)
antiperovskite electrolytes by first-principles molecular dynamics.

3. Quantitative assessment of the structural properties of amorphous antiperovskite
Na3OCl electrolyte by first-principles and machine learning molecular dynamics.



Chapter 2

Computational Methods and Models

2.1 Lattice dynamics, Gibbs free energy

2.1.1 Harmonic approximation

The dynamics of interacting ions within the Born-Oppenheimer approximation are described
by Hamiltonian H = T +U , where T is kinetic energy and U is the potential energy of system.
When U is an analytic function of atomic displacements from equilibrium position {u}, it can
be expanded as a Taylor series with respect to u as

U =U0 +U2 +U3 +U4 + · · ·+Un + · · · , (2.1)

Un = − 1
n! ∑

{l,k,α}
φα1,··· ,αn(l1k1; · · · ; lnkn)×uα1(l1k1) · · ·uαn(lnkn), (2.2)

where Un is the nth-order contribution to the potential U , l and k are unit cells and atoms
indices.

In the harmonic approximation, only the quadratic potential term is considerd and the
Hamiltonian is given with the simplest form H0 =T +U2. The force experienced by atom k2

in α2 direction due to the displacement of another atom k1 in α1 direction can be expressed as

Fα2(l2k2) =− ∑
{l,k,α}

φα1,α2(l1k1; l2k2)×uα1(l1k1) (2.3)

The equation of motion for each atom under harmonic approximation can be written as
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mk2 üα2(l2k2, t) =− ∑
{l,k,α}

φα1,α2(l1k1; l2k2)×uα1(l1k1)

The solution of equation of motion has the form of superposition of traveling waves
uα(t) = ∑

q j
Aq j exp [i(qr−ωt)] where Aq j is a displacement operator.

The phonon frequency ω can be obtained by constructing the dynamical matrix Dαβ

Dαβ

(
kk′;q

)
=

1√
MkMk′

∑
l′

φαβ (0k; l′k′)exp(iqr(l′)). (2.4)

where M is the mass of atom κ and r(l′) is the translational vector of the l′ unit cell. By
diagonalizing the dynamical matrix, one obtains harmonic phonon frequencies as D(q)eq j =

ω2
q jeq j, where the index j labels the phonon modes for each crystal momentum vector q and

eq j is the polarization vector of the phonon mode q j.

2.1.2 Pertubative and nonpertubative approximation

Quasiharmonic approximation

By expanding the harmonic phonon model of lattice dynamics, the quasi-harmonic
approximation (QHA) describes the thermal expansions of a material. In this approximation,
phonon frequencies become volume-dependent while the harmonic approximation holds for
each volume.

According to standard thermodynamics, if the system is held at constant T and P, the
equilibrium state is the one that minimizes the availability or non-equilibrium Gibbs energy
of the crystal phase [52].

G(T,P) = min
V

[Uel(V )+Fvib(T,V )+PV ] = min
V

[G∗(T,V,P)], (2.5)

where Uel(V ) is the internal electronic energy from DFT calculations and G∗(T,V,P) ≡
Uel(V )+Fvib(T,V )+PV , and Fvib is the vibrational Helmholtz free energy. The Gibbs free
energy is obtained from minimizing G∗ with respect to volume V at given temperature T and
pressure P.

The Bose-Einstein distribution gives the mean number of phonons for any frequency at a
given temperature T. To derive the distribution we need to start from the partition function, Z,
which is defined in its general form as[53]
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Z =
∞

∑
j=1

exp(−E j/kBT ) (2.6)

where E j is the energy of the j-th excited state. The partition function for the phonons
associated with N normal modes of a crystal (not including the zero-point motion, see below)
is therefore given as

Z = ∏
k
[

∞

∑
nk=0

exp(−nkεk/kBT )] (2.7)

where the energy of an excitation, εk is equal to h̄ωk for the branch and wave vector of the
k-th normal mode of the crystal, and nk is the number of phonons excited into the k-th normal
mode. By using the series∑

∞
n=0 exp(−nx) = 1

1−exp(−x) , the partition function can be rewrite

Z = ∏
k

1
1− exp(−εk/kBT )

(2.8)

lnZ =−∑
k

ln [1− exp(−εk/kBT )] (2.9)

The mean occupation number, nk , of any state, εk , is obtained from the partition function
by the standard result:

nk =−kBT
∂

∂εk
lnZ =

1
exp(h̄ωk/kBT )−1

(2.10)

which is Bose-Einstein distribution.
For the partition function in the complete case, we need to include the potential energy of

the system, V, and the zero-point motion. The partition function becomes

Z = exp(−V/kBT )∏
k

exp(−εk/2kBT ) (2.11)

Therefore the free vibretional energy Fvib is given as

Fvib(T,V ) =−kBT lnZ =
1
2 ∑

q j
h̄ωq j + kBT ∑ ln[1− exp(−h̄ωq j/kBT )]. (2.12)

The QHA only accounts for the volume dependence of phonon frequencies and neglects
higher-order anharmonicities. While the anharmonic effect is partially incorporated via
the volume dependence of ωq(V), the QHA completely neglects the intrinsic anharmonic
effects which are responsible for making the temperature dependence of phonon frequencies.
Nevertheless, the QH theory turns out to be a good approximation at temperatures far below



18 Computational Methods and Models

the melting point and has been employed to predict the thermal expansivity and phase
boundary of various materials based on DFT. When the temperature reaches the melting point
or the structure is strongly anharmonic, the QHA is less reliable. Moreover, the QHA is not
valid for cases where phonon modes become unstable within the HA

Renormalized phonon theory and self-consistent phonon approach

The self-consistent phonon (SCPH) theory is one of the most successful approaches for
calculating the temperature dependent phonon frequencies nonperturbatively. If we retain
cubic, quartic, ..., terms in the expansion of the crystal’s potential energy in powers of the
displacements of the atoms from their equilibrium positions we are dealing with what is
called an anharmonic crystal. In SCPH the anharmonic term is consider up to fourth order,
H = H0 +U3 +U4, where Un is the nth-order contribution to the potential energy surface in
terms of the displacement operator A. The atomic displacement uα(lk) can be represented in
terms of Aq j as follows:[54]

uα(lk) = (NMk)
−1/2

∑
q j

Aq jeα(k;q j)eiqr(l) (2.13)

where N is number of q points or the number of unit cells, eα(k;q j) is displacement
(polarization) vector and is a component of eq j

∑
k
| eα(k;q j) |2= 1

∑
k

eα(k;q j)eα(k;−q j′) = δ j j′ (2.14)

Aq j = N−1/2
∑
kl
(Mk)

1/2e−iqr(l)e∗α(k;q j)uα(lk) (2.15)

We then obtain nth-order potential energy represented in terms of the harmonic
displacement operator Aq:

Un =
1
n!∑{q}

△(q1 + ...+qn)V (q1; ...;qn)×Aq1...Aqn (2.16)

Here and in the following, we use q for the shorthand notation of (q, j) satisfying q= (q, j)
and −q = (−q, j). The term △(q) is 1 if q is a vector of the reciprocal lattice G (q1 + ...+

qn =G) and 0 otherwise. The coefficient which appear in the anharmonic Hamiltonian are the
Fourier transforms of the n-th order atomic force constants.[55] V (q1; ...;qn) is the reciprocal
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representation of the nth-order IFCs which is defined as[56]

V (q1; ...;qn) = N1−n/2
∑

{k,α}
(Mk1...Mkn)

−1/2 eα1(k1;q1)...eαn(kn;qn) (2.17)

× ∑
l2...ln

Vα1...αn(0k1;...;lnkn)ei(q2r(l2)+...+qnr(ln)).

The Hamiltonian of the anharmonic system in normal mode coordinates

H =
1
2 ∑

q
Ȧq ˙A−q +

1
2 ∑

q
ω

2
q AqA−q + ∑

n≥3

1
n! ∑

q1

...∑
qn

Vn(q1; ...;qn)Aq1...Aqn△(q1 + ...+qn)

(2.18)

We assume the dominant terms are those with n = 4 (quartic term) for the soft modes
theory. Moreover, we assume that the atoms undergo small oscillations, so that the anharmonic
terms are small in comparison with the harmonic term. This second assumption implies that
the character of the phonons does not change significantly in the presence of the anharmonic
interactions, and that the only effect of the higher order terms, apart from the finite lifetime
effect, is a change in frequency.

The Hamiltoninan for the phonon (not include the kinetic energy 1
2 ∑q Ȧq ˙A−q) then

becomes:

Hph =
1
2 ∑

q
ω

2
q AqA−q +

1
4! ∑

q1,...,q4

V4(q1;q2;q3;q4)Aq1Aq2Aq3Aq4△(q1 +q2 +q3 +q4) (2.19)

The main approximation we make is to replace a pair of normal mode coordinates by the
thermal averages

Aq3Aq4 → ⟨Aq3Aq4⟩ (2.20)

The thermal average of a pair of normal mode coordinates is zero unless: q4 =−q3 which
imposes the conservation requirement for the thermal averages:

⟨Aq3Aq4⟩ ∝ δq3q4 (2.21)

In addition, we now only allow scattering processes in which two phonons scatter to form
two more; we neglect terms where one phonon breaks into three or three phonons merge into
one. Furthermore, we now neglect Umklapp terms. In the other words, we consider the case
where G = 0 or q1 +q2 +q3 +q4 = 0
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Bearing in mind the changes in the conservation requirements, the approximate
Hamiltonian becomes:

Ha
ph =

1
2 ∑

q
ω

2
q AqA−q +

1
4 ∑

q
∑
q′

V4(q;−q;q
′
;−q

′
)⟨Aq′A−q′ ⟩AqA−q (2.22)

It should be noted that we gain a factor of 6 in the quartic term that comes from the
summation over all modes. This can be seen as arising from all allowed scattering processes
of the type (q1,q2)→ (q3,q4). Two phonons of wave vector q1,q2 scatter from each other to
give two new phonons of wave vector q3,q4. In our approximation we include only the wave
vectors that obey the criterion q1 +q2 +q3 +q4 = 0 or (q,−q) → (q′,−q′).

Ha
ph =

1
2 ∑

q

(
ω

2
q +

1
2 ∑

q′
V4(q;−q;q

′
;−q

′
)⟨Aq′A−q′ ⟩

)
AqA−q =

1
2 ∑

q
ω̃

2
q AqA−q (2.23)

Thermal amplitude of a normal mode coordinate ⟨Aq′A−q′ ⟩=
h̄

ω̃
q′

[
n
(

ω̃q′ ,T
)
+ 1

2

]
≃ kBT

ω̃2
q′

in the high temperature limit when kBT ≫ ˜h̄ωq′ , since average kinetic energy, ⟨K⟩, of the
crystal is defined ⟨K⟩ = 1

2 ∑q ω2
q ⟨AqA−q⟩. We have the property of a harmonic oscillator

⟨K⟩ = ⟨V ⟩. Therefore the total harmonic energy of the crystal is ⟨E⟩ = ∑q ω2
q ⟨AqA−q⟩.This

is the sum over the energies of the separate modes, so that we are able to conclude that the
energy of a single mode, is equal to Eq =ω2

q ⟨AqA−q⟩. It is simply obtained that ⟨AqA−q⟩ =
h̄

ωq

[
n
(
ωq,T

)
+ 1

2

]
where n(ω,T )+ 1

2 =
[
exp
(

h̄ωq
kBT

)
−1
]−1

+ 1
2 ≃ kBT

h̄ωq
≫ 1

Then

ω̃
2
q = ω

2
q +

kBT
2 ∑

q′

V4(q;−q;q
′
;−q

′
)

ω̃2
q′

(2.24)

The set of frequencies ω̃2
q are called the renormalized phonon frequencies and this model

is called renormalized phonon theory or pseudo-harmonic approximation.

This equation has a self-consistent set of solutions for the renormalized frequencies,
although in practice it is common to replace the renormalized frequencies in the denominator
by their harmonic values.

It should be appreciated that the temperature dependence in this model is quite different
from that due to thermal expansion, although thermal expansion is, of course, also an
anharmonic effect. In general the increase of the crystal volume on heating leads to a reduction
of the phonon frequencies, whereas the direct anharmonic interactions considered here lead to
an increase in phonon frequencies on heating. In most cases the indirect anharmonic effects
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mediated through the thermal expansion dominate, but for phase transition theory it is the
direct interactions that are important. The important point to note is that we have been able to
introduce temperature explicitly into the phonon frequencies.

If the coupling constants V4 are approximately independent of temperature, the phonon
frequencies vary linearly with temperature. The simple picture of a phonon frequency
that varies linearly with temperature is very relevant in the standard model of displacive
phase transitions. Let us consider a phonon frequency, of wave vector q, which has been
renormalised by the quartic anharmonic interactions and which can simply be expressed as

ω̃
2 = ω

2
0 +αT

where α will in general be positive.

We recall from our discussion of the calculation of harmonic frequencies that if ω2
0

is negative the crystal is unstable against the displacements of the corresponding mode
eigenvector. We now consider a symmetric high-temperature phase. If it has a harmonic
frequency at any wave vector q that is imaginary, then the structure is not stable at 0 K,
and there is another structure of lower symmetry that has a lower energy at 0 K. The lower
energy structure can be viewed as a small modification of the higher-symmetry structure: the
modification is caused by the distortion corresponding to the eigenvector of the mode with
the imaginary frequency. In other words, the stable structure is equivalent to the symmetric
structure with a frozen-in normal mode coordinate of wave vector q corresponding to the
imaginary harmonic frequency ω0(q j).

On warming, the anharmonic contribution to the phonon frequency increases until the
renormalised frequency of ω̃(q j) becomes zero and then real. At this point the symmetric
structure is now stable, and the point at which the renormalised frequency reaches zero in
value corresponds to the phase transition between the low-temperature low-symmetry phase
and the high-temperature symmetric phase. This gives a transition temperature, Tc, for the
phase transition which is related to the fundamental parameters:[57]

This mode (in the high-temperature phase) is called a soft mode, because it has a low
frequency and the crystal is essentially soft against the corresponding displacements of the
atoms. The frequency is said to soften on cooling towards the transition point. Often the wave
vector q is a high-symmetry point (a Brillouin zone boundary or the zone centre), but this need
not always be so. Also, the transition on cooling occurs as soon as any one point on a phonon
branch reaches zero. There is also a soft mode on the low-temperature side of the transition,
which increases in frequency on cooling, associated with the instability that occurs on heating.

It should be noted that the anharmonic effects that drive a soft mode phase transition need
not be particularly strong [58](Bruce and Cowley 1981, p 91). Rather, the soft mode harmonic
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Figure 2.1: Schematic representation of the temperature dependence of the square of the
frequency of a soft mode. Below the temperature Tc the frequency is imaginary and hence
unstable. The frequency at T = 0 K is the harmonic value.[54]

frequency has a small imaginary value so that it is particularly sensitive to the effects of the
anharmonic interactions.

We now consider the behavior of the soft modes. If the crystal is unstable against a small
displacive distortion that can be expressed as a normal mode coordinate, the harmonic term
ω̃2

q AqA−q must have a maximum energy when the normal mode coordinate Aq has a value of
zero. This is only possible if ω2

q < 0, that is, the phonon frequency ω̃q has an imaginary value.
We see from Eq. 2.24 that the anharmonic interactions increase the phonon frequency on
heating if V4 > 0. Thus if ω̃q has an imaginary value at T = 0 K, the anharmonic interactions
will make the frequency become real for temperatures greater than Tc, the temperature at
which ω̃q = 0 in Eq. 2.24

Tc =−2ω̃
2
q/

(
kB ∑

q′

V4(q;−q;q
′
;−q

′
)

ω̃2
q′

)

At temperatures greater than Tc the harmonic mode is stable, ω̃2
q > 0, so the high-symmetry

phase is also stable. On the other hand, at low temperatures the crystal is unstable against
displacements that are described by the normal mode of label q; we can think about the soft
mode being frozen into the structure. Then the equation can be rewritten as
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ω̃
2
q =

(
kB

2 ∑
q′

V4(q;−q;q
′
;−q

′
)

ω̃2
q′

)
(T −Tc)

This equation yields the temperature dependence of the soft-mode frequency.
The soft-mode model is pictured schematically in Fig. 2.1, where we plot the frequency

of the soft mode in the high-symmetry phase as a function of temperature. At T = 0 K the
structure of the high-symmetry phase is unstable with respect to the distortion to the low-
symmetry phase, and the frequency of the soft mode has an imaginary value. On increasing
temperature the anharmonic interactions raise the value of ω̃2

q . Eventually the ω̃2
q contribution

of the anharmonic interactions is sufficiently large that the value of ω̃2
q becomes positive,

at which point the high-symmetry phase is stable. This defines the transition temperature.
Experimentally the soft-mode frequency is found to fall on cooling toward the transition
temperature, and it often follows the temperature dependence ω̃2

q ∝ (T −Tc).[54]

2.2 Density functional theory

The quantum mechanical wavefunction contains,in principle, all the information about a given
system. For the case of a simple 2-D square potential or even a hydrogen atom we can solve
the Schrödinger equation exactly in order to get the wavefunction of the system. We can then
determine the allowed energy states of the system. Unfortunately it is impossible to solve the
Schrödinger equation for a N-body system. Evidently, we must involve some approximations
to render the problem soluble albeit tricky. Here we have our simplest definition of DFT:
A method of obtaining an approximate solution to the Schrödinger equation of a many-body
system.

DFT is a successful theory to calculate the electronic structure of atoms, molecules, and
solids. Its goal is the quantitative understanding of material properties from the fundamental
laws of quantum mechanics.

Traditional electronic structure methods attempt to find approximate solutions to the
Schrödinger equation of N interacting electrons moving in an external, electrostatic potential
(typically the Coulomb potential generated by the atomic nuclei). However, there are serious
limitations of this approach: (1) the problem is highly nontrivial, even for very small
numbers N and the resulting wave functions are complicated objects and (2) the computational
effort grows very rapidly with increasing N, so the description of larger systems becomes
prohibitive.[59]

A different approach is taken in density-functional theory where, instead of the many-body
wave function, the one-body density is used as the fundamental variable. Since the density



24 Computational Methods and Models

ρ(r) is a function of only three spatial coordinates (rather than the 3N coordinates of the wave
function), density-functional theory is computationally feasible even for large systems. [60]

DFT started with the theorems of Hohenberg and Kohn (1964)[61] demonstrating
the equivalence of the polyelectronic wave function (complex number valued in the 6N-
dimensional phase space for N electrons) and electronic density (real number valued in
three-dimensional (3-D) ordinary space) for completely specifying the ground-state electronic
structure and energy E0 of any chemical system (N electrons moving in the electrostatic
potential of P static positively charged atomic nuclei). A single distribution of electronic
density in space ρ(r) minimizes the total electronic energy: it is the solution of the functional
equation E0=minE[ρ(r)]. One year later, Kohn and Sham (1965)[62] proposed a practical
algorithm to solve the equation, by showing that the many-bodies problem of solving the
Schrödinger equation for the full polyelectronic wave function can be replaced by the much
simpler one of N-independent electrons moving in an effective potential.

One-electron wave functions Ψi are expanded over an appropriate basis set of size M.
When 3-D periodic calculations are performed on a supercell model, plane waves constitute
the most convenient and popular basis set. Wave vectors are chosen so as to sample the model’s
Brillouin zone suitably, and some upper kinetic energy cutoff sets the highest frequencies
allowed in the representation of the wave function. Convergence with respect to k-point
sampling and energy cutoff must be verified in each particular instance.

Overall, the scaling property of the Kohn–Sham method is of the order N3 and there lies
the secret of its success. Indeed, the method’s accuracy in energy is comparable to that
of the so-called “post Hartree–Fock” approaches, like MP2, which also account for a part
of the correlation energy, namely the difference between the true energy and the “Hartree–
Fock limit,” or minimal energy provided by the best effort within this early approximation.
However, concurrent “post-Hartree–Fock” approaches scale as N5 or more and are thus
tractable for two orders of magnitude less electrons only in the same computer. Walter Kohn
was awarded the Nobel prize in chemistry in 1998 for his seminal contributions to DFT.

A further significant gain in execution time is offered with the approximation that core
electrons will be only slightly perturbed by chemical combinations, so that it suffices to
consider external or valence electrons exposed to the Coulombian potentials of nuclei,
screened by core electrons, also called “pseudo-potentials.” The Kohn–Sham method is
then applied to valence electrons represented by one-electron pseudo-wave-functions and
submitted to an effective potential built from the superposition of all nuclei pseudo-potentials.
This approach may reduce N by one order of magnitude.[63]

In summary, the overwhelming advantage of DFT for computational catalysis stems from
its numerical scaling properties, its “chemical” accuracy, and its ability to cover in a consistent
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way the whole periodic table, provided the adequate pseudo-potentials have been developed,
a non-trivial task.

The book by Robert G. Parr and Yang Weitao[64] (1989) is recommended for a thorough
but extensive presentation of the fundamentals of DFT.

2.2.1 Schrödinger equation

The time independent Schrödinger’s equation in the Born-Oppenheimer approximation in
which the electronic structure is computed at fixed nuclear positions. For a molecular system,
it is:

ĤΨ(r1, r2, ....., rN ; R1, R2, ....., RM) = EΨ(r1, r2, ....., rN ; R1, R2, ....., RM) (2.25)

Where r1, r2,. . . ., rN represent the cartesian coordinates of the N electrons in the molecule,
and R1, R2,... . . , RM are the nuclear coordinates of the M nuclei in the molecule. The
Hamiltonian operator is given by,

Ĥ = T̂e + T̂n +V̂en +V̂ee +V̂nn (2.26)

where the kinetic (T) and potential (V) energies of N electrons (e) and M nuclei (n) are
given by,

T̂e = − h̄2

2me

N
∑

i=1
∇2

i

T̂n = − h̄2

2

M
∑

I=1

∇2
I

mI

V̂en = −
N
∑

i=1

M
∑

I=1

ZIe2

4πε0|ri−RI |

V̂ee = −
N
∑

i=1

N
∑
j>i

e2

4πε0|ri−r j|

V̂nn = −
M
∑

I=1

M
∑

J>I

ZIZJe2

4πε0|RI−RJ |

(2.27)

Here, I and J run over the M nuclei while i and j denote the N electrons in the system.
The first two terms describe the kinetic energy of the electrons and nuclei. The other three
terms represent the attractive electrostatic interaction between the nuclei and the electrons and
repulsive potential due to the electron-electron and nucleus-nucleus repulsive interactions,
respectively. To simply the many body Hamiltonian, all equations in the remaining thesis will
be expressed by introducing the Hatree atomic units, whereby h̄ = e = me = 4πε0 = 1.
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If we were able to solve Eq. 2.26 and find the eigenstate with the lowest energy, which
is called the ground state of the system. The complication of the solution of the equation
rises exponentially with the size of a system, and therefore, an appropriate approximations are
required[62] {giustino 2014}

2.2.2 Born-Oppenheimer approximation

Due to their masses the nuclei move much slower than the electrons so the nuclei can be
considered fixed when calculating the electron dynamics. Therefore the nuclear kinetic
energy is zero and their potential energy is merely a constant. Consequently the electronic
problem can be solved separately.[65] When we consider the movement of electrons the total
wavefunction can be written as:

Ψ({ri} ,{Ri}) = Θ({RI})Ψ({ri} ;{RI}) (2.28)

where Θ({RI}) describes the nuclei and Ψ({ri} ;{RI}) denotes the electrons (depending
parametrically on the positions of the nuclei). With the BO approximation, Eq. (4) can be
divided into two separate Schrödinger equations

[
T̂e +V̂en +V̂ee

]
Φ ({ri} ;{RI}) =V ({RI})Ψ({ri} ;{RI}) (2.29)

and

[
T̂n +V̂nn +V ({RI})

]
Θ({RI}) = ERΘ({RI}) (2.30)

Eq. (5) is the equation for the electronic problem with the nuclei positions fixed. The
eigenvalue of the energy V ({RI}) depends parametrically on the positions of the nuclei. After
solving Eq. 2.29, V ({RI}) is known and by applying it to Eq. 2.30, which has no electronic
degrees of freedom, the motion of the nuclei is obtained. Eq. 2.30 is sometimes replaced by a
Newton equation, i.e., to move the nuclei classically, using ∇V as the forces. Then the whole
problem is solved.

The significance of the BO approximation or adiabatic approximation is to separate the
movement of electrons and nuclei. Now we can consider that the electrons are moving in a
static external potential Vext (r) formed by the nuclei, which is the starting point of DFT.

2.2.3 Independent electron approximation

Calculations within the independent-electron approximation are often a prerequisite for those
which include correlation effects. The assumption of independently moving electrons implies
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that the total wavefunction of the N- electron system Ψ(r1, r2, ....., rN) can be written in the
form of an antisymmetrized product of single-electron wavefunctions.The objective of the
Hartree-Fock method is to produce the best possible one-electron wavefunctions for use in
approximating the exact wavefunction for a multi-electron system, which can be an atom or a
molecule.[66]

The simplest approximation is the Hartree approximation. The initial ansatz is that we may
write the many-body wavefunction as Ψ(r1, r2, ....., rN) = Ψ(r1)Ψ(r2) ...Ψ(rN) from which
it follows that the electrons are independent, and interact only via the mean-field Coulomb
potential. This yields one-electron Schrödinger equations of the form

−∇2

2
Ψi (r)+V (r)Ψi (r) = εiΨi (r) (2.31)

where V (r) is the potential in which the electron moves; this includes both the nuclear-
electron interaction and the mean field arising from the N-1 other electrons. Although
these Hartree equations are numerically tractable via the self-consistent field method, it
is unsurprising that such a crude approximation fails to capture elements of the essential
physics. The Pauli exclusion principle demands that the many-body wavefunction be
antisymmetric with respect to interchange of any two electron coordinates Ψ(r1, r2, ....., rN)=

−Ψ(r1, r2, ....., rN) which clearly cannot be satisfied by a non-trivial wavefunction of the
form og Hatree approximation. This exchange condition can be satisfied by forming a Slater
determinant of single-particle orbitals

Ψ(r1, r2, ....., rN) =
1√
N

det{Ψ(r1, r2, ....., rN)} (2.32)

Again, this decouples the electrons, leading to the single-particle Hartree-Fock equations

[
T̂e +V̂en +V̂ee

]
Ψi (r)−∑

j

∫
dr

′ Ψ
∗
j

(
r
′
)

Ψ∗
i

(
r
′
)

Ψi (r)

| r− r′ |
= εiΨi (r) (2.33)

The last term on the left-hand side is the exchange term; this looks similar to the direct
Coulomb term, but for the exchanged indices. It is a manifestation of the Pauli exclusion
principle, and acts so as to separate electrons of the same spin; the consequent depletion of
the charge density in the immediate vicinity of a given electron due to this effect is called the
exchange hole. The exchange term adds considerably to the complexity of these equations.

The Hartree-Fock equations deal with exchange exactly; however, the equations neglect
more detailed correlations due to many-body interactions. The effects of electronic
correlations are not negligible; indeed the failure of Hartree-Fock theory to successfully
incorporate correlation leads to one of its most celebrated failures: its prediction that jellium is
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an insulating rather than a metallic system. The requirement for a computationally practicable
scheme that successfully incorporates the effects of both exchange and correlation leads us to
consider the conceptually disarmingly simple and elegant density functional theory

2.2.4 Thomas-Fermi-Dirac approximation

The predecessor to DFT was the Thomas-Fermi (TF) model proposed by Thomas and Fermi
in 1927.[67] In this method, they used the electron density ρ(r) as the basic variable instead
of the wavefunction.

In quantum mechanics, and in particular quantum chemistry, the electronic density is
a measure of the probability of an electron occupying an infinitesimal element of space
surrounding any given point. It is a scalar quantity depending upon three spatial variables.
The electronic density corresponding to a normalized N-electron wave function (with r and s
denoting spatial and spin variables respectively) is defined as

ρ(r) = N∑
s1

...∑
sN

∫
dr2...

∫
drN |Ψ(r1, s1, r2, s2, ..., rN , sN) |2 = ⟨Ψ|ρ̂(r)|Ψ⟩ (2.34)

where the operator corresponding to the density observable is

ρ̂(r) =
N

∑
i=1

∑
si

δ (r− ri) (2.35)

The total energy of a system in an external potential Vext (r) is written as a functional of
the electron density ρ(r) as:

2.2.5 Hohenberg-Kohn theorems

Theorem I: The ground state particle density ρ(r) of a system of interacting particles in
an external potential Vext (r) uniquely determines the external potential Vext (r), except for a
constant.[61]

The many-body Hamiltonian H fixes the groundstate of the system under consideration,
i.e. it determines the groundstate many-body wavefunction Ψ, and thus the above theorem
ensures that this itself is also a unique functional of the ground state density. Consequently,
the kinetic and electron-electron interaction energies will also be functionals of ρ(r). One
may therefore define the functional

F [ρ(r)] = ⟨Ψ|T +Vee|Ψ⟩ (2.36)
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where T is the kinetic energy operator, and Vee is the electron-electron interaction operator.
This functional F is a universal functional in the sense that it has the same dependence on the
electron density for any system, independent of the external potential concerned. The exact
density dependence of this functional is, however, unknown.

Using this functional, one may then define, for a given external potential V (r) the energy
functional

E[ρ(r)] =
∫

ρ(r)Vext(r)dr+F [ρ(r)] (2.37)

Where F [ρ(r)] is an unknown, but otherwise universal functional of the electron density
ρ(r) only.

Theorem 2: The groundstate energy may be obtained variationally: the density that
minimises the total energy is the exact groundstate density.

2.2.6 The Kohn-Sham Equation

Although these two theorems prove the existence of a universal functional, they do not give
any idea as to the nature of the functional, or how to actually calculate the groundstate
density. In order to do so, we must discuss the Kohn-Sham formulation. This is based
upon a sleight of hand whereby we map the fully interacting system of N-electrons onto a
fictitious auxiliary system of N non-interacting electrons moving within an effective Kohn-
Sham potential, VKS(r), thereby coupling the electrons.[68] The single-particle Kohn-Sham
orbitals are constrained to yield the same groundstate density as that of the fully-interacting
system, so the Hohenberg-Kohn-Sham theorems are still valid.[62, 64]

Variation of the total energy functional with respect to the electron density, subject to the
constraint of fixed particle number, i.e.

∫
ρ(r)dr = 0 (2.38)

yields

δ

[
F [ρ(r)]+

∫
Vext(r)ρ(r)dr−µ

(∫
ρ(r)dr−N

)]
= 0, (2.39)

where µ is a Lagrange multiplier associated with our constraint. The Euler-Lagrange
equation associated with minimisation of this functional is then

µ =
δF [ρ(r)]

δρ(r)
+Vext(r), (2.40)



30 Computational Methods and Models

The Kohn-Sham formulation allows us to write the universal functional F [ρ(r)] as

F [ρ(r)] = TS[ρ(r)]+EH[ρ(r)]+EXC[ρ(r)], (2.41)

The first two of which are known exactly and constitute the majority of the energy, the
third being a small unknown quantity,

Ts [ρ(r)] is the kinetic energy, which may be written in terms of the non-interacting single-
particle orbitals, not the kinetic energy of the actual physical system under consideration.

Ts [ρ(r)] =−1
2

N

∑
i=1

∫
ψ

⋆(r)∇2
ψi(r)dr. (2.42)

EH [ρ(r)] is the classical Hartree energy of the electrons

EH[ρ(r)] =
1
2

∫∫
ρ(r)ρ(r′)
|r− r′|

drdr′, (2.43)

Thus the Euler-Lagrange Eq. 2.40 becomes

µ =
δTS[ρ(r)]

δρ(r)
+VKS(r), (2.44)

where vKS(r) is the effective Kohn-Sham potential is expressed as

VKS(r) =Vext(r)+VH(r)+VXC(r), (2.45)

The Hartree potential vH(r) is given by

VH(r) =
δEH[ρ(r)]

δρ(r)
=
∫

ρ(r′)
|r− r′|

dr′, (2.46)

with the exchange-correlation potential vxc(r) and Vextare defined as

VXC(r) =
δEXC[ρ(r)]

δρ(r)
. (2.47)

Vext =
δEext

δρ(r)
=−

M

∑
I=1

ZI

|ri −RI|
(2.48)

The Euler-Lagrange equation is now of exactly the same form as that which leads to the
Hartree equations. Therefore we are required to solve the Schrödinger-type equations. The
density obtained when solving the alternative non-interacting Kohn-Sham system is the same
as the exact groundstate density. The groundstate density is obtained in practice by solving
the N one-electron Schrödinger equations,
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[
−1

2
∇

2 +VKS(r)
]

ψi(r) = εiψi(r), (2.49)

where the εi correspond to the eigenvalues of the single-particle states and the charge
density ρ(r) is constructed from the Kohn-Sham orbitals as

ρ(r) =
N

∑
i=1

|ψi(r)|2 (2.50)

Similarly, the many-electron wavefunction of the system may be constructed as a Slater
determinant of the Kohn-Sham orbitals

2.2.7 The Exchange-Correlation Term

The Kohn-Sham equations are thus far exact: no approximations have yet been made; we
have simply mapped the fully interacting system onto an auxiliary non-interacting system that
yields the same groundstate density. An approximation is introduce in defining the Exchage-
Correlation energy. An implicit definition of EXC[ρ(r)] can be given through the Kohn-Sham
kinetic energy as

EXC[ρ(r)] = T [ρ(r)]−TS[ρ(r)]+Eee[ρ(r)]−EH[ρ(r)], (2.51)

where Ts [ρ(r)] and Eee [ρ(r)] are the exact kinetic and electron-electron interaction
energies respectively. Physically, this term can be interpreted as containing the contributions
of detailed correlation and exchange to the system energy. However, the actual form of Exc is
not known; thus we must introduce approximate functionals based upon the electron density to
describe this term. There are two common approximations (in various forms) in use: the local
density approximation (LDA)[69, 70], and the generalised gradient approximation (GGA)[71]

Local Density Approximation (LDA)

This assumes that the exchange-correlation energy at a point r is simply equal to the exchange-
correlation energy of a uniform electron gas that has the same density at the point r. Thus we
can write

ELDA
XC [ρ(r)] =

∫
drεhom

XC (r)ρ(r),

The quantity εhom
XC (r)ρ(r) can be further split into exchange and correlation contributions

ε
hom
XC (ρ̄) = εX(ρ̄)+ εC(ρ̄),
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The exchange part,εX(ρ̄), which represents the exchange energy of an electron in a
uniform electron gas of a particular density, was originally derived by Bloch and Dirac in
the late 1920’s

ε
hom
XC (ρ̄) =−3

4

[
3ρ̄

π

] 1
3

Generalised Gradient Approximation (GGA)

the LDA neglects the inhomogeneities of the real charge density. The development of various
generalized-gradient approximations (GGAs) which include density gradient corrections and
higher spatial derivatives of the electron density and give better results than LDA in many
cases.

EGGA
XC [ρ(r)] =

∫
drεhom

XC (r)ρ(r)Fxc [ρ(r),∇ρ(r)]

Unlike the LDA, there is no unique form for the GGA, and indeed many possible variations
are possible [72–75], each corresponding to a different enhancement factor.

However GGA sometimes overcorrects LDA results in ionic crystals where the lattice
constants from LDA calculations fit well with experimental data but GGA will overestimate
it. Nevertheless, both LDA and GGA perform badly in materials where the electrons tend to
be localized and strongly correlated such as transition metal oxides and rare-earth elements
and compounds.This drawback leads to approximations beyond LDA and GGA

2.2.8 Pseudopotential method

It is well known that most physical properties of solids are dependent on the valence electrons
to a much greater degree than that of the tightly bound core electrons. It is for this reason
that the pseudopotential approximation is introduced. This approximation uses this fact to
remove the core electrons and the strong nuclear potential and replace them with a weaker
pseudopotential which acts on a set of pseudo wavefunctions rather than the true valence
wavefunctions. In fact, the pseudopotential can be optimised so that, in practice, it is even
weaker than the frozen core potential[76]

Pseudopotentials are often used in conjunction with plane wave basis sets. It takes a very
large number of plane waves to expand the wave functions of core electrons because they are
highly oscillatory near nuclei. Pseudopotentials essentially replace the core electrons and true
potential (Z/r) with a smoother, effective potential that produces atomic, valence electron wave
functions with less oscillatory behavior while preserving the key features of the all-electron,
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atomic, valence electron wave functions such as their eigenvalues, values outside the cutoff
radius (which separates the core and valence region), etc

The pseudopotential is constructed in such a way that there are no radial nodes in the
pseudo wavefunction in the core region and that the pseudo wavefunctions and pseudopotential
are identical to the all electron wavefunction and potential outside a radius cut-off rc . This
condition has to be carefully checked for as it is possible for the pseudopotential to introduce
new non-physical states (so called ghost states) into the calculation.[77]

2.2.9 Plane wave basis set

Once the exchange and correlation functional is fixed, the KS equation could be solved. The
first step toward the numerical solution of KS Eq. 2.49 is to choose a basis set to expand the
electron wave functions. In the case where the periodic boundary conditions (PBC) are used,
often one uses a plane wave (PW) basis set, which is widely applied for the treatment of many
condensed matter systems. Due to the periodicity of the potential, the KS eigenstates become
Bloch functions and the single particle orbitals can be expanded as PW’s. Using the Bloch
theorem, the periodic wave functions of the systems could be written:

ψ
k
i (r) = eikr

ϕ
k
i (r)

where ψ is the wave function of the periodic system, k is the reciprocal space vector and
ϕ is a function with the same periodicity as the system. Since ϕ is an arbitrary function, we
could expand it as a PW’s using Fourier series:

ϕ
k
i (r) = ∑

G
Ck

i (G)eiGr

where k k is a continuous wave vector that is confined to the first Brillouin zone of the
reciprocal lattice. The wave function reads:

ψ
k
i (r) = ∑

G
Ck

i (G)ei(k+G)r

Where Ck
i is the Fourier coefficientn or the plane-wave coefficients and G is a reciprocal

space vector defined by G.R=2πm, where m is an integer, R are crystal lattice vectors. The
above results show that the electron wave functions can be expanded in terms of a linear
combination of plane-waves,

The number of G vectors can be tuned by making sure that the convergence of some basic
properties is reached and considering only Fourier components corresponding to energies less
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than a cut off energy Ecut =
1
2 (k+G)2. The choice of this cutoff energy depends on the studied

system as well as the pseudopotential used and determines the accuracy of the DFT energy.

It is possible also to further simplify equation [1.30] by reducing the summation over k,
for instance by including only the Γ (k=(0,0,0)) point. Such a choice is suitable for isolated
systems and in general for cases in which the dispersion of the band structure can be safely
approximated with a straight line. This is of course inaccurate for metals unless a very large
unit cell is employed. Finally the wave function is given by:

ψi(r) = ∑
G

Ci (G)eiGr

Plane waves are not explicitly dependent on the atomic coordinates. In addition, the
accuracy of the basis set could be simply improved by increasing the number of the Fourier
components used. However, as stated previously, the choice of Ecut is always crucial. The
number of the plane waves for a given Ecut depends on the cell volume (Ω) and the K-points
used. An estimation of the number of plane waves corresponding to a given cutoff is given by:

NPW =
1

2∏
2 ΩE

3
2
cut

2.2.10 Total energy

The total energy derived from density functional theory in the framework of the plane
waves basis set and the pseudopotential approximation could be derived from Eq. 2.39 by
substituting the potential expression by the pseudopotential contribution of the local and non-
local parts:

EKS [ρ(r)]=∑
i

∫
ψ

⋆
i (r)

(
−1

2
∇

2 +V ps
nloc

)
ψi(r)dr+EH [ρ(r)]+Exc [ρ(r)]+E loc

ion+
M

∑
J>I

ZIZJ

|RI −RJ|

where Ts [ρ(r)] = ∑
∫

ψ⋆
i (r)

(
−1

2∇2 +V ps
nloc

)
ψi(r)dr , and Eext = E loc

ion+
M
∑

J>I

ZIZJ
|RI−RJ | where

E loc
ion =

∫
V ps

locρ(r)dr
The associated Schrödinger like equation is given by:(

−1
2

∇
2 +Vnloc +Ve f f (r)

)
ψi(r) = εiψi(r)

The new effective potential reads:
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Ve f f (r) =VH(r)+VXC(r)+V loc
ion +Vext(r)

2.3 Molecular dynamics

2.3.1 First principles molecular dynamics

Molecular dynamics (MD) method, a numerical simulation technique where the temporal
evolution of a set of interacting particles is followed by integrating their equations of motion,
can be combined with DFT to realistically describe complex system. This method is named
as first principles molecular dynamics (FPMD) simulations (also refereed to ab initio MD
(AIMD) in literature). The interaction between atoms in FPMD approach is computed
directly from the DFT total energy. As introduced in previous sections, this DFT total
energy is functions of electron wavefunctions and atomic coordinates. By applying the Bohn-
Oppenhenmer (BO) approximation, the motion of electron and nuclei are decoupled and each
timestep when the nuclei move from the position RI (t) updated to RI (t +dt), the optimization
of the electronic structure is performed. In other words, one can assume that the electronic fast
motion can be separated from the slow nuclei one, and that the electrons adapt instantaneously
to the change on the nuclear configuration. Therefore, the electrons are taken as being always
in their quantum mechanical ground state. The forces acting on nuclei are calculated as
gradient of the total energy (ET ) with respect to the ionic position and the variables RI (t)
update to RI (t +dt). The iterative of force estimation assumes that the electronic structure is
recalculated and the complete diagonalization of the Hamiltonian (HT ) is performed at each
time step along the discrete trajectory {RI (t)}{

MI
¨RI =−∇RI ET [{ψi}{RI}],

HT ψi (r) = εiψi (r)
(2.52)

In 1985, Car and Parrinello proposed an alternative way to this BO approximation
scheme, which represented a real advance in FPMD simulations. FPMD involves two major
problems: the integration of motion of nuclear positions and the dynamical propagation
of electronic sybsystem of the ground state. This last requirement in the Car-Parrinello
Molecular Dynamics (CPMD) approach is satified in a numerically stable way and constitutes
an acceptable compromise for the time step length of the nuclear motion. The formulation
is an extension of the classical molecular dynamics Lagrangean in which the wavefunctions
representing the electronic degrees of fredom are added to the system with any other dynamical
variable as a thermostat
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LCP =∑
I

MIṘ2
I +∑

i
µ

∫
dr3 | ψ̇i (r) |2 +

1
2 ∑

k
ηkq̇k−ET [ρ,qk,{ψi} ,{RI}]+∑

i j
λi j

(∫
dr3

ψ
∗
i (r)ψ j (r)−δi j

)

From left to right, the different terms in the aboved equation represent respectively the
kinetic energies of the nuclei, the electrons and the dynamical variables, the total energy
(DFT functional) and the last term is the orthonormality constraint of the wavefunctions. At
each step, the CPMD approach implements the following Euler-Lagrange equation of motion
(EOM).


µψ̈i (r) =−δET

δψ∗
i
+∑ j λi jψi (r) ,

MIR̈I =−∇RI ET,

ηkq̈k =− ∂E
∂qk

(2.53)

where µ is control parameter for the update rate of the wavefunctions with respect to
the nuclear positions and represents the fictitious mass attributed to the orbitals ψi (r) ,R̈I

the acceleration of atom I. Proper choice of the input parameter µ allows good control of
adiabaticity. The EOM are implemented in a discrete finite difference method via a velocity-
Verlet algorithm. [78]

The main idea of the Car-Parrinello method is to consider the electronic states {ψi} as
classical dynamical variables. In this context the fictitious dynamical optimization of {ψi} and
the real atomic dynamics are run in parallel. When the nuclei move from one configuration
to another, the electronic states {ψi} are automatically optimized to the new configuration.
The fictitious electronic motion is governed by Eq.2.53 and similarly evolve at a "fictitious
temperature" ∝ µψ̇∗

i (r) ψ̇i (r)dr. In this sense, if the fictitious electronic temperature is low
enough, and if we optimize the initial configuration wave functions to its ground state, the
electronic subsystem will remain close to its instantaneous minimum energy (minimum of the
BO energy surface) during the dynamical evolution of the ions.[79] The total conserved CP
energy is given as:

E =
∫

µψ̇∗
i (r) ψ̇i (r)dr+

1
2

MṘ2
I +ET

The CPMD scheme represented a significant advance in realistic simulations of real and
complex materials under various thermodynamic conditions. The method is nowaday widely
applied to a large variety of materials, ranging from crystalline solids to disordered systems
such as liquids and glasses. Typical FPMD time scales ranges cover from tens of picoseconds.
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2.3.2 Classical MD

As previously mentioned, MD method, a numerical simulation technique where the temporal
evolution of a set of interacting particles is followed by integrating their equations of motion.
It used the laws of classical mechanics, notably Newton’s equations, which for each particle i
of atom mass mi are written as follow

m
d2ri

dt2 = Fi (t)

Fi (t) =−∇iU (r1,r2, ...,rN)

Fi (t) is the force acting on the particle i of mass mi by (N −1) other particles.
U (r1,r2, ...,rN) is the interaction potential of the N particle system. The total energy of the
system is the sum of the interaction potential and the mean kinetic energy of the particles.

MD simulations are applied to systems containing many particles interacting through
relatively short-range forces. Typical time scale ranges cover from femtoseconds to
nanoseconds. A simulation is good from the point of view of its duration, if the latter is
much greater than the relaxation time characteristics of the quantity under consideration.
MD is fundamentally based on the interaction forces between particles. The method used to
calculate these interaction forces, therefore, characterizes the simulation. Molecular dynamics
simulation scheme is carried out by following the main steps below summarized

• Define the initial configuration of the system (positions, velocities);

• Compute the forces acting on particles as gradient of potential;

• Calculate the positions and the velocities of all particles at t +dt (move particles);

• Move time forward and repeat the procedures from step 2

Classical MD has limitations when considering network-forming glasses due to the empirical
or semi-empirical nature of the interatomic potentials employed in classical MD. For this class
of materials, the determination of the potential energy surface requires the consideration of the
electronic structure.
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Figure 2.2: Machine-learning-based interatomic potentials methodology. Top: General
overview and main required com- ponents. Bottom: Three main classes of regression methods
for ML potential[84]

2.4 Machine learning interatomic potentials

2.4.1 General overview

Machine learning (ML) interatomic potentials (MLIP) are increasingly taking a relevant place
in the study of material properties at the atomic scale and have a great advantage in terms
of computational cost, rapidity and even accuracy [80–82]. ML potentials are a mathematical
representation of 3N-dimensional potential energy surface (PES) by a set of local environment
descriptors [83]. Thus, ML algorithms are used to accurately interpolate energies, forces, and
pressures from a database of accurate results obtained by quantum mechanical calculations
(FPMD-DFT). The correspondence between the PES and local environment descriptors is
learned directly from the reference data, which gives ML potentials good accuracy and
reasonable transferability within a certain degree [80]. Several ML regression techniques
grouped into three classes (as shown at the bottom of Fig. 2.2) have been developed to map the
local environments of the atoms onto the PES[84] . The first class, based on the artificial neural
network (ANN), includes the neural network potentials (NNP) [85]. The second class consists
of kernel methods among which we have the Gaussian approximation potential (GAP). And
the third class refers to the methods based on linear adjustment, including the potential of the
neighborhood spectral analysis (SNAP), the potential of the momentum tensor (MTP).

Figure 2.3 shows the comparative flowcharts for the traditional and ML potentials.
Note that for the traditional potential, the energy of an atom i is calculated using the
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Figure 2.3: Comparative flowchart of total energy calculations with traditional interatomic
potentials (left) and ML interatomic potentials (right)[82]

atomic coordinates within the cutoff sphere and the fixed values of the (empirical) potential
parameters. The total energy of the system is thus obtained by summing the atomic energies
of all atoms. In contrast, in the case of the MLIP, the local environment of a given atom i
within the cutoff sphere is encoded in a set of local structural parameters without any prior
assumptions about the functional form. An appropriate regression model allows to establish
the correspondence with the energy of this atom. The sum of the atomic energies gives the
total energy and thus a point on the PES of the system.

After fitting the ML potential, it can be used to predict energies and forces for large
systems without the need for additional reference data. Fig. 2.2 (top) shows the three
main ingredients needed to generate the ML potential, namely the reference data from the
FPMD/DFT calculations (the quality of the ML model depends on the quality of its input
data), the mathematical representation for atomic structure with the descriptors that must be
permutational, rotational and translational invariance [83] and the regression method (kernel-
based method such as GAP, linear regression, etc).
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2.4.2 Gaussian Approximation Potential methodology

GAP belongs to the family of kernel-based methods. In 2010, Bartok et al introduced the
GAP framework, which uses Gaussian process regression [86]. This approach is increasingly
used to implement the ML potential. As mentioned at the end of the previous section, the
construction of the GAP requires three ingredients.

• Database of reference configuration: This is the starting point for the ML potential. In
this work, accurate energies, forces and virial stresses are computed from large DFT-
FPMD dataset for glassy Na3OCl . These data are used in appropriate format for the
training and validation process of our ML potential.

• Mathematical representations for atomic structure: Having the reference data, we
need to convert the atomic structure using descriptors into a suitable input form for
the potential-energy surface (PES) fit. All descriptors must satisfy the symmetry
requirements (invariant to translation, rotation and permutation). The Smooth Overlap
of Atomic Positions (SOAP) is the many-body descriptors developed for GAP [83]. It
should be confined to the local environment of the atom within a given cutoff distance.

• Regression task: This last ingredient consists in performing the PES fitting based
on GAP. This is a supervised learning problem because we are dealing with labeled
input data. To implement GAP, the total energy is decomposed into individual atomic
contributions[80]

E =
(

δ
2b
)2

∑
iε pairs

ε
(2b)
(

q(i)
)
+
(
δ

MB)2
∑

iεatoms
ε
(MB)

(
q(i)
)

= ∑
i

ε

(
q(i)
)
= ∑
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β jK

(
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)
where the coefficient β are determinied by the ML fitting procedure, ε

(
q(i)
)

represent the

energy contribution of atom i and K
(

q(i),q( j)
)

is the kernel function that quantify the degree

of similarity between the atomic environment described by descriptors q(i)and q( j).
In 2-body descriptors, a squared exponential kernel was used

K(2b)
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q(i),q( j)
)
= exp

−1
2 ∑

ξ

(
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ξ
−q j

ξ

)2

θ 2
ξ


where j denotes one of Nt training configuration q( j). where ξ is an index running over

the components of the descriptor vector q. The descriptor has one single scalar component
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(namely, the distance r12 between the two atoms involved)
In SOAP descriptors, the local atomic density of atom i from its neighbors within a cutoff

distance rcut

ρi (r) = ∑
j

fcut
(
∥ ri j ∥

)
exp

[
−
(
ri − ri j

)2

2σ2
at

]
where σat at is a parameter that controls the smoothness of the potential, ri the position

vector of atom i and j and fcut is the cutoff function define as follow:

fcut
(
ri j
)
=

1
2
+cos

(
πr
rcut

)
= fcut

(
ri j
)
=

1
2
+cos
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1, r < rcut −d
1
2

[
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(
π
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d

)]
, rcut −d < r ≤ rcut

0, r > rcut

Here, d is the cutoff transition width for which fcut decreases smoothly to 0. The SOAP
kernel is evaluated by expanding the local density ρi(r) in a local basis set of orthogonal radial
basis functions gn(r) and spherical harmonic Ylm .

ρi(r) = ∑
nlm

Ci
nlmgn(r)Ylm(r),

where Ci
nlm are the expansion coefficients. The descriptors are formed from these

expansion coefficients by calculating the spherical power spectrum.

(q(i))nn′ l =
1√

2l +1
Ci

nlm(C
i
n′ lm

)∗

This many-body SOAP descriptors satisfy the symmetry requirements and the associated
dot product kernel is defined as follow:

KMB
(

q(i),q( j)
)
=

∣∣∣∣∣ q(i) ·q( j)

| q(i)| · |q( j) |

∣∣∣∣∣
ζ

,

where ζ is a positive integer parameter that improve the sensitivity of the kernel and
increase the body order the model and K is the kernel function that quantify the degree of
similarity between the atomic environment described by descriptors [80]. There are several
tools for implementing ML, and we present some of them in the next section.

Regression is used to find a function (line) that represents a set of data points as closely
as possible. In statistical modeling, regression analysis is a set of statistical processes
for estimating the relationships between a dependent variable (often called the ’outcome’
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or ’response’ variable) and one or more independent variables (often called ’predictors’,
’covariates’, ’explanatory variables’ or ’features’). The most common form of regression
analysis is linear regression, in which one finds the line (or a more complex linear
combination) that most closely fits the data according to a specific mathematical criterion. A
Gaussian process is a probabilistic method that gives a confidence (shaded) for the predicted
function Gaussian processes are a powerful tool in the machine learning toolbox. They allow
us to make predictions about our data by incorporating prior knowledge. Their most obvious
area of application is fitting a function to the data. This is called regression and is used, for
example, in robotics or time series forecasting. For a given set of training points, there are
potentially infinitely many functions that fit the data. Gaussian processes offer an elegant
solution to this problem by assigning a probability to each of these functions.

There are several ways to interpret Gaussian process (GP) regression models. One can
think of a Gaussian process as defining a distribution over functions, and inference taking place
directly in the space of functions, the function-space view. Although this view is appealing it
may initially be difficult to grasp, the equivalent weight-space view is discussed which may
be more familiar and accessible. Deringer et al. [87] provides fundamental background and
more detailed analysis on the regression process.



Chapter 3

Structural stability and ionic transport of
crystalline antiperovskite Na3OCl

3.1 Introduction

Antiperovskite materials have attracted much attention due to their applicability in various
technologies. Many researches have been performed to understand the ion transport,
magnetism, superconductivity of the antiperovskite materials [88–92]. These materials have
interesting physical properties like giant magnetoresistance in Mn3GaC [93], the near-zero
temperature coefficient of resistivity in Mn3NiN [89]. Especially, alkali metal oxyhalides
such as Li3OCl, Li3OBr, Na3OCl, and Na3OBr have demonstrated superionic conductivity
[11].

Recently, there has been growing interests in solid-state electrolytes as they can provide
non-flammable, lower-maintenance batteries with a longer life cycle and a lower self-
discharge [38]. Since organic liquid electrolytes used as Li transport medium in the traditional
rechargeable batteries are flammable, they suffer from safety issues. During charge and
discharge processes the formation and growth of anode dendrites through the electrolyte to
the cathode results in short-circuit and incendiary consequences. Present-day Li ion batteries
are fabricated in the discharged state to avoid any alkali metal in the anode. However, the
anode of a high-voltage cell reacts with the organic-liquid electrolyte and forms a solid-
electrolyte interphase (SEI) passivation layer. The solid electrolytes have energy gap large
enough above the Fermi energies of metallic lithium and sodium to eliminate formation of
SEI layers. Solid electrolytes also have the potential to improve battery performance since they
have the potential to be utilized with elemental metals such as lithium or sodium for the anode,
which would increase the energy density of the battery. Therefore, all-solid-state batteries are
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emerging as suitable candidates for large-scale energy storage. Solid electrolytes have not yet
been extensively employed in commercial batteries as they suffer from poor ionic conduction
at acceptable temperatures and insufficient stability with respect to the anode. The discovery of
solid glassy electrolytes evolved from an antiperovskite structure overcomes the disadvantages
of traditional rechargeable batteries such as the formation of dendrite, the presence of SEI,
large volumetrics [26] and results in a high ionic conductivity at room temperature in the order
of 10−4 to 10−3 S cm−1 up to a stellar value of 0.025 S cm−1 and low activation energies in
the range of 0.2–0.3 eV [38]. Therefore, Li/Na rich antiperovskites (Li/NaRAP) are promising
in solid-state batteries.

One of the main goals of these studies was to search efficient alternatives to Li ions where
we concluded that cheap, abundant, and non-toxic Na was the most possible alternative for Li
[94–97]. Na ion batteries are considered as a possible lower-cost alternative to Li-ion batteries
due to the abundance of sodium in the earth’s crust [98]. As already mentioned that Li3OCl
is promising as a solid-state electrolyte. Being a structural analog of Li3OCl, Na3OCl can be
the best choice as a solid electrolyte for Na ion batteries.

Antiperovskite (A3XY) is similar to perovskite (ABX3) with reversed cation (A,B) and
anion (X,Y) positions. Most perovskites undergo symmetry-breaking transitions resulting
from the distortions or rotations of the octahedra under temperature and pressure variations
[99]. A method for describing and classifying tilted octahedra only in cell-doubling perovskite
is shown by Glazer notation which uses symbols of the type a∗b∗c∗. The component tilts can
be taken about the pseudocubic axes of the untilted perovskite. a, b, c denotes the magnitude of
the angles of tilt about the three unit-cell axes in accordance to directions [100], [010], [001].
Equality of tilts is represented by repeating one of the letters, that is aac means equal tilts
along the [100] and [010] directions with a different tilt along the [001] direction. In addition
to the magnitude of the tilt it is also necessary to consider the sign of the tilt. If a particular
octahedron is tilted about an axis, then the next octahedron along this axis can be tilted in
the same or opposite directions (in-phase or out-of-phase). The superscript ∗ being +, -, 0
indicates in-phase, out-of-phase or no tilt along a specific axis, respectively. Glazer showed
23 possible simple tilt systems corresponding to 15 space groups [100]. In Howard and Stokes
group-theoretical analysis, 15 space groups are listed. Eight tilt systems missing have higher
symmetry than the corresponding space group [101]. The knowledge of tilt octahedra is valid
in studying structural instability of perovskite and antiperovskite materials.

Karin Hippler studied the single crystal structure of Na3OCl and observed that oxygen is
surrounded by six Na atoms to make distorted octahedra and chlorine is coordinated by 12 Na
atoms [50]. Zhao et al. and Zhang et al. reported that Li3OCl had a cubic structure (Pm3̄m)
[11, 102], and Zinenko et al. showed the similar phonon spectra of Na3OCl [103] and Chen et
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al. pointed out phonon instability at R and M points in the cubic structure [99]. Following the
work of Chen et al. [99], we were able to show that the energy of Na3OCl can be lowered by
the tilting of Na6O octahedra and stable phonon modes can be achieved.

Until recently, information on the enthalpies of formation for the Na3OCl and its
thermodynamics properties and phase change were not available. Despite the experimental
synthesis and identification of the cubic Pm3̄m phase by Hippler et al.,[50] dating back to
more than 30 years, only recently thorough characterizations have been reported.[104, 105]
Moreover, recent theoretical studies on a similar class of materials such as halide perovskites
imply the necessity of including lattice anharmonicity, particularly, for the reliable prediction
of phase transition temperature that matches well with available experimental data. For
example, Tadano and Saidi calculated the cubic-to-tetragonal phase transition temperature
of α-CsPbBr3 (404 - 423 K) by obtaining a very small difference from the experimental
measurement (403 K).[106] For this outcome, they included the loop diagram that consists of
quartic interatomic force constants (IFCs), and the contribution of the bubble self-energy term
that consists of cubic IFCs on top of the self-consistent solution (SC1). Moreover, Tadano and
Tsuneyuki found that lattice anharmonicity plays an important role in describing the lattice
thermal conductivity of type-I clathrate Ba8Ga16Ge30.[107]

The imaginary modes associated with dynamic instabilities are fundamentally anharmonic
in nature and a quantitative description requires moving beyond the harmonic approximation.
Using the finite-displacement method to calculate these higher-order terms comes at a
considerably higher computational cost than their harmonic equivalents, and perturbation
theory is not valid for highly anharmonic materials where the anharmonic corrections to the
harmonic energies are significant. In these cases, alternative non-perturbative approaches
are required to describe the anharmonicity. Although typically more expensive than the
perturbation theory-based alternatives, these methods have the advantage of implicitly taking
into account higher-order anharmonicity and temperature effects.

As can be seen, there are a growing number of methods in the literature for going
beyond the (quasi-) harmonic approximation by describing anharmonicity in lattice dynamics,
including imaginary modes, but most of these come at a substantially higher computational
cost over the simpler mode-mapping and renormalisation approaches described in the previous
section. When choosing an appropriate treatment, there is generally therefore a trade-off
between computational cost and accuracy, and the balance will be determined by both the
system under study, the properties to be calculated, and the required level of accuracy. For
systems with strongly-coupled and highly-anharmonic modes, techniques such as SCAILD,
TDEP or the SSCHA will give accurate results but at an increased computational cost. On
the other hand, in systems where the anharmonicity is largely restricted to a small number
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of imaginary modes, or for studies where cost is a primary concern (e.g. high-throughput
modelling), the significantly cheaper mode-mapping approaches may suffice.[108]

In many perovskite materials, the high symmetry cubic phase is stable at a high
temperature, and with decreasing temperature, structures with lower symmetry such as
tetragonal, orthorhombic, and monoclinic phases become stable. Therefore, in the harmonic
phonon band structures of cubic SrTiO3, PbTiO3, and BaTiO3 imaginary frequencies are
found.[56, 109, 110] Both halide and oxide perovskites are well-known materials and
an increasing amount of research reports their intriguing characteristics. Antiperovskites
are structurally similar to perovskites. However, atomic positions occupied by cations
in perovskites are replaced with anions in antiperovskites and vice versa. In terms of
applications, antiperovskite alkali metal oxyhalides are good candidates for solid-state
electrolytes.[111] Cubic Na3OCl has imaginary frequencies at the M and R modes, and 14
possible tilted systems are generated by combining M+

3 ⊕R+
4 distortions that have lower static

energy than the cubic phase.[105] In this paper, the stability of these 14 tilted phases, as well
as the cubic phase, are discussed in terms of the Gibbs free energy using the quasi-harmonic
approximation (QHA) method, which considers the effect of volume expansion to figure out
the most stable phase and phase transition during the cooling down process.

3.2 Computational methods

Calculations are performed in the framework of the Vienna ab initio simulation package
(VASP).[112] The generalized gradient approximation (GGA) in the Perdew-Burke-Ernzerhof
parametrization[71] is used for the exchange correlation potential. The electron–ion
interactions are described by the projector augmented wave (PAW) method.[77] The
geometries have been relaxed using conjugate gradient method with forces estimated until
less than 0.001 eV/Å using the Hellman-Feynman theorem. The total energy is converged to
10−6 eV with the energy cutoff of 500 eV. The tetrahedron method with Blöchl corrections is
chosen for a very accurate total energy in full relaxation.

3.2.1 Harmonic phonon calculations

The harmonic approximation assumes that the second derivative of potential energy with
respect to the atomic displacement is constant. This is a reasonably good approximation,
particularly for the materials where the atoms are tightly bound through a strong covalent
bond. In other words, the shape of the potential energy surface around the energy minimum
is close to a parabolic shape for these materials. However, for the materials formed with the
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relatively weak bond between constituent atoms, the curvature around the energy minimum
easily deviates from parabolic shape even with a displacement caused by the thermal excitation
energy equivalent to room temperature. In this case, the anharmonic shape of the potential
energy surface can be interpreted as the change of the effective harmonic frequency depending
on the temperature.

Phonopy code [113] is used to generate the phonon dispersion curves and verify the space
group of the 15 tilted structures before and after relaxation. The k-path in first Brillouin zone
is selected using Xcrysden program [114]. Band structure and density of states calculation
are obtained through the generalized gradient approximation (GGA) and hybrid functional
Hyed-Scuseria-Erznerhof (HSE) methods [115].

The phonon dispersion of cubic Pm3̄m and 14 tilted structures are generated by the
Phonopy code [113] . In the Phonopy code, force sets are created using finite displacement
method. [116–118]

3.2.2 Quasi-harmonic approximation

For a certain class of materials, the harmonic approximation could be a cost-efficient and
reliable way to model material properties. Moreover, there are well-established methods for
calculating thermodynamics quantities out of phonon band structure calculations. However,
for some materials that have strong lattice anharmonicity, higher-order force constants need to
be considered for the reliable prediction of material properties. Herein, we first draw the P-T
phase diagram of Na3OCl through the Gibbs free energy calculated with the quasi-harmonic
approximation (QHA). These calculations enable us to investigate phase change in a wide
temperature and pressure range with a relatively small computational cost. Then, we move on
to the anharmonic phonon calculations to examine the effect of lattice anharmonicity in the
phase transition of the material. Since the number of interatomic force constants dramatically
increases in case, the materials have low symmetry, so we selected the high-symmetry cubic
phase only for this purpose. [113, 119]

By expanding the harmonic phonon model of lattice dynamics, the QHA describes the
thermal expansion of the material. In this approximation, phonon frequencies become
volume-dependent while the harmonic approximation holds for each volume.[120, 121]
The QHA turns out to be a good approximation at temperatures far below the melting
points[122, 123] and many studies were performed with the QHA to predict the phase-
dependent thermodynamic and elastic properties of the materials, which are consistent with
experimental reports. The quasi-harmonic approach implemented in the Phonopy code is used
to calculate thermodynamic quantities and estimate the phase transition. [109, 124–133]

The Gibbs free energy G(T,P) is an useful thermodynamic potential in the study
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of processes at constant temperature T and pressure P. Through examining the free
energies G(T,P) of possible crystal phases, phase changes can be monitored by varying two
thermodynamic parameters. In our calculations, the Gibbs free energy G is obtained from
minimizing the availability or non-equilibrium Gibbs free energy (G∗) with respect to the
volume V at a given T and P as follows. [52]

G(T,P) = min
V

[Uel(V )+Fvib(T,V )+PV ] , (3.1)

where Uel is the total electronic energy, G∗(T,V,P) ≡ Uel(V )+Fvib(T,V )+PV , and Fvib is
the vibrational free energy. The vibrational free energy can be calculated from the QHA or
anharmonic approaches using the phonon density of states. Based on QHA the vibrational
free energy Fvib is expressed as [113]

Fvib(T,V ) =
1
2 ∑

q j
h̄ωq j(V )+ kBT ∑

q j
ln
[

1− exp
(
−

h̄ωq j(V )

kBT

)]
. (3.2)

where the index j labels the phonon modes for each crystal momentum vector q.

3.2.3 Self-consistent phonon approach

In the phonon calculations considering lattice anharmonicity, the most important procedure is
determining IFCs. To this end, it is necessary to have structures with atoms that are displaced
from their force-zero positions. If the small number of atoms are displaced, we need to have
relatively large structures. Sometimes, it is necessary to have several thousands of structures
even for high-symmetry cubic phase. In this case, the error for the determination of IFCs is
very small since the amount of displacement is constant and the direction of displacements
are along each of three orthogonal axes. Therefore, one important aspect of our methodology
is the use of atomic-scale calculations to evaluate forces acting on individual atoms that are
displaced from their force-zero structure. These effects do play a crucial role in determining
the impact of anharmonic effects. To this purpose a first strategy consists in resorting to
density functional theory [134] (DFT) as implemented in the Vienna ab initio simulation
package (VASP).[112] The Perdew-Burke-Ernzerhof (PBE) version of generalized gradient
approximation (GGA) [71] is adopted for the exchange-correlation functional. The electron-
ion interactions are described by the projector augmented wave (PAW) method.[77] The
geometries are relaxed using the conjugate gradient (CG) method until the Hellman-Feynman
forces on the individual atoms become less than 0.001 eV/Å. The convergence criteria of total
energy in the self-consistent field (SCF) loop is 10−8 eV with the energy cutoff of 500 eV.
The tetrahedron method with Blöchl corrections is chosen for accurate integration over the
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Brillouin-zone.

As a second strategy of structural sampling, we resorted to a scheme fully rooted into
ab-initio molecular dynamics (AIMD). [135–137] We initially conducted AIMD simulations,
within a Born-Oppenheimer scheme [138], in the canonical NVT ensemble by setting the
temperature to 300 K. The thermostat of Nosé-Hoover was implemented. [139] This canonical
simulations lasted for 4 ps, with a time step of 2 fs. From the trajectory obtained, we sampled
80 atomic configurations at constant time intervals. Subsequently, on these configuration, all
the atoms inside the simulation cell were randomly displaced by 0.1 Å. The atomic forces
for the configurations prepared in this manner were obtained using DFT calculations with the
energy cutoff of 500 eV and 4×4×4 k-grids. The methods for structure sampling employed
in this study are very much consistent with each other. However, AIMD proved more efficient
and it has been mostly adopted throughout this study.

When performing SCP calculations (as implemented in ALAMODE [140]) one has to
keep in mind that considering lattice anharmonicity is analogous to the quasiparticle GW
method in the electronic structure calculations. As the GW calculations consider many-
body interactions starting from Kohn-Sham eigenstates, the SCP theory considers lattice
anharmonicity by solving the Dyson equation that considers phonon many-body interactions.
In doing so, we need to consider three main anharmonic self-energy terms, the so-called
tadpole, loop, and bubble diagrams. Each of the three terms can be calculated with cubic or
quartic IFCs (Φ3,Φ4). However, finding a fully self-consistent solution of the Green function
G(ω) in the Dyson equation including those three self-energy terms is very challenging
because of the bubble self-energy term that contains an ω dependence. Therefore the strategy
of Tadano et al. is initially to obtain a self-consistent solution without the bubble term
(SC1). Then the fully dressed Green function can be solved with the Dyson equation that
contains frequency dependent bubble self-energy and the solution of SC1 as an input phonon
propagator. Therefore the Dyson equation that needs to be solved can be written as follows:

{
Gq(ω)

}−1 ≈
{

GS
q(ω)

}−1
−Σ

B
q

[
GS,Φ3

]
(ω) . (3.3)

Tadano et al. end up with the following self-consistent equation to practically deal with the
above equation.[106]

Ω
2
q j =

(
ω

S
q j

)2
−2ω

S
q jReΣ

B
q j

[
GS,Φ3

](
ω = Ωq j

)
(3.4)

where ωS
q j is the self-consistent solution (SC1) obtained without frequency dependent bubble

self-energy term. Instead of solving for fully self-consistent solutions of Eq. (3.4), by putting
ω = Ωq j, we can obtain the solution similar to G0W0 calculations in the electron many-body
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calculations (QP-NL). Depending on the ways that the frequency in the bubble self-energy
is approximated in Eq. (3.4), there are two more levels of approximations. [106] Those are
corresponding to the cases when ω = 0 and ω =ωS

q j which are denoted as QP[0] and QP[S],
respectively.

3.3 Result and discussion

3.3.1 Structural stability

As already mentioned that Li3OCl is promising as a solid-state electrolyte. Being a structural
analog of Li3OCl, Na3OCl can be the best choice as a solid electrolyte for Na ion batteries.
However, similar to cubic Li3OCl, cubic Na3OCl also has negative frequencies at the M and
R points in its phonon dispersions. Following the work of Chen et al. [99], we were able to
show that the energy of Na3OCl can be lowered by the tilting of Na6O octahedra and stable
phonon modes can be achieved.

Optimization and relaxation process gave the lattice parameter of Na3OCl cubic
primitive cell a=4.538 Å using the GGA method and a=4.382 Å using the local density
approximation (LDA) method. In experiment, Karin Hippler reported a=4.496(2) Å [50].
Due to the approximation of the exchange-correlation energy functional, convergence of
the used basis set, and how well the pseudopotentials compare to full potential all electron
methods, our calculated results are not exactly the same as the experiment but it is being
acceptable. In Kohn-Sham’s equation, the exchange-correlation energy functional is computed
approximately by LDA or GGA methods. LDA is generally not accurate enough to describe
the energetics of chemical reactions (heats of reaction and activation energy barriers), leading
to an overestimation of the binding energies of molecules and solids in particular [141, 142].
GGA is presented to overcome such deficiencies. Therefore, the results obtained from GGA
are much better than LDA method. As compared to the experimental results, LDA result is
underestimated by 2.54% while GGA result is overestimated by 0.93%.

At first glance in Fig. 3.1(a), we easily realize that the lattice vibrations are unstable
at M and R symmetry points of the cubic Pm3̄m Na3OCl in a 3×3×3 supercell that show
imaginary frequencies at the M and R points in the phonon dispersion curves. We already
checked for phonon convergence from 1×1×1 primitive cell to 6×6×6 supercell, the results
show that phonon modes in 3×3×3 supercell have very similar properties to them in larger
supercell size. The soft phonon modes occur at M and R which still remain negative when
cell size increases but a phonon mode at M is slighter negative for the enlarged cell size.
Phonon curves illustrate the elastic vibrations of atomic lattice points of crystal. When cell
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size increases the interaction between lattice points becomes more practical and boundary
effect is reduced which increases the computational accuracy. In phonopy, the generation of
force constants relies on finite displacement method. Na3OCl is a non-metallic crystal which
is polarized due to atomic displacements. The macroscopic electric field is generated by the
long-range character of the Coulomb forces that are associated with long wave longitudinal
optical phonons [143]. Through non-analytic term correction, the LO-TO (longitudinal-
optical, transverse-optical) curves split at the Γ point [144]. Oxygen and chlorine have
isotropic Born effective charges with values of -1.795e and -1.283e, respectively. The diagonal
Born effective charges of Na are Zxx= 0.938e and Zyy=Zzz=1.070e. The calculated Born
effective charges of O, Cl and the average one of Na are quite same as their nominal ionic
charges -2e, -e and +e which is the characteristic of a pure ionic crystal. For cubic crystal, their
electronic and ionic dielectric tensors are diagonal and have only one independent component
[145]. The dielectric tensor of Na3OCl has identical diagonal values of about 3.0 which is
larger than the theoretically reported result of 1.97 using TB-mBJ functional [146]. Up to
now, no experimental report on the dielectric constant of this material is reported.

The instability at M and R points, indicating the motion of sodium in these modes leads
to a rotation of octahedra Na6O [103]. As you can see in Fig. 3.2 the animation trend of
their soft modes displacement that induces in-phase and out-of-phase rotations. The unstable
modes imply that the crystal energy can be lowered through octahedral tilts generating the
other 14 tilt structures. In Fig. 3.1(b) the partial density of states indicate that the unstable
modes are concerned only with the Na ions. Most of the lower frequency stable modes are
distributed by Cl. O and Na reigns the high-frequency modes above approximately 5 THz.

The soft modes at M and R points are expressed by M+
3 and R+

4 irreducible representations,
where M+

3 is in-phase tilting and R+
4 is out-of-phase tilting [147]. A method for describing and

classifying tilted octahedra only in cell-doubling perovskite is shown by Glazer notation which
uses symbols of the type a∗b∗c∗. The component tilts can be taken about the pseudocubic
axes of the untilted perovskite. a, b, c denotes the magnitude of the angles of tilt about
the three unit-cell axes in accordance to directions [100], [010], [001]. Equality of tilts is
represented by repeating one of the letters, that is aac means equal tilts along the [100] and
[010] directions with a different tilt along the [001] direction. In addition to the magnitude of
the tilt it is also necessary to consider the sign of the tilt. If a particular octahedron is tilted
about an axis, then the next octahedron along this axis can be tilted in the same or opposite
directions (in-phase or out-of-phase). The superscript ∗ being +, -, 0 indicates in-phase, out-
of-phase or no tilt along a specific axis, respectively. Glazer showed 23 possible simple tilt
systems corresponding to 15 space groups [100]. In Howard and Stokes group-theoretical
analysis, 15 space groups are listed. Eight tilt systems missing have higher symmetry than
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Figure 3.1: (a) Phonon band structure and (b) density of states of the cubic Pm3̄m phase. The
soft modes at M and R points in the phonon band structure indicate that the cubic Pm3̄m phase
is dynamically unstable. The red curve in (b) represents the total phonon density of states. The
black, blue and orange curves corresponds to the partial phonon density of states of Na, Cl,
O, respectively. The k-path in the first Brillouin zone is shown in the inset. The unstable soft
modes dominantly come from Na.
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the corresponding space group [101]. The knowledge of tilt octahedra is valid in studying
structural instability of perovskite and antiperovskite materials. Fig. 3.2(a) shows the top
view of the cubic nontilted crystal structure. The M+

3 distortion results in an in-phase rotation,
as shown in Fig. 3.2(b), and it corresponds to the a0a0c+ structure following the Glazer’s
notation [100]. Similarly, the R+

4 distortion results in an out-of-phase rotation, as presented
in Fig. 3.2(c), and it corresponds to a0a0c−. The structure of the monoclinic P21/m Na3OCl
results from the M+

3 ⊕R+
4 distortions as shown in Fig. 3.2(d). The tilt is in-phase along the a

axis and the tilts along the b and c axes are out-of-phase, which gives the Glazer’s notation of
a+b−c−. The negative frequency at M point leads to M+

3 distortion that derives to 4 tilted
systems a0a0c+, a0b+b+, a+a+a+, and a+b+c+. The irreducible representations R+

4 led
from soft mode at R point are related to 6 tilted systems a0a0c−, a0b−b−, a−a−a−, a0b−c−,
a−b−b−, and a−b−c−. The M+

3 ⊕R+
4 distortions result in 4 tilted systems a0b+c−, a+b−b−,

a+b−c−, and a+a+c− [147]. As a whole, M+
3 and R+

4 distortions of space group Pm3̄m can
generate 14 tilt systems. The energetic stability of ionic crystals is typically reported in a
variety of manners, such as the formation energy, the cohesive energy, and the lattice energy
[148]. Fig. 3.2(e) presents the calculated energies of all the 14 tilt systems relative to cubic
Pm3̄m Na3OCl (∆E = Etilt −Enontilt, where Etilt is the energy of a tilt system and Enontilt is the
energy of cubic Pm3̄m Na3OCl). The energies are calculated using a 2×2×2 unit cell (U.C.)
and a 8×8×8 k-point mesh for each structure. Space groups of 15 systems agree well with
the previous study of tilting octahedra in perovskites [101]. For Li3OCl, 10 tilted structures
are more stable than the cubic phase and the remaining 4 structures are energetically close to
the cubic phase. The maximum energy difference between the cubic phase and the most stable
structure of Li3OCl is less than 1 meV/U.C. [99]. While all the 14 tilted structures of Na3OCl
are much lower in energy than the cubic Pm3̄m nontilted structure with the energy differences
ranging from 11 to 16 meV/U.C., the energetically most stable structure is P21/m. By using the
exchange-correlation functional with LDA, the computed energy of monoclinic P21/m relative
to cubic Pm3̄m is -27 meV/U.C., and the most stable structure is unchanged. The cohesive
energy of Na3OCl is defined as Ecoh=

[
(3ENa +EO +ECl)−ENa3OCl

]
, where ENa, EO, and ECl

refer to the total energies of isolated Na, O, and Cl atoms, respectively. The cohesive energy
of the nontilted Na3OCl in Pm3̄m phase is 15.560 eV/U.C. The formation energy (E f ) of
Na3OCl is defined as E f =

[
ENa3OCl − (3ENa(bcc)+

1
2EO2 +

1
2ECl2)

]
where ENa3OCl, ENa(bcc),

EO2 , and ECl2 refer to the total energies of bulk Na3OCl, bulk Na in body-centered-cubic (bcc)
phase, and gas phase O2 and Cl2 molecules, respectively. The formation energy of Na3OCl
per primitive cell is equal to -7.932 eV.

The tolerance factor of an antiperovskite A3XY is defined as t = rY+rA√
2(rX+rA)

, where rX , rY ,
rA are the radii of the X-anion, Y -anion, and A-cation, respectively. The tolerance factor of
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Figure 3.2: (a) Nontilted cubic Pm3̄m crystal structure is denoted by a0a0a0. (b) M+
3 distortion

indicates in-phase rotation (the same rotation direction of octahedral layers along an axis)
which is simply presented by a0a0c+ structure. (c) The tilted a0a0c− system that indicates R+

4
distortion carried by out-of-phase rotation (the alternating rotation of octahedral layers along
an axis). (d) Three different views of the tilted a+b−c− (monoclinic P21/m) structure resulting
from the combination M+

3 ⊕R+
4 distortions. (e) Energy profile of the 14 tilted structures relative

to the nontilted cubic Pm3̄m Na3OCl. For comparison, the energies of tilted structures are
transformed into the energies per 1×1×1 unit cell. All the 14 tilted structures of Na3OCl are
lower in energy than the cubic Pm3̄m nontilted structure where monoclinic P21/m is the most
stable structure.
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Figure 3.3: (a) Phonon dispersion curves and (b) total and partial densities of states of
monoclinic P21/m. The phonon dispersion curves and the total density of states show no
negative modes, which proves the monoclinic P21/m is dynamically stable.

Na3OCl is 0.83 which increases to 0.87 for Na3OBr and 0.94 for Na3OI. The ionic radii of a
Na cation and Cl, Br, I, and O anions are taken from Shannon’s data [149]. It suggests that the
substitution of Cl with larger ions results in increasing tolerance factor and it approaches 1. In
other words, the cubic phase becomes favorable in case of larger substituents for Cl where the
Na6O octahedral tilt will lead to higher energy [145, 150]. However, consistent with energy
and phonon calculations, the lower tolerance factor (0.83) suggests that cubic phase is not
favorable for Na3OCl and the Na6O tilt is needed to achieve the stable phase.

The lattice vibrations of all 14 tilted structures are studied to find out the most stable
structure among tilted phases. In Fig. 3.3, no negative frequency in phonon dispersion curves
is shown for monoclinic P21/m, which confirms its dynamic stability. Therefore, P21/m is both
energetically and vibrationally stable while the other 13 tilt systems have unstable phonon
curves as well as higher energies. The total and partial phonon densities of states in Fig.
3.3(b) strongly determine the stability of monoclinic P21/m since the calculation takes place
on a dense k mesh that fully describes the first Brillouin zone. The chosen k-paths in the first
Brillouin zone of monoclinic P21/m are presented in Fig. 3.3(b) as well.

The sequece phase change of Na3OCl is a curious subject from the finding out the
most stable monoclinic P21/m phase at 0 K. By studying the temperature effect in phase
transition the harmonic approach fails to explain, we need to consider the anharmonic
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contributions to vibrations. In the harmonic approximation, the vibrational energy is
considered up to the second order for small displacement while cubic and higher order terms
are neglected.[113, 119] The solution of harmonic equation of motion is well known but the
anharmonic one does not have exact solutions and needs other approximation schemes. The
anharmonic part usually leads to only a small modification of the overall behavior. Since the
amplitudes of the displacements are expected to decrease at low temperatures (i.e. the kinetic
energy of the chain), the harmonic term will be the only important term at low temperatures.
The problem is often treated with a simplest model first and then corrected with more accurate
models.[54] The temperature dependence of equilibrium properties, phase transitions, and
thermal conductivity cannot be understood with only the harmonic approximation since they
are related to anharmonic interactions.

The QHA results in Fig. 3.4 show the sequence of phase change from cubic Pm3̄m
to orthorhombic Bmmb (denoted by a0b+c−) and then to monoclinic P21/m (denoted by
a+b−c−). The cubic phase is the most stable phase at high temperature and low pressure,
and it has a phase transitions to the orthorhombic phase at around 650 K. The orthorhombic
Bmmb phase is a tilted phase that results from the condensation of imaginary M and R soft
modes. The condensation of the soft mode at M causes in-phase rotation along the y-axis
and the soft mode condensation at R induces out-of-phase rotation along the z-axis. With
decreasing temperature, the next phase transition is to the monoclinic P21/m phase that is
derived from a condensed X soft mode of the a0b+c− phase. [151] This phase transition to
the P21/m structure is also known to be induced by the combination of M and R soft phonon
condensation from the cubic phase. According to the quasi-harmonic phonon calculations,
this phase transition is predicted to occur at around 135 K.

To check the convergence of harmonic force constants with respect to the supercell size, we
calculated the root-mean-square (RMS) of the difference of force constants. When the RMS
is calculated with the force constants of 4×4×4 supercell as the reference, we found that
the RMS values of 1×1×1, 2×2×2, and 3×3×3 supercells are 0.4393, 0.0242, and, 0.0056,
respectively. Moreover, we also checked the convergence of free energy in different cell sizes.
The results show that the free energy differences of the cubic phase between 2×2×2 supercell
and 3×3×3, 4×4×4, and 6×6×6 supercells are greater than 10−2 eV per unit cell (UC). These
energy differences are larger than the free energy differences between cubic and titled phases
and, in turn, this results in a large error in the phase transition temperature. However, we
confirmed that in the case of 4×4×4 supercell, the free energy converges within 10−3 eV/UC.
Therefore, 3 phases involved in the phase transition, the 4×4×4 supercell (320 atoms) with
the 2×2×2 k-mesh is used to ensure the consistency. Figs. 3.5(a-d) show the non-equilibrium
Gibbs free energies of four phases of Na3OCl. From the minimum at each temperature curve,
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the Gibbs free energy G is determined. The difference in the Gibbs free energies between the
tilted phase and the cubic phase is shown in Fig. 3.5(e), and it shows that the cubic phase is
stabilized at temperatures higher than 220 K. The orthorhombic Bmmb phase is stabilized in
the range between 135 K and 220 K.

This phase transition result is consistent with the experimental observation stating that
the cubic structure is the most stable phase at room temperature and ambient pressure.[50]
The phase diagram can be generated by calculating Gibbs free energies as a function of the
temperature for the given six different pressures which are obtained by Eq. (3.1). Fig. 3.5(f)
shows that the room temperature stable phase is the lower symmetry phase when the pressure
is higher than 0.7 GPa. We propose that Na3OCl is in the monoclinic P21/m phase at a pressure
over 2.1 GPa and room-temperature conditions. The orthorhombic phase is observed in the
range of pressure between 0.7 and 2.1 GPa, and cubic phase is considered to be the most stable
at the pressure below 0.7 GPa.

Due to the relatively small computational cost of phonon calculations with QHA, we were
able to examine 3 different polymorphs and plot the phase diagram with respect to temperature
and pressure. Despite this advantage, it is also well known that QHA has a limitation in
the description of lattice anharmonicity. Therefore we additionally performed self-consistent
phonon (SCP) calculations using ALAMODE.[140] It considers not only the second but also
fourth-order IFCs at the same time, which enables the description of phonon frequency change
with respect to temperature. [56, 152]We also note that previous calculations on oxide or
halide perovskites already demonstrated that SCP calculations of the high-symmetry cubic
phase are useful for prediction of the phase transition temperature. The literature reports that
particular soft phonons lead to phase transition by phonon condensation. Given the structural
similarity of Na3OCl with the perovskite materials, we need to pay attention to the possibility
of observing similar behavior.[56]

After finishing force calculations for all sampled structures, we need to determine IFCs
out of raw data. This can be understood as the fitting of IFCs using DFT force data.
Therefore there could be many detailed choices, including regularization methods that are
frequently used in the machine learning to prevent overfitting. However, we found that simple
ordinary least square (OLS) fitting works well here. Sometimes, harmonic force constants are
determined first with finite displacement sampling and then the other higher orders of IFCs are
determined with predetermined harmonic FC fixed. This is the preferred way of fitting since it
reduces the possible errors of harmonic FC in the case when all orders of IFCs are determined
simultaneously. Here, we found that resulting phonon band structures do not change much
even when all orders of IFCs are determined simultaneously. Although IFCs up to quartic
terms are used in the SCP calculations, higher orders up to the sixth IFCs are also determined
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Figure 3.6: (a) Phonon band structure at various temperatures from 200 K to 500 K by
considering the fourth-order anharmonic contribution. (b) Temperature dependence of the
squared phonon frequencies at the M and R modes. (c, d) Anharmonic phonon dispersion
curves of cubic Na3OCl calculated at 150 K and 300 K (below and above Tc) using different
treatments of QP theory. The red dotted lines, green dashed lines, black dash-double-dotted
lines, and blue solid lines represent the phonon bands obtained from SC1, QP[0], QP[S], and
QP-NL, respectively.

for the accuracy of IFCs that we are going to use.[56, 152] All possible combinations of
interactions were considered for harmonic and cubic terms, and the combinations with the
distance between atoms less than 12 bohr, 8 bohr, and 8 bohr were considered for the fourth,
fifth, and sixth-order IFCs, respectively.

There are imaginary frequencies in the phonon band structures of 12 octahedral tilted
structures. However, those imaginary frequencies are neglected in the calculation of
vibrational free energy. Moreover, the strong lattice anharmonicity found in perovskite
materials raises the need of applying this method, including the consideration of lattice
anharmonicity in the antiperovskite Na3OCl. For the consideration of lattice anharmonicity,
we need to prepare a quartic order of interatomic force constants. However, lower symmetry
structures require a formidable amount of interatomic force constants. Therefore, here we
considered only the high symmetry cubic phase. The phonon band structure of the cubic
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Na3OCl phase shows imaginary frequencies at M and R symmetry points. If we consider
lattice anharmonicity, these imaginary frequencies modes turn into soft phonon modes with
positive frequency. In addition, they tend to have strong temperature dependence and
disappear below a certain temperature. Therefore, through those calculations, we will be
able to predict the phase transition temperature. Moreover, the lower energy structure can be
viewed as a small modification of the higher-symmetry structure. Because the modification
is caused by the distortion corresponding to the eigenvector of the modes with the imaginary
frequency, we can predict the symmetry of the low-temperature phase. With this in mind,
we performed SCP calculations as implemented in ALAMODE [140]. In Fig. 3.6(a), the
anharmonic phonon band structures of cubic Pm3̄m Na3OCl calculated with the SC1 method
is shown in the range of temperatures from 200 K to 500 K. We can recognize that by including
the fourth-order IFC in the SCP equation, the imaginary phonon frequencies disappear. In
doing that, we also found that the q-mesh of 8×8×8 is a reasonable choice in terms of
the convergence of soft mode frequencies at M and R symmetry points (see Table S2 in
Supplemental Material). As shown in Fig. 3.6(b), the soft mode frequencies at M and R can
be nicely fitted with the equation, Ω 2

q (T ) = a(T −Tc). From Fig. 3.6(b), the result shows that
the orthorhombic-to-cubic phase transition occurs at around 86 K, which is an underestimate
compared to the QHA result with the 3×3×3 supercell. It is consistent with the theory that
QHA method neglects the imaginary frequencies while the anharmonic approach takes into
account the effect of these phonon modes. Accordingly, the vibrational energy decreases in
consequence lowering the free energy of the cubic phase.

The calculated anharmonic phonon dispersion curves using SC1 approximation are
compared to the one using the QP method by including bubble self-energy in Figs. 3.6(c,d).
The SC1 phonon frequencies are overestimated compared to the QP frequencies, and the
overestimation is significant in the soft mode while the QP[0] and QP[S] results are close
to the QP-NL one. The QP[0] frequencies are slightly underestimated in the optical modes
while the QP[S] results are consistent with the QP-NL ones. Similar to SC1 characteristic,
through linear fitting of the temperature dependence of squared phonon frequencies, we can
estimate the phase transition temperature as given in Table. 3.1. The QP theory with different
treatments gives similar results of about 195 K, which is more than two times higher than the
transition temperature from the SC1 method and a similar report is given by Tadano et al.. By
including the bubble self-energy term on top of the SC1 solution they found that the phase
transition temperatures of halide perovskite become close to the experimental ones.[106]
Their estimation of the transition temperature without the bubble term was almost half of the
value compared to the experimental one. However, by including the bubble term, they were
able to improve the results significantly. Unfortunately, the experimental phase transition



62 Structural stability and ionic transport of crystalline antiperovskite Na3OCl

temperatures of Na3OCl have not been reported yet. Therefore, direct comparison with the
experimental data is not available at this point. Nonetheless, its room-temperature stability of
the cubic phase reported in the literature suggests that the current computational predictions
are at least in a reasonable range.

The materials with strong lattice anharmonicity also tend to be sensitive to external
strain. Therefore we need to carefully consider the effect of thermal expansion on the phase
transition temperature. For reliable prediction of thermal expansion, we adopted the PBEsol
exchange-correlation functional. It is demonstrated that the lattice constant calculated with
PBEsol functional [153] is close to the experimental one compared to that estimated with
other functionals such as PBE or LDA. Please note that, without temperature effect, the
lattice constant of cubic phase is 4.483 Å which is smaller than PBE lattice constant (4.538
Å) by 1.2%. To consider temperature effect on the lattice constant, thermal expansion of
cubic Na3OCl is calculated with the Helmholtz free energy curves at various temperatures
as presented in Fig. 3.7(a). The minimum points of energy-lattice constant curves at each
temperature are marked with blue squares. As shown in Fig. 3.7(b), the lattice constant
increases almost linearly with increasing temperature. However, we need to keep in mind that
thermal expansion curve is plotted from the calculations with fixed lattice constant. Therefore,
it is necessary to have different information which shows the relationship between lattice
constant versus TC. For the estimation of TC, as shown in Fig. 3.7(c), a linear relation of square
frequencies at M and R soft modes is used. Note that for the thermal expansion we used self-
consistent phonon calculations (SC1), however for the estimation of TC, we used phonon band
structures calculated with additional self-energy term that has frequency dependence (QP-
NL). The data in Fig. 3.7(c) are the particular case when the lattice constant is obtained at
an energy minimum with the PBEsol functional. We can easily recognize that the frequencies
at two soft modes are so close, which results in the phase transition temperature at similar
temperatures (152 - 183 K) by the condensation of each soft mode. As shown in Fig. 3.7(b),
when the lattice constant increases, the estimated TC decreases. The crossing point of thermal
expansion line and lattice constant versus TC curve indicates the phase transition point after
considering thermal expansion. In comparison with TC in Fig. 3.7(c) which assumes a fixed
lattice constant, the consideration of thermal expansion makes TC lower by 16 - 21 K (136 vs
152 K and 162 vs 183 K). The effect of thermal expansion seems to be not so significant in
this particular material. However, as shown in Fig. 3.7(b), this can be dependent on how the
soft mode frequency changes when the lattice constant increases.



3.3 Result and discussion 63

Method Range of transition temperatures (K)
SC1 54 - 86

QP[0] 168 - 195
QP[S] 167 - 195
QP-NL 166 - 195

Table 3.1: Cubic-to-orthorhombic phase transition temperatures are calculated by the QP
theory at different levels. Two values in each cell show the transition temperatures estimated
from the soft mode frequency at M and R points, respectively

Figure 3.7: (a) Helmholtz free energy curves at various temperatures from 100 to 600 K.
The minimum points at each temperature curves are marked with blue squares. (b) Thermal
expansion curve and lattice constant versus phase transition temperature TC curve. (c)
Temperature dependence of the squared phonon frequencies at the M and R modes when the
lattice constant is obtained at energy minimum with the PBEsol functional. The data points
marked with empty squares are used for line fitting.
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Figure 3.8: Band gaps for 15 phases of Na3OCl

3.3.2 Electronic structure and ionic transport properties

Electronic structure and ionic transport properties of Na3OCl are important as the safety and
efficiency indicators for electrolyte applications. Since electrolyte is not supposed to conduct
electricity for safety, we calculated the eletronic band gaps of the 14 tilted phases including
the cubic phase and found that the band gaps of all the phases fall in the range between 2.01
eV and 2.03 eV when we used the GGA functional as shown in Fig. 3.8. In the previous
report by Pham et al.[105], the band gaps of cubic and monoclinic phases increased to around
3.40 eV when the hybrid functional Hyed-Scuseria-Erznerhof (HSE) method is used while the
band gaps are around 2 eV when the GGA functional is used [154]. From these results, we
may consider Na3OCl as an insulator in all the tilted phases. Secondly, the ionic transport
property is obtained by calculating the migration energy barriers of Na via the vacancy-
mediated mechanism[155] with the nudged elastic band (NEB) method [156] for cubic Pm3̄m,
orthorhombic Bmmb, and monoclinic P21/m phases. NEB calculation is performed in a
supercell of 40 atoms. The energy convergence criterion is set to 10−3 eV and five intermediate
NEB images are used. Fig. 3.9(a-c) show the possible reaction paths of vacancy migration in
a schematic way; the Pm3̄m phase has only one path, but the Bmmb and P21/m phases have
6 and 12 paths, respectively. Figs. 3.9(d-f) show the calculated minimum energy paths for
sodium vacancy migration from one Na site to another in cubic Pm3̄m, orthorhombic Bmmb,
and monoclinic P21/m phases. There are six available migration paths in orthorhombic Bmmb
made of three symmetrically distinct Na sites,[157] and twelve paths in P21/m composed
of four symmetrically distinct Na sites (see Table S3 and S4 in Supplemental Material for
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Figure 3.9: Reaction paths for Na migration are shown with the small colored spheres in (a)
cubic Pm3̄m, (b) orthorhombic Bmmb, and (c) monoclinic P21/m phases and Na, O, and Cl
atoms with the larger yellow, red (inside the red octahedra), and green spheres, respectively.
The relative energy changes of vacancy migration through the minimum energy path in (d)
cubic Pm3̄m, (e) orthorhombic Bmmb, and (f) monoclinic P21/m phases are illustrated with
colors for the corresponding reaction paths.

Wyckoff positions in orthorhombic Bmmb and monoclinic P21/m[158]). The single vacancy
migration energies are 0.32 - 0.35 eV (average 0.34 eV) for monoclinic P21/m , 0.31 - 0.35 eV
(average 0.34 eV) for orthorhombic Bmmb, and 0.30 eV for cubic, respectively. The distorted
structures (P21/m and Bmmb phases) are shown to have not much variation in migration
energy barriers compared to the cubic one. For cubic phase, the energy barrier (0.30 eV)
that we obtained falls between the range of previous reports; the activation energy is 0.29 eV
by Ahiavi et al. [51] and the migration energy barrier is 0.43 eV by Wang et al.[159]

3.4 Summary

Thus in this study, we have found the two most energetically and dynamically stable structures
of Na3OCl are Pnma and P21/m among the 14 tilted phases at 0 K. The sequence phase
change of Na3OCl with temperature is interesting research to observe its structural stability
and its properties with temperatures. Two types of phonon calculations are performed to
investigate the phase transition of antiperovskite Na3OCl. The first one is quasi-harmonic
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phonon calculations. When the Gibbs free energies of 14 different polymorphs are calculated
with the QHA, the P-T phase diagram shows that three stable phases would appear in the
limited scopes of temperature and pressure. At ambient pressure, the high-symmetry cubic
phase with Pm3̄m symmetry is expected to be stable at the temperature above 205 K and
monoclinic phase with P21/m symmetry becomes stable below 135 K. In the temperature
range between 135 K and 205 K, Bmmb is expected to be most stable structure. The second
one is the inclusion of anharmonic terms in the phonon calculations by using quartic and cubic
IFCs. The phase transition temperatures (TC) are calculated with the basic self-consistent
phonon calculations (SC1) as well as the temperature-dependent phonon band structures
calculated with additional consideration of the bubble self-energy term (QP-NL). Since the
latter method corrects the overestimation of soft mode frequency, more than twice of phase
transition temperature is expected using the former one (54 - 86 K vs 166 - 195 K). The effect
of thermal expansion on TC is not significant in cubic Na3OCl. Nonetheless, our method shows
that the behavior of the soft mode upon lattice constant change could play a critical role in the
theoretical determination of thermal expansion effects on TC. The overall results are consistent
with the previous computational report on halide perovskite α-CsPbBr3 and experimentally
confirmed room temperature stability of cubic Na3OCl. For the three vibrationally stable
phases, we calculated migration energy barriers of Na vacancy, and found that the energy
barriers falling in the range from 0.30 to 0.34 eV are not much different in phases.



Chapter 4

Unveiling the structure and ions dynamics
of amorphous Na3−xOHxCl antiperovskite
electrolytes

4.1 Motivation

Over the past decade, low-melting-point Li- and Na-rich antiperovskite solid electrolytes
(SEs) have been targeted worldwide as promising materials for solid-state batteries because
of their structural flexibility, high ionic conductivity, wide electrochemical window, and
stability.[160–164] In particular, sodium oxyhalide and hydroxyhalide antiperovskites hold
the potential to be used in the SEs domain due to their low melting point (Tm < 300
◦C), affordable cost and low environmental impact of the constituent elements (Na, H,
O, and Cl), and rapid synthesis.[165] By exploiting their versatile structure, expressed as
X3OA (X= Li+ or Na+; A= halides (Cl−, Br−, I−) or other anions (BH−

4 , NO−
2 )), the

properties, performance and ion dynamics mechanisms of antiperovskite SEs can be tailored
through chemical doping, defect tuning, and structural manipulation, thereby providing an
exploitable multifaceted chemistry.[160, 166–174] By virtue of aliovalent doping or via mixed
hydroxides, Li-rich antiperovskites have been shown to yield superionic ion conductivities,
i.e. ∼0.1 mS/cm.[165, 175] Beyond the stoichiometric X3OA crystalline systems, attention
has been drawn to the use of cation- and anion-doped X3OA as well as glassy (or amorphous)
antiperovskite electrolytes.[166, 176, 177] Glassy Li3OCl- and Na3OCl-based antiperovskites
have been originally exploited by the teams of Braga and Goodenough, showing a glass
transition temperature in the range 390-450 K and a conductivity of the order of 10−2 S/cm
at room temperature.[178–180] However, attempts at reproducing the original laboratory
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synthesis were not conclusive and, to date, structure and ion conduction mechanism of glassy
antiperovskite electrolytes remain unsolved issues. [160, 176, 181]

The original work of Braga et al.[178] was later questioned by Hanghofer et al.[181], who
ascribed the high conductivity of Li+ ions to the presence of impurity and stability of the
sample, and the formation of LiCl·H2O to the presence of H2O. The results of Ref.[178]
have been substantiated by ab initio and classical molecular dynamics (MD) simulations
agreeing on the existence of a subnanoscale phase separation of Li3OCl into Li2O and LiCl
phases together with an intermixed phase. The formation of such subnanoscale separation was
considered to be the promoter of the high conductivity of Li ions as well as a non-negligible
Cl ions mobility.[182]

Successful use of an electrolyte composite was recently reported by Tian et al..[45,
183, 184] In this application, an amorphous Li3OCl was used as a matrix embedding
Li6.75La3Zr1.75Ta0.25O12 garnet-type oxide particles exhibiting a high room temperature
conductivity of 2.27·10−4 S·cm−1 and an extremely wide electrochemical stability window up
to 10 V. In this particular case, the added value promoted by the amorphous X3OA phase was
the ability to act as a binder and filling agent ensuring the formation of an integrated composite
SE with a continuous widespread ionic conductive network. The key role of the amorphous
phase was also assigned to the excellent affinity to the lithium metal, greatly decreasing the
interfacial resistance between the anode and the electrolyte.[45, 183, 184]

A detailed understanding of the atomic structure is a key step to further capture the
details of the transport mechanisms behind its conductivity performance. Recent reviews
on the use of anti-perovskites for solid-state batteries underlined the limited nature of
the available structural characterization and pointed out the severe need of a quantitative
structural assessment to avoid any misinterpretation of the correlations between structure
and performances.[160, 185, 186] Overall, structure and ion dynamics mechanisms are well
known for crystalline X3OA compounds. This is not the case for amorphous antiperovskites,
especially in both hydrogen-free and hydroxylated phases (e.g., oxyhalide X3OA vs.
hydroxyhalide X3−xOHxA).

In view of these considerations, this work relies on predictive atomic-scale modelling, as
first-principles molecular dynamics (FPMD), to elucidate the structure and transport properties
of amorphous H-free and hydroxylated Na3−xOHxCl systems. In terms of structural analysis,
we provide a detailed study of both X-rays and neutrons structure factors. If the X-ray probe
is of high importance, neutron studies are particularly needed in the case of antiperovskite
electrolyte investigation, being capable of detecting low-Z elements (or light elements, such
as H and Li) that are out of reach of X-ray (synchrotron source) techniques.[160, 161, 176]

Our paper is organized as follows. Sec. 2 describes the methodologies and models systems
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employed within first-principles molecular dynamics. We give details on the production of the
amorphous systems allowing for the calculation of static and dynamical properties. A specific
subsection is devoted to a set of definitions for quantities (ionic diffusion and conductivities)
targeted in this work for their potential applications in the solid-state electrolyte. Results
are presented in Sec. 3 and separated into two subsections, the first one (3.1) devoted to
structural properties and the second one (3.2) to dynamical properties. The analysis of the
structural properties features, firstly, calculated properties in reciprocal and real space (3.1.1
and 3.1.1), namely the structure factors and the pair correlation functions. The following parts
are devoted to the analysis of the coordination numbers (3.1.3) and the structural units (3.1.4),
with special attention paid to the chemical nature of the various motifs and their variations
with the composition.

Subsection 3.2 is organized into three parts, describing respectively the different trends
taken by the mean square displacements (3.2.1), a dynamical structural rearrangement
involving the hydroxyl group (the “paddlewheel” effects, 3.2.2), and the behavior of the
diffusion coefficients (3.2.3) leading to the assessment of the ionic conductivity (3.2.4).
Concluding remarks are collected in Sec. 4.

4.2 Calculation methodology and models

4.2.1 Producing Na3−xOHxCl amorphous models at 300 K

The Car-Parrinello (CP) method[187] was used to produce dynamical trajectories of
the targeted Na3−xOHxCl systems. The exchange-correlation functional selected is the
generalized gradient approximation (GGA) proposed by Perdew, Burke and Ernzerhof
(PBE).[188] The valence-core interaction was described by numerical norm-conserving
Troullier-Martins (TM)[189] pseudopotentials for all elements (Na, O, H, and Cl). In the
case of Na, semi-core states were included to ensure a good description of the energetics and
electronic features dependent on its cationic nature. This amounts to electronic configurations
He 2s2, 2p6, 3s1 for Na; He 2s2, 2p4 for O; 1s1 for H and Ne 3s2, 3p5 for Cl. Valence
electrons are treated explicitly and represented on a plane-wave basis set with the sampling of
the Brillouin restricted to the Γ point. A fictitious electron mass of 600 a.u. and a time step
of 0.12 fs ensured optimal conservation of the constants of motion. FPMD simulations were
performed in the canonical NVT ensemble with the ionic temperature controlled with a Nose-
Hoover [190–192] thermostat chain.[193] For the simulations performed at high temperature
(>1000 K) we used a Blochl-Parrinello electronic thermostat [194] with a target kinetic energy
of 0.1 a.u. to control the fictitious motion of the electronic degrees of freedom. Our FPMD
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approach [187] has been extensively used and benchmarked in the last decades and contributed
to the improvement of our understanding of both the physical and chemical properties of
chalcogenide and chalcohalide glasses,[195–197] hybrid[198] and porous[199] systems, and
nanomaterials.[200–202]

The Na3OCl glass model was generated by quenching from the melt. The initial
configuration consisted of a Na3OCl crystal cubic unit cell replicated 3×3×3 times to obtain
a 135 atoms model (81 Na, 27 O, and 27 Cl) in a cubic simulation cell of side 13.6148 Å.[203]
The initial box was expanded by 15% with respect to crystal density in order to ease melting
at a high temperature. A similar approach was followed for the case of glassy Li3OCl.[182]
Periodic boundary conditions were applied throughout. The model underwent a thermal cycle
via canonical NVT simulations, according to the following protocol: 1.3ps ps at T = 300 K,
1.2 ps at T = 1200 K, 3.1 ps at T = 1500 K, 46.5 ps at T = 1800 K, 38.6 ps at T = 1000 K,
33.7 ps at T = 750 K and 35 ps at T = 300 K (see Fig. 1). At the end of the cycle of T = 300
K, the density of the system was set to 2.04 g/cm3 (corresponding to a final volume expansion
of +5% with respect to the crystal phase) in order to reduce the stress tensor to values very
close to 0 GPa. Along the thermal cycle the energy cutoff for the plane wave expansion was
REc= 80 Ry. This value was increased at T = 300 K (REc= 160 Ry) to achieve convergence
of the stress tensor. By using the final configuration of amorphous Na3OCl at T = 300K, we
randomly replaced the proper amount of Na atoms with H atoms to obtain Na2.5OH0.5Cl and
Na2OHCl (corresponding to ∼17% and ∼33% of Na replaced, respectively). These systems
undertook a thermal cycle via canonical NVT simulations with the following time schedule:
20 ps at T = 1800 K, 22 ps at T = 1000 K, 19 ps at T = 750 K, and 30 ps at T = 300 K.
To obtain vanishing pressure at T = 300 K, the density of the system was set to 1.93 g/cm3

(Na2.5OH0.5Cl), and 1.75 g/cm3 (Na2OHCl) (Fig. 1 inset). In what follows, the results on the
atomic structure are presented as time-average values over the last 20 ps of the thermal cycles
at T= 300 K. For all the simulations done here, we used the developer version of the CPMD
package.

4.2.2 Dynamical simulations at finite temperatures

FPMD simulations allow to assess the transport properties of mobile ions in amorphous
materials.[204, 205] In this work, the ions dynamics and transport properties were studied
at different temperatures, specifically T = 300 K, 450 K, 600 K, 800 K, 1000 K, and 1200
K (Na3OCl only). The three systems were equilibrated in the NVT canonical ensemble for
a total simulation time of ∼30 ps. Trajectories were collected every 20 fs. The mean square
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Figure 4.1: Temperatures along the thermal cycle for amorphous Na3OCl: light blue line,
instantaneous T values; blue line, T values sliding average with a window of 0.1 ps. The
dashed vertical grey line sets the time at which optimization of the volume at T = 300K and
0 GPa was implemented. Inset: final density values optimized at T = 300K for the three
Na3−xOHxCl models. Error bars are estimated with tests at different volume performed on
several final configurations (300K) to obtain a final stress tensor close 0 GPa.

displacements (MSD) of all ions were computed according to

〈
r2 (t)

〉
=

〈
N

∑
i=1

|ri (t)− ri (0)|2
〉

=

〈
∑

i
(∆Ri(t))

2

〉
(4.1)

where N is the number of the atoms of interest and
〈

∑i (∆Ri(t))
2
〉

is the MSD averaged
on all realizations of Eq. (4.1) for a given value of the time t. It should be noted that in its
standard definition the mean square displacement is normalized to the number of particles, say
N, so as to appear as an intensive property resulting from an average over the whole system.
However, for sake of convenience, we prefer to take advantage of a definition of MSD taking
the form of Eq. (4.1). To assess the so-called tracer diffusive D∗ behavior of the ions, MSD is
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analysed in log-log plots via the slopes β (t) as a function of time,

β (t) =
d log

〈
∑i (∆Ri(t))

2
〉

d log t
(4.2)

At very short t, a value of β (t) equal to two is expected, corresponding to a free, ideally
ballistic, motion of the ions, while at very long times, β (t) should reach a value equal to
one, corresponding to a real diffusive regime, with the MSD growing linearly with time. We
would like to stress here that this analysis is crucial to determine the effective achievement
of diffusive behavior and identify the portion of the MSD plot that should be used to extract
diffusion coefficients. This is particularly important in the case of disordered materials such
as glasses,[206] ionic liquids,[207] and molten salts.[208] In the present work, the lower and
upper bounds of the real diffusive regime were defined within the interval delimited by (lower
boundary) the t at which β (t) reaches a value of one up to (upper boundary) the value of t
corresponding to a length of trajectory 15% shorter than the total one.[209] For the systems
that reach the diffusive regime at a given temperature, the ions diffusion coefficients (e.g.
tracer diffusivity) were calculated by using the Einstein relation given by:[210, 211]

D∗ = lim
t→∞

1
N2d

∂
〈
r2 (t)

〉
∂ t

≃ ∑i
〈
∆R2

i
〉

N2dt
(4.3)

where d is the dimensionality factor (d = 3 for three dimensional systems) and we have
dropped the explicit dependence on time in Eq. (4.3) as a result of the infinite t limit. When
the diffusive regime is reached, the Arrhenius equation can be used to calculate the activation
energy Ea barrier for diffusion (conductivity) by fitting the data of logD∗ (logσ∗) vs. 1/T as:

D∗ = D0 exp
(
−∆Ea

kT

)
(4.4)

From the tracer diffusivity D∗, the idealized ionic conductivity can be calculated based on the
Nernst-Einstein relation:

σ
∗ = D∗ Nq2

V kT
=

q2

2dV kT ∑
i

〈
∆R2

i
〉

(4.5)

where V is the total volume of the model system, q is the charge of mobile-ion species,
T is temperature, k is the Boltzmann constant. A more accurate estimation of the relevant
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conductivity is instead given by the Einstein formulation of the net charge migration as:

σion = Dσ

Nq2

V kT
=

q2

2dV kT

〈(
∑

i
∆Ri

)2〉
(4.6)

The charge-diffusion coefficient Dσ , which refers to the displacement of the center of mass of
all the diffusing ions and is used here to consider possible correlation effects, is defined as:

Dσ =

〈
(∑i ∆Ri)

2
〉

2dNt
=

∑i
〈
∆R2

i
〉

2dNt
+

∑i ∑ii̸=i ⟨∆Ri∆Rii⟩
2dNt

(4.7)

where d is the dimension of lattice where diffusion takes place and N refers to the number of
diffusing ions.[212–215] The numerator on the left-hand side was split into a self-diffusion
part and a distinct-ion part, the latter accounting for correlations between the movements of
distinct ions of the same type (i.e. Na ions).

The Haven ratio is a measure of the degree by which the trajectories of different atoms are
correlated to each other.[212, 216] For single ion conductors, it is

Hσ
R =

D∗

Dσ

(4.8)

becoming equal to one in the absence of any correlation between different diffusing atoms.
This is asymptotically approached in the dilute limit, where diffusing atoms rarely encounter
each other during ther motion through a crystal. If distinct ions move preferentially in the
same direction (positive correlation), then HR > 0 and HR < 1, which is usually observed for
single-ion conductors.[215, 217–219] At non-dilute concentrations, as in the majority of the
solid electrolytes, positive correlations between different diffusing ions become particularly
relevant, resulting in HR < 1, whereas negative correlations between different diffusing ions
(distinct ions move preferentially in the opposite directions) give HR > 1. To consider all
types of ions correlations (positive and negative) involved in the system, namely cation-cation
correlations (σdist

++ ), anion-anion correlations (σdist
−− ) and cation-anion correlations (σdist

+− )
contributing to the Haven ratio, the following equation is used:

Htot
R =

σ∗tot

σ tot
ion

=
σ

sel f
+ +σ

sel f
−

σ tot
ion

=
σ

sel f
Na +σ

sel f
O +σ

sel f
Cl

σ
sel f
Na,O,Cl +σdist

NaNa,OO,ClCl +2σdist
NaCl,NaO,ClO

(4.9)
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where
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ion =
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σ
dist
AA =

q2z2
A

2dV kT ∑ ∑
ii̸=i

⟨∆Ri∆Rii⟩ (4.12)

σ
dist
AB =

q2zAzB

2dV kT

(
∑

i
∆Ri ∑

j
∆R j
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N is total number of ions in the electrolyte, and zi is the charge number of ion i.[207] The sum
in Eq. (10) can be re-expressed as shown in Eqs. (11)−(13). Hσ

R is computed by considering
correlation effects only promoted by Na ions whereas with Htot

R the contribution of possible
correlation effects due to O and Cl ions are also taken into account. These equations are an
alternative to the methods based on quantifying collective correlated effects by integration of
the ions velocities autocorrelation functions.[220–222]

4.3 Result and discussion

4.3.1 Structural properties

Total X-rays and neutrons and structure factors

The total X-rays and neutrons structure factors (SX
T (k) and SN

T (k), respectively) can be directly
calculated on the equilibrium trajectory in the reciprocal space.[223, 224] Alternatively, SX

T (k)
can be obtained by Fourier transform (FFT) of the real space total pair correlation function
gtot(r). We underline that the calculation of ST (k) directly in the k-space is, generally, to be
preferred over the Fourier transform (FFT) of the real-space pair distribution functions, since
the former approach avoids the effects of the finite range of integration. However, the FFT
procedure is currently adopted in the literature to smooth out the noise affecting the structure
factors computed directly in reciprocal space, especially in the case of glassy configurations
at room temperature. In the present work, we employed the FFT method and the calculated
SX

T (k) and SN
T (k) are shown in Fig. 2.

In the following, we analyze X-rays and neutrons FFT ST (k) in terms of peaks positions
and intensities comparing the three Na3−xOHxCl systems. We remark that SX

T (k) of Na3OCl
features a first peak at about k ∼2.5 Å−1 with a shoulder at k ∼2.0 Å−1 and a second peak
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Figure 4.2: Left: Total pair correlation functions for amorphous Na3−xOHxCl (x= 0, x=0.5,
x=1) obtained at T = 300 K. Right: Zoom-in into the 0.8-1.2 Å (top) and 1.8-3.2 Å (bottom)
ranges.

at k ∼3.5 Å−1. These first two peaks are followed by much broader maxima and minima and
rapidly damped oscillations up to k ∼8.0 Å−1. Na2.5OH0.5Cl and Na2OHCl SX

T (k) have very
similar profiles and minor differences with respect to pristine Na3OCl. In contrast, while the
X-rays structure factor SX

T (k) exhibits similarities across all three cases, the neutron structure
factor SN

T (k) displays significant distinctions, indicating that it may be a better diagnostic tool
for discerning models containing varying amounts of hydrogen. Higher intensities are found
in SN

T (k) for Na3OCl. By increasing x, maxima and minima are reduced and different profiles
appear in between k ∼2 Å−1 and k ∼4 Å−1 to signify a lower degree of structural organization.
The relatively small peak at about k ∼1 Å−1 reveal that the intermediate range order is very
limited in these amorphous systems. Overall, Fig. 2 is indicative of modifications taking
place within the networks affecting an ordered structural sequence made of distinct shells of
neighbors.
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Table 4.1: Upper part: nearest-neighbour interatomic distances ri j (in Å) identified by the
position of the first maximum of the pair correlation functions gi j(r). We also give the
first peak full width at half maximum (FWHM). For comparison, we report the values of
the crystalline Na3OCl phase obtained by experiments.[203, 225] Lower part: total and pair
coordination numbers as defined by taking different cutoff radii for the definition of a total or
a “cation-anion” shell of interactions (see Sec. 4.3.1). Values in parenthesis correspond to the
statistical uncertainty on the last reported digits.

Exp.[203, 225] FPMD, this work
Crystal Na3OCl Na2.5OH0.5Cl Na2OHCl

rNaO 2.25 2.28(2) 2.27(2) 2.32(2)
FWHM 0.28 0.31 0.33
rNaCl 3.18 2.75(2) 2.75(3) 2.74(4)
FWHM 0.47 0.46 0.52
rNaNa 3.18 3.14(3) 3.22(4) 3.34(4)
FWHM 0.92 1.01 1.02
rOO 4.50 3.85(1) 3.72(4) 3.61(4)
FWHM 0.86 0.77 0.72
rOCl 3.89 4.00(4) 3.91(2) 3.78(4)
FWHM 0.79 1.00 0.93
rClCl 4.50 4.06(3) 3.87(3) 4.05(3)
FWHM 0.82 1.04 1.01
rOH - - 0.98(2) 0.97(2)
FWHM - - 0.02 0.02
nt

Na 14 8.01(3) 7.26(2) 6.04(2)
np

Na 6 4.0(1) 4.30(1) 4.58(2)
nt

O 6 6.30 (2) 6.44(2) 6.09(4)
np

O 6 6.29 (3) 5.94(2) 5.40(2)
nt

Cl 12 5.73(3) 5.45(2) 4.93(3)
np

Cl 12 5.72(1) 5.37(1) 4.78(3)
nt

H - - 1.00(2) 1.02(3)
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Figure 4.3: Partial pair correlation functions gαβ (r) for amorphous Na3−xOHxCl (x= 0, x=0.5,
x=1) at T = 300 K relative to the pairs Na-O, Na-Cl, Na-Na, O-O, Cl-Cl, O-Cl, O-H, and Cl-H.
The running integrals over the interatomic distance are shown.

Total and partial pair-correlation functions

The total and partial pair correlation functions for the Na3−xOHxCl (x= 0, x=0.5, x=1) systems
are shown in Fig. 3 and 4, respectively. In terms of total pair correlation functions, the H-free
Na3OCl one shows a first narrow peak centered at ∼2.28 Å (with a full width at half maximum
(FWHM) of 0.28 Å) and a broader second peak at a lower intensity at ∼2.77 Å (FWHM
of 0.47 Å). These two peaks are present also in the hydroxylated systems, although with a
lower ratio between the intensities for Na2.5OH0.5Cl, whereas similar values are observed in
Na2OHCl. As expected, the presence of H leads to a very sharp peak at about ∼0.98 Å,
with FWHM of 0.02 Å. In addition, there is a very small maximum in Na2OHCl at ∼1.5 Å.
Analyzing the partial pair correlation functions gαβ (r) (Fig. 4) allows us to trace back the
role of each individual pair contribution with respect to the total one. In Tab. 1 we report the
nearest-neighbor distances ri j identified by the position of the first maximum of the gαβ (r)
for the three Na3−xOHxCl systems. For comparison, we also report the nearest-neighbor
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Figure 4.4: a) Representation of the unit cell of crystalline Na3OCl. The red polyhedra identify
the octahedron O site. b) Crystalline supercell of 135 atoms (unit cell replicated 3×3x×3). c-
e) Coordination units for Na, O, and Cl found in amorphous Na3OCl at T = 300 K: a fourfold
Na atom (O2Cl2) (c), a sixfold Cl atom (d), a sixfold O atom (e). f) A Na atom found in
amorphous Na2.5OH0.5Cl coordinated by at least an O atom as a hydroxyl group. Counter-
ions interatomic bonds are identified by a dashed line with the corresponding values. We show
the atoms within a radial cutoff of 3.3 Å. Color legend: Na, yellow; O, red; Cl, green; H, white.

distances found in synthesized pure crystalline Na3OCl.[174, 225] The first peak of gtot(r) for
amorphous Na3OCl can be ascribed entirely to the Na-O pair (∼2.28 Å), whereas the second
peak is mainly attributed to the Na-Cl pair (∼2.75 Å) and only partially to Na-O and Na-Na
(∼3.14 Å) gαβ (r) contributions. The first peak of gNaNa(r) is responsible for the shoulder
occurring after the second peak (∼2.8-3.1 Å) found in the total pair correlation function.
Analyzing the peak positions of gNaO(r) for amorphous Na3OCl, the Na-O bond distance is
found slightly larger than the typical ionic bond reported for crystalline Na3OCl (∼2.25 Å),
whereas the Na-Cl ionic bond distance is shorter than that of crystalline one (∼3.18 Å).
The partial pair correlation functions gNaO(r), gNaCl(r) and gNaNa(r) of the two hydroxylated
systems are quite similar to those of Na3OCl. However, the intensities of the first peaks in
gNaO(r) and gNaNa(r) are reduced in accordance with the lower content of Na atoms (in favor
of H atoms) whereas the corresponding intensity in gNaCl(r) is increased. Replacing part of
Na atoms with H atoms causes an elongation of the Na-O distance in Na2OHCl (∼2.32 Å for
∼33% of Na atoms replaced) while no effect is found in the Na-O distance for Na2.5OH0.5Cl
(∼2.27 Å for ∼17% of Na atoms replaced). On the contrary, Na-Cl bond distances found in
Na2.5OH0.5Cl and Na2OHCl are the same as in Na3OCl (∼2.75 Å). gNaNa(r) shows a slight
increase of the Na-Na nearest-neighbour interatomic distances with increasing H content (up
to ∼3.34 Å when ∼33% of Na is substituted). The two hydroxylated systems are affected by
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Figure 4.5: Distributions of the structural units for Na of amorphous Na3−xOHxCl (x= 0,
x=0.5, x=1) as a function of the number of neighbors in each unit (l). Values obtained by
using the definition of "total" coordination nt

ij, given in Sec. 4.3.1.

a greater degree of disorder in comparison with Na3OCl as confirmed by a less pronounced
minimum separating the peaks in gNaNa(r).
The gOH(r) partial pair correlations functions of Na2.5OH0.5Cl and Na2OHCl show that all
H atoms are bonded to O atoms, forming OH hydroxyl groups with typical O−H bond
distance equal to ∼0.98 Å. This observation is further supported by the analysis of gClH(r),
for which the Cl−H interatomic distance lies at values higher than ∼2.0 Å for both the
hydroxylated phases, much larger than typical Cl−H bond distance, i.e. ∼1.3 Å. For what
concerns gOH(r), a few differences can be pointed out between the two hydroxylated phases.
In Na2.5OH0.5Cl, a second peak exists at about ∼2.0 Å which reflects the presence of a H-
bonding network promoted between neighboring hydroxyl groups or free oxygen atoms in
the form of OH· · ·OH and OH· · ·O interactions, respectively. In Na2OHCl, such a peak is
minimally visible but a small peak at a shorter distance (∼1.5 Å) is discernible. This latter
peak is the one that generally identifies H atoms (or protons) hopping between neighboring
hydroxyl groups and giving rise to stable or metastable water molecules.[226–231] In terms of
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anion-anion pair correlation functions, all three gOO(r), gClCl(r) and gOCl(r) are characterized
by a first main peak centered at around ∼3.7-4.0 Å. There are interesting differences to be
pointed out when comparing gOO(r) for the three Na3−xOHxCl models. In particular, Na3OCl
exhibits a relatively broad first peak at ∼3.85 Å (FWHM of ∼0.86 Å) whereas the two
hydroxylated models feature intense peaks at ∼3.72 Å and ∼3.61 Å (FWHM of ∼0.77 Å
and ∼0.72 Å, respectively) followed by a shoulder centered at about ∼4.5 Å. Also, worth
of notice is a small peak at ∼2.5 Å for Na2.5OH0.5Cl and a shoulder at about ∼2.9 Å for
Na3−xOHxCl while in the case of Na3OCl gOO(r) goes to zero for distances <3.2 Å. In terms
of gClCl(r) and gOCl(r), the three models show very similar profiles, although the intensity of
the main peak of the two hydroxylated systems is smaller for a higher degree of disorder with
respect to Na3OCl.

Total and partial coordination numbers

More insights into the Na3−xOHxCl networks can be obtained by looking at the total and
partial coordination numbers (ni and ni j, respectively), obtained by relying on the pair
correlation functions. More precisely, ni j is obtained by integrating the first peak of gi j(r) up to
a given cutoff distance corresponding to the position of the first minimum. The total Na, O, Cl,
and H coordination numbers are then obtained as follows: nNa = nNaO + nNaCl + nNaNa + nNaH ,
nO = nONa + nOH + nOCl + nOO, nCl = nClNa + nClH + nOCl + nClCl and nH = nHO + nHCl + nHNa

+ nHH . When the first peak of the corresponding gi j(r) is followed by a clear minimum well
separated from a second maximum, ni j does not suffer from any ambiguities for its definition,
since the running coordination number exhibits a clear plateau (see the behavior in the case of
Na-O interactions, inset of Fig. 4). In the opposite case, the determination of ni j is less clearcut
(see the Na-Na case in the inset of Fig. 4) and ni j is much more sensitive to the choice of the
cutoff. For these reasons, in addition to the individual pair cutoffs taken as the minima after the
first peak of gi j(r), we adopted a second cutoff (a “total” one) defined by the minimum after the
second peak of gtot(r). The value found (3.3 Å) is determined as the average between the three
amorphous models and it allows us to consider within the first coordination shell of Na atoms
all the counter-ions (O and Cl) and a number of neighboring Na atoms. With this procedure,
we can compare the coordination numbers of amorphous Na3−xOHxCl models to those of
the crystalline phase of Na3OCl. We remind that crystalline Na3OCl (cubic phase, stable at
T= 300K[174, 203, 225]) is characterized by Na atoms coordinated by six counter-ions (two
oxygen and four chlorine atoms) within the nearest-neighbor shell, O atoms are coordinated by
six Na atoms and Cl atoms are coordinated by twelve Na atoms. Within the cutoff employed
above (3.3 Å) each Na atom has also eight neighboring Na atoms, leading to a "total" Na
coordination of 14.[203, 225] Therefore, the local environment of Na in crystalline Na3OC
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can be thought of as made by a total of 14 neighboring atoms, with neighboring Na interacting
through O atoms via Na-O-Na linkages (see Fig. 5a). On the basis of these considerations, we
performed the analysis of the coordination numbers ni j of amorphous Na3−xOHxCl systems
by considering the “partial” coordination number np

ij (definition 1) well adapted to describe the
so-called “cation-anion” (i.e. counter-ions) interactions and the “total” coordination number
nt

ij (definition 2) that is most appropriate to describe the whole set of Na neighbors. The same
distinction has been introduced to obtain the distribution of the structural coordination units
characterizing the environment of each atom. For a given number of neighbors l and a given
atomic species, one can extract from each configuration the chemical nature of the neighbors,
providing a detailed description of the network organization. It is important to underline
that a coordination number gives an average behavior stemming from all neighbors with no
insight into the detailed chemical nature of bonding, while the information provided by the
coordination structural units shows how each atomic species organizes itself when connecting
to atoms of the same or of a different kind. To help understanding these definitions, Fig. 5
contains snapshots of the local coordinations of the Na, O, and Cl atoms found in crystalline
Na3OCl as well as typical structural units in amorphous Na3−xOHxCl systems issued from
our calculations. Also, the insets of Figure 4 show the running integrals of the individual
partial correlation function gi j(r) from which we extracted the coordination numbers nt

ij and
np

ij given in Tab. 1. Focusing on the structural units, Fig. 6 provides their distribution in
terms of the number l neighbors for Na, on the basis of definition 2. In terms of total number
of neighbours of Na atoms (within 3.3 Å), we observe that amorphous Na3OCl exhibits a
markedly distinct behavior when compared to its crystalline counterpart. Specifically, the unit
distribution for Na atoms is remarkably wide (from 4 to 11) and centered at l = 8.0, with
the number of neighboring counter-ions decreasing from six to four, and the number of Na
neighbors halved from eight to four. The partial replacement of Na with H atoms induces a
shift of the l units distribution surrounding Na atoms to lower values, centered at ∼7.3 and
∼6.0 for Na2.5OH0.5Cl and Na2OHCl, respectively. By using definition 1, the distributions of
structural units for Na, O, and Cl that account for what we termed counter-ions interactions are
reported in Tab. 2, together with the breakdown of the chemical composition of each structural
unit for a given l.

Chemical identification of the structural units for the three compositions

In the case of Na3OCl, the coordination units given in Tab. 2 are indicative of a first
coordination shell for Na essentially fourfold (∼70.0%) in terms of cation-anions (i.e.
counterions) according to definition 1 (see Sec. 4.3.1). The decomposition in terms of
chemical species gives in decreasing order of importance the following units: O2Cl2
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Table 4.2: Distribution of the individual cation-anion nα(l) structural units where an atom of
species α (Na, Cl or O) is l-fold coordinated to a counter ion computed for glassy Na3OCl
(see definition 1, Sec. “Total and partial coordination numbers”). In bold are reported the total
percentages determined for each l-fold coordination. These quantities have been calculated
including neighbours separated by a cutoff corresponding to the first minimum in the gαβ (r).
For the present work, the individual pair cutoffs used are 3.16, 3.94, 4.10, 5.06, 5.51, and 5.39
Å for, respectively, the Na-O, Na-Cl, Na-Na, O-O, Cl-Cl and O-Cl distances. A total cutoff of
3.30 Å was defined from the total g(r). Error bars are given in parenthesis.

Proportions n̄α(l) (%)
x = 0 x = 0.5 x = 1

Na
l=3 14.6(1.9) 8.4(1.0) 3.5(1.0)

O2Cl1 10.4 4.4 1.3
O3 3.6 2.5 0.6

l=4 70.0(2.9) 56.9(2.2) 43.8(2.1)
O2Cl2 36.6 23.8 13.1
O3Cl1 18.1 13.9 14.5
O1Cl3 9.9 11.8 11.0

O4 3.7 5.7 2.6
l=5 13.8(1.5) 30.4(1.6) 43.7(2.3)

O2Cl3 5.4 9.7 10.7
O1Cl4 4.4 6.7 11.6
O3Cl2 0.4 7.1 13.2

Cl5 1.5 2.5 1.5
l=6 3.3(0.5) 5.5(0.7) 11.1(1.2)

O4Cl2 - 0.3 2.3
O3Cl3 - 1.3 2.3
O2Cl4 0.5 1.0 1.8
O1Cl5 0.2 1.1 1.7

O
l=4 - <0.5 8.6(1.8)

Na2H2 - - 2.0
Na3H1 - 0.4 6.6

l=5 2.1(2.0) 20.8(3.9) 44.4(6.6)
Na3H2 - - 5.7
Na4H1 - 16.5 38.6

Na5 1.9 4.3 0.1
l=6 69.1(6.6) 63.6(4.9) 44.7(6.9)

Na5H1 - 24.9 36.0
Na6 69.1 38.6 7.3

l=7 27.6(6.1) 15.0(3.8) 2.1(1.9)
Na6H1 - 6.1 2.0

Na7 27.6 8.9 -
Cl
l=3 Na3H0 - 1.2(1.0) 4.8(3.8)
l=4 Na4H0 8.2(4.6) 14.2(8.7) 31.5(7.3)
l=5 Na5H0 31.6(8.0) 40.0(8.6) 45.4(7.4)
l=6 Na6H0 39.8(9.0) 36.4(7.7) 16.9(6.1)
l=7 Na7H0 17.1(6.4) 7.7(4.4) -
l=8 Na8H0 2.4(1.9) - -
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(∼36.6%), O3Cl1 (∼18.1%), O1Cl3 (∼9.9%) and O4 (∼3.7%). Threefold and fivefold units
correspond to ∼14.6% and ∼13.8%, respectively, with a larger presence of two or one oxygen
atoms (O2Cl1 ∼10.4%, O2Cl3 ∼5.4% and O1Cl4 ∼4.4%). Our results demonstrate that the
structure of amorphous Na3OCl is significantly different from the molecular dynamics model
conjectured for glassy Li3OCl, based on nanophase segregation of regions rich in Li2O and
LiCl.[182] Indeed, by looking at Na atoms fourfold or even fivefold coordinated, in amorphous
Na3OCl only ∼7.3% of them are exclusively coordinated to O atoms (O3 and O4) and ∼1.5%
exclusively coordinated to Cl atoms (Cl5). The value of nt

O in amorphous Na3OCl is about
∼6.3 (Tab. 1), close to the one in crystalline Na3OCl.[174, 203, 225] We find ∼69.1% of O
atoms coordinated by six Na atoms and ∼27.6% by seven Na atoms (Tab. 2). For Cl, nt

Cl is
equal to ∼5.7, almost half of that found in the crystalline phase (12). Several structural units
connected to Cl are noticeable in Tab. 2. In fact, ∼39.8% of Cl atoms are coordinated by
six, ∼31.6% by five, ∼17.1% by seven and ∼8.2% by four Na atoms. Having established the
main features of the structural units in Na3OCl, we can turn to the analogous description for
the case of the hydroxylated amorphous materials. In Na3−xOHxCl we remark a decrease of
nt

Na (from ∼8.0 to ∼6.0) from the value in Na3OCl. However, np
Na does the opposite (from

∼4.0 to ∼4.6). The decrease in nt
Na is due to the partial substitution of Na by H, with all the

H atoms found coordinated to O atoms, forming in majority hydroxyl OH groups (nt
H ∼1.0).

This is confirmed by the visual inspection of the snapshots relative to Na2.5OH0.5Cl (Figure
4e) where H is bonded to O atoms in the form of a hydroxyl group (O-H bonding distance
∼0.98 Å), with no H-Na bond formation.
In terms of the cation-anion partial coordination, we observe a slight increase of np

Na, the
values being ∼4.0 for Na3OCl, ∼4.3 for Na2.5OH0.5Cl and ∼4.6 Na2OHCl. Correspondingly,
the distribution of the structural units given in Tab. 2 reveals that the percentage of Na atoms
fourfold coordinated decreases (from ∼70.0% to ∼56.9% and ∼43.8%, respectively) with a
concomitant increase of the fivefold ones (from ∼13.8% up to ∼30.4% and ∼43.7%). The
larger amount of fivefold Na-centered units at the expenses of fourfold ones can be traced
back to a concomitant decrease of the number of O2Cl2 units (from ∼36.6% to ∼23.8% and
∼13.1%) and a net increase of the O2Cl3, O1Cl4 and O3Cl2 units (the latter from ∼0.4% to
∼7.1% and ∼13.2%).
Worth of notice is the behavior of the total and partial coordination numbers of O atoms.
np

O decreases from ∼6.3 in Na3OCl to ∼5.9 and ∼5.4 for Na2.5OH0.5Cl and Na2OHCl,
respectively. This decrease is due to a clear increase of lower coordinated units of O at the
expenses of the higher-coordinated units. Na2OHCl shows a minimal content of l = 7 units
and a comparable content of l = 5 and l = 6 units (∼44% versus ∼45%). The trend in the local
environment of O in the hydroxilated phases results from the fact that in Na2.5OH0.5Cl ∼52%



84
Unveiling the structure and ions dynamics of amorphous Na3−xOHxCl antiperovskite

electrolytes

Figure 4.6: MSD versus time for each element in amorphous Na3−xOHxCl (x= 0, x=0.5,
x=1)at T = 300 K (top) and T = 800 K (bottom). Colors legend: Na, yellow; O non-bonded
to H atoms, red (solid line); O bonded to H atoms, red (dashed line); H, grey; Cl, green. Note
that the MSD calculated at the temperatures T= 300 K, T= 450 K, T = 600 K, T = 800 K, T =
1000 K are reported in the ESI, (Fig. S1).

of O atoms are coordinated only by Na atoms with the remaining having, in addition to Na,
one H atom as neighbor within hydroxyl OH groups. These percentages change in Na2OHCl
to accommodate more H atoms. Regarding Cl atoms the behavior is similar to the one of O
atoms after partial replacement of Na by H atoms. In particular, np

Cl decreases from ∼5.7 in
Na3OHCl to ∼5.4 and ∼4.8, for Na2.5OH0.5Cl and Na2OHCl, respectively. The amorphous
nature of the network favors relatively short Na-Cl distances (∼2.75 Å) when compared to
those found in the crystalline phase, where each Cl atom is surrounded by twelve Na atoms at
a distance of ∼3.18 Å.

4.3.2 Dynamical properties

Mean square displacements

A first insight into the dynamical properties of amorphous Na3−xOHxCl is provided by the
mean square displacement (defined in Sec. 4.2.2 and labeled MSD) of the different ions shown
in Fig. 7 at T = 300 K and 800 K. Additional details can be found in Fig. S2 of the ESI. At
T = 300 K, Na ions in Na3OCl are mobile, while the MSD of both Cl and O is remains very
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Figure 4.7: a) Rotational dynamical disorder of a given H atom (grey transparent sphere)
around one O atom (red opaque sphere) of one hydroxyl OH group in amorphous
Na2.5OH0.5Cl over a time span of ∼30 ps. b) Temporal evolutions of: (a) the interatomic
distance between the O1 atom of one hydroxyl group and a coordinated Na1 atom, (b) the
H1O1Na1 angle. c-e) Proposed paddlewheel dynamics found in amorphous Na2.5OH0.5Cl and
Na2OHCl. c) Between 0 and 5.2 ps, a sixfold coordinated O1 atom of one hydroxyl group
shows a bonding distance of 2.29 Å with the Na atom labelled Na1. In between 5.2 ps and
17.5 ps, the hydroxyl OH bond is rotating with respect to Na1 (from ∼150◦ to ∼100◦) while
maintaining a distance O1-Na1 equal to 2.33 Å. e) After 17.5 ps a further rotation of the OH
group bringing the corresponding angle from ∼100◦ to ∼25◦ induces the displacement of
Na1 atom to a larger distance (>4.5 Å) escaping the first coordination shell of O1 atom. The
surrounding atoms of O1 at a distance lower than >5 Åare shown in transparent color. Dashed
lines indicate the atoms coordinated within the first coordination shell of O1 (<3.3 Å). The
concerted migration pathway of Na1 atom along the ∼30 ps is shown in transparent dark
yellow. As a guide, an arrow is added to indicate the direction of the pathway. Color legend:
Na atoms, yellow; O atoms, red; Cl atoms, green; and H atoms, white.
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Figure 4.8: For the Na2OHCl system: proton hopping process by which H atoms migrate
through a dynamical switch between σ− and hydrogen-bonds giving rise to the formation of
metastable water molecules (i.e. Grotthuss-like mechanism).[226–231] a) Temporal evolution
of the interatomic distance between one H atom labelled H1 atom, belonging to a water
molecule initially formed, and its bonded O atom labelled O1. Also shown is the temporal
evolution of the distance between H1 and a second O atom labelled O2 that is part of a
neighboring hydroxyl group. Inset: zoom-in on the temporal window along which H1 is shared
between two O1 and O2, leading to the transient formation and breaking of OH bond and water
molecules. b-f) Inter-unit transitions between structural units in amorphous Na2OHCl at 300
K. Indicatively, the mean lifetimes of the transient H-bonds and water molecules are reported
on top of the panels whereas the transition rates are reported between the panels. Here, the
transition rate is defined as the number of inter-unit transitions per ps observed within a given
process (H-bond or water molecules formation). Color legend: Na, yellow; O, red, and Cl
green.
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low. This trend holds at higher temperatures (Fig. 7 and Fig. S1 of the ESI), with Na ions
reaching over the span of ∼25 ps MSD values∼2.0 Å

2
at T= 300 K and 450 K, ∼6.0 Å

2
at

T = 600 K, ∼18 Å
2

at T = 800 K, ∼61 Å
2

at T= 1000 K and ∼115 Å
2

at T = 1200 K. These
results indicate that amorphous Na3OCl behaves differently from its corresponding defect-free
crystalline phase, where Na/Li diffusion is absent due to the lack of disorder induced by the
presence of vacancies, as found in crystalline antiperovskites via Schottky defect pairs.[232,
233] Regarding Cl and O ions, the mobility for both ions at T= 300 and 800 K is lower than
∼1 Å

2
, and increases significantly only at higher temperature indicating a motion beyond a

mere local rearrangement. Heenen and coworkers [182] obtained analogous results for both
Cl and O ions; yet, the Cl higher mobility was interpreted as not-negligible and, later also
termed ’sluggish’.[234]
Different behaviors are recorded in the case of the hydroxylated systems. By keeping in mind
that about ∼50% of oxygen atoms are present as OH− hydroxyl groups in Na2.5OH0.5Cl, we
reported the MSD data of individual oxygen atoms and those bonded to H atoms (as OH−

anions) separately. At T = 300 K, we found that Na and individual O ions in Na2.5OH0.5Cl
have MSD values similar to those found in Na3OCl. The MSD of Cl reaches ∼0.9 Å

2
over

∼14 ps followed by stabilization, whereas there is a steady time increase of MSD for O atoms
involved in OH groups as well as H atoms, following the same rate of increase of Na ions.
The enhanced mobility of H atoms can be ascribed to the high rotational dynamical disorder
of H atoms around an O atom of a hydroxyl group (see Fig. 8a) and to the high mobility of O
atoms involved in OH groups. This trend is clearly supported by the MSD of Na2.5OH0.5Cl as
a function of temperature. Focusing on Na ions at T= 800 K, their MSD after ∼25 ps is ∼2.5
times larger than the one found in Na3OCl. Therefore, it appears that the presence of H atoms
promotes an increase in Na ions mobility at temperatures higher than T = 300 K. This occurs
also for Cl ions and both O and H involved in OH groups. In contrast, individual O ions (i.e.
non bonded to H) are found somewhat less mobile (Fig. 7, lower part, T= 800 K).
To complete our case study and extract a global picture from the behaviour of the mean square
displacement, we focus on Na2OHCl. A first observation from Fig. 7 (rightmost part) reveals
that similar trends for the MSD are found. However, OH− anions boost the MSD of the other
species significantly already at room temperature. This effect can be fully appreciated by
noting that in Na2OHCl ∼92% of O atoms binds at least one H atom either as OH− anions or in
water molecules. At T = 300K and after ∼25 ps, Na ions in Na2OHCl reached a value of MSD
∼3 times larger than the one found in Na3OCl, H, Cl, and O atoms are equally highly mobile
concurring to confirm that the MSDs, although lower than for Na ions, are by all means larger
than the one obtained in Na3OCl. At T = 800 K, the mobility of Na ions is further boosted by
the presence of H atoms, approaching 100 Å2 after ∼ 25 ps. This value is remarkably larger
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than the one reported by Dawson et al. [171] for crystalline Li2OHCl (∼6 Å
2

after ∼50 ps
T = 800 K). What we found for Na2OHCl differs drastically from what has been reported in
crystalline Li2OHCl antiperovskites, where only rotational dynamics were highlighted for the
hydroxyl OH− groups and no long-range mobility.[171] In this crystalline phase, H atoms are
characterized by a constant MSD of ∼2 Å

2
at T = 600 K on a time scale of ∼50 ps, whereas the

present Na2OHCl model features an increase of the MSD to a value of ∼28 Å
2

after ∼25 ps
at T = 600 K (Fig. S1 in ESI).

The paddlewheel effect

We have found that the mobility of Na ions in Na3−xOHxCl is strictly related to the presence
of hydroxyl OH− anions. An important relationship between the Na-ion transport mechanism
and O–H rotation effects in these systems has been reported by Song et al.[235] and Howard
et al..[236] These studies demonstrate that the rapid rotation of O–H bonds leads to the
creation of empty space promoting the formation of defects, which, in turn, are crucial
for achieving fast, correlated Na-ion transport. The rotational disorder due to the hydroxyl
OH− anions, along with other anions such as BH−

4 and NH−
2 , is a feature common to other

solid electrolytes, such as crystalline Na3OCl[172] and Na3−xO1−x(NH2)x(BH4).[237] Ions
migration occurs via a mechanism that combines the concerted motion of ions with large
quasi-permanent reorientations of the surrounding hydroxyl groups. This latter effect, known
as the paddlewheel mechanism,[185, 238, 239] is typically observed in high-temperature
crystalline polymorphs.[240]
Unlike in crystalline materials, the paddlewheel dynamics in glassy matrices can contribute to
the ion mobility also at room temperature,[185] via the strong coupling between the rotational
motion of the anions and the translational motion of the alkaline cations.[185, 238, 240] Based
on the above analyses, we propose that H-containing amorphous Na3−xOHxCl show three
distinct features that facilitate the occurrence of paddlewheel dynamics. The degree to which
these dynamics manifest themselves is temperature-dependent. First, these systems contain
hydroxyl groups which are free to rotate, impacting the neighbouring cations. Second, the
amorphous matrix has a lower density than its crystalline counterpart that makes available
additional free volume for O–H rotations, facilitating anion reorientations. Third, while it
is typical for most glasses to exhibit a lower density compared to their crystalline form,
amorphous Na3−xOHxCl systems have a potentially unusual characteristic - the absence of
covalent bonding in their atomic structure. These features are found in strong accordance with
the features of paddlewheel dynamics reported for glass.[185]
A more detailed view of the dynamical mechanism is shown in Figure 8b-e. These panels
illustrate the rotation of one hydroxyl (OH) group nearest neighbor to one sodium (Na)
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ion during Na migration. Throughout the entire process, O(OH) and Na maintain their
coordination of six cations and four-to-five anions, respectively. The coordination of Na
is preserved by means of rotational displacements of the anion through a paddlewheel-type
mechanism. Another salient feature observed in these migration events is the dissociation or
undocking of Na from a subset of its neighboring anions at the onset of the process, followed
by its association or docking to new anions towards the end.[185]
Former experimental and computational results have also stirred a debate about the formation
of water molecules in antiperovskites. Based on analysis presented above, Na2.5OH0.5Cl
appears not to show any water formation since all H atoms are bound in OH groups, while
our Na2OHCl model system does, with ∼9.3 % of O atoms involved in H2O molecules. The
formation of these water molecules can be elucidated by following, as done in Fig. 9a, a
typical H hopping process involving OH groups in Na2OHCl at T = 300 K. We first show the
temporal evolution of two representative distances. The first is the one between the H atom
termed H1 belonging to a water molecule, previously formed, and the O atom termed O1 atom
to which it is bonded (dO1H1 , initially at ∼0.98 Å). The second one concerns the same H1

atom and a second O atom termed O2 atom belonging to a neighbouring OH group (dO2H1 ,
initially at ∼3.8 Å; Figure 9b). After about ∼15 ps, H1 starts forming a strong hydrogen bond
(H-bond) with the neighbouring O2 atom of one OH hydroxyl group at a distance of ∼1.9 Å.
The mean lifetime of this transient H-bond is ∼2.5 ps. Then, H1 is shared between O1 and
O2 via forming and breaking O-H bonds showing an average dO1,2H1 distance of ∼1.6 Å and
forming eventually a water molecule upon H transfer (Fig. 9c-d). Its transition rate, defined as
the number of inter-unit transitions per ps observed within a given process (H-bond or water
molecules formation), is of about 1.0 before the formation of a stable new H2O molecule. In
Fig. 9 panels e-f exemplify the dynamical evolution of the previous environment toward H
transfer to a third hydroxyl group (from O2 to O3), resulting in the formation of a new water
molecule. The presented mechanism is very similar to the known Grotthuss one [226–231]
in which the H atom switches between a σ− bond and a hydrogen bond to propagate and
eventually stabilize in a newly formed water molecule, as in proton-conducting solid-oxide
materials.

Ions diffusion

The long-range mobility of alkaline ions in a solid-state electrolyte can be assessed by
considering the log-log plot of the MSD (Eq. (4.2) vs t for the temperatures of interest (see
Fig. 4.10). Several regimes are noticeable as a function of time, especially at not too high
temperatures (T= 300 K and T =450 K in our case). The initial part consists of a ballistic
regime with the MSD taking a quadratic dependence with time. With increasing t, a plateau is
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Figure 4.9: Top: Log-log plot of MSD vs time for Na in Na3OCl at temperatures in between
T = 300 K and 1200 K. Bottom: corresponding values of β . Inset: β value as a function of
time at T = 800 K.

attained corresponding to the so-called caging regime with Na ions trapped in a very limited
portion of space by the nearest neighbors. In Na3OCl, the cage regime clearly persists up to a
few ps at T = 300 K and T = 450 K, while at T = 600 K it lasts no longer than ∼1 ps and does
not manifest itself at higher temperatures. Then, the diffusive regime for Na atoms sets in at
longer times with Na ions moving along preferential paths. Under these conditions, the MSD
takes a linear dependence on time and the ion self-diffusion coefficients (D∗) can be obtained
via the Einstein equation (Eq. (3)) at the different temperatures.
The onset of the diffusive regime can be monitored via the time behaviour of β (Eq. (2)),
given in Fig. 11 for Na3OCl. As expected, the higher the temperature the faster β approaches
∼1, i.e. at T = 800 K, 1000 K, and 1200 K this target value is reached after ∼6 ps, ∼4.6 ps,
and ∼1.5 ps, respectively. At lower temperatures, the diffusive regime is not reached within
∼25 ps , the behaviour of β being affected by statistical noise for increasing time. Analogous
information on the MSD of the two hydroxylated systems is given in Fig. S1, ESI (linear plot)
and Fig. S2, ESI (log-log plot, as in Fig. 10). Remarkably, for T lower than 450 K, the cage
regime is shorter (∼1 ps) for Na2.5OH0.5Cl and it disappears for Na2OHCl. This is consistent
with the boosted Na ions dynamics due to OH anions rotational mechanism discussed before.
Also, the MSD trend of H atoms features high values at short times (<∼1 ps) for any given
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Figure 4.10: Na-ion self-diffusion coefficients (inset) and conductivities of amorphous
Na3−xOHxCl (x= 0, x=0.5, x=1). We also report the activation energies of Na ionic conduction
obtained via a linear Arrhenius fit. Closed circles correspond to FPMD data and open circles
correspond to data at T = 300 K extrapolated by using the linear Arrhenius fit.

temperature, again due to the rotational disordered of OH anions. At longer times MSD
profiles of H and Na atoms do superpose as a result of a fully enhanced diffusive behavior
concerning all Na and OH groups.
Having identified the temperatures at which Na ions reached the diffusive regime, we
calculated for the three systems the self-diffusion coefficients (tracer, D∗) for Na by using
the Einstein equation (Eq. (3)) and then converted it into Na-ion conductivities with Eq. (5).
By plotting these data according to the relationship logD∗ vs 1000/T (Fig. 11) and fitting it in
the Arrhenius form, we obtain by extrapolation the uncorrelated tracer conductivity σ∗ of Na
ions at T = 300 K, as customarily done for crystalline solid-state electrolytes.[166, 171] D∗

and σ∗ values are reported in Table 3, together with the calculated activation energy (Ea) of
Na ions transport. In the case of amorphous Na3OCl Ea is equal to 0.34 eV, a value close to
the one calculated for defected crystalline Na3OCl.[160, 176]

Ionic conductivity and correlation effects

In terms of conductivity σ∗, we obtained a value ∼0.8 mS.cm−1 for Na3OCl close to
∼0.2 mS.cm−1 obtained by Dawson et al. at 500 K.[166] We obtained Ea= 0.20 eV, Ea =
0.19 eV and a tracer conductivity equal to ∼44 mS.cm−1 and ∼83 mS.cm−1 for Na2.5OH0.5Cl
and Na2OHCl, respectively. These data demonstrate that Na ions transport is promoted by the
addition of H atoms. These values correspond to the ideal case where no collective effects are
taken into account, as those due to alike-Na ions or different ions. However, since these effects
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Table 4.3: Na tracer diffusion coefficients (D∗), Na ions tracer (σ∗), charge (σσ ) and total
conductivities (σ tot), activation energies (Ea) and Haven ratio (HJ,tot

R ) extrapolated at T = 300
K and directly computed at T = 800 K on the basis of FPMD simulations. We report the values
for the three Na3−xOHxCl (x= 0, x=0.5, x=1) models.

T (K) x = 0 x = 0.5 x = 1.0
D∗ (cm2.s−1) 300Ka 4.29·10−9 2.63·10−7 6.23·10−7

σ∗ (S.cm−1) 300Ka 0.0008 0.044 0.083
Ea (eV) 300K 0.34 0.20 0.19
D∗ (cm2.s−1) 800K 1.64·10−5 3.25·10−5 6.00·10−5

σ∗ (S.cm−1) 800K 1.14 1.84 2.84
σ ion (S.cm−1) 800K 0.27 0.66 1.33
σ tot

ion (S.cm−1) 800K 1.17 1.97 3.96
Hσ

R 800K 4.18 2.79 2.14
Htot

R 800K 1.33 2.02 2.03
a Data extrapolated at T = 300 K.

are present in experiments, it is appropriate to account for them by considering the so-called
Haven ratio (HR) which can be obtained via Eqs. (7-8) in order to quantify the contribution
of alike-Na ions (Hσ

R )[212–214, 217] or a total contribution coming from all positive and
negative ions (Htot

R , Eq. 9).[207]
Often, previous studies on crystalline Li/Na antiperovskites assumed a Haven ratio equal to 1
disregarding collective effects.[166, 171] While single-ion conducting glasses typically exhibit
Haven ratios of ∼0.1-0.6 indicative of positive correlating effects,[206, 241] ionic liquids[207]
and molten salts[208] behave oppositely with HR values larger than 1. For comparison, in Tab.
3 we report the values of Hσ

R , Htot
R and the corresponding Na and total conductivities obtained

at T = 800 K. We obtained Hσ
R values larger than 1, indicating a strong negative effect of

the collective correlations of alike-Na ions. Therefore, at this temperature, the behaviour of
amorphous Na3−xOHxCl systems in terms of conductivity is closer to ionic liquids and molten
salts than to a glassy matrix. We also remark that this specific effect is less important when
Na is partially replaced by H (from 4.2 for Na3OCl to 2.8 and 2.1 for the two hydroxylated
phases). Finally, the resulting Na charge conductivities (σion) are lower than the uncorrelated
Na tracer conductivity σ∗ for the three systems.
In terms of Htot

R , we obtained for Na3OCl a much lower value than Hσ
R (1.33 vs 4.18) which

indicates close contributions of positive and negative collective correlated effects when the
mobility of all ions is taken into consideration. This is not the case for the two hydroxylated
models, as shown by close values of Htot

R and Hσ
R meaning that in the presence of H (OH

hydroxyl groups) negative effects are more important. The corresponding final total ionic
conductivities (σ tot

ion) are very close to the Na ions uncorrelated σ∗ estimation for Na3OCl
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(1.17 vs 1.14 S.cm−1), moderately larger for Na2.5OH0.5Cl (1.97 vs 1.84 S.cm−1) and sizeably
higher for Na2OHCl (3.96 vs 2.84 S.cm−1). Therefore, Na ionic conductivity of disordered
Na3−xOHxCl systems can be a viable, effective alternative to the crystalline counterparts, the
partial replacement of Na with H enhancing ion transport. However, the mobility of the
other ions (Cl, O, and H) is concomitantly boosted which might be detrimental to practical
electrolyte applications.

4.4 Summary

X3OA-based antiperovskites have shown promising potential as solid-state electrolytes for ion
batteries due to their structural and dynamical properties. However, while the structure and
ion dynamics mechanisms of crystalline X3OA compounds are well-known, there is a lack of
quantitative structural characterizations for amorphous antiperovskites. In this study, we used
first-principles molecular dynamics to quantitatively assess the structure and ion dynamics
mechanisms of three amorphous Na3−xOHxCl (with x=0, 0.5, 1) Na-rich antiperovskites.
We found that amorphous Na3OCl shows a substantially different structure compared to its
crystalline counterpart, with a disordered structure exhibiting limited intermediate range order
and short-range order driven by a majority of four-fold Na atoms (∼70%), in terms of counter-
ions coordination by means of ionic bonds. Na-O bond distances are close to those reported
in the crystalline phase, while Na-Cl distances are significantly shorter. As a result, a reduced
number of neighboring counter-ions and Na atoms are favored in the local surrounding of
Na atoms in the amorphous phase. Na is found primarily coordinated to both anions (O and
Cl), with only a small percentage of Na atoms coordinated exclusively to O or Cl atoms.
These results unveil contrasting differences in the structure of amorphous Na3OCl compared
to previous models conjectured for glassy Li3OCl, which was based on the segregation of
Li2O and LiCl-rich regions.
The partial replacement of Na atoms with H in the two hydroxylated phases studied
(Na2.5OH0.5Cl and Na2OHCl) gives rise to a lower degree of structural organization when
compared to H-free Na3OCl, with all H atoms bonded to O atoms. Amorphous Na3OCl has a
unique microscopic structure that enables remarkable Na ion dynamics and ionic conductivity,
challenging that of defective crystalline phases. The presence of hydroxyl OH− anions in the
hydroxylated models is crucial for the mobility of Na ions, which is enhanced by rapid rotation
of O-H bonds and paddlewheel-type mechanisms. This promotes the formation of available
space, which is essential for achieving fast Na-ion transport. Interestingly, the paddlewheel
dynamics in the hydroxylated models glassy matrices can contribute to ion mobility even at
room temperature, owing to the strong coupling between the rotational motion of the anions
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and the translational motion of the alkaline cations. In terms of correlated dynamical effects,
the behaviour of amorphous Na3−xOHxCl is found closer to ionic liquids and molten salts than
to a glassy matrix. We also remark a net balance of positive and negative correlated effects for
Na3OCl, whereas for the two hydroxilated phases negative effects are more important.
Concerning the presence of water molecules in antiperovskites, our study proves that the
presence of H atoms promotes the formation of H-bonds in Na2.5OH0.5Cl while only in the
case of Na2OHCl formation of a small amount of water is observed.
Overall, the results obtained in this work adds to the growing evidence that disordered Na-
rich antiperovskytes provide a viable and effective alternative to their crystalline counterparts
as solid state electrolytes. Our results underscore the significance of conducting quantitative
structural assessments to better comprehend the impact of structure on the performances of
these systems.



Chapter 5

First quantitative assessment of the
structure of amorphous antiperovskite
Na3OCl by first-principles and machine
learning molecular dynamics

5.1 Introduction

Solid-state electrolytes have attracted much attention in the field of electrochemical energy
storage due to their potential to overcome safety and performance limitations associated
with traditional liquid electrolytes. Among them, amorphous antiperovskite electrolytes
have emerged as a promising class of materials due to their high ionic conductivity and
excellent stability. However, the complex nature of these disordered materials has made their
understanding and characterization challenging. In recent years, ab initio molecular dynamics
and machine learning molecular dynamics have become powerful tools for simulating the
structural and transport properties of materials, including amorphous electrolytes. A recent
review, on the use and exploitation of anti-perovskites for solid-state batteries, underlined
the limited nature of the structural characterization reported so far in literature and also
pointed out the severe need of quantitative structural assessment for X3OA systems to
avoid any misinterpretation of their structure/performance correlations.[160] M-ion-based
oxyhalide materials (M= Li-, Na-, and K-) have been synthesized in the form of mixed
amorphous/crystalline phases and characterized by a set of experimental techniques (neutron
and X-ray diffractometry, Raman spectroscopy, thermal analysis, and transmission electron
microscopy) combined with reverse Monte Carlo (rMC) simulations. The ionic conductivity
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was determined to be in the range of 1.1-6.1·10−6 S·cm−1 for all Li-, Na-, and K-based
samples at room temperature.[242]

A detailed understanding of the atomic structure is a key step to further capture the
details of the transport mechanisms behind its conductivity performance. Recent reviews
on the use of anti-perovskites for solid-state batteries underlined the limited nature of
the available structural characterization and pointed out the severe need of a quantitative
structural assessment to avoid any misinterpretation of the correlations between structure
and performances.[160, 186] The structure and ion dynamics mechanisms for amorphous
antiperovskites are still under debate. The capability to deal with length and time scales for
a complex systems which are beyond the reach of any ab initio technique. For this reason,
empirical interatomic potentials have been studied, fitted typically to an ab initio data, that
are capable of simulating systems containing thousands or millions of atoms for thousands or
millions of time steps.

In this work, we follow an alternative approach, generating a Gaussian approximation
potential (GAP)[86] for the amorphous antiperovskite Na3OCl. GAP is a highly flexible
machine-learning model that allows to fit directly and accurately first-principles potential
energy surfaces (PES). Transferability is ensured by regular and smooth basis functions
(kernels, in the language of machine learning), and by an extended training database which
covers here roughly 600 000 local atomic environments (LAEs). Similar machine-learning
approaches, such as neural networks, have been successful recently in modeling materials
where previous, more empirical strategies have run out of steam.[85, 243, 244] GAP uses
Gaussian process regression, whose advantages are that (i) its hyperparameters (that control
the kernel function and linear algebra regularization) make physical sense and rarely need
adjusting, (ii) the fit itself is determined by simple linear algebra, rather than iterative nonlinear
optimization of a highly multimodal function as in the case of neural networks, and (iii) input
data such as energies, forces, and stresses are treated in a consistent manner, with appropriate
error estimates that allow the inclusion of variable accuracy data. In the machine-learning
literature, Gaussian process regression is often thought of as scaling poorly (cubically) with
the size of the input data, the well-known heuristics allow us to limit the number of basis
functions to be much smaller than the number of input configurations, and to prediction costs
similar to that of neural networkbased potentials.[245] The key to the success of Gaussian
process regression is an appropriate kernel function that captures the symmetries and describes
the spatial correlation structure of the target function. We use the “smooth overlap of atomic
positions” (SOAP) kernel[246] that has been shown previously to lead to excellent results for
other materials[247–250]
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5.2 Computational methodology and models

5.2.1 First-principles molecular dynamic simulations

We make use of FPMD in the Car-Parrinello scheme (CPMD) [187]. The XC exchange-
correlation functional adopted is the Perdew-Burke-Ernzerhof (PBE) together with the
generalized gradient approximation (GGA). [188] The valence-core interaction was modeled
by norm- conserving Troullier-Martins (TM) [189] pseudopotentials for O and Cl whereas in
the case of Na, the use of semi- core states was found to be essential for a good descrip- tion
of both the structure and the energetics. The elec- trons of Na 2s, 2p, 3s; O: 2s, 2p; Cl 3s, 3p
were treated explicitly as valence electrons and expanded in a plane- wave basis set with an
energy cutoff of 80 Ry, with the sampling of the Brillouin restricted to the Γ point. A fictitious
electron mass of 600 a.u. and a time step of 0.12 fs guaranteed optimal conservation of the
constant of motion.

FPMD simulations were performed int the canonical ensemble with the ionic temperature
controlled with a Nosé-Hoover [190–192] thermostat chain [193] and for the simulations
performed at high temperature (>1000 K) to control the fictitious electronic kinetic energy
we used a Blochl-Parrinello thermostat [194] with a target kinetic energy of 0.1 a.u. The
Na3OCl glass model was generated by quenching from the melt. The initial configuration
consisted of the Na3OCl crystal unit cell replicated 3x3x3 times to obtain a 135 atoms (81 Na,
27 O and 27 Cl) in a cubic simulation cell of side 13.6148 Å. The initial box was expanded
of 15% with respect to crystal density in order to facilitate the melting at high temperature
corresponding to an atomic number density of 0.05349Å−3. A similar approach was used also
for the case of glassy Li3OCl.[182] Periodic boundary conditions were applied throughout the
FPMD simulations.

The model underwent a thermal cycle via canonical NVT simulations, according to the
following protocol: 1.3ps ps at T=300 K, 1.2 ps at T=1200 K, 70 ps at 3.1=1500 K, 46.5 ps at
T=1800 K, 38.6 ps at T=1000 K, 33.7 ps at T=750 K and 35 ps at T=300 K. We remark that
at 1800 K the system melts and it is characterized by pair correlation functions reminiscent
of the liquid state. At 300 K the density of the system was set to 2.0378 g/cm3 in order to
have a final model at close to 0 GPa pressure. Along the thermal cycle 80 Ryd was used as
plane wave cut-off, whereas at 300 K 160 Ryd with a time step of 0.07 fs was used in order to
converge the assessment of the system pressure within 20 ps. In what follows, the results are
presented as time-average values over the last part (15 ps) of the thermal cycles at T =300 K
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5.2.2 DFT-FPMD database composition

We build a database made of reference configurations on the desired regions of phase space
and associated quantum mechanical data (energies, forces and virials) by extracting a certain
numbers of representative configurations from the FPMD trajectories obtained at different
temperatures. In a first attempt, we build a database made only of 100 configurations extracted
from the trajectories simulated at high and room temperature (1200 and 300 K) in GAPA. In
a second attempt, we extracted a total of 200 configurations from the trajectories produced
at 1200, 800, 450 and 300 K. This amounts to a total of 27000 energy values, 81000 force
components and 1200 virial components. In order to achieve a good accuracy of the database,
we recomputed DFT energies, forces, and virials for all the configurations at an energy cutoff
of 160 Ry

5.2.3 MLP-GAP molecular dynamics simulations

Finally, we exploit the fitted GAP potential to produce new models of Na3OCl glass by
following a thermal cycle via canonical NVT simulations, according to the following protocol:
from 1200K to 300K with a cooling rate of 4 K/ps. The equations of motion were integrated
by using a timestep of 1 fs and NH thermostat was used as implemented in the LAMMPS
code.[251] With such procedure we produced MLP-GAP models with the same density
(2.04 g/cm3) for following sizes: 135 atoms model (hereafter denoted as GAP1 model), 405
(GAP1.4), 810 (GAP1.8), 1080 (GAP2) and 3645 (GAP3) atoms model (hereafter denoted as
GAP1, GAP1.4, GAP1.8, GAP2 and GAP3, respectively. GAP1 was averaged over 11 replica
run, whereas GAP2, and GAP3 were averaged over 2 runs; the other MLP-GAP models were
averaged over 3 runs. The obtained glassy model is used to consolidate the FPMD structural
model of Na3OCl by relaying on a large size system obtained at the DFT accuracy. When
useful, the results of the GAP models are presented and discussed throughout the paper.

5.3 Results and discussion

5.3.1 Machine learning interatomic potential: model fitting and training
database

We resort to a kernel-based ML method that adopts a Gaussian approximation potential (GAP)
approach allowing to learn and reproduce smooth highly dimensional potential energy surfaces
by interpolating DFT data.[252–254] This ML approach has been successfully applied to
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many liquids and crystalline phases,[81, 245, 250, 255] several mono[247–250] and binary
glasses[81, 256] systems but only a few ternary amorphous systems so far.

Values for the GAP hyperparameters as used in this work are given in Table 1.
Furthermore, the regularization parameters of the Gaussian process corresponding to the
expected errors were as follows. For liquid and amorphous structures we set 0.008 eV
(energies), 0.05 eV/Å (forces) and 0.05 eV (virials). Sparsification was done with the CUR
method[257] for the SOAP kernel, whereas a simple uniform grid of basis function locations
was used for the 2b terms.

5.3.2 MLP-GAP model performance assessment: errors for testing
versus training set

We here assess the validation of the accuracy of our GAP model based on the DFT-FPMD
reference data. The training and testing datasets contain 81000 atomistic reference force
components each. As shown in Fig. 1, the total energies, atomic forces and virial as predicted
by our model are compared with those from DFT. It is observed that the energies are well
reproduced by our GAP with a low mean-averaged-error (MAE) of 0.93 meV/atom for the
testing datasets. Forces in the testing datasets are predicted with a MAE of 0.04 eV/Å whereas
virials are predicted with a MAE of 2.44 meV/atom. The results demonstrate that our GAP
model is a good representative of the first-principles PES. It is noted that the test error is much
higher than the training error for those configurations with higher energy. Figure 5.1 shows
the errors as cumulative distributions: the curves move left (toward lower errors) and up (to a
higher degree of confidence) comparing the training and testing predicted quantities.
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5.3.3 Total X-rays and Neutrons structure factors

The calculated total X-ray and neutron structure factors Sx
T (k) and SN

T (k) of the glassy Na3OCl
135 atoms system simulated by means of FPMD at 300 K are shown in Fig. 5.2. Due to the
large statistical noise obtained for the structure factors computed directly in the k-space in
Fig. 5.2 we show the ST (k) computed by FFT of the real-space computed pair distribution
functions. We remark that Sx

T (k) obtained by FPMD features a first peak at about 2.5 Å−1

and a second peak at about 3.2 Å−1. These first two peaks are then followed by much broader
peaks and rapidly damped oscillations corresponding to a structural correlation length of about
8 Å−1. The SN

T (k) obtained by FPMD presents three peaks at k < 4 Å−1, the first (∼ 2.0 Å−1)
and the third (∼ 3.8 Å−1) one at higher intensity whereas the second one (∼ 2.8 Å−1) at lower
intensity. At k < 4 Å−1, SN

T shows much broader peaks and rapidly damped oscillations. The
ST (k) computed for the 135 atoms FPMD model is also compared with the structure factors
simulated by MLP by using GAP1, GAP2 GAP3 and GAP4 model sizes (135, 405, 1080
and 3645 atoms). For GAP1, we show both the FFT ST (k) obtained by one simulation as
well as obtained by averaging over 11 replica runs performed starting from a different initial
configuration and following the same thermal cycle. For GAP2, GAP3 and GAP4 models, we
show both the FFT ST (k) and the ST (k) computed by the direct method, averaged over three
different independent runs. Our results show very good agreement for both Sx

T (k) and SN
T (k)

between FPMD and GAP1 models over the entire range of k. In particular, the positions and
intensities of the main peaks (k < 4 Å−1) are very well reproduced. Very small discrepancies
occur for larger values of k. We remark a slightly more intense peak for the GAP1 model
averaged over 11 runs with respect to the individual GAP1 run and the FPMD data. The
Sx

T (k) result of FPMD of 135 systems is not clearly show a shoulder at 2 Å while the GAP
results for larger systems (GAP2, GAP3, GAP4) clearly show the peak. Therefore, a FPMD
simulation of system containing 405 atoms is calculated. We remark that Sx

T (k) obtained by
FPMD features a first peak at about 2.5 Å−1 preceded by a shoulder at about 2.0 Å−1 and a
second peak at about 3.2 Å−1that shows agreement to results of GAP2, GAP3 and GAP4. The
shoulder peak is well defined by increasing the system size as shown in Fig 5.2. Sx

T (k) of the
glassy Na3OCl 405 atoms system simulated by means of FPMD has higher first peak intensity
following with a lower second peak, and a similar oscillations at higher range as compared to
one of 135 atoms. While SN

T (k) between FPMD and GAP1 models of systems containing 135
atoms are very good consistent the one of 405 atoms system simulated by means of FPMD
show agreemment of the first peak, following by a higher intensity second peak at a shorter
distance in k-space, as consequence with a smaller third peak, and a shoulder at ∼ 3.8 Å−1.
The result are very good agreement to GAP results of larger systems. We remark a slightly less
intense for FPMD 405 atoms model compared to GAP3 and GAP4. Very small discrepancies
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Figure 5.2: Total X-rays and neutrons structure factors for glassy Na3OCl at T = 300 K. The
FPMD results (dark grey lines) are compared to the ST (k) in the reciprocal space (light color)
or obtained through Fourier transform of the pair correlation functions with a cutoff value
kmax = 25 (red lines) for the models at different sizes obtained with MLP-GAP

occur for larger values of k. Overall, Sx
T (k) and SN

T (k) of the glassy Na3OCl 405 atoms system
simulated by means of FPMD at 300 K show well agreement to ones of GAP2, GAP3, and
GAP4.

5.3.4 Total and partial pair correlation functions

In terms of total pair correlation functions, the Na3OCl one shows a first narrow peak centered
at ∼2.28 Å (with a full width at half maximum (FWHM) of 0.28 Å) and a broader second
peak at a lower intensity at ∼2.77 Å (FWHM of 0.47 Å). Analyzing the partial pair correlation
functions gαβ (r) (Fig. 5.4) allows us to trace back the role of each individual pair contribution
with respect to the total one. In Tab. 5.2 we report the nearest-neighbor distances ri j identified
by the position of the first maximum of the gαβ (r) for the three Na3−xOHxCl systems.
For comparison, we also report the nearest-neighbor distances found in synthesized pure
crystalline Na3OCl.[174, 225] The first peak of gtot(r) for amorphous Na3OCl can be ascribed
entirely to the Na-O pair (∼2.28 Å), whereas the second peak is mainly attributed to the Na-Cl
pair (∼2.75 Å) and only partially to Na-O and Na-Na (∼3.14 Å) gαβ (r) contributions. The
first peak of gNaNa(r) is responsible for the shoulder occurring after the second peak (∼2.8-
3.1 Å) found in the total pair correlation function. Analyzing the peak positions of gNaO(r)
for amorphous Na3OCl, the Na-O bond distance is found slightly larger than the typical ionic
bond reported for crystalline Na3OCl (∼2.25 Å), whereas the Na-Cl ionic bond distance is
shorter than that of crystalline one (∼3.18 Å).

The gtot(r) as obtained from the FPMD and ML-GAP models shows an excellent agreement
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Figure 5.3: Total pair correlation function for amorphous Na3OCl at T = 300 K. The FPMD
results (orange black lines) are compared to the MLP calculated for GAP1 (black dashed lines)
models and GAP3 (red dashed lines) mode

over the entire real space range.For r < 3 Å, the measured first peak shows a slightly lower
intensity compared to the modelled one, while the similar intensity case occurs when looking
at the second peak for systems having the same size. The measured gtot(r) are consistent for
different cell size systems. While a shoulder peak at around 3.8 Å in gOO(r), and a higher
intensity of first peak in gNaO(r) are observed when the size of system increasing to 405 atoms
in modeled systems as well as measured systems . This discrepancies are typical of cell size
effect. Therefore, the system containing 405 atoms is refer as a reference structure for this
study. For larger systems size the gtot(r) show agreements as the measured systems of 405
atoms.

For r >5.4 Å, the FPMD and ML-GAP models reproduce the positions and intensities of
the peaks occurring at medium range distances. Overall, these results provide evidences that
our models allow for a very good description of the topology of glassy Na3OCl in comparison
to measured results of FPMD. We note also a small reduction of the intensity of the first peak
in the ML-GAP model.

Interestingly, the ML-GAP model provides a better description of the O-O correlations
in real space where peaks representative of first (around 3.4 Å) and second (around 4.2 Å)
coordination shells are well distinguished in comparison to the FPMD model.
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First quantitative assessment of the structure of amorphous antiperovskite Na3OCl by

first-principles and machine learning molecular dynamics

FPMD GAP
Amorphousa Amorphous Amorphousb Amorphousc Amorphousd Amorphouse

atoms 135 405 135 405 1080 3645
Na
l=3 7.56 10.80 5.97 8.20 7.18 7.61

O3 1.95 4.98 2.68 3.34 2.84 3.32
Cl1O2 5.37 5.15 3.13 4.48 4.01 3.95
Cl2O1 0.24 0.67 0.16 0.37 0.38 0.34

l=4 62.97 55.54 62.25 59.49 58.96 57.97
O4 3.96 3.43 2.66 3.74 3.60 3.56

Cl1O3 15.52 17.49 17.51 16.85 17.39 16.94
Cl2O2 34.63 25.86 31.61 28.91 28.32 28.14
Cl3O1 8.12 8.52 10.17 9.64 9.41 9.22

Cl4 0.74 0.24 0.31 0.34 0.24 0.11
l=5 26.66 28.30 27.44 28.51 30.03 30.22

Cl1O4 1.26 0.85 0.79 1.00 1.02 1.02
Cl2O3 3.50 4.93 4.57 5.37 6.03 5.24
Cl3O2 12.83 11.33 12.55 12.38 12.97 13.25
Cl4O1 7.77 9.78 8.68 9.03 9.22 10.29

Cl5 1.31 1.41 0.78 0.71 0.67 0.32
l=6 1.86 4.11 3.71 3.14 2.85 3.22

Cl4O2 1.08 2.75 1.73 1.51 1.64 1.52
Cl5O1 0.78 1.36 1.98 1.63 1.22 1.70

O
l=5 Na5 1.33 3.03 1.31 0.87 0.92 1.13
l=6 Na6 68.83 59.45 69.82 62.94 59.32 62.20
l=7 Na7 28.15 38.84 26.44 32.25 36.20 32.60
l=8 Na8 1.67 2.64 2.38 3.92 3.43 4.05
Cl
l=4 Na4 1.39 1.29 0.71 1.28 1.22 1.12
l=5 Na5 13.85 14.26 10.53 13.19 13.50 12.34
l=6 Na6 38.34 30.39 35.46 39.11 36.62 36.64
l=7 Na7 34.00 32.88 36.04 34.24 34.25 34.52
l=8 Na8 11.21 13.34 14.55 10.60 12.63 13.09
l=9 Na9 1.15 1.29 2.48 1.57 1.67 2.11

Table 5.3: Distribution of the individual cation-anion nα(l) structural units where an atom of
species α (Na, Cl or O) is l-fold coordinated to a counter ion computed for glassy Na3OCl.
In bold are reported the total percentages determined for each l-fold coordination. These
quantities have been calculated including neighbours separated by a cutoff corresponding to
the first minimum in the gαβ (r). For the present work, the individual pair cutoffs used are
3.16, 3.94, 4.10, 5.06, 5.51, and 5.39 Å for, respectively, the Na-O, Na-Cl, Na-Na, O-O, Cl-Cl
and O-Cl distances. A total cutoff of 3.50 Å was defined from the total g(r).
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Figure 5.4: The partial pair correlation functions gNaO(r), gNaCl(r), gNaNa(r), gOO(r), gOCl(r)
and gClCl(r) for amorphous Na3OCl at T = 300 K obtained from FPMD (fullfilled profiles) and
GAP (dashed lines: black for GAP1 and red for GAP3). The curves are shifted vertically for
clarity.



Chapter 6

General conclusions and future
perspectives

6.1 Conclusions

We have applied advanced computational methods to assess and comprehend a series of
structural and transport properties of Na3OCl-based systems.

In Chapter 3, we reported and discussed the phase transitions of antiperovskite Na3OCl
through two types of phonon calculations. Quasiharmonic phonon calculations using the
quasi-harmonic approximation (QHA) determine the Gibbs free energies of 14 polymorphs,
revealing a phase diagram with three stable phases under finite temperature and pressure
conditions. At ambient pressure, the high-symmetry cubic phase (Pm3̄m) is stable above
205 K, while the monoclinic phase (P21/m) becomes stable below 135 K. In the temperature
range of 135 K to 205 K, the Bmmb structure is expected to be the most stable. The
second type of phonon calculation incorporates anharmonic terms by utilizing quartic and
cubic interatomic force constants (IFCs). Phase-transition temperatures (TC) are determined
using self-consistent phonon calculations and temperature-dependent phonon band structures
with the inclusion of the bubble self-energy term (QP-NL). The QP-NL method, which
corrects the overestimation of the soft-mode frequency, predicts phase-transition temperatures
more than twice as high as those obtained from the SC1 method (54 - 86 K vs 166 - 195
K). Thermal expansion has a negligible effect on TC in cubic Na3OCl; however, the study
highlights the significance of the soft mode’s behavior under lattice constant changes in
understanding the thermal expansion effects on TC. These findings are consistent with previous
computational research on other halide perovskites and the experimentally observed room-
temperature stability of cubic Na3OCl. The migration energy barriers of the Na migration are
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calculated for the three vibrationally stable phases, revealing similar energy barriers ranging
from 0.30 to 0.34 eV across the phases.

In Chapter 4, a quantitative structural characterizations for amorphous antiperovskites
in terms of X-ray and neutrons structure factors, pair correlation functions, coordenation
numbers and chemical identification of the structural units is presented. Our results underscore
the significance of conducting quantitative structural assessments to better comprehend
the impact of structure on the performances of these systems. Moreover, ion dynamics
mechanisms of three amorphous Na3−xOHxCl (with x=0, 0.5, 1) Na-rich antiperovskites are
quantitatively assessed by first-principles molecular dynamics. Amorphous Na3OCl has a
unique microscopic structure that enables remarkable Na ion dynamics and ionic conductivity,
challenging that of defective crystalline phases. The presence of hydroxyl OH− anions in
the hydroxylated models is crucial for the mobility of Na ions, which is enhanced by rapid
rotation of O-H bonds and paddlewheel-type mechanisms. This promotes the formation of
available space, which is essential for achieving fast Na-ion transport. Overall, the study
highlights the significance of quantitative structural assessments and sheds light on the ion
dynamics mechanisms in amorphous Na3−xOHxCl antiperovskites. The findings underscore
the potential of these materials for high-performance Na-ion transport and provide insights for
further research and development in the field.

In Chapter 5, a more extensive investigation of amorphous Na3OCl was conducted using
first-principles molecular dynamics, enhanced by the development of a machine learning
interatomic potential (MLIP). This MLIP enabled us to extend the size and time scales of
our simulations, achieving simulations with up to 3645 atoms for durations of up to 100s
ps at a given temperature. The MLIP was developed to provide first-principles accuracy,
with an energy and forces mean absolute error (MAE) of 0.93 meV/atom and 0.04 eV/Å,
respectively. The successful implementation of the MLIP allowed us to establish a critical
model size of around 400 atoms for obtaining well-defined X-ray and neutrons structure
factors, as well as partial pair correlation functions. Overall, amorphous Na3OCl was found to
exhibit a significantly different structure compared to its crystalline counterpart. It displayed
a disordered structure with limited intermediate range order and short-range order, primarily
driven by a majority of four-fold coordinated Na atoms (approximately 60%), through ionic
bonds with counter-ions. The Na-O bond distances were close to those observed in the
crystalline phase, while the Na-Cl distances were notably shorter. Consequently, the local
environment surrounding Na atoms in the amorphous phase favored a reduced number of
neighboring counter-ions and Na atoms. The majority of Na atoms were coordinated to both
O and Cl anions, with only a small percentage exclusively coordinated to O or Cl atoms.
These findings reveal contrasting differences in the structure of amorphous Na3OCl compared
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to previously proposed models for glassy Li3OCl, which were based on the segregation of
Li2O and LiCl-rich regions. The developed MLIP also proved useful for modeling crystalline
Na3OCl, demonstrating an error in the predicted density of approximately 5%.

In conclusion, the results obtained in this study contribute to the growing body of evidence
indicating that disordered Na-rich antiperovskites offer a viable and effective alternative to
their crystalline counterparts as solid-state electrolytes. The improved understanding of the
structural properties of amorphous Na3OCl, facilitated by the MLIP approach, contributes to
the ongoing exploration of materials for advanced energy storage and conversion devices.

6.2 Future perspectives

To achieve high performance in solid-state batteries, the discovery of solid electrolytes with
desirable properties is essential. However, the current search for high-performance solid
electrolytes is mostly empirical and time-consuming. There is a clear need for new approaches
that can accelerate the identification of solid electrolytes with high ionic conductivity, low
electronic conductivity, good stability, and compatibility with electrode materials. In this
regard, computational studies can play a crucial role in screening and predicting the properties
of potential solid electrolytes. The combination of computational modeling and machine
learning techniques is driven on one hand to allows a better and detailed comprehension of
complex materials such as crystalline and amorphous Na-rich antiperovskites, and on the other
hand, expedite the discovery process and reduce the reliance on extensive experimental trials.
In line with this perspective, future computational studies can be conducted to investigate the
stability and compatibility of solid Na-rich antiperovskite electrolytes with various electrode
materials for Na solid-state batteries. The development of MLIP models that accurately predict
the behavior of the electrolyte/electrode interface in these batteries can be a valuable tool.
These models can be trained on large datasets that capture the complex relationships between
materials, their structures, and the electrochemical processes involved in battery operation.
With respect to the GAP-MLIP developed in this PhD thesis, two possible future steps
might be undertaken in order to develop a MLIP able to model also the electrolyte/electrode
interface: i. enrich the existing DFT database of metallic Na phases as well as DFT-modelled
Na3OCl@Na interface models and exploit the same GAP fitting scheme and ii. develop a
GAP-type MLIP by fitting to the energy and force differences that Na ions induce in at the
Na3OCl@Na interface by following the recent scheme proposed by Fujikake et al. [258].

Furthermore, by incorporating a broad range of experimental and simulation data,
including information on electrode materials, solid electrolyte properties, interface
characteristics, and battery performance metrics, such as energy density, power density, and
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cycling stability, these models can provide insights and predictions that guide the design and
optimization of Na solid-state batteries.

An second important aspect to explore is the role of defects in the performance of Na
solid-state electrolytes and their interfaces with electrodes. Defects can significantly impact
the ionic conductivity and stability of solid electrolytes, as well as influence the interfacial
behavior between the electrolyte and electrode. Computational investigations can delve
into the effects of different defect types, concentrations, and distributions on the overall
performance of the battery system. This knowledge can guide the design and engineering of
defect-controlled solid electrolytes with enhanced properties and improved interface behavior,
ultimately leading to the development of more efficient and reliable sodium solid-state
batteries.

In conclusion, the combination of computational modeling, machine learning techniques,
and thorough investigations into the role of defects holds great promise for accelerating
the discovery and optimization of high-performance solid electrolytes for sodium solid-
state batteries. These approaches can provide valuable insights into the structure-property
relationships, stability, and compatibility of solid electrolytes and their interfaces, thereby
facilitating the development of next-generation energy storage technologies. By reducing the
reliance on empirical approaches and enabling more targeted material design, computational
studies can contribute to the advancement of solid-state battery technology and the realization
of sustainable and efficient energy storage systems.
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