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Abstract  

In the field of medicine, 3D printing (3DP) technology has been applied to patient-specific 

surgical guides, simulators, surgical planning, education, implants. The essential tasks such 

as image acquisition, segmentation, 3D computer aided design (CAD) modeling, or 

measurements must be performed in medical field. However, these tasks can be repetitive, 

time-consuming, labor-intensive, and lack of consistency. To address these shortcomings, 

improvements can be achieved by segmenting CT images using deep learning, generating a 

3D model, and performing semi-automated modeling using a script-based application 

programming interface (API). This study was conducted in three parts: 1) Active learning 

(AL) was utilized to automated and enhanced segmentation, reducing the labeling workload, 

2) automated patient-specific modeling and measurement of landmarks were achieved 

through the 3D models based on automated segmentation using script-based application 

programming interfaces (API), and 3) the usefulness and efficiency of patient-specific 

surgical guides produced using 3DP technology were demonstrated with clinical application.  

Firstly, medical image segmentation is essential to obtain various information within the 

human body, providing visualization of anatomical structures and information on diagnosis, 

surgical planning, organs, or lesions for medical professionals. Conventional image 

segmentation often involves manual segmentation on a pixel-by-pixel basis using various 

tools. However, these segmentation methods often face difficulties in achieving consistent 

segmentation due to various factors such as low contrast and image noise, leading to 

significant time consumption. In recent years, significant advances in image segmentation 

have been made using deep learning models such as convolution neural networks (CNN), 

fully convolutional networks (FCN), and U-Net. In this study, we introduced an AL approach 

for enhanced segmentation using a smart labeling, which efficiently increases labeled data by 

training on a small initial dataset with manually labeled data and correcting the predicted 

new data with human experts in kidney CT with renal cell carcinoma, mandibular condyle 

CBCT, thracoabdominal aortic dissection CT, abdominal aortic aneurysm CT. Various 

networks including 2D or 3D U-Net, Cascade 3D U-Net, UNETR, SwinUNETR, and nnU-

Net were selectively used for AL in various tasks. The evaluation was performed using dice 

similarity coefficient (DSC) and Hausdorff distance (HD) to assess the agreement of areas 
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and distances at predefined stages, accuracy for the multi-classes to be segmented, time 

comparison for segmentation using manual segmentation and smart labeling, and stress tests 

to determine the optimal amount of data. 

Secondly, using a 3D CAD tool based on a 3D model obtained through automated 

segmentation, patient-specific modeling or landmark measurement for diagnosis and lesion 

tracking can be performed. By using CAD systems, design modifications can be easily 

generated to improve accuracy in clinical applications, and they are optimized to meet 

specific requirements of clinicians. However, like manual segmentation, conventional 

modeling methods are time-consuming and require significant labor. An automated CAD 

modeling system using a script-based API provides excellent performance, accuracy, and 

efficiency in a short time, overcoming the limitations of conventional modeling methods. 

Automated CAD modeling typically involves setting inputs and parameters for 3D modeling, 

generating algorithm and programming code based on the specifications, and integrating the 

code with API of CAD software, enabling modeling and modification. In thoracoabdominal 

aortic dissection CT and abdominal aortic aneurysm CT, automated 3D CAD modeling and 

measurement were compared with conventional manual methods, and a series of processes 

required for automated modeling were optimized, modularized, and validated to perform 

design and measurement for patients with various anatomical structures. The evaluation 

involved analyzing the accuracy of 3D models and measurements obtained through 

conventional manual and automated CAD modeling, as well as the time required for 

modeling. 

Finally, 3DP technology was found to have the advantage of addressing clinical unmet 

needs for pediatric cases, rare and complex conditions, and surgeries that are difficult to 

standardize, as most medical devices are commonly developed or customized for adult 

patients with common diseases. 3DP technologies proceed by adding materials layer-by-

layer until the object is completely built. It can be classified into various methods depending 

on the materials used and the printing process. The 3D model obtained through automated 

segmentation and 3D CAD modeling is converted to standard tessellation language (STL) 

format and printed using the appropriate 3DP, followed by sterilization before clinical 

application. We introduce two new reconstruction techniques using patient-specific 3D-
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printed graft reconstruction guides in open surgical repair of thoracoabdominal aortic 

dissection: (1) model-based technique (MBT) that presents the projected aortic graft, 

visualizing the main aortic body and its major branches and (2) guide-based technique 

(GBT) in which the branching vessels in the visualizing guide are replaced by marking 

points identifiable by tactile sense. The effectiveness was demonstrated by evaluating 

conventional and new techniques base on accuracy, marking time requirement, 

reproducibility, and results of survey to surgeons on the efficiency and efficacy. The accuracy 

of 3DP guides can be affected by various factors such as the external environment, duration 

of 3D printer, resolution, materials, shape of the 3D model, printing conditions, and post-

processing, which may lead to discrepancies between the printed model and the original 3D 

model. 

In conclusion, we have developed an automated workflow for the segmentation and 

modeling processes necessary for applying 3DP in the clinical application. This approach 

significantly reduces repetitive and labor-intensive tasks, maintains consistency through 

codification, and saves time, thereby alleviating their workflow and accelerating the 

application of 3DP compared to conventional methods. Furthermore, the clinical usefulness 

and efficiency of 3D printed patient-specific surgical guides demonstrated in addressing 

clinical unmet needs. 
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1 Introduction 

To apply 3D printing (3DP) technology to the medical field, it is essential to go through 

the process of medical image acquisition, image segmentation, 3D computer-aided design  

(CAD) modeling, 3DP, and post-processing (Figure 1-1). Medical image data is acquired by 

imaging devices such as computed tomography (CT), magnetic resonance imaging (MRI), 

and ultrasound (US) images. Important factors such as contrast or signal-to-noise ratio, 

spatial resolution, and image thickness should be considered during image acquisition since 

the quality of the image can affect the feasibility of 3DP. The next step is to segment the 

region of interest (ROI) such as organs or lesions from the acquired data. 3D models are 

generated using surface rendering techniques, and CAD modeling is performed to design a 

model suitable for the intended use, such as guides, simulators, educational phantoms, and 

molds. The objects are checked for suitability for 3DP, and then the data is exported in 3D 

file formats such as stereolithography (STL) format. After selecting an appropriate 3DP 

technology and performing post-processing steps such as support removal, the 3DP objects 

are sterilized for clinical application. Finally, the 3D objects are applied clinically in the 

operating room [1, 2]. There are currently various 3DP technologies available for research, 

development, and commercial applications. These technologies can be classified into 

different types, including fused deposition modeling (FDM), SLA, digital light processing 

(DLP), color-jet printing (CJP), multi-jet printing (MJP), photopolymer jetting (PolyJet), 

selective laser sintering (SLS). 

 

 

Figure 1-1. The overall procedure of 3DP technology for clinical application.  
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Medical image segmentation is essential for obtaining non-invasive information about the 

structures within the human body, allowing radiologists and physicians to study and visualize 

anatomy, simulate biological processes, localize pathologies, track disease progression, and 

determine the necessity of radiotherapy or surgeries with CT, MRI, and US images [3-5]. 

The ability to accurately segment medical images is critical for providing a better 

understanding of the human body and its functions, aiding in the diagnosis and treatment of 

various medical conditions [6, 7]. The accuracy of segmentation is crucial for the 

functionality of computer-aided diagnosis systems, as it directly affects the system's ability 

to provide accurate diagnoses and treatment plans. Therefore, segmentation plays a vital role 

in medical imaging, and its importance cannot be overstated [8-10]. The traditional 

segmentation techniques have relied on manually crafted methods that are dependent on the 

expertise of the clinician. This often involves the use of segmentation tools such as 

thresholding, region growing, morphology operations, and brushes to explicitly define the 

ground truth on a per-pixel basis. Despite advancements in semi-automated segmentation 

methods, manual segmentation remains a standard practice in many imaging applications 

[11, 12]. The image segmentation methods are classified as follows: 1) The image-based 

segmentation, 2) subjective surface segmentation, and 3) atlas-based segmentation method. 

Image-based segmentation methods use templates that are adjusted to fit the image data 

while minimizing integration errors. These methods often use control points to parameterize 

the shape of the template for a given structure, and the whole shape is transformed to match 

the new image. Active shape models and active appearance models are two common shape-

based techniques used in image segmentation [13, 14]. The subjective surface segmentation 

method uses advection-diffusion models to control segmentation functions for object 

segmentation. A segmentation seed is required to configure the initial segmentation function, 

and its position determines the function's shape. In some applications, clinical experts can 

manually label multiple images, and the invisible image can be segmented by extrapolating 

from the labeled training image [15, 16]. The atlas-based segmentation method combines 

multiple training images into a single atlas image or uses them individually [17-19]. Image 

registration is used to align the atlas or training image to a new image for segmentation. 

Parametric atlas methods combine training images into one atlas image, while nonparametric 
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methods use individual training images. However, accurate segmentation of medical images 

faces many challenges [20]. Medical image segmentation is a challenging task due to factors 

such as low contrast, noise, inhomogeneity of anatomical structures, and similar visual 

appearances of tissues and vessels. The 3D and 4D images also present additional challenges 

such as variability in object-of-interest shapes and textures over time [21-23]. As a result, 

conventional segmentation techniques may not work well for all subjects or images. Various 

segmentation techniques such as contour-, region-, and pixel/voxel-based approaches aim to 

obtain boundaries, connected regions, or perform classification at the pixel/voxel level, 

respectively [24].  

In recent years, deep learning (DL) model such as fully convolutional networks (FCN) 

have made significant progress in segmentation tasks, particularly in medical image 

segmentation [25]. The U-Net architecture has been found to be effective in this domain, 

leading to improved accuracy and robustness in medical image segmentation for various 

anatomical structures and diseases. As a result, these advancements in DL have had a 

significant impact on medical image segmentation, allowing for more precise and reliable 

segmentation for different anatomical structures and diseases [7, 26-28]. The limited 

availability of medical image datasets and the high costs and efforts involved in expert 

labeling pose serious challenges to DL methods in medical image segmentation. DL 

architectures require large amounts of data to avoid overfitting, which can be difficult to 

obtain in real-world medical imaging. Rare diseases and complex anatomical structures 

present additional difficulties in image segmentation due to their high variability. 

Active learning (AL) framework were developed to enhance segmentation using a smart 

labeling method, which efficiently increases labeled data by training on a small initial dataset 

with manually labeled data and correcting the predicted new data with human experts. The 

goal is to make the labeling process more efficient by focusing on the most important 

samples [29-35]. 

In the medical field, it is important to have an efficient CAD system that can design the 

patient-specific surgical guides, simulators, education phantoms, and biological applications 

[36-41]. The CAD system would be utilized in multiple technologies, including 3DP, 

augmented reality (AR), virtual reality (VR), mixed reality (MR), and medical robotics [1, 
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42-50]. An efficient CAD system offers several advantages, such as reducing lead time and 

enhancing productivity and quality. CAD allows for easy modifications to designs to 

improve accuracy in clinical situations. A database can be used to manage different patient-

specific models, which can improve communication between designers. The modeling 

facilities in the CAD system are tailored to meet the specific needs of clinicians. However, 

finding CAD software that meets all the demands of the medical field can be challenging 

[51, 52].  CAD systems with many parameters and high memory requirements need more 

processing time and hardware. Mistakes in input data could lead to harmful outcomes [53]. 

Moreover, the conventional modeling process is laborious, time-consuming, and monotonous 

[52-54]. To address these challenges, an automated CAD modeling system has been 

developed that can achieve greater accuracy, improved performance, and shorter modeling 

times compared to the traditional approach. Furthermore, this CAD system can be utilized 

with minimal human intervention. 

The 3DP technology was initially developed by Charles W. Hull in August 1984, using the 

Stereolithography apparatus (SLA), and was patented [55]. Over the course of 30 years 

following the patent application, Hull's mechanical process of fabricating objects from CAD 

models has been applied to numerous business fields, and has continued to be actively 

developed in various areas since the patent expired in 2014 [56]. The 3DP technology, 

known as rapid prototyping or additive manufacturing, proceed by adding materials layer-

by-layer until the object is completely built. The 3DP is distinct from the computerized 

numerical control process of subtractive manufacturing [57]. Recently, 3DP has had an 

impact on various fields such as medicine, machinery, architecture, fashion, and education. 

In the medicine, the acquisition of digital imaging and communications in medicine 

(DICOM) based on CT, MRI, and US has led to extensive research and development in 

various areas such as patient-specific guides, simulators, transplant prostheses, surgical tools, 

and education for diverse fields including the aorta, kidneys, heart, lungs, liver, prostate, and 

teeth [2, 57-61].  
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1.1 Motivations 

In the medical field, 3DP technology is rapidly utilized for patient-specific guides, 

simulators, surgical planning, and education phantoms, and implants. To apply 3DP in the 

medical field, essential tasks such as medical image acquisition, segmentation, 3D modeling 

and design, and measurement must be performed. However, these repetitive manual tasks are 

tedious, labor-intensive, time-consuming and lack of consistency for workers. These 

challenges can be solved by introducing automated workflow with deep learning technology 

in segmentation and application programming interface (API) in CAD modeling. The 

advantages of automated workflows include the reduction of repetitive tasks, which are often 

tedious, labor-intensive, and time-consuming. These automated workflows ensure 

consistency between tasks and researchers, promoting standardized practices. Moreover, it 

easily apply to various clinical field. The objectives of this study divided into three sections: 

Firstly, the development of an automated and enhanced segmentation algorithm using AL 

techniques to reduce labeling effort. Secondly, the development of automation for the design 

of patient-specific guides based on the 3D model acquired from automated segmentation, as 

well as automated measurement of clinically defined landmarks to predict complications. 

Lastly, the usefulness and efficiency of patient-specific surgical guides produced using 3DP 

technology were demonstrated with clinical application. 

 

1.2 Contributions  

The main contribution of this study is the development of a semi-automated workflow 

from medical image acquisition to 3DP. Firstly, DL-based automated segmentation is 

developed using various networks for kidney with renal cell carcinoma (RCC), mandibular 

condyle, thoracoabdominal aortic dissection, and abdominal aortic aneurysm. In addition, AL 

techniques with smart labeling are employed to reduce labeling effort by dividing the limited 

dataset into multiple stages and evaluating the accuracy between the ground truth and 

predicted segmentation to determine an optimized dataset for training. The second 

contribution of this research is the development of a semi-automated CAD modeling and 
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measurement method based on 3D model for thoracoabdominal dissection and abdominal 

aortic aneurysm. The process involves designing patient-specific guides and modularizing a 

series of steps for design with optimization and measuring clinically defined specific 

landmarks that can be applied to all patients. Lastly, the contribution of this study is to 

develop patient-specific surgical guides for thoracoabdominal aortic dissection using various 

3DP techniques, and to evaluate their accuracy and effectiveness through clinical application. 

 

2 Background 

2.1 Medical image segmentation using deep-learning 

2.1.1 Convolution neural network (CNN) 

Artificial neural networks known as CNN have proven to be a powerful tool in detecting, 

classifying, segmenting, reconstructing, and performing natural language processing on 

medical image structures. CNN works by extracting and processing features from input data 

to identify patterns and objects in medical images [62-68]. The architecture of a CNN 

consists of convolution layers, pooling layers, and fully connected layers, with multiple 

convolution and pooling layers stacked repetitively, and one or more fully connected layers 

(Figure 2-1).  

 

Figure 2-1.  The convolution neural network (CNN) architecture. 
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The convolutional layer plays a crucial role in identifying and extracting features from 

input images. It comprises a group of filters, also known as kernels, that move across the 

input data and perform element-wise multiplication, followed by summation to produce a 

feature map. The convolution operation involves moving a filter across the input data, 

multiplying the filter values with the corresponding pixel values at each location, and adding 

up the results to produce a single value in the output feature map. The convolution operation 

is performed at every possible location of the filter over the input data, resulting in a 

complete feature map being generated. The receptive field or size of the filter determines the 

range of the convolution operation. If the filter size is larger, it will capture more global 

features, whereas a smaller filter will capture more local features. The stride of convolution 

determines the spacing between two consecutive locations of the filter. If the stride is larger, 

the output feature map size will be reduced, while a smaller stride will result in an increased 

output feature map size. Convolutional layers usually consist of multiple filters, each with its 

own set of weights, enabling the layer to learn multiple feature maps concurrently. After the 

convolutional layer generates multiple feature maps, they are sent to the next layer for 

additional processing. The pooling layer is employed to the downsampling that decrease the 

dimensionality of these feature maps produced by the convolutional layer. By reducing the 

size of the feature maps based on the window size and stride, the pooling layer produces 

smaller feature maps with fewer parameters. Using the pooling layer helps prevent 

overfitting and reduce computational complexity, while still retaining the significant features 

learned by the convolutional layer. There are two frequently used pooling layers in CNNs: 

max pooling and average pooling. Max pooling chooses the maximum value from a 

rectangular window within the feature map, and the resulting value is used as the output. In 

contrast, average pooling calculates the average value from a rectangular window within the 

feature map and uses it as the output. In CNN architectures, the fully connected layer is often 

positioned at the end of the network, following the convolutional and pooling layers. Its 

purpose is to map the extracted features to the final output classes. The fully connected layer 

is fed with the flattened output from the previous layer, which is a one-dimensional vector, 

and performs a matrix multiplication operation using a weight matrix and bias vector. This 

operation generates a new set of features that are used to map the extracted features to the 
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final output classes. 

2.1.2 Fully convolutional networks (FCN) 

The FCN is a deep neural network architecture that is tailored for image segmentation 

purposes. It works by substituting fully connected layers with convolutional layers, which 

allows the network to handle input images of variable sizes [25]. The FCN architecture 

usually consists of two primary parts: an encoder and a decoder. The encoder component of 

the FCN architecture is composed of convolutional and pooling layers, which are responsible 

for extracting crucial features from the input image. On the other hand, the decoder 

component consists of deconvolutional layers that perform upsampling of the feature maps 

to their original size, thereby generating the segmentation map. The FCN architecture 

introduces a significant advancement through the use of skip connections. These connections 

allow the network to combine feature maps from various layers and provide the decoder with 

access to low-level features from the encoder. This technique is instrumental in preserving 

detailed spatial information and generating precise segmentation maps (Figure 2-2). 

 

 

Figure 2-2. The fully convolutional networks (FCN) architecture. 

 

2.1.3 U-Net 

U-Net is a commonly used variation of the FCN that is tailored for biomedical image 

segmentation. Its design revolves around an encoder-decoder architecture that utilizes skip 

connections to enhance its performance [69-71]. U-Net is composed of an encoder that 



 

9 

reduces the spatial resolution of the input image and a decoder that increases the resolution 

of the output segmentation map. The encoder is a conventional CNN that comprises multiple 

convolutional and pooling layers. In contrast, the decoder consists of a sequence of 

deconvolutional layers that upsample the feature maps to match the original input size. Apart 

from the conventional encoder-decoder architecture, U-Net employs skip connections that 

link matching encoder and decoder layers. By enabling the decoder to utilize the high-

resolution feature maps generated by the encoder, these connections preserve fine spatial 

details and enhance the precision of segmentation outcomes (Figure 2-3). 

 

 

Figure 2-3. The U-Net architecture. 

 

2.1.4 Cascade U-Net 

The cascade U-Net is an enhanced version of the U-Net architecture that aims to improve 

the reliability and precision of medical image segmentation [72-74]. It operates on a two-

stage segmentation strategy that involves two separate U-Net networks, trained in sequence. 

The cascade U-Net approach involves two stages of segmentation, with the first stage 

generating a preliminary segmentation using a basic U-Net architecture. The initial 

segmentation is then fed into a modified U-Net architecture in the second stage. The 

modified U-Net architecture utilized in the cascade U-Net strategy contains supplementary 

skip connections that link the corresponding layers in the two U-Net networks. By 
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incorporating these skip connections, the second network in the cascade U-Net architecture 

is able to access and make use of both low- and high-level features extracted by the first 

network (Figure 2-4). 

 

 

Figure 2-4. Cascade U-Net methods (A) The first training for the location of segmentation 

from CT images with basic U-Net, (B) The second training for the classes from the first 

training. 

 

2.1.5 no-new-U-Net (nnU-Net) 

Due to the 3D nature of medical images, a group of fundamental U-Net architectures are 

typically utilized, such as a 2D (2-Dimensional) U-Net, a 3D U-Net, a 2D-3D U-Net 

ensemble, and a cascade 3D U-Net [75]. The nnU-Net is designed to automatically optimize 

the hyperparameters of the U-Net architecture to achieve the best possible performance for a 

given medical image segmentation task. This self-adapting framework is based on the 

principle of automatically tuning the architecture to optimize performance. The nnU-Net 

employs a modified version of the U-Net architecture that incorporates various additional 

features to enhance its performance. These features include instance normalization, residual 
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connections, and convolutional layers with varying dilation rates, among others. The nnU-

Net utilizes the foreground as a novel data preprocessing technique. It crops input images to 

different sizes and then pads them to a uniform size before inputting them into the network. 

The nnU-Net framework enhances the accuracy and robustness of the segmentation 

outcomes, particularly when the input images have diverse sizes and aspect ratios. The self-

adapting framework of the nnU-Net is achieved via nested cross-validation loops that train 

and evaluate the network on various subsets of the training data. The iterative approach of 

nnU-Net optimizes hyperparameters like learning rate, number of filters, and dropout rate 

automatically by adapting the network to the specific segmentation task. This eliminates the 

need for manual parameter selection or tuning and leads to improved accuracy and 

robustness of the segmentation results. 

 

2.1.6 UNEt Transformers (UNETR) 

The UNETR is a medical image segmentation architecture developed by the medical open 

network for artificial intelligence (MONAI) framework that utilizes transformers to process 

and analyze medical image data [76-78]. The UNETR is based on combining the U-Net 

architecture with the transformer model, a self-attention mechanism. The UNETR 

architecture comprises two essential components: the encoder and the decoder. The encoder 

is a transformer model that is modified to extract high-level features from the input image 

through a series of self-attention layers. The decoder is a U-Net architecture that uses the 

features extracted by the encoder to produce the segmentation map (Figure 2-5). Compared 

to traditional U-Net-based segmentation models, the UNETR architecture offers a number of 

advantages. One key advantage is the use of self-attention mechanism in the transformer 

model, which enables the network to better capture long-range dependencies in the input 

image. This is especially important in medical images with complex structures and textures. 

In addition, the UNETR architecture can be trained end-to-end using standard 

backpropagation techniques, which makes the training process more efficient and enables 

better optimization of the network. In summary, the UNETR architecture is a flexible and 

robust solution for medical image segmentation that leverages the advantages of both U-Net 
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and transformer models. The MONAI framework offers a convenient platform for 

developing and deploying DL models in medical image analysis.  

 

 

Figure 2-5. The UNEt TRansformers (UNETR) architecture. 

 

2.1.7 Shifted windows UNEt TRansformers (SwinUNETR) 

The SwinUNETR is a modified version of the UNETR architecture that has been created 

specifically for medical image segmentation by the MONAI framework [77-80]. The 

SwinUNETR is built on the combination of two architecture types: the Swin Transformer, 

which is a hierarchical transformer-based approach that uses self-attention layers to extract 

features from input images at different scales, and the U-Net architecture, which is used for 

medical image segmentation. The Swin Transformer divides the input image into patches and 

applies multiple self-attention layers to extract features at different scales. The SwinUNETR 

comprises two primary components, namely the encoder and decoder. The encoder 

component utilizes the Swin Transformer to extract high-level features from the input image 

via several self-attention layers. The decoder component utilizes the U-Net architecture and 

utilizes the features obtained by the encoder to generate the segmentation map (Figure 2-6). 

Compared to traditional U-net-based segmentation models, the SwinUNETR architecture has 

several advantages. One such benefit is the Swin Transformer's hierarchical structure, which 
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enables the network to capture both local and global features in medical images with 

complex structures and textures. In addition, the Swin Transformer is more efficient to 

implement and easier to train and deploy than traditional transformers. Overall, the 

SwinUNETR architecture is a powerful and efficient approach to medical image 

segmentation that combines the strengths of both the Swin Transformer and U-Net 

architectures. The MONAI framework is used to implement the SwinUNETR model and 

provides a user-friendly interface for training and deploying DL models in medical image 

analysis. 

 

 

Figure 2-6. The Shifted windows UNEt TRansformers (SwinUNETR) architecture. 

 

2.1.8 Active learning (AL) 

Training DL architectures typically requires a large amount of input data to prevent 

overfitting. However, medical images are often limited in number, and their annotation 

requires specialized medical expertise. Labeling images for rare diseases and complex 

structures is particularly challenging due to high anatomical variability. To address this issue 

and increase the efficiency of the learning process, several studies have introduced AL 

frameworks, which reduce the burden of manual annotation [29-35, 81]. The procedure for 

AL is depicted in Figure 2-7. The entire dataset is divided into N stages, and the initial 

labeling and training processes are conducted. If there are additional stages, inference is 
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performed on the unlabeled images, and the human-in-the-loop process is initiated, involving 

re-labeling and re-training by the annotators. Once labeling is completed for all stages, 

evaluation is conducted as the final step. 

 

 

Figure 2-7. The process of the active learning (AL). 

 

2.2 Computer aided design (CAD) modeling 

2.2.1 Manual 3D CAD modeling 

In the medical field, an efficient CAD system is required for various applications, such as 

modeling patient-specific surgical guides, education phantoms, simulators, and biology 

applications [36, 38-41, 82, 83]. These designs incorporate a range of manufacturing and 

visualization processes, such as additive and subtractive manufacturing, VR, AR, MR, and 

medical robotics. The combination of these techniques has enabled the development of 

advanced medical applications with enhanced precision and efficiency [1, 42, 44, 46-50]. 

Efficient CAD offers several benefits, including reduced lead time, increased productivity, 

and quality. CAD allows for easy modification of designs, which can lead to improved 

accuracy in clinical situations. Furthermore, a database of patient-specific models can 
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facilitate communication between designers and improve overall design quality. CAD 

systems in the medical field offer modeling capabilities that are tailored to meet the specific 

needs of clinicians. However, it can be challenging to find CAD software that fulfills all the 

requirements for medical applications [51, 52]. CAD modeling can be divided into two 

methods: 1) parametric modeling and 2) direct modeling. Parametric modeling is a technique 

used in 3D CAD modeling that employs parameters like dimensions, constraints, and 

relationships to define the geometry of the model. It offers precise control over the model's 

geometry and facilitates modifications by simply changing the parameters. The method is 

typically utilized in designing intricate objects and assemblies. Changes made to one part of 

the model automatically affect other dependent parts, enabling easy modifications without 

starting from scratch. In contrast, direct modeling is a more intuitive approach where the 

designer manipulates the model's geometry directly, without using parameters. This approach 

offers more creativity and flexibility in design as the designer can modify the model quickly 

and easily without constraints [84, 85]. Direct modeling is a method of 3D CAD modeling 

that does not rely on parameters to define the geometry of the model. Instead, the designer 

manipulates the model's geometry directly, giving them greater freedom and flexibility to 

make changes quickly and easily. This approach allows for more creative and intuitive 

design and avoids the constraints imposed by predefined parameters. Direct modeling is a 

suitable approach for generating initial design concepts and creating organic shapes. This 

method is particularly beneficial when dealing with irregular geometries, as it enables 

designers to produce intricate shapes quickly and efficiently [86-88]. CAD systems that have 

numerous parameters and require high memory consume more hardware resources and time 

to process data, and incorrect input data may lead to erroneous outputs. Furthermore, the 

traditional modeling approach is not only tedious and time-consuming but also demands a 

significant amount of labor [52-54]. An automated CAD modeling system has been 

developed to address the limitations of traditional modeling methods, providing superior 

performance, accuracy, and efficiency in less time. This system can be used with minimal 

human involvement. 
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2.2.2 Script-based application programming interface (API) 

Automated 3D CAD modeling is the process of using algorithms and programming to 

automatically generate 3D CAD models, which is facilitated through API provided by CAD 

software. These APIs give developers the ability to access and manipulate CAD software 

programmatically, which allows them to automatically create and modify 3D models. There 

are various CAD software that support APIs using scripting languages, for instance, 

AutoCAD has AUTOLISP, Unigraphics has GRIP, Rhinocero has Rhino script, Maya uses 

MEL, 3D Max has MaxScript, and Materialize has 3-matic and magics script based on 

Python [51, 53, 54]. The process of semi-automated 3D CAD modeling and measurements 

using an API is illustrated in Figure 2-8. Utilizing segmentation and 3D models generated 

from medical images, manual modeling and measurements are performed. A series of steps 

and parameters for modeling and measurements are scripted to enable automated modeling 

and measurements when new patient data is received. Using APIs for automated 3D CAD 

modeling can offer various advantages, such as improved productivity, minimized mistakes, 

and accelerated design cycles. It also allows designers and engineers to swiftly and 

effortlessly experiment with different design possibilities and concepts. 
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 1 

Figure 2-8. The process of the application programming interface (API). 2 

 3 
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2.3 3D printing technologies with clinical application 

2.3.1 Fused deposition modeling (FDM) 

FDM is the most widely known and commonly used 3DP technology, which involves 

using filaments created from various materials such as polylactic acid (PLA), acrylonitrile 

butadiene styrene (ABS), thermoplastic polyurethane (TPU), Polyvinyl Alcohol (PVA), High 

Impact Polystyrene (HIPS). The process involves melting the filament using an extruder and 

stacking it layer by layer onto a plate. In the FDM process, a heat-sensitive filament is 

inserted into the extruder, where it is heated and then extruded through a nozzle via a stepper 

motor while the extruder moves in the x-y plane to create the desired objects. Once a layer is 

complete, the plate moves down along the z-axis, and the process is repeated for each 

subsequent layer (Figure 2-9 (A)). Post-processing typically involves removing supports 

using simple tools or dissolving them in water or a solvent, depending on the material used, 

such as PVA or HIPS. In addtion, surface treatment with acetone may be performed on 

materials such as ABS as needed [89-91]. 

 

2.3.2 Stereolithography apparatus (SLA) 

SLA is the longest-standing and one of the most popular 3DP techniques, which uses 

photopolymerizable resins of the polymer family. The apparatus consists of a reservoir to 

contain the resin, an ultraviolet (UV) laser, and a build plate. The printing process of SLA 

involves reflecting an ultraviolet laser beam off mirrors to expose the resin on the build plate 

layer by layer as the mirrors move along the x-y plane. The height of the build plate is 

adjusted to stack each layer along the z-axis (Figure 2-9 (B)). Post-processing typically 

involves removing support structures and a raft from the model, washing it with isopropyl 

alcohol to remove excess resin, and conducting additional curing to increase its strength [91-

93]. 
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2.3.3 Digital Light Processing (DLP) 

DLP is a type of 3DP that shares many similarities with SLA. Both use 

photopolymerizable resins and consist of a resin tank, projector, and build plate. However, 

DLP printing exposes the resin to 2D images projected onto the build plate, in contrast to 

SLA's point-based laser exposure. The post-processing steps for DLP are similar to SLA, 

involving removal of supports and rafts, cleaning the resin, and performing additional curing 

[91, 94]. 

 

2.3.4 Color-Jet printing (CJP) 

CJP is used to a combination of gypsum powder and a binding agent to fabricate 3D 

objects, and to enhance the 3D printed objects strength during post-processing, color 

bonding is employed. The CJP is made up of a powder chamber, build chamber, rollers, and 

a binder head. In the CJP process, a layer of powder from the powder chamber is spread onto 

the build chamber using rollers, after which the binder is sprayed onto the powder layer 

based on the model shape. The tray in the powder chamber moves up one layer, while the 

tray in the build chamber moves down one layer. This process is repeated by spreading 

another layer of powder using rollers and repeating the previous steps to continue building 

the model (Figure 2-9 (C)). To post-process CJP, the support powder material is removed and 

recycled by vacuuming it back into the powder chamber. The 3D printed objects are 

strengthened with color bonding. A significant benefit of using the CJP method is that the 

powder is utilized as a support material, eliminating any visible signs of support marks on 

the final objects [95]. 

 

2.3.5 Multi-jet printing (MJP) 

The MJP technique utilizes photopolymer resins that are acrylic-based and wax, and is 

composed of a plate for layering, a print head, and a UV lamp used for curing the material. 

During 3DP, the print head moves back and forth in the x-y plane, dispensing the material 

while it is simultaneously cured using the UV lamp. The plate is then moved in the z-axis to 
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layer the cured material and continue the printing process (Figure 2-9 (D)). The post-

processing method for MJP involves heating water to around 70°C and keeping the printed 

parts in it for about 15-20 minutes to remove the wax used as support material. The heating 

time may vary depending on the size of the printed parts [95, 96]. 

 

2.3.6 Photopolymer jetting (PolyJet) 

The PolyJet method shares many similarities with the MJP method in terms of its 

composition and 3DP process. However, unlike MJP, PolyJet can spray multiple materials, 

including base and binding materials, simultaneously, which enables a broader range of 

material options and more precise printing (Figure 2-9 (E)). Furthermore, the post-processing 

method for PolyJet is simpler and less time-consuming than MJP, as it involves using 

waterjet to remove support material, resulting in zero support marks on the printed parts[91, 

97]. 

 

2.3.7 Selective laser sintering (SLS) 

SLS method is similar to CJP in its composition, using metal and ceramic powders, and 

consisting of a powder chamber, build chamber, roller, and laser head. The printing process 

is almost identical to CJP, except that a CO2 laser is used in the laser head to bond the metal 

and ceramic powders instead of spraying a binder (Figure 2-9 (F)). The post-processing 

involves removing the powder used as support material and performing surface treatment 

using tools like a sand blaster [98, 99]. 
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Figure 2-9. The principle and structure of 3D printing (3DP) technologies. (A) the fused 

deposition modeling (FDM) type, (B) the stereolithography apparatus (SLA) type, (C) the 

color-jet printing (CJP) type, (D) the multi-jet printing (MJP) type, (E) the photopolymer 

jetting (PolyJet) type, and (F) the selective laser sintering (SLS) type. 

 

3 Semi-automated and enhanced segmentation using 

semantic segmentation with active learning (AL) 

3.1 Kidney substructures with RCC in Kidney  

RCC is a common type of kidney cancer that affects many people in the United States, 

causing thousands of deaths each year. RCC often goes undetected because it rarely causes 

symptoms and is usually discovered by chance during CT scans done for other reasons. The 

size, location, and depth of kidney tumors can vary widely, and researchers are interested in 

studying the results of partial or radical nephrectomy (surgical removal of part or all of the 

kidney) in relation to the tumor's morphology. Accurate segmentation of kidney tumors in 

medical imaging is crucial for reliable disease classification and effective treatment planning. 

Partial nephrectomy, a surgical procedure that removes only part of the kidney, has been 

shown to be as effective as radical nephrectomy in terms of cancer control, while also 

preserving renal function. In fact, recent studies have found that partial nephrectomy may 

result in better outcomes in terms of both survival and morbidity, and as a result, there is a 
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growing trend towards its use, even in more complex surgical cases [100]. The partial 

nephrectomy procedure involves the use of vascular clamps on the renal artery and/or renal 

vein to temporarily stop blood flow to the affected area, followed by removal of the kidney 

tumor. The renal vessels and surrounding tissue are then carefully reconnected, and the 

clamps are removed to restore blood flow. It is essential to limit the time that blood flow is 

stopped, known as the ischemia time, to no more than 20 – 30 minutes to prevent permanent 

damage to the surrounding kidney tissue [101]. This study aimed to develop the automated 

segmentation was employed with AL to enhance efficiency and reduce labeling efforts for 

the limited training data available.  

 

Procedure 

The study procedure is depicted in Figure 3-1. First, kidney CT images were obtained and 

manually segmented by experts to create a ground truth, which was confirmed by a clinician 

with over ten years of experience. Next, the images were pre-processed, and a detection 

module with 3D U-Net structures was used for training. Predictions were then made to 

establish ROIs. The images and labels were cropped to include a margin around the ROI, and 

the segmentation module with a cascade 3D U-Net was used for training. If more datasets 

were available, the training model predicted the segmentation of new kidney CT images, and 

the AL-corrected segmentation was used to expand the ground truth data. The pre-processing 

and training process was repeated with the original and added datasets until no additional 

datasets were available. The study involved evaluating and analyzing the results obtained 

from the repeated training. 
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Figure 3-1. The overall procedure s of cascade 3D U-Net using active learning (AL) in 

kidney CT.  

 

Dataset 

The study utilized 50 kidneys from 36 patients, of which 30 had RCCs, and 20 were 

normal kidneys. The kidneys were obtained from abdominal CT scans (Siemens Healthcare's 

Sensation 16), which had a slice thickness of 1.00 – 1.25 mm each. The CT scans had four 

phases: non-contrast, renal cortical, renal parenchymal, and renal excretory phases. For the 

classification of kidneys, the renal cortical phase, which highlighted the arteries, was used. 

The kidneys were categorized into five subclasses: artery, vein, ureter, parenchyma with 

medulla, and RCC in the case of kidneys with RCC. Kidneys that had cysts or stones were 

excluded from this study. The Institutional Review Board for human research at AMC 

granted approval for a retrospective study without requiring informed consent. The imaging 

data were de-identified to comply with the privacy rule of the Health Insurance Portability 
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and Accountability Act. 

 

Manually initial and AL-corrected segmentation 

The first step of the segmentation process involved positioning the FOV of the native aorta 

and applying a "Thresholding" technique (Figure 3-2 (A)), followed by selecting a seed point 

with 6-connectivity using "Region growing" (Figure 3-2 (B)). To fill the area outside the HU 

of the native aorta, the "Dilation and Erosion" function under "Morphology Operations" was 

utilized (Figure 3-2 (C)). The "Edit Mask" function was also utilized to eliminate any 

erroneous areas during the segmentation process (Figure 3-2 (D)). For AL-corrected 

segmentation, the same techniques as the initial segmentation were employed to generate 

predicted binary masks with the original CT image metadata. These masks were then 

superimposed onto the CT images and manually AL-corrected to create the final ground truth 

segmentation. 

 

 

Figure 3-2. The manual segmentation techniques including (A) thresholding, (B) region 

growing, (C) dilation and erosion, and (D) edit mask. 
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Pre-processing 

Pre-processing involved two main tasks, which were normalization and image flip and 

resize. The initial pre-processing step was min-max normalization, which was applied to 

adjust the contrast of the CT images. This process involved converting all features to a value 

between 0 (minimum) and 1 (maximum), according to Eq. (1) Second, since each subject 

had two kidneys (Figure 3-3 (A)), separating the kidneys doubled the dataset (Figure 3-3 

(B)). After dividing the right and left sides in the axial view, the left images were preserved, 

and the right images were horizontally flipped (Figure 3-3 (C)). Images in a basic 3D U-Net 

were resized to an FOV of 128 × 256 × 192 mm (Figure 3-3 (C)), and images in cascade 3D 

U-Net were resized to an FOV of 96 × 96 × 96 mm (Figure 3-3 (D)). 

 

𝑥𝑛𝑒𝑤 =
𝑥𝑖 − 𝑥𝑚𝑖𝑛

𝑥𝑚𝑎𝑥 − 𝑥𝑚𝑖𝑛
 , 𝑥𝑚𝑖𝑛 =  

𝑊𝐿 − 𝑊𝑊

2
 , 𝑥𝑚𝑎𝑥 =  

𝑊𝐿 + 𝑊𝑊

2
 (1) 

 

Active learning (AL) 

During the first stage of the study, five subcategories (artery, vein, ureter, parenchyma, and 

RCC) were manually outlined as the standard reference for initial training using 20 kidney 

samples. Subsequently, in the next stage, new data sets were manually AL-corrected by 

referring to the AL-corrected segmentation results, which was the outcome of using CNN 

segmentation. In the second stage of the study, 16 kidneys from the previous stage were 

utilized for training, along with new data consisting of 8 kidneys with RCCs and 8 normal 

kidneys as depicted in Figure 3-4. After stage 2, the outcomes of CNN segmentation for the 

new data were manually edited in preparation for the next stage, following the same method 

as used in stage 1. In the final stage of the study (stage 3), 40 kidneys were employed for 

training purposes while 10 kidneys were utilized for testing. The outcomes of all the 

previously mentioned stages were used to evaluate the accuracy of the study. 
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Figure 3-3. Pre-processing procedure for kidneys with a 3D U-Net and cascade 3D U-Net 

(A) Normalization image, (B) Division by the right and left sides, (C) Flip the right images 

to horizontal, and (D) Crop image including the margin. 
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Figure 3-4. Data distribution in each stage for active learning (AL) in kidney CT. 
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Networks and experimental settings 

The cascade 3D U-Net model was trained separately in an end-to-end fashion. To 

determine the ROI, a cuboidal bounding box was utilized around the kidney after the first U-

Net module (Figure 3-5 (A)). Subsequently, the second U-Net module was trained for the 

final segmentation to create the mask for the five subclasses of the kidney (Figure 3-5 (B)). 

In addition, a Gaussian was added to each input image. The Keras 2.2.4 model with a 

TensorFlow 1.14.0 backend was employed, and the training was executed with an NVIDIA 

GTX 1080 Ti GPU. Our cascade method usually necessitates a substantial number of epochs 

for both stages of training. During the first stage of training, the number of datasets was 

limited (N=20), resulting in saturation of training at approximately 150 epochs. However, for 

the second and third stages, a larger number of datasets (N = 40 and 50) were utilized, 

requiring 300 epochs of training. The Adam optimizer was implemented with a learning rate 

of 10-5, weight decay of 0.0005, momentum of 0.9, and the average dice coefficient loss as 

the training loss, with a batch size of 1.  

 

 

Figure 3-5. The architecture of (A) a basic 3D U-Net and (B) a cascaded 3D U-Net 
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Evaluation 

To evaluate whether the performance of the network improves with AL, we examined the 

dice similarity coefficient (DSC) at each stage and conducted a paired t-test to compare 

stages 1 and 3, as well as stages 2 and 3. DSC was utilized to evaluate the matching area of 

the predicted label against the ground truth. The DSC ranges from 0 to 1, with 0 indicating 

no overlap between the volumes and 1 indicating a perfect overlap between the volumes. The 

DSC was calculated using eq (2).  

 

𝐷𝑆𝐶 (𝑉𝐺𝑇 , 𝑉𝑃𝑟𝑒𝑑) =  
2|𝑉𝐺𝑇 ∩ 𝑉𝑃𝑟𝑒𝑑|

|𝑉𝐺𝑇| +  |𝑉𝑃𝑟𝑒𝑑|
 (2) 

 

where 𝑉𝐺𝑇 and 𝑉𝑃𝑟𝑒𝑑 were the volume of ground truth and predicted label, respectively. We 

also assessed the accuracy and labeling efficiency of the AL-corrected segmentation to 

validate its effectiveness. We created 3D models from the results of manual, CNN, and AL-

corrected segmentation, and compared their accuracy. The comparison was based on surface 

points, and we used quantitative root mean square (RMS) values. Specifically, we compared 

17,650 points to assess the differences between the 3D models generated from manual and 

CNN segmentations, as well as those generated from manual and AL-corrected 

segmentations. To compare the accuracy between CNN segmentation and AL-corrected 

segmentation, we used 26,471 points and calculated the RMS value using the same method 

as in Eq. (3), where 𝑥 represents the difference between the corresponding points in the two 

models, and n is the total number of points used in the comparison. 

 

𝑅𝑀𝑆 =  √
1

𝑛
(𝑥1

2 + 𝑥2
2 + 𝑥3

2 + ⋯ +  𝑥𝑛
2) =  √

1

𝑛
∑ 𝑥𝑘

2

𝑛

𝑘=1

 (3) 

 

The time efficiency of manual and AL-corrected segmentation based on predicted labels 

generated by the basic 3D and cascade 3D U-Nets was also evaluated. 
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Results 

Table 3-1 shows the DSC for the five subclasses in each stage. The average DSC values 

for the five subclasses increased with each stage. Among the subclasses, parenchyma 

segmentation had the highest DSC and lowest SD, while RCC had the lowest DSC and 

highest SD.   

 

Table 3-1. Dice similarity coefficient for each stage of kidney with cascade 3D U-Net in 

kidney CT. 

Class 

Dice similarity coefficient (DSC) P 

Stage 1 Stage 2 Stage 3 Stage 1 and 3 Stage 2 and 3 

Artery 0.443 ± 0.101 0.660 ± 0.087  0.636 ± 0.129 0.372 0.704 

Vein 0.726 ± 0.104  0.779 ± 0.084 0.750 ± 0.134 0.837 0.873 

Ureter 0.480 ± 0.120  0.604 ± 0.077 0.606 ± 0.085 0.088 0.655 

Parenchyma 0.958 ± 0.056  0.961 ± 0.007 0.963 ± 0.007 0.697 0.772 

RCC 0.115 ± 0.146  0.468 ± 0.304 0.526 ± 0.346 0.239 0.131 

Total 0.545 ± 0.303 0.707 ± 0.213 0.711 ± 0.217 0.252 0.330 

 

Table 3-2 shows the comparison of segmentation time for the five substructures between 

manual and AL-corrected segmentation. This study found that using AL-corrected 

segmentation reduced the time for segmenting the artery, vein, ureter, parenchyma, and RCC 

by 19.13, 12.17, 19.38, 8.33, and 17.13 min, respectively, resulting in an overall 

segmentation time reduction of 76 min, which is more than half of the time required for 

manual segmentation.  
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Table 3-2. Comparison of segmentation time for kindey between manual and AL-corrected 

segmentation in kidney CT. 

Time Manual segmentation (min) CNN-assisted segmentation (min) 

Artery 41.13 22.00 

Vein 35.02 23.00 

Ureter 24.38 5.00 

Parenchyma 26.43 18.10 

RCC 22.13 5.00 

Total 149.10 73.10 

 

The CNN segmentation took less than 1 second per case, except for the initial loading of 

the package. The results of the quantitative evaluation in 3D models showed that AL-

corrected segmentation highly corresponded with manual segmentation, while CNN 

segmentation did not. Details of the differences among the three segmentation methods are 

presented in Table 3-3 and Figure 3-6 

 

Table 3-3. Root mean square (RMS) evaluation from 3D modeling for kidney. 

Comparison RMS (mm) 

Manual segmentation and CNN segmentation 2.22 ± 2.06 

AL-corrected segmentation and CNN segmentation 2.77 ± 2.77 

Manual segmentation and CNN-assisted segmentation 0.86 ± 0.80 
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Figure 3-6. Root mean square (RMS) evaluation from 3D model about kidney with RCC 

3.2 Mandibular condyle in dental CBCT  

The mandibular condyle is responsible for the growth of the lower jaw, and orthopaedic 

appliances like activators, facemasks, and chin cups can be used to control the direction and 

amount of this growth during development. These appliances generate forces that influence 

the growth pattern of the mandible [102-104]. Once growth of the mandibular condyle is 

finished, it undergoes natural remodeling based on the functional load placed on the 

temporomandibular joint (TMJ). However, if the TMJ is excessively loaded due to 

parafunctional habits like clenching and bruxism, this can cause degenerative changes in the 

condyles [105]. Orthognathic surgery can alter the pattern of functional loading on the TMJ, 

potentially leading to remodeling of the mandibular condyle [106]. It is important to make an 

accurate assessment of the morphology of the mandibular condyle to understand how growth 

has been modified, diagnose osteoarthritis of the TMJ, and evaluate skeletal changes 

resulting from orthodontic and orthognathic treatments. To quantitatively assess changes in 

the morphology of the condyle, a 3D model can be constructed by segmenting volumetric 

images obtained from techniques such as CT [107, 108]. Volumetric segmentation, which is 

the process of identifying and separating the object of interest from surrounding structures in 

a 3D volume, can be accomplished through manual, semi-automatic, or fully automatic 

methods. Manual and semi-automatic methods involve segmenting the object of interest in 

each 2D slice image and reconstructing the 3D volume, which can be done using medical 

image analysis software [109-111]. Manual or semi-automatic segmentation can be 
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challenging as it requires extensive training to accurately identify and segment the condylar 

head from the surrounding glenoid fossa. This is due to the low bone density of the TMJ area 

and the lack of contrast, especially in low-dose CT images such as cone beam CT (CBCT) 

[112]. DL algorithms, specifically U-Net, a convolutional neural network, have been used for 

automated segmentation of the mandibular condyle. Liu et al. [113] utilized U-Net to 

initially classify CT images into three regions: condyle, glenoid fossa, and background. They 

then used the snake algorithm for secondary segmentation. Kim et al. [114] utilized a 2D U-

Net algorithm to directly segment the mandibular condyles in axial slice images, which were 

then reconstructed into a 3D model. However, annotating 2D slice images for a 3D volume 

can be a time-consuming process. To address this issue, AL and self-supervised learning 

algorithms have been developed and applied to reduce the amount of training data required 

[81]. Çiçek et al. [58] proposed using the 3D U-Net architecture instead of annotating 2D 

images. This architecture is similar to the previous U-Net, but it utilizes 3D volumes as input 

data and includes 3D convolutions, 3D max pooling, and 3D up-convolutional layers. The 

main advantage of using the 3D U-Net is that it considers the 3D integrity of anatomy and 

pathologic lesions during training, which is not possible with the 2D U-Net. In addition, the 

3D U-Net is able to generalize well [27, 115]. To improve the segmentation performance, 

researchers have recently used cascade 3D U-Net, which involves using two or more 

networks. The second network is used to detect the ROI and focus training on the target 

region, resulting in more accurate segmentation. In a study conducted by Liu et al, [116] the 

performance of cascade 3D U-Net for brain tumor segmentation was compared. They found 

that the DSC of the cascade U-Net improved by 0.014, 0.052, and 0.033 for the whole tumor, 

tumor core, and enhanced tumor, respectively, indicating better segmentation accuracy. Ham 

et al. [117] proposed an automated segmentation method for four different components, 

namely craniofacial hard tissues, maxillary sinus, mandible, and mandibular canals, from 

facial CBCT scans using the 3D U-Net architecture. They were used to segment the entire 

craniofacial hard tissues with four CBCTs, while twenty CBCTs were used for automated 

segmentation of the mandible. However, since the mandibular segmentation model targeted 

the entire mandible, the segmentation results lacked accuracy in the condylar region for 

analytical purposes. Therefore, we developed an automated segmentation algorithm for the 
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mandibular condyles using cascade 3D U-Net and conducted a stress test to determine the 

optimal dataset size for developing the model. 

 

Procedure 

The overall study procedure is illustrated in Figure 3-7. The acquired CBCT images were 

manually segmented by experts to generate the ground truth, which was further confirmed by 

a clinician with more than ten years of experience. After pre-processing, training was carried 

out using 3D U-Net structures and predictions were performed to establish ROIs. The images 

and labels were cropped, including a margin around the ROI, and training was again 

performed with a cascade 3D U-Net. To compare accuracy, a basic 3D U-Net and a cascade 

3D U-Net were used after ROI detection. If more datasets are available, the trained model is 

used to predict the segmentation of new CBCT images, and the AL-corrected segmentation is 

used to expand the ground truth data. The pre-processing and training process is then 

repeated with both the original and additional datasets until no more datasets are available. 

Finally, the results obtained from the repeated training are evaluated and analyzed. 

 

 

Figure 3-7. The overall procedure s of a basic 3D U-Net and its based cascade 3D U-net 

using active learning (AL) in CBCT. 
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Dataset 

This study received approval from the institutional review boards of Korea University 

Medical Center (KUMC) (IRB no. 2019AN0213) and AMC (IRB no. 2019-0927). The 

patient data used in the study were de-identified. The CBCT dataset was obtained from 

patients who had undergone CBCT scans at the department of dentistry between 2018 and 

2020 with a slice thickness of 0.30 mm, a field of view (FOV) of 400–768 X 400–768 X 

256–576, and a pixel size of 0.30 mm. Patients aged between 18 and 40 years were included 

in the study, while those who exhibited osteoarthritic changes in the condyles were excluded. 

The CBCT scans were converted to the DICOM format and anonymized. The dataset 

comprised of 234 mandibular condyles from 117 subjects. To ensure consistent orientation 

across all images, the images of the right-side condyles were horizontally flipped. 

 

Manually initial and AL-corrected segmentation 

To perform the initial segmentation, the FOV of the native aorta was positioned, and 

"Thresholding" was used to select the HU of the aorta (Figure 3-2 (A)). A seed point with 6-

connectivity was chosen using "Region growing" (Figure 3-2 (B)). The area outside the HU 

of the native aorta was filled by applying "Dilation and Erosion" under "Morphology 

Operations" (Figure 3-2 (C)). For small segmental arteries, aneurysms with a limited amount 

of injected contrast medium, and blood vessel wall dissection, manual segmentation was 

carried out using the "Edit Mask" feature (Figure 3-2 (D)). This function was also utilized to 

eliminate any inaccurate regions. In AL-corrected segmentation, the same techniques were 

applied as in the initial segmentation to produce predicted binary masks with the original CT 

image metadata. These masks were superimposed onto the CT images, and were manually 

refined to create the ground truth segmentation. 

 

Pre-processing 

The ROI for the condyle head was defined after re-orienting the image using the orbital 

and Frankfort horizontal plane, and the lower border of the condyle was identified as the 

horizontal plane passing through the sigmoid notch. Pre-processing involved two main tasks, 

which were normalization and image flip and resize. The initial pre-processing step was min-
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max normalization, which was applied to adjust the contrast of the CT images. This process 

involved converting all features to a value between 0 (minimum) and 1 (maximum), 

according to Eq. (1), with a center of 300 and a width of 2000. Second, since each subject 

had two mandibular condyles (Figure 3-8 (A)), separating the condyles doubled the dataset 

(Figure 3-8 (B)). After dividing the right and left sides in the axial view, the left images were 

preserved, and the right images were horizontally flipped (Figure 3-8 (C)). Images in a basic 

3D U-Net were resized to an FOV of 128 × 256 × 192 mm (Figure 3-8 (C)), and images in 

cascade 3D U-Net were resized to an FOV of 80 × 80 × 80 mm (Figure 3-8 (D)). 

 

Figure 3-8. Pre-processing procedure for mandibular condyles with a basic 3D U-Net and 

cascade 3D U-Net (A) Normalization image, (B) Division by the right and left sides, (C) Flip 

the right images to horizontal, and (D) Crop image including the margin. 
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Active learning (AL) 

To facilitate AL, we categorized the 234 mandibular condyles of 117 subjects into five 

stages, each with its own distribution of training, validation, and testing data as shown in 

Figure 3-8. During the first stage, we manually established ground truths for training, 

validation, and testing using 80 mandibular condyles from KUMC, with 64 for training, 8 for 

validation, and 8 for testing. In the following stage, we refined the results of the cascade 3D 

U-Net model to manually generate AL-corrected segmentation ground truths for new data. 

For stage 2, we augmented the 120 mandibular condyles from KUMC used in the previous 

stage with additional new data for training purposes. For subsequent stages after stage 1, we 

manually AL-corrected the results obtained from the cascade 3D U-Net model for new data 

to generate AL-corrected segmentation ground truths, similar to the approach used in stage 1. 

We followed a similar process for stages 3 and 4 using 120 mandibular condyles of KUMC 

for stage 3 and 128 mandibular condyles of KUMC and 72 mandibular condyles of AMC for 

stage 4. In the final stage, we used all 162 mandibular condyles of KUMC and 72 

mandibular condyles of AMC for training and evaluated the accuracy using the results 

obtained from all the previous stages (Figure 3-9). 
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Figure 3-9. Data distribution for mandibular condyle in each stage for active learning (AL). 
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Networks and experimental settings 

To perform the segmentation task, two types of 3D U-Net models were utilized: a basic 

3D U-Net and a cascade 3D U-Net. Initially, the basic 3D U-Net was employed for pre-

processing and segmenting the condyles (Figure 3-10 (A)). Then, the cascade 3D U-Net was 

applied to the ROIs (mandibular condyle), including their margins, which were detected by 

the basic 3D U-Net. The predicted mandibular condyle region was used to define margins, 

which were determined by setting the maximum (max) and minimum (min) values for the x, 

y, and z axes, and then expanded by five pixels based on empirical evidence. The medical 

images and labels were then cropped to this margin region, and the resulting input datasets 

were trained again using the 3D U-Net architecture (Figure 3-10 (B)). Ultimately, the 

cascade 3D U-Net was used to generate predicted labels for the mandibular condyle. The 

average dice coefficient loss was utilized as the training loss. The training was performed 

using a NVIDIA TITAN RTX GPU with 24,220 MiB of available memory, and the Keras 

2.3.0 and TensorFlow 1.15.0 backend were utilized to execute the training module. 

 

 

Figure 3-10 The architecture of (A) a basic 3D U-Net and (B) a cascaded 3D U-Net. 
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Evaluation 

The performance of the basic 3D U-Net and the cascade 3D U-Net models was evaluated 

using the DSC, which ranges from 0 to 1, with 0 indicating no overlap between the volumes 

and 1 indicating a perfect overlap. The DSC values were calculated using Eq. (2). 95% HD 

(Hausdorff distance) was used to evaluate the matching distance between the ground truth 

and predicted label obtained by the basic 3D U-Net and the cascade 3D U-Net using Eq. (4). 

The 95% HD is a metric that is calculated based on the distances as an Eq. (4) with sets 𝐴 =

{𝑎1, 𝑎2, 𝑎3, … , 𝑎𝑛} and 𝐵 = {𝑏1, 𝑏2, 𝑏3, … , 𝑏𝑛}. 

 

𝐻𝐷 (𝐴, 𝐵) =  max (max
𝑎∈𝐴

min
𝑏∈𝐵

𝐴 − 𝐵, max
𝑎∈𝐵

min
𝑏∈𝐴

𝐵 − 𝐴) (4) 

 

where sets A and B were points of ground truth and predicted labels. It is similar to the 

maximum HD, but it eliminates the impact of outliers by taking the 95th percentile of the 

distances. This ensures that the metric is not overly influenced by a very small subset of 

extreme values. To compare the performance difference between the basic 3D U-Net and the 

cascade 3D U-Net, a paired t-test was utilized to determine significant differences. The time 

efficiency of manual and AL-corrected segmentation based on predicted labels generated by 

the basic 3D and cascade 3D U-Nets was also evaluated. 

 

Results 

The results of the DSC and HD for each stage are presented in Table 3-4, along with their 

average and SD. A comparison between the basic 3D U-Net and cascade 3D U-Net showed 

that the use of the cascade 3D U-Net resulted in higher DSC values in all stages, and DSC 

were statistically significant differences except for stage 4. However, In HD, on the contrary 

to DSC, a basic 3D U-Net showed better performance and a statistically significant 

difference (Table 3-4).   

 



 

41 

Table 3-4. Dice similarity coefficient and Hausdorff distance for each stage of mandibular 

condyles with a basic 3D U-Net and cascade 3D U-Net in CBCT. 

Metric Model Stage 1 Stage 2 Stage 3 Stage 4 Stage 5 

DSC 

Basic  

3D U-Net 
0.854 ± 0.077 0.872 ± 0.100 0.891 ± 0.056 0.917 ± 0.029 0.922 ± 0.021 

Cascade  

3D U-Net 
0.908 ± 0.042 0.916 ± 0.045 0.921 ± 0.036 0.930 ± 0.027 0.932 ± 0.023 

P <0.001 <0.01 <0.001 0.053 <0.05 

HD95 

Basic  

3D U-Net 
2.514 ± 1.274 2.205 ± 1.494 1.990 ± 1.103 1.495 ± 0.484 1.289 ± 0.303 

Cascade  

3D U-Net 
3.376 ± 1.951 3.349 ± 2.244  2.756 ± 1.500 2.897 ± 2.707 2.823 ± 2.402 

P <0.01 <0.001 <0.001 <0.05 <0.01 

 

Figure 3-11 shows the best and worst cases for a difference map between the ground truth 

and prediction with basic 3D U-Net and cascaded 3D U-Net in stage 5. The positive and 

negative areas depict over-segmentation and under-segmentation, respectively. The best 

cases of basic 3D U-Net and cascaded 3D U-Net showed a DSC of 0.960 (error range, -0.23–

0.44 mm) and 0.961 (error range, -0.36–0.29 mm), respectively (Figure 3-11 (A) and (C)); 

the worst cases of basic 3D U-Net and cascaded 3D U-Net showed a DSC of 0.864 (error 

range, -1.07–0.46 mm) and 0.890 (error range -0.32–1.69 mm), respectively (Figure 3-11 (B) 

and (D)).  
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Figure 3-11. The difference map between ground truth and prediction in 3D U-Net and 

cascaded 3D U-Net. (A) The best case and (B) worst case of 3D U-net, and (C) the best case 

and (D) worst case of cascaded 3D U-Net. 

 

Table 3-5 reports the time required for manual and AL-corrected segmentation based on 

predicted labels obtained using basic 3D U-Net and cascade 3D U-Net. The average time for 

manual segmentation was 14.75 ± 3.63 minutes, while segmentation using basic 3D U-Net 

and cascade 3D U-Net took 4.13 ± 1.94 minutes and 2.31 ± 1.54 minutes, respectively. The 

spent time between manual and AL-corrected segmentation with a basic 3D U-Net and a 

cascade 3D U-Net were statistically significant difference (p < 0.001)  
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Table 3-5. Segmentation time of mandibular condyles for manual, basic 3D U-Net, and 

cascade 3D U-Net in stage 5 of CBCT.  

Patient  

No. 

Manual (min) 
 

Basic 3D U-Net (min) 
 

Cascade 3D U-Net (min) 

R L 
 

R L 
 

R L 

1 23.08 16.43 
 

5.58 3.75 
 

6.80 6.28 

2 14.08 9.83 
 

3.80 6.77 
 

0.73 3.75 

3 13.88 10.82 
 

2.98 3.13 
 

1.53 3.05 

4 13.08 10.22 
 

1.92 5.93 
 

1.06 2.22 

5 17.98 19.87 
 

1.63 4.05 
 

0.45 1.77 

6 13.60 10.40 
 

1.10 2.97 
 

1.53 3.13 

7 14.36 12.92 
 

2.67 2.75 
 

0.59 1.52 

8 15.95 16.90 
 

2.75 4.70 
 

1.66 4.25 

9 14.40 14.23 
 

6.50 1.07 
 

0.48 1.75 

10 16.92 9.38 
 

6.93 5.68 
 

3.73 2.52 

11 18.52 20.28 
 

6.13 7.35 
 

2.77 5.33 

12 14.25 14.23 
 

3.87 4.80 
 

1.23 1.73 

Mean ± SD 15.98 ± 2.98 13.51 ± 3.93 
 

3.82 ± 2.10 4.41 ± 1.82 
 

1.43 ± 1.01 3.11  ± 1.53 

 

3.3 Thoracoabdominal aortic dissection in CT angiography 

Aortic aneurysms are life-threatening disorders that increase the risks of aortic dissection 

or rupture with fatal outcomes [118]. Surgical or interventional therapies that anatomically 

replace the diseased aortic segments are the only treatments proven to prevent catastrophic 

aortic events. Within this disease entity, thoracoabdominal aortic dissection is the most 

extensive and challenging pathology; it requires the replacement of the diseased aorta 

including the downstream thoracic and abdominal segments, along with the reconstruction of 

the visceral arteries (celiac and superior mesenteric artery), bilateral renal arteries and 

several segmental arteries (intercostal and lumbar arteries) that supply blood to the spinal 

cord [119]. To perform this extensive surgical procedure, extracorporeal circulation, as well 

as selective perfusion to visceral and renal arteries are mandatory, both of which increase the 

invasiveness and level of surgical stress. Open surgical repair of thoracoabdominal aorta is 
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well known as the most difficult and challenging surgical procedure, and operative outcomes 

remain reportedly poor, even by the world-leading expert groups, and the rates of surgical 

mortality, major stroke, and paraplegia are 9.5%, 11.6% , and 13.9%, respectively [119]. 

Various efforts have been made to reduce such related risks in thoracoabdominal aorta 

surgery, including the use of the four-branched aortic graft for more efficient 

revascularizations of aortic branching arteries through the aid of commercially available 

products. In addition to this technique, the use of an eight-branched aortic graft—so called 

“octopod graft technique,” has also been introduced to enable efficient revascularization of 

the spinal cord feeding arteries, which are known to be pivotal in preventing paraplegia 

(Figure 3-12) [120]. The octopod technique involves constructing a pre-sewn multi-branched 

aortic graft before surgery through an image-based technique (IBT); it entails grafting 

branches for the intercostal and lumbar arteries (spinal cord suppliers) on commercially 

available four-branched grafts considering the anatomical relationship based on the 

preoperative CT images because the anatomical location of these vessels significantly vary 

among patients [119, 121-123].  

 

  

Figure 3-12. (A) The octopod thoracoabdominal aortic aneurysm (TAAA) aortic graft. (B) 

Representative computed tomographic images at the visceral and intercostal level. (C) 

Intraoperative findings of the octopod TAAA graft [120]. 

 

However, this conventional image-based approach has several shortcomings with respect 

to the precise positioning of the branching grafts because the accuracy depends on the 

constructor, usually, the operating surgeon. To overcome this limitation, we developed a 
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patient-specific graft reconstruction guide [124, 125] and introduced an automated 

segmentation as the first step. 

 

Procedure 

The overall procedure, as shown in Figure 3-13, involves initially manually segmenting 

the aorta and vessels composed of the aorta and the celiac, mesenteric, renal, and intercostal 

arteries based on CT angiography. This is followed by pre-processing and augmentation, 

which includes normalization, cropping, and resampling, for data learning. The models used 

for training include UNETR and SwinUNETR of MONAI and 2D U-Net, 3D U-Net, 2D-3D 

U-Net ensemble, and cascade 3D U-Net of nnU-Net. If additional datasets are available, the 

best model from the several trained models is used to predict the segmentation of the added 

CT images. AL-corrected segmentation is performed based on this prediction to increase the 

amount of ground truth data. The process is then repeated starting from pre-processing and 

augmentation using the original and added datasets. If there are no more additional datasets 

to add, the results obtained from the repeated training are evaluated and analyzed. 

 

Dataset 

A total of 47 subjects with Crawford types II or III were enrolled in Asan Medical Center 

(AMC) between January 2017 and February 2020. All of the participants underwent CT 

angiography with a slice thickness of 1.0–5.0 mm, a field of view (FOV) of 512 X 512 X z-

axis, and a pixel size of less than 1.0 mm. All of the participants underwent open surgical 

repair, which required to reconstruct a patient-specific graft to replace the existing aorta. The 

intercostal arteries that needed to be reconstructed were chosen from those located between 

the thoracic-8 and lumbar-2 levels, while the main aortic graft reconstruction ranged from 

the left subclavian artery to the infra-renal abdominal or bilateral common artery. 
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Figure 3-13. Overall flow of thoracoabdominal aortic dissection and abdominal aortic 

aneurysm for smart labeling with human in the loop in CT angiography. 

 

Manually initial and AL-corrected segmentation 

To perform the initial segmentation, the FOV of the native aorta was positioned using a 

technique called "Thresholding" (Figure 3-2 (A)), and a seed point was selected with 6-

connectivity using "region growing" (Figure 3-2 (B)). Internal filling was carried out using 

"Dilation and Erosion" under "Morphology Operations" to fill the area outside the set 

hounsfield units (HU) of the native aorta (Figure 3-2 (C)). For segmental arteries with small 

areas, aneurysms with a small amount of injected contrast medium, and dissection of blood 

vessel walls, manual segmentation was achieved using the "Edit Mask" function (Figure 3-2 

(D)). This function was also used to remove any incorrect areas. The method for AL-

corrected segmentation involved using the techniques of the initial segmentation to generate 

predicted binary masks containing the metadata of the original CT image. These masks were 
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overlaid onto the CT images and manually edited to segment ground truth. 

 

Pre-processing 

The raw data was subjected to pre-processing, which involved carrying out the following 

procedures: (1) normalization, (2) resampling, and (3) augmentation. The z-score 

normalization was performed to adjust the contrast on CT images, and it was clipped to a 

value between 0 and 1 for all features as shown in Eq. (5) [126] 

 

𝑥𝑛𝑒𝑤 =  
𝑥𝑖 − µ

𝜎
 (5) 

 

where 𝑥𝑖, 𝑥𝑛𝑒𝑤, µ, and 𝜎 are the original, new images, mean, and standard deviation (SD), 

respectively. The resampling was performed by resizing the FOV to 256 X 256 X z-axis mm 

and applying a spacing of 2.0 X 2.0 X 2.0 mm to standardize the spatial properties of the 

images. MONAI-based augmentation included removal for irrelevant regions such as empty 

space (foreground), random cropping of 3D patches of 96 X 96 X 96 mm from the input 

image, random shift intensity, random flip for x-, y-, and z-axes, and 90° random rotation. 

Augmentation applied to nnU-Net was similar to that of MONAI, including random 

cropping, random flip and rotation, and random shift intensity, with additional elastic 

deformation and Gaussian noise. 

 

Active learning (AL) 

We divided our 47 subjects into three stages for AL, and the distribution of data for 

training, validation, and testing for each stage is shown in Figure 3-14. During stage 1, we 

manually delineated ground truths for initial training, validation, and testing using 15 (11, 2, 

2) subjects with two subclasses of the aorta and vessels. For the next stage, ground truths for 

new data were prepared by manually correcting the results from prediction, referred to as 

AL-corrected segmentation. In stage 2, we reused the 30 subjects from the previous stage for 

training with the addition of new data. The results of CNN segmentation for the new data 

were manually amended for the next stage, as in stage 1. Finally, in stage 3, we used all 47 
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subjects for training, and the results from all the aforementioned stages were used to evaluate 

accuracy. 

 

Networks and experimental settings 

The segmentation network utilized a basic U-Net architecture, consisting of an encoder 

and a decoder. The encoder, composed of convolutional and max pooling layers, down-

samples the input image to generate a low-resolution feature map. On the other hand, the 

decoder up-samples the image to produce an output image of the same size as the input 

image. The encoder and decoder are connected by skip connections that concatenate the 

feature maps. The training was performed using a NVIDIA TITAN RTX graphics processing 

unit (GPU) with 24,220 MiB memory, and the Keras 2.3.0 and Tensorflow 1.15.0 backend 

were utilized for the training module. 

 

Evaluation 

The accuracy of the predicted label compared to the actual ground truth was assessed 

using two metrics: the DSC and the 95% HD [127]. The DSC measures the degree of overlap 

between two volumes, with a range of values from 0 to 1. A value of 0 means that there is no 

overlap between the volumes, while a value of 1 indicates a complete overlap between the 

volumes. The calculation of DSC was done using Eq. (2). The 95% HD is a metric that is 

computed using distances and is expressed in Eq. (4). The 95% HD is a variation of the 

maximum HD metric. However, it addresses the issue of outliers by taking the 95th 

percentile of the distances instead of the maximum value. This approach ensures that the 

metric is not disproportionately affected by a small number of extremely large distances. 

Furthermore, a stress test was conducted to determine the optimal dataset size for each class. 
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Figure 3-14. Data distribution for thoracoabdominal aortic dissection in each stage for active learning (AL). 
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Results 

Table 3-6 presents the DSC for each of the two subclasses in each of the three stages for the 

different networks. The average DSC scores for the two subclasses tended to improve or 

remain consistent as the stage increased (i.e., as the number of patient data increased), 

indicating higher or similar performance. The cascade 3D U-Net in Stage 3 achieved the 

highest accuracy for aorta with 0.952 ± 0.008 and the vessels were 0.723 ± 0.008 in 

SwinUNETR.  

 

Table 3-6. Dice similarity coefficient for abdominal aortic dissection with UNETR and 

SwinUNETR of MONAI and 2D U-Net, 3D U-Net, 2D-3D U-Net ensemble, and cascade 3D 

U-Net of nnU-Net.  

Metric Networks Classes Stage 1 Stage 2 Stage 3 

DSC 

MONAI 

UNETR 
Aorta 0.883 ± 0.048 0.908 ± 0.025 0.898 ± 0.042 

Vessels 0.478 ± 0.098 0.666 ± 0.098 0.609 ± 0.103 

SwinUNETR 
Aorta 0.876 ± 0.034 0.920 ± 0.034 0.928 ± 0.030 

Vessels 0.549 ± 0.126 0.683 ± 0.118 0.723 ± 0.083 

nnU-

Net 

2D U-Net 
Aorta 0.858 ± 0.165 0.869 ± 0.133 0.881 ± 0.131 

Vessels 0.488 ± 0.122 0.555 ± 0.057 0.567 ± 0.043 

3D U-Net 
Aorta 0.946 ± 0.012 0.948 ± 0.012 0.951 ± 0.005 

Vessels 0.591 ± 0.034 0.617 ± 0.057 0.615 ± 0.070 

2D - 3D U-

Net 

ensemble 

Aorta 0.881 ± 0.137 0.938 ± 0.014 0.945 ± 0.010 

Vessels 0.552 ± 0.066 0.608 ± 0.028 0.609 ± 0.064 

Cascade 

3D U-Net 

Aorta 0.946 ± 0.012 0.931 ± 0.018 0.952 ± 0.008 

Vessels 0.573 ± 0.025 0.608 ± 0.051 0.621 ± 0.063 

 

The evaluation of HD is presented in Table 3-7 and the HD values generally showed higher 

or comparable performance as the stage increased (i.e., as the number of patient data 

increased). Aorta and vessels achieved the best performance with 1.859 ± 0.475 mm and 

13.707 ± 7.073 mm in 3D U-Net of nnU-Net, respectively (Table 3-7).  
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Table 3-7. 95% Hausdorff distance for thoracoabdominal aortic dissection with UNETR and 

SwinUNETR of MONAI and 2D U-Net, 3D U-Net, 2D-3D U-Net ensemble, and cascade 3D 

U-Net of nnU-Net.  

Metric Networks Classes Stage 1 Stage 2 Stage 3 

HD95 

MONAI 

UNETR 
Aorta 6.79 ± 4.08 4.53 ± 1.96 16.33 ± 25.98 

Vessels 16.05 ± 5.47 15.06 ± 6.54 14.88 ± 6.11 

SwinUNETR 
Aorta 4.83 ± 1.95 4.09 ± 2.48 3.28 ± 1.67 

Vessels 30.63 ± 10.68 15.04 ± 5.78 14.46 ± 5.23 

nnU-

Net 

2D U-Net 
Aorta 44.45 ± 91.48 43.92 ± 89.97 43.29 ± 90.51 

Vessels 15.23 ± 7.18 13.33 ± 2.75 15.05 ± 6.92 

3D U-Net 
Aorta 2.23 ± 0.89 2.23 ± 0.89 1.85 ± 0.48 

Vessels 13.13 ± 4.22 12.64 ± 3.99 13.42 ± 7.07 

2D - 3D U-

Net 

ensemble 

Aorta 43.14 ± 90.49 2.79 ± 1.02 2.24 ± 0.69 

Vessels 13.63 ± 4.66 13.43 ± 3.96 13.93 ± 7.02 

Cascade 

3D U-Net 

Aorta 2.37 ± 1.00 3.54 ± 1.68 2.04 ± 0.73 

Vessels 14.40 ± 3.83 14.43 ± 6.96 15.59 ± 11.13 

 

Through the stress test, it was found that the aorta dataset had reached saturation in stage 2 

of SwinUNETR, as the difference in DSC was the range of 0.023 to 0.067 between stage 1 

with 15 cases and stage 2 with 30 cases and the range of 0.001 to 0.015 between stage 2 and 

3 in SwinUNETR, which was a smaller range than vessels. The difference in DSC for 

vessels between stage 1 and 2 and between stage 2 and 3 ranges from 0.111 to 0.168 and 

from 0.000 to 0.008, indicating that more datasets are needed to improve performance 

beyond stage 3 (Table 3-6). The spent time between manual and AL-corrected segmentation 

for best model (SwinUNETR) reduced 24.74 ± 2.33 min and 20.85 ± 4.19 min, respectively 

and were statistically significant difference (p < 0.05) (Table 3-8). 
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Table 3-8. The segmentation time for manual and correction using SwinUNETR in 

thoracoabdominal aortic dissection. 

Time 
Manual segmentation 

   
AL-corrected segmentation 

P 
Aorta Vessels Aorta Vessels 

1 26.53 51.26 
 

5.42 28.68 

- 

2 31.57 53.73 
 

6.22 31.47 

3 29.92 53.43 
 

7.70 33.93 

4 37.02 39.63 
 

8.12 26.12 

5 34.38 52.40 
 

11.28 26.00 

Mean ± SD 31.88 ± 4.04 50.09 ± 5.93 
 

7.75 ± 2.26 29.24 ± 3.45 < 0.05 

 

3.4 Abdominal aortic aneurysm in abdominal CT 

Abdominal aortic aneurysms (AAA) are an abnormal and degenerative condition where 

the abdominal region of the aorta becomes pathologically dilated. An AAA is clinically 

defined when the aortic diameter is more than 50% of the healthy adjacent aorta. If the 

disease is untreated, AAAs will progressively dilate and eventually rupture, which can result 

in death. Management of AAAs includes screening, diagnosis, regular surveillance, and 

timely surgical intervention either through open surgical repair or endovascular stent grafting 

[128, 129]. There are two important reasons for the need for various measurements of AAA: 

1) to diagnose AAA and predict its growth, and 2) to select commercially available 

endografts that are appropriate for the patient's anatomical size to prevent complication such 

as endoleak and reintervention after endovascular aneurysm repair (EVAR). First, vascular 

and endovascular surgeons consider methods for predicting AAA growth to be a research 

priority [130]. Accurately predicting AAA growth in patients can lead to optimization of 

surveillance intervals and better timing of surgery. Many studies have emphasized the 

feasibility of using physiological and biochemical measurements obtained from patients for 

predicting AAA growth [131-134]. As AAAs enlarge, various geometrical changes occur, 

such as altered aortic tortuosity and increased aneurysmal asymmetry [135]. Some of these 
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changes result in a unique non-uniform distribution of wall stress, which can either promote 

AAA growth deceleration or increase the risk of rupture [136, 137]. Accurately sizing aortic 

endografts has become increasingly recognized as crucial for achieving optimal early and 

late outcomes following EVAR of AAA. Inadequate oversizing has been emphasized as a 

significant risk factor for type I endoleaks [138]. Endograft manufacturers typically 

recommend an oversize of 10% to 20% greater than the minor axis of the aortic neck, which 

translates to an endograft that is 3 to 5 mm larger than the adventitia-to-adventitia 

measurement of the minor-axis aortic neck diameter. However, in certain cases, greater 

amounts of oversizing have been used for various reasons, such as the belief that larger 

oversizing could be helpful for treating difficult aortic neck anatomy [139]. The poor 

interobserver reproducibility of measurements that are considered to be linked to the risk of 

rupture is a concern. For instance, in 87% of comparisons, the maximum cross-sectional 

diameter was found to be outside the clinically accepted range of 65 mm of diameter 

measurement variation [140]. The variability in measurements is likely due to inadequate 

reporting standards regarding the aortic axis, plane of measurement, and caliper placement. 

This variability is especially important in a clinical setting because the number of patients 

who are considered for AAA repair based on a diameter threshold can range from 5% to 24% 

depending on the radiologist [140]. To address these limitations, we have developed a script-

based automated measurement system using a 3D model. In the first phase, we have created 

an automated segmentation system for AAA. 

 

Procedure 

The entire procedure is shown in Figure 3-13 and is similar to the procedure in section 3.3. 

The initially manually segmentation involved the aorta, thrombus, calcification, and vessels 

composed of lumbar artery and interior mesenteric artery based on CT angiography. After 

pre-processing and augmenting the available datasets, various models including UNETR, 

SwinUNETR, 2D U-Net, 3D U-Net, 2D-3D U-Net ensemble, and cascade 3D U-Net are 

used for training. If additional datasets are available, the best performing model is used to 

predict the segmentation of these new CT images, and the AL-corrected segmentation is used 

to increase the amount of ground truth data. The process of pre-processing, augmentation, 
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and training is repeated with both the original and added datasets until no more additional 

datasets are available. Finally, the results obtained from the repeated training are evaluated 

and analyzed. 

 

Dataset 

A total of 300 subjects with AAA were enrolled in AMC between March 2007 and 

December 2016. All of the participants underwent pre-operative CT angiography with a slice 

thickness of 2.5 – 5.0 mm, a FOV of 512 X 512 X z-axis, and a pixel size of 0.5781–0.9258 

mm. All the participants underwent the EVAR, which inserted the endograft.  

 

Manually initial and AL-corrected segmentation 

The initial segmentation was performed by positioning the FOV of the native aorta using 

"Thresholding" (Figure 3-2 (A)) and selecting a seed point with 6-connectivity using "Region 

growing" (Figure 3-2 (B)). Internal filling was done using "Dilation and Erosion" under 

"Morphology Operations" to fill the area outside the HU of the native aorta (Figure 3-2 (C)). 

For small segmental arteries, aneurysms with a small amount of injected contrast medium, 

and dissection of blood vessel walls, manual segmentation was done using the "Edit Mask" 

function (Figure 3-2 (D)). This function was also used to remove any incorrect areas. The 

AL-corrected segmentation involved using the same techniques as the initial segmentation to 

generate predicted binary masks with the original CT image metadata. These masks were 

overlaid onto the CT images and manually edited to create the ground truth segmentation. 

 

Pre-processing 

The raw data underwent pre-processing, which involved normalization, resampling, and 

augmentation. The z-score normalization method was used to adjust the contrast on CT 

images, and it was clipped to a value between 0 and 1 for all features, as shown in Eq. (1) 

[126]. To standardize the spatial properties of the images, the FOV was resized to 512 X 512 

X z-axis mm and a spacing of 1.0 X 1.0 X 3.0 mm was applied. Both MONAI and nnU-Net 

frameworks applied similar augmentation techniques, including removal of irrelevant 

regions, random cropping of 3D patches of 96 X 96 X 96 mm, random intensity shifting, 
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random flipping for x-, y-, and z-axes, and 90° random rotation. The nnU-Net framework 

additionally included elastic deformation and Gaussian noise in its augmentation process. 

 

Active learning (AL) 

We divided our 300 subjects into 5 stages for AL, and the distribution of data for training, 

validation, and testing for each stage is shown in Figure 3-15. During stage 1, we manually 

delineated ground truths for initial training, validation, and testing using 60 subjects with 

four subclasses of the aorta, thrombus, calcification, and vessels (48, 6, 6). For the next 

stage, ground truths for new data were prepared by manually correcting the results from 

CNN segmentation, referred to as AL-corrected segmentation. In stage 2, we reused the 120 

subjects from the previous stage for training with the addition of new data. The results of 

CNN segmentation for the new data were manually amended for the next stage, as in stage 1. 

Using the same approach, Stages 3 and 4 are carried out in a similar manner, and finally, in 

stage 5, we used all 300 subjects for training, and the results from all the aforementioned 

stages were used to evaluate accuracy.  



 

56 

 

Figure 3-15. Data distribution in each stage for active learning (AL) for abdominal aortic aneurysm. 
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Networks and experimental settings 

The segmentation network employed a simple U-Net architecture, which consisted of an 

encoder and a decoder. The encoder included convolutional and max pooling layers that 

down-sampled the input image to generate a low-resolution feature map. The decoder then 

up-sampled the image to produce an output image with the same dimensions as the input 

image. The encoder and decoder were connected using skip connections that concatenated 

the feature maps. Training was carried out on a NVIDIA TITAN RTX GPU with 24,220 MiB 

memory, utilizing the Keras 2.3.0 and Tensorflow 1.15.0 backend for the training module. 

 

Evaluation 

The accuracy of the predicted label compared to the actual ground truth was assessed 

using two metrics: the DSC and the 95% HD [127]. The DSC measures the degree of overlap 

between two volumes, with a range of values from 0 to 1. A value of 0 means that there is no 

overlap between the volumes, while a value of 1 indicates a complete overlap between the 

volumes. The calculation of DSC was done using Eq. (2). The 95% HD is a metric that is 

computed using distances and is expressed in Eq. (4). The 95% HD is a variation of the 

maximum HD metric. However, it addresses the issue of outliers by taking the 95th 

percentile of the distances instead of the maximum value. This approach ensures that the 

metric is not disproportionately affected by a small number of extremely large distances. 

Furthermore, a stress test was conducted to determine the optimal dataset size for each class 

 

Results 

Table 3-9 presents the DSC for each of the four subclasses in each of the five stages for the 

different networks. The average DSC scores for the four subclasses tended to improve or 

remain consistent as the stage increased (i.e., as the number of patient data increased), 

indicating higher or similar performance. The nnU-Net outperformed UNETR and 

SwinUNETR in all stages, and at Stage 5, 2D-3D U-Net ensemble achieved the highest 

accuracy for aorta and calcification with 0.928 ± 0.026 and 0.702 ± 0.226, respectively. For 

cascade 3D U-Net, thrombus achieved the best performance with a score of 0.782 ± 0.170, 

while vessels showed the highest accuracy with a score of 0.481 ± 0.155 with 3D U-Net. The 
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evaluation of HD95 is presented in Table 3-10, and similar to DSC, the HD values generally 

showed higher or comparable performance as the stage increased (i.e., as the number of 

patient data increased). Aorta achieved the best performance with 2.307 ± 1.42 mm in 2D-3D 

U-Net ensemble, while calcification achieved the highest accuracy with 12.39 ± 16.62 mm in 

3D U-Net. In contrast to DSC, UNETR showed better performance for thrombus and vessels 

with scores of 7.46 ± 6.12 and 11.61 ± 12.58 mm, respectively (Table 3-10). Through the 

stress test, it was found that the aorta dataset had reached saturation in stage 1 of 3D U-Net, 

as the difference in DSC between Stage 1 with 60 cases and Stage 5 with 300 cases was the 

range of -0.037 to 0.072 in 3D U-Net, which was a smaller range than other subclasses. For 

thrombus, the range of differences in DSC between each stage and the previous stage were -

0.062 to 0.071, -0.093 to 0.071, -0.019 to 0.071, and -0.316 to 0.119 and for vessels, the 

range of errors were -0.356 to 0.407, -0.408 to 0.381, -0.247 to 0.236, and -0.267 to 0.347, 

respectively. Thrombus and vessels exhibited relatively large errors between each stage, and 

to achieve better performance, more datasets need to be added even after stage 5 using 300 

cases. Calcification showed a large range of errors from -0.289 to 0.205, -0.322 to 0.311, and 

-0.115 to 0.305 until stage 4. However, the error range between stage 4 and 5 was relatively 

small, ranging from -0.316 to 0.119, indicating that the dataset was saturated at stage 4 using 

240 cases. The spent time between manual and AL-corrected segmentation for best model 

(3D U-Net) reduced 9.51 ± 1.02, 2.09 ± 1.06, 1.07 ± 1.10, and 1.07 ± 0.97 min, respectively 

and were statistically significant difference (p < 0.001) (Table 3-11). 
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Table 3-9. Dice similarity coefficient for abdominal aortic aneurysm with UNETR and SwinUNETR of MONAI and 2D U-Net, 3D U-Net, 2D-3D 

U-Net ensemble, and cascade 3D U-Net of nnU-Net. 

Metric Networks Classes Stage 1 Stage 2 Stage 3 Stage 4 Stage 5 

DSC 

MONAI 

UNETR 

Aorta 0.890 ± 0.052 0.896 ± 0.042 0.906 ± 0.039 0.910 ± 0.037 0.913 ± 0.035 
Thrombus 0.620 ± 0.226 0.665 ± 0.235 0.676 ± 0.234 0.697 ± 0.229 0.717 ± 0.195 

Calcification 0.584 ± 0.179 0.645 ± 0.147 0.633 ± 0.182 0.664 ± 0.144 0.650 ± 0.153 
Vessels 0.198 ± 0.150 0.312 ± 0.145 0.320 ± 0.149 0.325 ± 0.143 0.343 ± 0.140 

SwinUNETR 

Aorta 0.895 ± 0.050 0.904 ± 0.044 0.906 ± 0.043 0.916 ± 0.039 0.920 ± 0.036 
Thrombus 0.660 ± 0.228 0.647 ± 0.234 0.678 ± 0.235 0.710 ± 0.249 0.736 ± 0.199 

Calcification 0.611 ± 0.114 0.612 ± 0.180 0.622 ± 0.168 0.660 ± 0.157 0.669 ± 0.143 
Vessels 0.240 ± 0.157 0.314 ± 0.159 0.358 ± 0.140 0.368 ± 0.147 0.364 ± 0.149 

nnU-Net 

2D U-Net 

Aorta 0.899 ± 0.035 0.902 ± 0.038 0.911 ± 0.036 0.919 ± 0.027 0.922 ± 0.027 
Thrombus 0.710 ± 0.206 0.699 ± 0.260 0.744 ± 0.200 0.752 ± 0.227 0.750 ± 0.223 

Calcification 0.593 ± 0.214 0.605 ± 0.138 0.670 ± 0.230 0.693 ± 0.230 0.687 ± 0.230 
Vessels 0.319 ± 0.142 0.294 ± 0.143 0.394 ± 0.185 0.395 ± 0.196 0.430 ± 0.186 

3D U-Net 

Aorta 0.914 ± 0.035 0.913 ± 0.037 0.909 ± 0.039 0.918 ± 0.038 0.926 ± 0.027 
Thrombus 0.733 ± 0.229 0.737 ± 0.228 0.746 ± 0.228 0.758 ± 0.230 0.779 ± 0.191 

Calcification 0.674 ± 0.218 0.602 ± 0.161 0.665 ± 0.237 0.703 ± 0.199 0.702 ± 0.210 
Vessels 0.310 ± 0.147 0.374 ± 0.168 0.437 ± 0.206 0.441 ± 0.191 0.481 ± 0.156 

2D - 3D U-Net 
ensemble 

Aorta 0.911 ± 0.032 0.910 ± 0.039 0.913 ± 0.035 0.922 ± 0.029 0.928 ± 0.026 
Thrombus 0.732 ± 0.202 0.730 ± 0.239 0.762 ± 0.193 0.764 ± 0.226 0.769 ± 0.215 

Calcification 0.643 ± 0.222 0.636 ± 0.133 0.690 ± 0.233 0.708 ± 0.224 0.702 ± 0.226 
Vessels 0.320 ± 0.151 0.345 ± 0.161 0.411 ± 0.203 0.425 ± 0.195 0.453 ± 0.185 

Cascade  
3D U-Net 

Aorta 0.914 ± 0.034 0.916 ± 0.035 0.916 ± 0.035 0.919 ± 0.033 0.926 ± 0.028 
Thrombus 0.746 ± 0.189 0.748 ± 0.227 0.775 ± 0.178 0.756 ± 0.230 0.782 ± 0.170 

Calcification 0.600 ± 0.228 0.680 ± 0.219 0.674 ± 0.226 0.710 ± 0.216 0.652 ± 0.244 
Vessels 0.354 ± 0.142 0.420 ± 0.165 0.444 ± 0.156 0.469 ± 0.189 0.473 ± 0.171 
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Table 3-10. 95% Hausdorff distance for abdominal aortic aneurysm with UNETR and SwinUNETR of MONAI and 2D U-Net, 3D U-Net, 2D-3D U-

Net ensemble, and cascade 3D U-Net of nnU-Net. 

Metric Networks Classes Stage 1 Stage 2 Stage 3 Stage 4 Stage 5 

HD95 

MONAI 

UNETR 

Aorta 6.66 ± 7.70 4.07 ± 5.61 3.95 ± 5.29 3.48 ± 5.00 3.77 ± 5.97 
Thrombus 12.41 ± 17.78 12.24 ± 17.79 12.66 ± 18.28 10.30 ± 9.28 7.33 ± 6.16 

Calcification 29.77 ± 12.51 21.61 ± 8.02 19.59 ± 7.68 20.11 ± 8.02 20.13 ± 7.29 
Vessels 14.88 ± 12.68 11.45 ± 14.10 12.92 ± 15.65 12.90 ± 14.90 11.57 ± 12.54 

SwinUNETR 

Aorta 5.22 ± 8.61 3.913 ± 6.84 4.35 ± 5.73 2.83 ± 5.06 2.41 ± 3.84 
Thrombus 10.39 ± 11.19 12.30 ± 11.32 15.03 ± 16.39 11.51 ± 13.29 8.96 ± 9.43 

Calcification 22.90 ± 10.73 25.23 ± 12.62 17.49 ± 5.34 17.73 ± 6.73 17.09 ± 8.12 
Vessels 13.53 ± 13.98 12.24 ± 12.49 16.27 ± 25.15 12.07 ± 12.54 12.47 ± 14.62 

nnU-Net 

2D U-Net 

Aorta 5.32 ± 7.97 3.110 ± 2.163 2.744 ± 1.51 2.70 ± 1.95 3.15 ± 3.70 
Thrombus 14.20 ± 12.95 15.48 ± 20.30 15.89 ± 26.02 14.79 ± 21.56 14.27 ± 18.34 

Calcification 22.30 ± 18.64 15.82 ± 13.96 14.21 ± 18.80 14.33 ± 18.92 14.20 ± 18.83 
Vessels 38.90 ± 21.55 24.98 ± 11.26 36.48 ± 21.39 38.53 ± 23.86 32.30 ± 19.25 

3D U-Net 

Aorta 2.77 ± 2.28 2.00 ± 1.28 3.72 ± 5.75 3.30 ± 5.72 2.89 ± 2.76 
Thrombus 17.28 ± 21.89 12.74 ± 16.38 18.85 ± 22.96 17.59 ± 26.29 12.3 ± 17.02 

Calcification 13.24 ± 17.02 13.14 ± 13.38 23.78 ± 33.36 12.46 ± 15.02 12.39 ± 16.62 
Vessels 46.72 ± 24.23 19.95 ± 11.21 24.65 ± 16.44 25.70 ± 16.72 23.38 ± 16.20 

2D - 3D U-Net 
ensemble 

Aorta 3.10 ± 2.55 2.22 ± 1.54 2.47 ± 1.41 2.18 ± 1.26 2.297 ± 1.42 
Thrombus 14.20 ± 13.55 14.19 ± 20.18 15.31 ± 21.84 16.04 ± 23.10 14.05 ± 18.41 

Calcification 15.64 ± 18.42 13.20 ± 13.85 14.55 ± 18.51 13.60 ± 19.09 13.25 ± 18.66 
Vessels 45.65 ± 25.27 28.29 ± 20.94 35.35 ± 25.07 36.10 ± 30.47 33.24 ± 26.08 

Cascade  
3D U-Net 

Aorta 2.55 ± 1.45 2.41 ± 1.35 2.60 ± 1.72 2.487 ± 1.71 2.69 ± 2.47 
Thrombus 13.55 ± 14.10 18.76 ± 23.43 13.81 ± 18.05 17.50 ± 25.00 11.62 ± 13.02 

Calcification 32.74 ± 42.83 15.99 ± 18.83 16.95 ± 25.19 12.01 ± 17.71 59.69 ± 67.15 
Vessels 31.45 ± 17.31 35.84 ± 20.64 23.82 ± 14.93 17.65 ± 12.17 20.62 ± 11.93 
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Table 3-11. The segmentation time for manual and correction using 3D U-Net of nnU-Net in 

abdominal aortic aneurysm. 

Time 

Manual 

 

nnU-Net (Best model) 

P 

Aorta Thrombus Calcification Vessels Aorta Thrombus Calcification Vessels 

1 23.43 7.20 6.93 5.38 
 

12.58 4.43 3.75 4.73 

- 

2 20.95 7.55 5.70 6.63 
 

12.10 3.32 3.82 5.38 

3 22.43 7.78 6.52 6.20 
 

13.33 5.12 4.40 4.83 

4 21.30 6.68 5.17 5.72 
 

11.57 4.37 4.72 4.80 

5 22.72 5.87 5.47 6.35 
 

13.12 4.50 5.78 4.53 

6 23.85 6.42 4.52 5.15 
 

12.33 3.68 4.77 4.53 

7 22.25 6.55 5.27 5.03 
 

13.05 4.32 4.73 5.52 

8 21.45 5.47 6.00 5.48 
 

13.63 4.57 3.98 5.82 

9 21.23 5.32 5.53 6.42 
 

11.42 4.87 5.08 4.10 

10 20.85 5.40 5.57 7.33 
 

12.22 4.20 4.95 4.73 

Mean ± 

SD 

22.05 ± 

1.06 

6.42 ± 

0.90 
5.67 ± 0.69 

5.97 ± 

0.74  

12.53 ± 

0.74 

4.34 ± 

0.52 
4.60 ± 0.62 

4.90 ± 

0.51 

< 

0.001 
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4 Semi-automated design and measurement with 

application programming interface (API) of computer 

aided design (CAD) 

4.1  Aortic graft reconstruction guides in thoracoabdominal aortic 

dissection 

Regarding the automation of segmentation using DL, the octopod technique has been 

proposed for reconstructing grafts in cases of thoracoabdominal aortic dissection. The 

traditional approach, which relies on images, has drawbacks when it comes to precisely 

positioning the branching grafts. This is because it is typically dependent on the skill of the 

operating surgeon. To overcome this limitation, we developed a patient-specific graft 

reconstruction guide [124, 125] and introduced an automated CAD modeling as the second 

step. 

 

Procedure 

The process for this retrospective study is illustrated in Figure 4-1. The native aorta was 

segmented using thoracoabdominal CT angiography and divided into two types of patient-

specific graft reconstruction guides. These included visualizing and marking guides created 

using STL format, which were generated using both conventional and automatic modeling 

methods. The accuracy and CAD modeling time of both the conventional and automatic 

modeling methods were compared and evaluated to assess the effectiveness of the automated 

modeling approach. 
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Figure 4-1. Overall procedure for the evaluation of two types of patient-specific graft 

reconstruction guides consisting of visualizing and marking guides for aortic dissection and 

comparison between conventional and automatic modeling methods.  

 

Dataset 

The CT images used in the study were acquired from a total of 10 patients who had been 

diagnosed with either six Crawford extent II or four Crawford extent III thoracoabdominal 

aortic dissection and were admitted to AMC between June 2018 and February 2020. Of the 

10 patients, nine were male and one was female, with an average age of 41.10 ± 14.01 years 

(ranging from 22 to 65 years). All of the patients underwent CT angiography scans (Siemens 

SOMATOM series; Siemens AG, Munich, Germany) with a tube voltage range of 70–120 

kVp and a slice thickness of 0.6 – 3.0 mm. The graft reconstruction was performed on the 

main aorta, which extended from the left subclavian artery to the infrarenal abdominal aorta, 

as well as the bilateral common iliac artery and segmental arteries located between the 

thoracic-8 and lumbar-4 levels. The patient information, including their respective segmental 

arteries, is presented in Table 4-1. 
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Table 4-1. Ten patients' profiles for thoracoabdominal aortic dissection, including 

classification, level of segmental arteries, and range of graft reconstruction. Note. T, thoracic; 

L, lumbar; Rs, right side; Ls, left side; CIA, common iliac artery; LSA, left subclavian 

artery; IMA, inferior mesenteric artery; RA, renal artery.  

Patients 

No. 
Age 

Classification 

(Crawford 

extent) 

Level of segmental arteries Range of graft 

reconstruction Side T L 

1 37 II 
Rs 11, 12 

- T-11 to bilateral CIA 
Ls 11 

2 46 II 
Rs 

11, 12 - LSA to bilateral CIA 
Ls 

3 33 II 
Rs 

8, 9 - LSA to IMA 
Ls 

4 22 II 
Rs 

10, 11, 12  - LSA to RA 
Ls 

5 65 III 
Rs 10 

- T-10 to bilateral CIA 
Ls 11 

6 51 III 
Rs 10, 11 1 

LSA to bilateral CIA 
Ls 10 1 

7 57 III 
Rs 10, 12 

- LSA to RA 
Ls 9, 10, 12 

8 22 II 
Rs 9, 10, 12 1, 4 

T-9 to bilateral CIA 
Ls 11, 12 1 

9 38 III 

Rs 7, 8, 10, 11, 12 1, 3 

T-7 to bilateral CIA 
Ls 

7, 8, 9, 10, 11, 

12  
- 

10 40 II 
Rs 8, 10, 12 2, 3, 4 

LSA to bilateral CIA 
Ls 8, 11 3, 4 

 

Conventional CAD modelling method 

There were two different types of guides used for patient-specific graft reconstruction. The 

first type was a visualizing guide that provided a realistic representation of the aortic graft, 

showing the main aortic body and major blood vessels including segmental arteries. The 

second type was a marking guide that replaced the vessels in the visualizing guide with 

protruding marking regions that could be detected by touch. The patient's native aorta was 
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automatically segmented using CT angiography images (Figure 4-2 (A)). In traditional CAD 

modeling, a centerline (represented by a black line) was generated for the main and vascular 

graft using the "Create Center Line" function. This process involved using predetermined 

parameters such as a segment length of 0.30 mm and an accuracy detail of 1.00 mm from the 

3D model of the patient's aorta. The centerline included the major blood vessels and 

segmental arteries, both thoracic and lumbar. The segment length referred to the length of 

each individual section of the center line. Meanwhile, the accuracy detail was a measure of 

the precision of the center line, with lower values indicating higher accuracy. The "Smooth 

Curve" function was then used on the center line of the main graft, with predefined 

parameters that included a 0.7 factor controlling the strength of smoothing and 1000 

iterations to achieve the desired level of smoothness. The process of smoothing was also 

applied to the smoothing algorithm represented by the green line (Figure 4-2(A)). In 

addition, the center lines of the vascular grafts were established with a similar smoothing 

factor and a lower number of iterations, specifically 50 iterations as indicated by the blue 

line (Figure 4-2 (B)). To create the main graft, the "Sweep" function was utilized. This 

involved connecting the center line and a sketch plane to that of the main graft. A new sketch 

plane was created using the "New Sketch" function, and a circle with a diameter ranging from 

22.0 to 30.0 mm was drawn on it using the "Create Circle" function. The diameter of the 

circle was determined by the surgeons. Similarly, the vascular grafts that were required for 

the reconstruction were created with a fixed size of 8 mm (Figure 4-2 (C)). To create one part 

of the visualizing guide, the main graft was combined with the vascular grafts using the 

"Boolean Union" function (Figure 4-2 (D), right). In the marking guide, the main graft was 

modified by protruding corresponding surfaces between the main and vascular grafts to 

detect the position of the visceral and segmental arteries. This was achieved using the "Move 

Surface" function with specific parameters such as automatic directions per surface, a 

distance of 2.00 mm, and a solid shape. The automatic directions were indicated to the 

direction of movement, which was normal to each surface (Figure 4-2 (D), left). The 

visualizing and marking guides were implemented by internally emptying using the 

"Hollow" function with specific parameters. The inside of the hollow type was chosen, with 

a distance of 5.00 mm and the smallest detail of 0.30 mm, determined empirically. The 
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hollow type selected was an existing surface assumed to have been constructed either inside 

or outside. Furthermore, the distance of the hollow type was specified to determine the 

thickness of the parts, while the smallest detail referred to the size of the triangles on the 

newly generated surfaces. Two virtual planes that defined the extent of thoracoabdominal 

aortic dissection were established based on medical images. To trim the two types of patient-

specific graft reconstruction guides, the "Cut" function was utilized (Figure 4-2 (E)). After 

the completion of the main part, the remaining unwanted noise shells were eliminated using 

the "Filter Small Shells" function. The parameters for this function were determined 

empirically, with a 90% area and volume threshold. All shells with areas and volumes 

smaller than the main part were eliminated using relative values. Finally, the visualizing and 

marking guides underwent a smoothing process using the "Smooth" function, with the 

strength of the smoothing determined by an empirically determined factor of 0.7. The 

modeling process was then finalized with a thorough inspection of the parts (Figure 4-2 (F)). 



 

67 

 

Figure 4-2. The conventional modeling method for patient-specific visualizing and marking 

guides. (A) Automated segmentation of thoracoabdominal aorta, including major blood 

vessels in the CT angiography images. (B) The extracting center line of the native aorta 

(black line) and the smoothed center line of the main (green line) and vascular grafts (blue 

line). (C) Designing the main and vascular grafts. (D, left) Combination of the main and 

vascular grafts for the visualizing guide and (D, right) the protrusion toward the 

corresponding surfaces between the main and vascular grafts. (E) Creation of two virtual 

planes to determine the extent of the thoracoabdominal aortic dissection and trimming of the 

model. (F, left) Completion of visualizing and (F, right) marking guides. 
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Automated modeling programming 

The automatic guide modeling program for designing the visualizing and marking guides 

was developed using Python coding and API (Algorithm 4-1). The program required four 

inputs: the number of center lines for the main and vascular grafts, the diameter of the aorta, 

the type of graft reconstruction guide, and the save path for two virtual planes that 

determined the extent of the thoracoabdominal aortic dissection. The part inspection step in 

the module defined as a new function that included the "Filter Small Shells", "Adaptive 

Remesh", and "Auto Fix" functions (Algorithm 4-2). Without filtering unnecessary noise 

shells before part fix, the process would take an infinite or long time. Furthermore, 

irregularly sized triangle structures could result in low accuracy if remesh was not applied. 

To enhance modeling performance, the software was executed on a system with an NVIDIA 

GTX 1080 Ti GPU, an Intel Core i7-6700 central processing unit with a clock speed of 3.40 

GHz, 32 GB of memory, and a 64-bit Windows 10 operating system. To run and debug the 

program efficiently, PyCharm, an external integrated development environment, was 

employed. 
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Algorithm 4-1. Automated modeling method for the visualizing guide and marking guide. 

Input: Number of center line for the main and vascular grafts (N), Diameter of aorta (D), Type 

of graft reconstruction guide (T), 

Save path of two virtual plane to determine the extent of the thoracoabdominal aortic dissection 

(S) 

Output: Visualizing guide or Marking guide 

Set native aorta model with center line for the main and vascular grafts 

Find the center line of the main and vascular grafts 

For i ← 0 to N-1 

If the center line of the main and vascular grafts is the longest 

Apply “Curve smooth” function with smooth 0.7 factor and 1000 iterations  

Create the sketch with circle of D 

Perform the “Sweep” function with center line and sketch 

Print “Establishment of main graft” 

Else 

     Apply “Curve smooth” function with smooth 0.7 factor and 50 iterations  

Create the sketch with a circle with a diameter of 8 mm 

Perform the “Sweep” function with the center line and sketch 

Print “Establishment of vascular graft” 

End if 

End for 

If T == Visualizing guide  

Combine the main graft and vascular graft using the “Union” function 

Print “Visualizing guide” 

Else 

Find the corresponding surfaces between the main graft and vascular graft 

Add the corresponding, protruding surfaces with a distance of 2.0 mm and a solid shape using 

the “Move surface” function 

Print “Marking guide” 

End if 

Add internal emptying using the “Hollow” function with the distance of 5.00 mm and smallest 

detail of 0.30 mm 

Import S 

Trim the graft reconstruction guide into two planes using the “Cut” function 

Find the volume of the cutting parts 

If the volume is the largest 

               Perform the “smooth” function with 0.7 factor 

Apply the part inspections (Algorithm 2) 

Else 

               Remove the parts using the “Filter Small Shells” function with 90% area and volume 

threshold 
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Algorithm 4-2. The module for part inspection. 

Function: Part inspection 

Input: Incomplete model 

Output: Fixed model 

Remove the unnecessary noise shells using the “Filter Small Shells” function with 15% area 

and volume threshold 

Arrange irregular meshes using the “Adaptive remesh” function with a triangle length of 2.0 

mm 

Fix the incomplete model using the “Auto Fix” function 

return Fixed model 

 

Evaluation 

To evaluate the performance of the automatic modelling method for the visualizing and 

marking guides, its accuracy and modelling time were compared with those of the 

conventional modelling method. The accuracy was evaluated by calculating the absolute 

mean differences between the two methods using HD based on points with a difference map 

using Eq. 3. The statistical significance of the differences between the two methods was 

determined using the Wilcoxon signed-rank test. 

 

Results 

Table 4-2 summarizes the results of the comparison between the conventional and 

automatic modeling methods. The table 4-2 shows the absolute mean differences between 

the two methods and the number of corresponding points belonging to the smallest distance 

determined by HD for each patient's visualizing and marking guides. The results indicate that 

the absolute mean differences between the conventional and automated methods were 6.05 ± 

4.86 μm for the visualizing guide and 5.51 ± 4.85 μm for the marking guide. The number of 

corresponding points for the smallest distance was 82,459 and 57,029 points for the 

visualizing and marking guides, respectively.  
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Table 4-2. Hausdorff average distance of corresponding points between conventional and 

automated modeling methods for each patient with visualizing and marking guides. Note: 

CP, corresponding point. 

Patients 

No. 

Visualizing guide 
 

Marking guide 

Distance (μm) Max (μm) # of CPs 
 

Distance (μm) Max (μm) # of CPs 

1 5.74 ± 4.66 45.29  5,997 
 

5.27 ± 4.30 48.15  5,367 

2 5.41 ± 4.31 46.97  10,112 
 

5.08 ± 4.00 41.85  6,787 

3 5.60 ± 4.47 46.13  8,278 
 

5.28 ± 4.50 47.58  6,129 

4 6.05 ± 4.92 44.58  7,751 
 

6.15 ± 5.35 47.03  5,919 

5 5.90 ± 4.75 43.61  7,998 
 

5.22 ± 4.32 36.00  4,686 

6 5.96 ± 4.81 40.78  6,576 
 

5.25 ± 4.58 44.83  3,905 

7 6.10 ± 5.27 42.98  4,643 
 

5.76 ± 5.03 39.39  3,322 

8 5.89 ± 4.83 50.10  8,497 
 

5.36 ± 4.62 41.81  5,433 

9 6.57 ± 4.99 41.26  11,989 
 

6.49 ± 6.26 170.83  6,953 

10 5.63 ± 4.69 48.21  10,618 
 

5.22 ± 4.78 162.09  7,629 
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Figure 4-3 shows a comparison of color maps between the conventional and automatic 

models, along with the absolute mean difference calculated using Hausdorff average 

distance.  

 

 

Figure 4-3. Comparison of the aligned difference map is shown with the absolute mean 

differences in the areas between conventional and automated modeling methods with (A) 

visualizing and (B) marking guides. 

 

The automated modeling method significantly reduced the modeling time for both the 

visualizing and marking guides. The visualizing guide was modeled in 26.70 ± 5.55 min, 

which was thirty times faster than the conventional method (p<0.001), and the marking guide 

was modeled in 31.32 ± 5.85 min, which was forty times faster (p<0.001). The automatic 

modeling time ranged from 20.72 min to 43.33 min (Table 4-3). 
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Table 4-3. Modeling time for conventional and automated modeling methods with two types 

of patient-specific graft reconstruction guides. 

Patients 

No. 

Visualizing guide(min)   Marking guide (min) 

P Conventional  

modeling 

Automated  

modeling 
  

Conventional  

modeling 

Automated  

modeling 

1 21.48 0.93   29.87 0.72 

- 

2 23.03 0.98   27.02 0.82 

3 22.50 0.85   25.53 0.80 

4 21.57 0.72   29.57 0.72 

5 32.13 1.72   28.13 0.85 

6 21.52 0.60   28.60 0.58 

7 27.18 0.60   33.82 0.58 

8 30.98 0.87   35.42 0.95 

9 38.97 1.07   44.50 1.15 

10 30.98 1.08   38.75 0.87 

Mean ± SD 27.63 ± 5.70 0.92 ± 0.31   32.11 ± 5.95 0.80 ± 0.17 <0.001 

 

4.2  Landmark measurement in abdominal aortic aneurysm 

There are two significant reasons why it is essential to measure the clinically defined 

landmarks of AAA. Firstly, to monitor and follow up the growth of AAA over time. 

Secondly, to choose the appropriate commercially available endografts that fit the patient's 

anatomical size to avoid complications like endoleak and reintervention after EVAR (Table 

4-4). The inconsistency in AAA measurements can be attributed to insufficient guidelines for 

reporting standards regarding the aortic axis, measurement plane, and placement of calipers. 

This variability becomes particularly significant in a clinical setting because the number of 

patients who qualify for AAA repair based on a specific diameter threshold can vary widely, 

ranging from 5% to 24%, depending on the radiologist [140]. In order to address these 

limitations, we utilized DL in section 3.2 to automate the segmentation process and 

leveraged the resulting 3D model created through rendering to introduce automated CAD 

measurements using a script-based approach with an API.  
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Table 4-4 Manufacturer’s guideline of patient selection for EVAR [141] . 

 

 

Procedure 

In this retrospective study, the process was illustrated in Figure 4-1, where aortic 

pathologies were segmented using CT angiography. We performed automated measurements 

using a script-based approach that utilized clinically defined landmarks on the 3D model 

obtained through rendering. The accuracy of the automated measurements was compared to 

the conventional manual measurement method by medical doctors using CT images. In 

addition, we evaluated the efficiency of the automated measurements. 

 

Dataset 

The pre-operative CT images from a total of 96 patients who had been diagnosed with 

AAA and underwent EVAR were enrolled in AMC between March 2007 and March 2021. 
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Of the 96 patients, 88 were male and 8 were female, with an average age of 70.10 ± 7.26 

years (ranging from 51 to 88 years). CT angiography scans were performed on all patients 

using a tube voltage range of 120 kVp, pixel size of 0.5781 – 0.8164 mm, and a slice 

thickness of 2.5 – 5.0 mm. 

 

landmark 

To select commercially available endografts that are appropriate for a patient's anatomical 

size and prevent complications such as endoleak after EVAR, 7 landmarks were defined as 

follows: 1) aortic neck diameter, 2) aortic aneurysm diameter, 3) right iliac artery diameter, 

4) left iliac artery diameter, 5) aortic neck length, 6) common iliac artery tortuosity, and 7) 

aortic neck angulation. These landmarks were chosen to predict the growth of AAA and to 

ensure appropriate selection of endografts. (Figure 4-4) 

 

 

Figure 4-4. The clinical defined measurement landmarks for AAA models. 
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Conventional image-based measurement  

The diameters and lengths of the proximal aortic neck, aortic aneurysm and both common 

iliac arteries, which are morphological characteristics of the aneurysm, were measured using 

digital calipers on a picture archiving and communication system (PACS) workstation. The 

maximum aortic diameters were measured on axial view and the lengths were measured on 

either sagittal or coronal images. The digital goniometer was used to determine the infrarenal 

neck angulation, which was measured in degrees (Figure 4-5). 

 

Figure 4-5. Conventional image-based measurement. 

 

Automated modeling programming 

For automated measurements in AAA, two modules were developed, which were used as 

the basis for most of the landmark measurements. Module 1 involved dividing the generated 

centerline into numerous points and determining the direction between each point and its 

next point, creating planes based on the number of points. The planes were intersected with 

the AAA model, and the curve with the maximum length among the generated curves was 

selected (Algorithm 4-3). Automated measurement of aortic neck diameter involves inputting 

an AAA model and the aortic neck centerline into Module 1. In Module 1, the mid-point and 

next point are identified, and a plane is generated based on the origin and direction, in order 
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to find the curve that intersects with the AAA model. By dividing the generated maximum 

curve into numerous points and calculating the distance between each point, the maximum 

distance can be obtained, which provides the output for the aortic neck diameter.  

 

Algorithm 4-3. The module for finding the maximum curve. 

Input: Aortic model with thrombus (A), Centerline of aortic model (C) 

Output: The maximum curve  

Set A with C 

Find the C of A 

Find the number of points for C (N) 

For i ← 0 to N-1: 

          Create the i-line between i and i+1 points 

          Make the i-plane using i-point and direction of the i-line 

          Design the i-intersection curve with i-plane and A 

          If intersection curve > 1: 

                    For j ← intersection curve: 

                              Append the lengths of the j intersection curves 

                    Save the index of maximum length for the intersection curves 

                    Find the intersection curve for index   

          Append the length of i-intersection curve 

Save the index of maximum curve for the intersection curves 

Find the intersection curve for index 

 

Measurement of the aortic aneurysm diameter can be performed automatically by 

inputting the AAA model and the aortic aneurysm centerline into modules 1. In addition, the 

automated measurement values for the right and left iliac arteries require the plane starting 

points of each iliac artery. To obtain the 3D model of the iliac artery, the AAA model is cut 

based on the plane of the right or left side, and then the measurement is performed with 

modules 1. Automated measurement of the aortic neck length can be performed by selecting 

the aortic neck centerline from among the centerlines. The common iliac artery tortuosity is 

calculated by measuring the length of the AAA model and the right or left iliac artery 

centerline, and determining the distance between two points based on the starting and ending 

points of the centerline, along with a ratio. Finally, the aortic neck angulation can be 

calculated by determining the angle between two lines based on the starting and ending 

points of the centerlines of the aortic neck and aortic aneurysm (Algorithm 4-4). 
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Algorithm 4-4. The algorithms for the automatic measurement of the aortic neck diameter, 

aortic aneurysm diameter, the common iliac artery diameter, aortic neck length, the tortuosity 

of common iliac artery, and aortic neck angulation. 

Input: Aortic model with thrombus (A), Aortic neck centerline (ANC), Aortic aneurysm 

centerline (AAC), Centerline of right iliac artery (CRIA) and left iliac artery (CLIA), Plane 

of right iliac artery (PRIA) and left iliac artery (PLIA) 

Output: aortic neck diameter, aortic aneurysm diameter, right iliac artery diameter or left 

iliac artery diameter, aortic neck length, the common iliac artery tortuosity, aortic neck 

angulation 

Set A, ANC, AAC, CRIA, CLIA, PRIA, and PLIA 

For i ←Landmark 

If i == “aortic neck diameter” 

Find the ANC of A and the number of mid-point and next point of ANC 

Create the line between two points and the mid-plane using mid-point and direction of the 

line 

Design the intersection curve with mid-plane and A 

Calculating the maximum distance between two points 

Print the maximum of the aortic neck diameter 

Else if i == “aortic aneurysm diameter” 

Find the AAC of A and the number of points for ANC (N) 

Apply algorithm 4-3  

Calculating the maximum distance between two points 

Print the maximum of the aortic aneurysm diameter 

Else if i == “right iliac artery diameter” or “left iliac artery diameter” 

Cut A using PRIA or PLIA 

Find the iliac artery model (IAM) with the maximum volume for the cut A models 

Find the number of points for CRIA or CLIA (N) 

Apply algorithm 4-3  

Calculating the maximum distance between two points 

Print the maximum of the right iliac artery diameter or left iliac artery diameter  

Else if i == “aortic neck length”  

Print the length of the aortic neck 

Else if i == “the common iliac artery tortuosity”  

Find the curve length of CRIA or CLIA and the start and end point of CRIA or CLIA 

Create the line between two points 

Find the line length of CRIA or CLIA 

Calculate the ratio of line and curve length 

Print the ratio for the line length and curve length in CRIA or CLIA 

Else i == “aortic neck angulation”  

Make the start and end point of ANC and AAC 

Create the line between start and end points of ANC and ACC 

Print aortic neck angulation between two lines 
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Evaluation 

In order to assess the efficacy of the automated measurement method for 7 landmarks, its 

accuracy was compared to that of the conventional measurement method, which is 

performed by medical doctors. The accuracy of the two methods was evaluated by 

determining the differences between them, and this evaluation was conducted using Bland-

Altman analysis. In addition, due to the inputs manually generated, there may be human 

variation in the aortic neck diameter, aortic neck length, right and left tortuosity including 

curve length, line length, and ratio. We randomly selected 10 cases from the 96 cases and had 

three researchers measure them to evaluate the inter-measurer correlation. 

 

Results 

Table 4-5 provides a summary of the comparison between the conventional and automated 

measurement methods for the aortic neck diameter, aortic aneurysm, right iliac artery, left 

iliac artery diameter, aortic neck length, and the tortuosity of the right and left iliac arteries 

including curve length, line length, and ratio. 
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Table 4-5. The differences between manual and automatic measurements for the aortic neck 

diameter, aortic aneurysm, right iliac artery, left iliac artery diameter, aortic neck length, the 

tortuosity of right and left iliac artery including curve, line length, and ration between two 

lengths.  

Landmark 
Conventional 

measurement 

Automated 

measurement 
Difference 

Aortic neck diameter (mm) 23.41 ± 3.25 24.60 ± 4.21 -1.19 ± 3.92 

Aortic aneurysm diameter 

(mm) 
55.99 ± 10.02 55.76 ± 10.10 0.23 ± 4.00 

Right iliac artery diameter 

(mm) 
18.76 ± 6.10 20.90 ± 5.57 -2.14 ± 4.37 

Left iliac artery diameter 

(mm) 
16.96 ± 5.61 19.76 ± 5.34 -2.80 ± 4.09 

Aortic neck length (mm) 33.06 ± 13.50 35.71 ± 15.98 
-2.65 ± 

11.88 

Tortuosity of 

right iliac 

artery 

Curve length 

(mm) 
46.99 ± 12.40 56.93 ± 17.76 

-9.95 ± 

12.81 

Line length 

(mm) 
42.41 ± 11.62 49.49 ± 13.98 

-7.08 ± 

10.57 

Ratio 1.13 ± 0.24 1.14 ± 0.10 -0.01 ± 0.20 

Tortuosity of 

left iliac 

artery 

Curve length 

(mm) 
52.27 ± 15.13 61.95 ± 17.64 

-9.68 ± 

10.96 

Line length 

(mm) 
61.01 ± 17.64 53.65 ± 13.88 8.30 ± 7.78 

Ratio 0.86 ± 0.17 1.15 ± 0.15 -0.29 ± 0.22 

Angulation 
< 60° 86 89 - 

> 60° 10 7 - 

 

 Bland–Altman analysis, the arithmetic means and SD of the differences between the 

conventional and automated measurement were −1.19 ± 3.92 mm (limits of agreement 

(LoA): −8.88 to 6.50 mm) for the aortic neck (Figure 4-6 (A)) and 0.23 ± 4.00 mm (LoA: 

−7.61 to 8.06 mm) for the aortic aneurysm diameter (Figure 4-6 (B)). The arithmetic mean 

and SD of the differences for the right iliac artery diameter, the left iliac artery diameter, and 

the aortic neck length was −2.13 ± 4.37 mm (LoA: −10.70 to 6.43 mm), −1.50 ± 8.60 mm 

(LoA: −18.35 to 15.36 mm), −2.80 ± 4.09 mm (LoA: −10.82 to 5.22 mm) , and −2.65 ± 

11.88 mm (LoA: −25.94 to 20.64 mm) (Figure 4-7 (A-C)), respectively. The arithmetic 

means and SD of the differences for the curve length, the line length, and the tortuosity ratio 
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for right iliac artery was 130.62 ± 22.82 mm (LoA: 85.89 to 175.35 mm), 86.23 ± 18.76 mm 

(LoA: 49.45 to 123.00 mm), and 0.25 ± 0.15 mm (LoA: −0.05 to 0.54 mm) (Figure 4-8 (A-

C)), respectively. The arithmetic mean and SD of the differences for the curve length, the 

line length, and the tortuosity ratio for left iliac artery 122.32 ± 22.69 mm (LoA: 77.85 to 

166.79 mm), 81.01 ± 17.95 mm (LoA: 45.82 to 116.19 mm), and 0.22 ± 0.17 mm (LoA: 

−0.10 to 0.55 mm) (Figure 4-9 (A-C)), respectively.  

 

 

Figure 4-6. Bland–Altman plot indicating the distribution of the differences between manual 

and automatic method, divided by (A) the aortic neck diameter and (B) the aortic aneurysm 

diameter. 
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Figure 4-7. Bland–Altman plot indicating the distribution of the differences between manual and automatic method, divided by (A) the right iliac 

artery diameter, (B) the left iliac artery diameter, and (C) the aortic neck length. 

 

Figure 4-8. Bland–Altman plot indicating the distribution of the differences between manual and automated method, divided by (I) the curve length, 

(J) the line length, and (K) the tortuosity ratio for left iliac artery. 
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Figure 4-9. Bland–Altman plot indicating the distribution of the differences between manual and automatic method, divided by (A) the curve length, 

(B) the line length, and (C) the tortuosity ratio for left iliac artery. 
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5 Utilization of patient-specific guides fabricated using 3D 

printing from viewpoint of clinical application 

5.1  3D printed surgical guides in thoracoabdominal aortic dissection 

The octopod technique is a proposed method to reconstruct grafts in cases of 

thoracoabdominal aortic dissection using 2D images. However, the accuracy of this image-

based approach is limited in terms of the precise placement of branching grafts, as it relies on 

the expertise of the operating surgeon who constructs it. This means there may be variations 

in accuracy depending on the individual surgeon. To address the accuracy limitation of the 

octopod technique in constructing branching grafts, a 3DP-based reconstruction method has 

been introduced. This approach allows for a more precise and accurate construction of the 

aorta and its branching vessels, improving the overall accuracy of the reconstruction process 

[58]. Two new techniques have been developed using patient-specific 3D printed graft 

reconstruction guides. The first technique is called the model-based technique (MBT), which 

involves the use of a realistic-shaped graft model containing the main aortic body and its 

branching vessels. This technique allows for the manual positioning of the branching grafts 

on the artificial aortic graft using the visualizing guide. The second technique is called the 

guide-based technique (GBT), which uses marking guides to substitute the branching vessels 

in the visualizing guide with slightly protruding marking points. We used to the automated 

segmentation and design to fabricate the visualizing and marking guide with 3DP. In section, 

the accuracy and marking time efficiency of three techniques were evaluated in the context 

of proper positioning of aortic branching vessels. These techniques included the conventional 

IBT, the MBT, and the GBT. A designed graft model (DGM) was used as the gold standard 

for comparison purposes. 

 

Procedure 

The process for implementing the two graft guide techniques, MBT and GBT, is shown in 

Figure 5-1. The visualizing and marking guides were fabricated by segmenting CT images, 

designing and modeling, and exporting them to the STL format. These models were then 
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printed using CJP and SLA technology. Following printing, the models underwent post-

processing and ethylene oxide gas sterilization. The MBT and GBT techniques were used for 

graft reconstruction in a clinical setting, and their accuracy and time requirements were 

compared to the conventional IBT technique. The performance of all three techniques (IBT, 

MBT, and GBT) was evaluated in terms of their accuracy and time requirements. 

 

 

Figure 5-1. Overall process of graft reconstruction with the conventional IBT, MBT, and 

GBT.  

 

Dataset 

The study used imaging and clinical data from 15 patients who had been diagnosed with 

Crawford extent II or III thoracoabdominal aortic dissection and had undergone open 

surgical aortic repair using 3DP technologies at the AMC between January 2017 and 

February 2020. Specifically, the study focused on reconstructing segmental arteries located 

between the thoracic-8 and lumbar-2 levels, and reconstructing the main stem aortic graft 
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from the left subclavian artery to either the infra-renal abdominal aorta or to the bilateral 

common iliac artery. Table 5-1 provides detailed information on the characteristics of each 

subject included in the study. All subjects underwent CT angiography using Siemens 

SOMATOM series equipment, with a slice thickness of 0.6 – 3.0 mm and 70 – 120 kVp. 

 

Table 5-1 Individual profiles of the subject patients including classification, level of 

segmental artery, and range of replacement. Note. T, thoracic; L, lumbar; Rs, right side; Ls, 

left side; LSA, left subclavian artery; IMA, inferior mesenteric artery; CIA, common iliac 

artery; RA, renal artery. 

Patients  

No 
Age 

Classification  

(Extent) 

Level of segmental arteries Range of  

graft 

reconstruction 
Direction T L 

1 36 II 
Rs 10 

- LSA to IMA 
Ls 9, 10 

2 57 II 
Rs 8, 10 

- LSA to CIA 
Ls 12 

3 48 II 
Rs 

9, 10, 11, 12 - LSA to RA 
Ls 

4 40 I 
Rs 9, 11 

- LSA to IMA 
Ls 9, 10 

5 37 II 
Rs 11, 12 

- T-9 to CIA 
Ls 11 

6 46 III 
Rs 

11, 12 - LSA to CIA 
Ls 

7 33 II 
Rs 

8, 9 - LSA to IMA 
Ls 

8 22 II 
Rs 

10, 11, 12 - LSA to RA 
Ls 

9 65 III 
Rs 10 

- T- 10 to CIA 
Ls 11 

10 51 III 
Rs 10, 11 1 

LSA to CIA 
Ls 10 1 

11 69 II 
Rs 8, 11, 12 

- LSA to CIA 
Ls 11 

12 57 IV 
Rs 10, 12 

- LSA to CA 
Ls 9, 10, 12 

13 22 II 
Rs 9, 10, 12 1, 4 

T- 9 to CIA 
Ls 11, 12 1 

14 38 III 

Rs 7, 8, 10, 11, 12 1, 3 

T-7 to CIA 
Ls 

7, 8, 9, 10, 11, 

12 
7, 8, 9, 10, 11, 12  

15 40 II 
Rs 8, 10, 12 2, 3, 4 

LSA to CIA 
Ls 8, 11 3, 4 
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Conventional image-based technique (IBT) 

The conventional IBT technique proposed by Park et al. [120] involves several steps. First, 

in the axial view of the CT images, the location of the visceral and segmental arteries is 

identified. Second, the angle between the visceral and segmental arteries is evaluated by 

drawing a horizontal line and a virtual diverging line of the branch from the central spot of 

the aorta on each axial slice of CT images at the visceral and segmental levels, and 

measuring the angle between them at each level. Third, based on the location of the visceral 

artery, the height of the corresponding segmental artery is determined and marked on the 

main aortic graft using the measured angle. Finally, these steps are repeated for each 

segmental artery that needs to be reconstructed. 

 

Development of visualizing and marking guides 

During the manual segmentation process of the native aorta, the important branching 

vessels such as the celiac artery, superior mesenteric artery, renal artery, bilateral common 

iliac artery, and segmental arteries were identified and included (Figure 5-2(A)). Once the 

3D rendering of the segmented aorta was completed, the CAD modelling software was used 

to extract the centreline of the aorta. The centreline was then adjusted to match the shape of 

the spine, which was also included in the segmentation (Figure 5-2(B)). To create an aortic 

graft that matches the desired diameter between 24 – 30 mm, a virtual model of the aorta was 

designed. The side-branches were combined into a single model with a diameter of 8.0 mm. 

To improve the accuracy and efficiency of constructing the aortic graft, two type of graft 

reconstruction guides were developed: (1) The visualizing guide was designed as a realistic-

shaped graft model containing the main aortic body and its branching vessels, to enable 

manual positioning of the branching grafts on the artificial aortic graft (Figure 5-2(C-left)); 

(2) In the marking guide, the branching vessels in the visualizing guide were replaced by 

slightly protruding marking points (2.0 mm), to ensure that their positions were designed 

such as to be identifiable by tactile sense when wrapped by the aortic graft, instead of 

depending solely on visual mimicking (Figure 5-2(C-right)). The DGM was validated by 

operating surgeons, following which it was exported as STL files. 
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3DP technology 

To create the visualizing guide, a CJP was used along with VisiJet PXL Core powder, 

VisiJet PXL clear binder, and color bonding materials. The resulting phantom is shown in 

Figure 5-2(D-left). The marking guide, which is meant for temporary mucosal contact, was 

printed using a SLA with Dental LT resin (Figure 5-2(D-right)). To fabricate the graft 

reconstruction guides, specific parameters were used for each printer. For the CJP, the layer 

thickness was set to 0.10 mm, the FOV was 254 × 381 × 203 mm, and the X-Y plane 

resolution was 300 × 450 DPI. For the SLA, the layer thickness was also set to 0.10 mm, 

while the FOV was 145 × 145 × 145, and the X-Y resolution was approximately 0.15 mm. 

The precise X-Y resolution of the SLA was not initially defined, Formlabs Inc. experimented 

with different specimens to determine it. The laser used had a spot size of 140 μm and a 

power of 250 mW. 

 

Graft reconstruction method using MBT and GBT 

During real surgical operations, the grafts were sewn in advance by the operating surgeon 

with the patient while they were under anaesthesia. The surgeon used either the MBT or 

GBT to pre-sew the grafts, and then they were used to replace the diseased section of the 

thoracoabdominal aorta during the surgery (Figure 5-2(E)). After the surgery, CT images 

were taken to confirm the configuration of the replaced aorta (Figure 5-2(F)). The steps 

involved in the patient-specific graft reconstruction guides using MBT and GBT are shown 

in Figure 5-3. During the patient-specific graft reconstruction using MBT, the main graft 

body's shape was replicated while being supervised by the visualizing guide (Figure 5-3(A)). 

The segmental vessels' locations were also marked on the main graft body, using the celiac 

artery origin as a reference point (Figure 5-3(B)). In the case of GBT, the marking guide was 

placed into the aortic graft and aligned in reference to the origin of the visceral arteries 

(Figure 5-3(C)). The positions of the segmental arteries were then identified using the tactile 

sense by feeling the protruding markers and marked on the graft surface (Figure 5-3(D)). 

After performing either MBT or GBT, the mark is cut out with medical scissors and the 

segmental grafts were attached by running sutures (Figure 5-3(E)). 
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Figure 5-2. Two types of patient-specific graft reconstruction guide application for open 

repair of thoracoabdominal aortic dissection. (A) CT angiography images and segmentation 

of diseased aorta and spine. (B) The modeling the centreline of graft based on that of a native 

aorta. (C) 3D modeling of the visualizing and marking guides. (D) 3D-printed visualizing 

guide and marking guide; (E) graft reconstruction and clinical application in operating room. 

(F) The 3D model of postoperative graft. 
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Figure 5-3. Patient-specific graft reconstruction process with MBT and GBT in operating 

room.  
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Survey 

To evaluate the effectiveness of the proposed techniques, a survey was conducted among 

three cardiothoracic surgeons who had experience with graft reconstruction using three 

different techniques: IBT, MBT, and GBT. The survey questionnaire was written to in-house 

by collecting feedback on anatomical understanding, usefulness, satisfaction, surgical 

outcomes, and recommendations from a clinical perspective. The survey was conducted 

among certified cardiothoracic surgeons who had between 3 to 10 years of experience. The 

questionnaire items were categorised as follows: (1) the level of contribution to 

understanding the anatomic structure (four questions); (2) usefulness for graft reconstruction 

(three questions); (3) satisfaction level for graft reconstruction (two questions); and (4) 

benefits of the use of 3DP technologies to surgical outcomes (two questions); and (5) 

recommendability of 3DP for thoracoabdominal aorta surgery to other surgeons (two 

questions). The responses to the survey questions were measured on a five-point scale, where 

the scores were recorded as follows: 1 = strong disagreement, 2 = disagreement, 3 = neutral, 

4 = agreement, and 5 = strong agreement. 

 

Evaluation and statistical analysis 

In a retrospective study, the accuracy and time required for marking of vessels were 

measured and analyzed between conventional IBT, MBT, and GBT techniques and DGM-

based technique. The study involved three researchers performing the experiments on 15 

patients, using mimic aortic grafts to carry out the experiments. The time required for 

marking of vessels, excluding cutting out, was assessed for each technique. To evaluate the 

accuracy of the graft reconstruction techniques, the positions of the segmental arteries were 

marked on the grafts using IBT, MBT and GBT (Figure 5-4(A)). The grafts were then 

unfolded using scissors (Figure 5-4(B)). The diagonal line, height, and angle between the 

celiac artery and the marked segmental arteries were measured (Figure 5-4(C)).  
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Figure 5-4. Guide to evaluating the accuracy of three techniques-IBT, MBT, and GBT; (A) 

Locating celiac artery and segmental arteries marked on graft. (b) Spreading the graft using 

scissors. (c) Measuring the length, height, and angle between celiac artery and segmental 

arteries. 

 

The Bland-Altman analysis was utilized to compare and identify the differences, LoA, 

biases, and outliers in the diagonal line, height, and angles of the DGM and three techniques 

- IBT, MBT, and GBT [142]. The paired t-test was used to assess differences in 

measurements and marking time between the DGM and three techniques, IBT, MBT, and 

GBT. Correlation coefficients (r) were also calculated to compare the DGM and the three 

techniques, and the correlation analyses showed statistically significant differences, based on 

an independent group of the same sample size. The researchers performed an Intra 

correlation coefficient (ICC) analysis on the IBT, MBT, and GBT experiments to confirm the 

correlations among them. In addition, the survey results on the IBT and the MBT or GBT 

were analyzed using the Wilcoxon signed rank test. All of the statistical analyses were 

conducted. 
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Results 

Table 5-2 presents the measurement of the diagonal line, height, and angle from the celiac 

artery to the segmental arteries for the DGM, whose design was validated by surgeons, 

conventional IBT, MBT, and GBT. The average time required to mark the vessel 

fenestrations (excluding cutting) using these three techniques for 15 patients was shown in 

Table 5-2. The MBT and GBT techniques showed a reduction in marking time by 17.6 and 

15.5 minutes, respectively, compared to the traditional IBT technique.  

 

Table 5-2.  Measurements and time requirements of graft reconstruction using DGM, IBT, 

MBT, and GBT. Note. DGM, digital graft model; IBT, image-based technique; MBT, model-

based technique; GBT, graft-based technique.  

 

Measurements 

DGM IBT MBT GBT 

Mean ± 

SD 

Mean ± 

SD 
P 

Mean ± 

SD 
P 

Mean ± 

SD 
P 

Diagonal line 

(mm) 

82.19 ± 

37.18 

91.38 ± 

42.38 
<0.001 

83.87 ± 

33.85 
<0.05 

83.19 ± 

33.27 
0.053 

Height (mm) 
70.20 ± 

43.99 

79.46 ± 

50.42 
<0.001 

71.70 ± 

41.77 
<0.05 

68.41 ± 

41.91 
<0.001 

Angle (°) 
47.38 ± 

18.67 

57.14 ± 

23.21 
<0.001 

56.28 ± 

22.31 
<0.001 

53.77 ± 

22.52 
<0.001 

Time (min) - 18.43 ± 9.60 0.80 ± 0.25 2.88 ± 0.83 <0.001 

 

According to the Bland–Altman analysis, the arithmetic mean and SD of the differences 

between the DGM and conventional IBT were -9.19 ± 16.47 mm (LoA: -41.47 to 23.08 mm) 

for the diagonal line, -9.25 ± 16.84 mm (LoA: -42.26 to 23.76 mm) for the height, and -9.76° 

± 10.05° (LoA: -29.47° to 9.95°) for the angle (Figure  5-5 (A-C)), respectively; the 

differences between the DGM and MBT was -1.67 ± 8.11 mm (LoA: -17.56 to 14.21 mm) 

for the diagonal line, -1.50 ± 8.60 mm (LoA: -18.35 to 15.36 mm) for the height, and -8.89° 

± 10.93° (LoA: -30.31° to 12.52°) for the angle (Figure  5-5 (D-F)), respectively. The 

arithmetic difference values for the diagonal line, height, and angle between the DGM and 

GBT were -1.00 ± 7.27 mm (LoA: -15.25 to 13.24 mm), 1.79 ± 4.93 mm (LoA: -7.86 to 
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11.45 mm), and -6.39° ± 10.29° (LoA: -26.55° to 13.78°) (Figure 5-5 (G-I)), respectively. 

There were statistically significant differences in all the measurements taken for the IBT, 

MBT, and GBT techniques, except for the diagonal line in the GBT.  

 

 

Figure 5-5. Bland–Altman plot indicating the distribution of the differences between DGM 

and IBT, divided by (A) diagonal line, (B) height and (C) angle; between the DGM and 

MBT, divided by (D) diagonal line, (E) height, (F) angle; and between the DGM and GBT, 

divided by (G) diagonal line, (H) height, and (I) angle. 

 

Table 5-3 shows the comparison results of correlation coefficients among three techniques 

(IBT, MBT, and GBT) and researchers, based on the diagonal length, height, and angle of the 

DGM. All the correlation coefficients indicated strong correlation with statistical 

significance. Furthermore, the ICC among three independent researchers demonstrated a 

high level of agreement, with a score of 0.986 for the conventional IBT and MBT 

techniques, and 0.995 for the GBT technique.  
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Table 5-3. Correlation coefficient between DGM and three techniques for diagonal length, 

height, and angle. Note. r12, correlation coefficient for DGM and IBT; r13, correlation 

coefficient for DGM and MBT; r14, correlation coefficient for DGM and GBT. 

Comparing correlation coefficient 

Diagonal line Height Angle 

r12 P r13 P r14 P 

DGM 

IBT 0.905 <0.001 0.933 <0.001 0.884 <0.001 

MBT 0.959 <0.001 0.970 <0.001 0.858 <0.001 

GBT 0.980 <0.001 0.993 <0.001 0.875 <0.001 

 

Table 5-4 displays the scores obtained from a survey questionnaire that evaluated the 

effectiveness of graft reconstruction guides in thoracoabdominal aortic repair. The survey 

asked participants to rate three different guides (IBT, MBT, and GBT) across several 

categories, including understanding, usefulness, satisfaction, surgical outcome, and 

recommendability for use by other surgeons. According to the survey results presented in the 

text, the average score obtained with MBT and GBT graft reconstruction guides was 59.33 ± 

0.58 out of 65, which is significantly higher than the score obtained with the conventional 

IBT guide, which was only 20.67. In addition, For the contribution to understanding the 

anatomic structure, 58.3% of the answers indicated strong agreement, 25%, agreement, and 

8.33%, neutral and disagreement for the MBT and GBT, whereas for the conventional IBT, 

25% of the answers indicated neutral, 41.7%, disagreement, and 33.3%, strong disagreement. 

Under the usefulness for graft reconstruction, 88.9% of the answers indicated strong 

agreement and 11.11%, agreement, in the MBT and GBT, whereas 22.2% indicated 

disagreement and 77.8%, strong disagreement in the conventional IBT. Finally, for the MBT 

and GBT, satisfactoriness of graft reconstruction, surgical outcomes, and recommendability 

to other surgeons was 88.33%, 66.67%, and 16.67% of strong agreement, and 16.67%, 

33.33%, and 83.33% of agreement, respectively, and, in the conventional IBT, 50% of 

disagreement and strong agreement were identified. Generally, the MBT and GBT scored 

higher than the conventional IBT with statistical significance. 
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Table 5-4. Retrospective survey in relation to understanding, usefulness, satisfaction, surgical 

outcome, and recommendability for use in other applications for IBT without 3D printing 

technique and MBT and GBT with 3D printing technique. 

Classification IBT (without 3DP) MBT and GBT (with 3DP) P 

Understanding the anatomic structure 1.92 ± 0.79 4.33 ± 0.98 <0.01 

Usefulness for graft reconstruction 1.22 ± 0.44 4.88 ± 0.33 <0.01 

Satisfaction for graft reconstruction 1.50 ± 0.55 4.83 ± 0.41 <0.05 

Surgical outcomes 1.50 ± 0.55 4.67 ± 0.52 <0.05 

Recommendations for other 

applications 
1.67 ± 0.52 4.17 ± 0.41 <0.05 
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6 Discussion 
 

Most medical devices are developed or tailored to fit common diseases or adults, leaving a 

significant unmet clinical demand for pediatric surgery, rare and complex cases, and 

surgeries that are difficult to standardize. 3DP technology can address these issues in medical 

applications. In order to apply 3DP in medicine, essential processes are required such as 

medical image acquisition, segmentation, 3D modeling, and measurement. However, these 

repetitive manual tasks are tedious, labor-intensive, time-consuming, and lack of 

consistency. In the typical workflow, it usually takes about a week from medical image 

acquisition to the fabrication of patient-specific guides or simulators using 3DP, which poses 

a significant time limitation for applying 3DP technology to emergency patients. To address 

these challenges, it is essential to develop automated workflows that incorporate advanced 

segmentation techniques using AL, along with API of CAD for design and measurement. 

Moreover, it is important to demonstrate the efficacy and efficiency of 3DP technology in 

clinical applications. The automated method and 3DP application in medicine offer several 

advantages: 1) it significantly reduces repetitive and labor-intensive manual workflow; 2) it 

alleviates time-consuming process; 3) it can be easily led to maintenance of consistency in 

semi-automated workflow and researchers; 4) it enables apply various application in medical 

fields. In this paper, we classified the necessary steps for implementing semi-automated 

workflows and 3DP technology for clinical applications as follows: 1) Automated and 

enhanced segmentation using semantic segmentation with AL, 2) Automated design and 

measurement with API of CAD, 3) Utilization of patient-specific guides fabricated using 

3DP from viewpoint of clinical application.  

Firstly, several experiments were conducted on Kidney CT with RCC, Dental CBCT, 

thoracoabdominal CT angiography, and abdominal CT angiography for automated 

segmentation using AL. AL is introduced to optimize the labeling dataset with stress testing 

by dividing the small amount of data and reducing labeling time and annotation effort for a 

large amount of data with smart labeling. Furthermore, manual segmentation can lead to 

variations in human labels due to inter- and intra-human variability. AL frameworks can 

mitigate this uncertainty by improving collaboration with the DL algorithm, thus increasing 

accuracy [28-35]. In addition, a systematic stress test can determine the minimum number of 

training data required to achieve clinically acceptable accuracy. We have distinguished 

several distinctive features for each study. In the kidney study, a total of 50 datasets consisted 

of artery, vein, ureter, parenchyma, and RCC were utilized and divided into 3 stages. Stage 1 

employed datasets containing RCC, while Stage 2 and 3 included both RCC and normal 



 

98 

kidneys. The cascaded 3D U-Net model was employed with high-resolution images (slice 

thickness of 0.70 - 1.00 mm). In the condyle study, a total of 234 datasets were utilized and 

divided into 5 stages. Stages 1, 2, and 3 consisted exclusively of datasets from KUMC, while 

Stages 4 and 5 included data from both KUMC and AMC. The networks were 3D U-Net and 

cascaded 3D U-Net. The thoracoabdominal aortic dissection study utilized a dataset of 47 

high-resolution images, focusing on the segmentation of aorta and vessels. The dataset was 

divided into three stages, employing UNETR, SwinUNET, and nnU-Net models. In the 

abdominal aortic aneurysm, a dataset of 300 low-resolution CT images was utilized for the 

segmentation of aorta, thrombus, calcification, and vessels. The dataset was divided into 5 

stages, and the UNETR, SwinUNET, and nnU-Net models were employed for the AL (Table 

6-1). 
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Table 6-1. The summary of each task 

 

Note: *Stage 1 with RCC kidney and Stage 2-3 with normal and RCC kidney, ** 30 RCC and 20 Normal kidney *** Stage 1-3 with KUMC and 

Stage 4-5 with AMC and KUMC, ****72 AMC and 162 KUMC dataset; KUMC, Korea university medical center; AMC, Asan medical center; 

RCC, Renal cell carcinoma. 

Tasks Kidney Mandibular condyle 
Thoracoabdominal  

aortic dissection 

Abdominal aortic  

aneurysm 

Stage 3* 5*** 3 5 

Total dataset 50** 234**** 47 300 

Classes 
Artery, Vein, Ureter,  

parenchyma, RCC 
Mandibular condyle Aorta, Vessels 

Aorta, Thrombus,  

Calcification, Vessels  

Preprocessing 
Min-max normalization,  

kidney cropping  

Min-max normalization,  

condyle cropping 

Min-max  

normalization  

Min-max  

normalization  

Augmentation 
Random rotation,  

flipping, resizing 

Random rotation,  

flipping, resizing 

Random rotation,  

flipping, resizing 

Random rotation,  

flipping, resizing 

Slice thickness 0.70 – 1.00 mm 0.30 mm 1.0 – 5.0 mm 2.5 – 5.0 mm 

Network Cascade 3D U-Net 
3D U-Net,  

Cascade 3D U-Net 

UNETR, SwinUNETR,  

nnU-Net 

UNETR, SwinUNETR, 

nnU-Net 

Institute AMC AMC, KUMC AMC AMC 
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In normal and RCC kidney segmentation of kidney CT, the segmentation network 

demonstrated an increase in accuracy across the stages and its overall performance was 

comparable to other advanced segmentation networks. Parenchyma, which has the largest 

volume and relatively consistent anatomy in the kidney, was the most accurately segmented 

ROI. On the other hand, RCC, which has high variation in size and location and a relatively 

small dataset, had the lowest average and high SD among the multi-classes. Although RCC 

was not segmented precisely, the segmentation of the surrounding parenchyma was helpful 

in identifying the region where RCC was located. Vessels and ureter entering the 

parenchyma, as well as RCC, were thin and complex structures that posed challenges for 

segmentation. Despite the low mean DSC score, the segmentation in the arterial phase was 

useful in identifying their location (Figure 6-1). The manual segmentation and segmentation 

AL-corrected by the CNN took approximately 150 and 73 minutes, respectively, which is a 

reduction of more than 50% in time. Moreover, using AL, the AL-corrected segmentation 

helped to decrease the effort required for generating new ground truths. Modifying the CNN 

segmentation was found to be more efficient and timesaving, as well as less prone to 

variability, compared to manual annotation. 

 

 

Figure 6-1. A case for cascaded 3D U-Net (A) images, (B) prediction, and (C) ground truth 

in kidney CT 
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In mandibular condyle segmentation of dental CBCT, we investigated the effectiveness of 

a cascade 3D U-Net model, which is a semi-automated segmentation model for mandibular 

condyle, and found that it had higher accuracy compared to a basic 3D U-Net architecture. 

The mandibular condyles were segmented using the 3D U-Net, and then the images were 

cropped to include a margin around the condylar head. The cascade 3D U-Net architecture 

was utilized to further improve the segmentation performance. The cascade 3D U-Net 

showed better performance than the basic 3D U-Net in all stages of test datasets, with a 

higher mean DSC. This suggests that the inclusion of ROI detection prior to segmentation 

improves the performance of the cascade model. In fact, even with a smaller dataset of 80 

samples in stage I, the cascade 3D U-Net showed higher accuracy to stage III, which used 

162 samples and the basic 3D U-Net (Table 3-4). In some cases, the basic 3D U-Net model 

showed better segmentation accuracy than the cascade 3D U-Net, and Overall HD was 

superior to basic 3D U-Net than cascade 3D U-Net. This could be attributed to the fact that 

the basic 3D U-Net was trained on full images with adjacent anatomical structures, while the 

cascade model was trained only on cropped images of the condylar head. As a result, the 

cascade model may have difficulty distinguishing adjacent structures like the maxilla and 

temporal bone, which could lead to noise (Figure 6-2 (A)). in addition, unlike basic 3D U-

Nets, Cascade 3D U-Nets tend to be under-segmented compared to the ground truth (Figure 

6-2 (B) and Table 3-14 (D)). The use of basic 3D U-Net and cascade 3D U-Net significantly 

reduced the segmentation time by 10.62 min and 12.45 min, respectively, compared to 

manual segmentation. The stress test conducted on both basic and cascade 3D U-Net models 

indicated that as the dataset size increased, the segmentation accuracy also improved (Table 

3-4). In addition, in stage 1, 2, and 3 trained on a dataset from one institution (KUMC), a 

relatively low DSC was observed when testing on a dataset from another institution (AMC). 

However, in stage 4 and 5, which used datasets from both institutions, it was observed that 

the DSC dramatically increased (Table 6-2). 
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Table 6-2. Dice similarity coefficient for each institution with each stage of mandibular 

condyles with a basic 3D U-Net and cascade 3D U-Net in CBCT. Note: AMC, Asan Medical 

Center; KUMC, Korea University Medical Center 

Institution Model Stage 1 Stage 2 Stage 3 Stage 4 Stage 5 

AMC 

Basic  
3D U-Net 0.750 ± 0.090 0.731 ± 0.094 0.819 ± 0.053 0.908 ± 0.015 0.913 ± 0.020 

Cascaded  
3D U-Net 0.859 ± 0.048 0.855 ± 0.044 0.881 ± 0.031 0.914 ± 0.027 0.914 ± 0.024 

KUMC 

Basic  
3D U-Net 0.888 ± 0.027 0.919 ± 0.039 0.915 ± 0.030 0.920 ± 0.032 0.925 ± 0.022 

Cascaded  
3D U-Net 0.924 ± 0.025 0.936 ± 0.022 0.935 ± 0.026 0.936 ± 0.025 0.938 ± 0.019 
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Figure 6-2. The errors for prediction of cascade 3D U-net including (A) noise and (B) under segmentation. 
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In thoracoabdominal aortic dissection on CT angiography, we compared the accuracy of 

various DL models for multi-class segmentation at different stages, including UNETR and 

SwinUNETR of MONAI and 2D U-Net, 3D U-Net, 2D-3D U-Net ensemble, and cascade 3D 

U-Net of nnU-Net. The average DSC scores for the two subclasses tended to improve or 

remain consistent as the stage increased (i.e., as the number of patient data increased), 

indicating higher or similar performance. The aorta with cascade 3D U-Net and vessels with 

SwinUNETR in Stage 3 achieved the highest accuracy among various networks. The average 

HD is shown in the best performance with 3D U-Net. Through the stress test, it was found 

that the aorta dataset had reached saturation in stage 2 of SwinUNETR and the vessels need 

more dataset to improve performance beyond stage 3 (Table 3-6). The reason for segmenting 

the aorta and vessels separately is that when these relatively large and small areas are trained 

with a single label, the numerically evaluated metrics such as DSC or HD may appear 

excellent, but we found that the actual important vessel segmentation is almost not 

performed. In all stages, the performance of aorta segmentation was superior to vessels 

segmentation, which showed significantly lower accuracy. Compared to the relatively large 

area of the aorta, vessels have complex structures, are distributed in various areas, and have a 

thickness of less than 1 mm, making it difficult to predict vessels accurately due to confusion 

with other thin vessels around them, especially those that are not intercostal arteries (Figure 

6-3). The segmentation time using 3D U-Net in the final stage, which showed the best 

performance, was reduced by about 4 times to 24.39 min in the aorta and by about 1.5 times 

to 19.46 min in the vessel compared to the manual segmentation time. 
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Figure 6-3. Best case for SwinUNETR with images, prediction (SwinUNETR and 2D U-Net), and ground truth in thoracoabdominal aortic 

dissection. 
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In abdominal aortic aneurysm, we compared the accuracy of various models, including 

UNETR and SwinUNETR of MONAI and 2D U-Net, 3D U-Net, 2D-3D U-Net ensemble, 

and cascade 3D U-Net of nnU-Net for each stage. Table 3-9 presents the DSC for each of the 

four subclasses in each of the five stages for the various networks. The average DSC scores 

for the four subclasses tended to improve or remain consistent as the stage increased (i.e., as 

the number of patient data increased), indicating higher or similar performance. The nnU-Net 

outperformed UNETR and SwinUNETR in all stages, and at stage 5, 2D-3D U-Net ensemble 

achieved the highest accuracy for aorta and calcification, respectively. For cascade 3D U-

Net, thrombus achieved the best performance, while vessels showed the highest accuracy 

with 3D U-Net. The evaluation of HD is presented in Table 3-10, and similar to DSC, the 

HD values generally showed higher or comparable performance as the stage increased (i.e., 

as the number of patient data increased). Aorta achieved the best performance in 2D-3D U-

Net ensemble, while calcification achieved the highest accuracy in 3D U-Net. In contrast to 

DSC, UNETR showed better performance for thrombus and vessels, respectively. Due to the 

usage of CT images with contrast-enhanced blood vessels, Aorta exhibited the best 

performance compared to other subclasses, while thrombus and calcification, particularly 

vessels, showed relatively poor performance. The thrombus does not have contrast agent 

insertion, making it difficult to distinguish from surrounding tissues and organs. In addition, 

it has variations in different areas and sizes among patients. Calcification is small areas and 

randomly distributed on the aortic wall. Furthermore, vessels consisting of lumbar and 

inferior mesenteric artery with thin walls are challenging to identify in low-resolution images 

with a slice thickness of 3 mm (Figure 6-4). Through the stress test, it was found that the 

aorta dataset had reached saturation in stage 1 of 3D U-Net, as the difference in DSC 

between stage 1 with 60 cases and stage 5 with 300 cases was the range of -0.037 to 0.072 in 

3D U-Net, which was a smaller range than other subclasses. On the other hand, for 

calcification, there was a tendency of increasing performance from stage 1 to 3, which 

plateaued from stage 4 onwards. Thrombus and vessels exhibited relatively large errors 

between each stage, and to achieve better performance, more datasets need to be added even 

after stage 5 using 300 cases. Mean time for manual segmentation was 31.88 ± 4.04 and 

50.09 ± 5.93 min in aorta and vessels, respectively and mean time for segmentation using 

SwinUNETR was 7.75 ± 2.26 min and 29.24 ± 3.45 min, respectively. Although the 

performance in subclasses other than aorta was relatively poor, it was observed that the time 

for AL-corrected segmentation was reduced compared to manual segmentation because the 

location of each class could be indicated.  
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Figure 6-4. Best case for 3D U-Net with images, prediction (3D U-Net and UNETR), and ground truth 
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Based on the results of 4 studies in semi-automated segmentation, various analysis was 

conducted. It was observed that intra- and inter-observer variation occurs during manual 

segmentation and AL-corrected segmentation (Table 6-3). The difference between manual 

segmentation and AL-corrected segmentation, excluding calcification of observer 2, was 

shown within 2.00 mm and there was minimal differences between two observers in the all 

classes except for thrombus. The reason for inter-observer variation in thrombus is attributed 

to the difficulty in distinguishing between the area where blood is pooled and the region of 

the aortic wall in images with a slice thickness of 3.0 mm 

 

Table 6-3 Intra- and inter-observer variation for 4 classes in abdominal aortic aneurysm. 

Difference Aorta Thrombus Calcification Vessels 

Intra-observer 
 variation 

Observer 1 0.37 0.63 0.77 1.14 

Observer 2 0.36 0.56 2.36 1.15 

Inter-observer  
variation 

Manual segmentation 0.36 2.19 0.32 0.80 

AL-corrected segmentation 0.65 2.24 0.47 1.21 
 

The networks demonstrated the best performance depending on the class in each study. 

Specifically, for the mandibular condyle, the cascade 3D U-Net outperformed the 3D U-Net 

at all stages, showing superior performance. In the case of the aorta in thoracoabdominal 

aortic dissection, both 3D U-Net and cascaded 3D U-Net demonstrated the best performance 

at all stages. However, for the vessels, the 3D U-Net exhibited the best performance in the 

stage 1, while SwinUNETR showed superior performance in the later stages. For abdominal 

aortic aneurysm, nnU-Net, which includes 3D U-Net, cascade 3D U-Net, and 2D-3D U-Net 

ensemble, demonstrated better performance than UNETR and SwinUNETR for all classes 

(Table 6-4). 
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Table 6-4. The best network for each stage and class in 4 studies 

DSC Classes Stage 1 Stage 2 Stage 3 Stage 4 Stage 5 

Kidney 

Artery 

3D U-Net - 

Vein 

Ureter 

Parenchyma 

RCC 

Mandibular condyle Condyle Cascade 3D U-Net 

Thracoabdominal  
aortic dissection 

Aorta Cascade 3D U-Net 3D U-Net Cascade 3D U-Net 
- 

Vessels 3D U-Net SwinUNETR SwinUNETR 

Abdominal  
aortic aneurysm 

Aorta Cascade 3D U-Net Cascade 3D U-Net Cascade 3D U-Net 2D-3D U-Net ensemble 2D-3D U-Net ensemble 

Thrombus Cascade 3D U-Net Cascade 3D U-Net Cascade 3D U-Net 2D-3D U-Net ensemble Cascade 3D U-Net 

Calcification 3D U-Net Cascade 3D U-Net 2D-3D U-Net ensemble Cascade 3D U-Net 2D-3D U-Net ensemble 

Vessels Cascade 3D U-Net Cascade 3D U-Net Cascade 3D U-Net Cascade 3D U-Net 3D U-Net 
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In addition, based on two aortic studies, we compared the differences between 2D and 3D 

approaches as well as high-resolution and low-resolution of CT images. The discrepancies in 

image dimensions showed that, except for vessels of stage 1, calcification of stage 2, and 

aorta and calcification of stage 3 in the abdominal aortic aneurysm, the 3D U-Net 

outperformed the 2D U-Net in all other classes. However, even when the 2D U-Net exhibited 

better performance, the discrepancy in DSC between the two networks was less than 1% 

(Table 6-5). In the comparison of high- and low-resolution CT images, we focused on the 

aorta and vessels in Stage 3 of thoracoabdominal aortic dissection using a dataset of 47 

cases, as well as Stage 1 of abdominal aortic aneurysm using a dataset of 60 cases. The 

dataset for thoracoabdominal aortic dissection primarily consisted of high-resolution images 

with a slice thickness of 1.0 mm, while the dataset for abdominal aortic aneurysm 

predominantly comprised relatively low-resolution images with a slice thickness of 3.0 or 

5.0 mm (Table 6-1). Comparing the results using 6 different networks, high-resolution 

images exhibited superior performance in all classes and networks, except for aorta when 

using the 2D U-Net. Particularly, for aorta, the difference of the DSC showed minimal errors 

ranging from -1.76% to 3.77%. However, for vessels, there was a substantial improvement in 

performance, with the difference ranging from 24.82% to 48.25% (Table 6-6). Therefore, 

vessels with a relatively smaller area and a high level of difficulty in labeling than aorta have 

a significant effect on image resolution. 
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Table 6-5. Comparison between 2D and 3D U-Net of nnU-Net in two aortic studies 

Tasks Stage 
2D U-Net    3D U-Net 

Aorta Thrombus Calcification Vessels 
 

Aorta Thrombus Calcification Vessels 

Thracoabdominal  
aortic dissection 

1 0.857 ± 0.147 

- 

0.487 ± 0.109 
 

0.945 ± 0.010 

- 

0.590 ± 0.030 

2 0.869 ± 0.119 0.554 ± 0.051 
 

0.947 ± 0.010 0.616 ± 0.051 

3 0.880 ± 0.117 0.567 ± 0.038 
 

0.951 ± 0.004 0.614 ± 0.062 

Abdominal aortic  
aneurysm 

1 0.898 ± 0.035 0.709 ± 0.206 0.593 ± 0.213 0.318 ± 0.141 
 

0.913 ± 0.034 0.732 ± 0.229 0.678 ± 0.223 0.309 ± 0.146 

2 0.902 ± 0.038 0.698 ± 0.259 0.604 ± 0.137 0.294 ± 0.142 
 

0.912 ± 0.037 0.737 ± 0.227 0.601 ± 0.161 0.374 ± 0.167 

3 0.910 ± 0.035 0.744 ± 0.200 0.670 ± 0.230 0.394 ± 0.185 
 

0.909 ± 0.038 0.745 ± 0.227 0.665 ± 0.237 0.436 ± 0.206 

4 0.919 ± 0.026 0.752 ± 0.226 0.692 ± 0.230 0.394 ± 0.195 
 

0.917 ± 0.038 0.758 ± 0.230 0.702 ± 0.198 0.441 ± 0.191 

5 0.922 ± 0.027 0.749 ± 0.223 0.686 ± 0.229 0.430 ± 0.186 
 

0.926 ± 0.026 0.779 ± 0.190 0.702 ± 0.210 0.481 ± 0.154 
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Table 6-6. Comparison between high- and low-resolution with 6 networks in two aortic 

studies 

Network Classes Thracoabdominal  
aortic dissection 

Abdominal aortic  
aneurysm 

UNETR 
Aorta 0.897 ± 0.037 0.890 ± 0.051 

Vessels 0.608 ± 0.092 0.198 ± 0.150 

SwinUNETR 
Aorta 0.927 ± 0.027 0.895 ± 0.050 

Vessels 0.722 ± 0.073 0.240 ± 0.156 

2D U-Net 
Aorta 0.880 ± 0.117 0.898 ± 0.035 

Vessels 0.567 ± 0.038 0.318 ± 0.141 

3D U-Net 
Aorta 0.951 ± 0.004 0.913 ± 0.034 

Vessels 0.614 ± 0.062 0.309 ± 0.146 

2D-3D U-Net ensemble 
Aorta 0.945 ± 0.008 0.910 ± 0.031 

Vessels 0.609 ± 0.056 0.320 ± 0.151 

Cascade 3D U-Net 
Aorta 0.951 ± 0.007 0.914 ± 0.033 

Vessels 0.621 ± 0.063 0.363 ± 0.141 
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The second study conducted two experiments on automated 3D CAD modeling and 

measurement using a script-based API with Python, with data from thoracoabdominal aortic 

dissection and abdominal aortic aneurysm. In thoracoabdominal aortic dissection, we 

developed a semi-automated CAD modeling method for reconstructing grafts and compared 

its accuracy and modeling time with the conventional method. The semi-automated design 

requires manual inputs such as the creation and correction of center line for the main and 

vascular grafts, diameter of the main graft (ranging from 22–30 mm), type of graft 

reconstruction guide, and the extent of thoracoabdominal aortic dissection as determined by 

the surgeon. Centerline can be generated automatically, but it requires additional manual 

work such as removing unnecessary curves and performing smoothing to achieve an ideal 

centerline. Due to these additional tasks, the automation program does not include them. The 

conventional method and the automated method were compared, and the absolute mean 

differences were evaluated. The maximum difference was 50.10 μm in the visualizing guide 

and 162.09 μm in the marking guide (Table 4-2). The differences observed between the two 

modeling methods were attributed primarily to remeshing and smoothing of the triangles. 

Unlike parametric modeling based on 2D sketches, direct 3D modeling allows for greater 

flexibility in modifying the geometry and vector direction of the model, which can result in 

small deformations due to the edge length and number of iterations used for remeshing and 

mesh arrangement. On the other hand, the time of the automatic modeling for the visualizing 

guide was reduced to 26.70 ± 5.55 min, more than approximately thirtyfold less than the 

conventional method. The marking guide was reduced to 31.32 ± 5.85 min, about fortyfold 

less than the conventional method. Part inspection is closely related to modeling time as it 

can affect the throughput of unnecessary noise shells. If part inspection is not conducted, 

data processing for these shells may take a long time or continue indefinitely, resulting in 

longer modeling times. To address this issue, part inspection is performed to remove 

unnecessary noise shells, remesh uneven meshes, and auto-fix errors such as intersecting and 

overlapping triangles, inverted triangles, bad edges, and planar holes. We discovered that the 

absolute mean differences between the two modeling methods were relatively small, but the 

use of the automated modeling method dramatically reduced the modeling time compared to 

the conventional method. To improve the robustness of the evaluation, we added 5 patients 

for validation to confirm the accuracy and time spent. The accuracy for 5 patients for 

validation between conventional and automatic modeling was 4.10 ± 1.10 μm in the 

visualizing guide and 3.59 ± 1.90 μm in the marking guide, which is similar to the accuracies 

of 10 patients in the study (Table 6-7). In addition, the time spent for the 5 patients for 
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validation with the conventional and the automatic modeling methods were 26.15 ± 1.10 

min and 1.33 ± 0.5 min for the visualizing guide, respectively, and 30.52 ± 3.17 min and 0.68 

± 0.13 min for the marking guide, respectively. The results dramatically reduced the time 

spent (P<0.05) (Table 6-8). 

 

Table 6-7. Hausdorff average distance of 5 patients for validation between conventional and 

automated modeling methods with visualizing and marking guides. Note: CP, corresponding 

point. 

Patients 

No. 

Visualization guide 
 

Marking guide 

Distance (μm) Max (μm) # of CPs 
 

Distance (μm) Max (μm) # of CPs 

1 5.10 ± 3.03 30.35 16,140 
 

6.44 ± 3.07 35.01 13,679 

2 3.53 ± 3.14 34.72 18,614 
 

3.34 ± 2.37 28.94 11,810 

3 4.17 ± 3.50 143.45 23,576 
 

2.74 ± 2.46 70.99 10,432 

4 5.14 ± 3.36 38.86 24,072 
 

2.56 ± 2.43 30.25 12,428 

5 2.55 ± 2.37 25.9 23,341 
 

2.62 ± 2.33 29.02 16,709 
 

Table 6-8. Modeling time of 5 patients for validation with conventional and automated 

modeling methods consisted of two types of patient-specific graft reconstruction guides. 

Patients 

No. 

Visualizing guide(min)   Marking guide (min) 

Conventional  
modeling method  

Automated  
modeling method  

  Conventional  
modeling method  

Automated  
modeling method  

1 24.71  0.56    27.12  0.53  

2 26.38  0.78    28.05  0.67  

3 23.90  0.63    30.22  0.63  

4 27.03  1.27    34.90  0.65  

5 28.80  1.90    32.35  0.62  
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In AAA of CT angiography, we developed an automated CAD measurement method for 

clinically defined landmarks to select a commercially available graft stent that is suitable for 

patients with AAA growth and undergoing EVAR. The landmarks were classified into 7 

categories based on the shape of the abdominal aorta: 1) aortic neck diameter, 2) aortic 

aneurysm diameter, 3) right iliac artery diameter, 4) left iliac artery diameter, 5) aortic neck 

length, 6) common iliac artery tortuosity, and 7) aortic neck angulation. In addition, we 

developed and applied module 1 (Algorithm 4-3) to obtain the maximum length of the curve 

by intersecting the plane with the aortic model, which is commonly used to measure each 

landmark and applied module 2 (Algorithm 4-4). to perform the measurement for landmarks. 

To perform all measurements, manual input data are required such as a 3D aortic model with 

thrombus, a centerline of the aortic model divided by the aortic neck, the aortic aneurysm, 

the right and left iliac artery, and a plane of the right and left iliac artery. By selecting the 

landmark, the desired automated measurement can be performed. The mean differences 

between manual and automated measurements showed a small range of errors from -2.80 

mm to 0.23 mm for all measurements except for tortuosity of the iliac artery. However, 

tortuosity exhibited a relatively large range of errors from -9.80 mm to 8.30 mm in terms of 

both line and curve length on both sides. For the angulation between the centerline of the 

aortic neck and aneurysm, errors for 3 patients were observed in both manual and automated 

measurements when the angle was above or below 60 degrees (Table 4-5). The errors of a 

semi-automated measurement can be attributed to the variation in human input data obtained 

through the manual process of dividing the centerline, which is necessary for the automated 

measurement of aortic neck, aortic diameter, and left and right tortuosity involving curves 

and line lengths. To evaluate the human variation for input data, we conducted a correlation 

analysis among three researchers, which showed high agreement with 1.00 of ICC in all 

measurements, indicating the absence of human error for the automated measurements 

(Table 6-9). The causes of manual and automated measurement errors can be attributed to the 

fact that the conventional measurements were conducted based on 2D images, which differs 

from the 3D model-based approach. Specifically, the diameter measurements of the aortic 

neck, aneurysm, right and left iliac arteries were limited by the fact that the maximum 

diameter value was obtained by searching for the maximum diameter value among multiple 

slices in the axial view, and even if the slice with the maximum diameter value was 

identified, the shape of the aorta displayed in that slice appeared as an oval shape rather than 

a circular shape, making it difficult to obtain the major axis of the ellipse. Furthermore, the 
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tortuosity measured by the curve and line measurements and the aortic neck length was 

measured in the coronal view, which differs from the 3D model-based approach. 

 

Table 6-9. Comparison of correlation between 3 researchers for in the aortic neck diameter, 

aortic neck length, right and left tortuosity including curve length, line length, and ratio. 

Correlation r12 p r13 p r23 p 

Aortic neck diameter 0.999 0.990 1.000 0.425 0.998 0.873 

Aortic neck length 1.000 0.541 1.000 0.341 1.000 0.607 

Rt.tortuosity 

Curve length 1.000 0.539 1.000 0.539 1.000 * 

Line length 1.000 0.928 1.000 0.928 1.000 0.847 

Ratio 0.999 0.236 0.999 0.236 1.000 * 

Lt.tortuosity 

Curve length 1.000 0.195 1.000 0.195 1.000 * 

Line length 1.000 0.167 1.000 0.167 1.000 0.843 

Ratio 1.000 0.343 1.000 0.343 1.000 * 

Note: *All measurements are equal; r12, correlation between researcher 1 and 2; r13, 

correlation between researcher 1 and 3; r23, correlation between researcher 2 and 3. 

 

The third study aims to evaluate the accuracy and efficiency of patient-specific 3DP 

guides fabricated based on automated segmentation and modeling, and to clinically apply 

them. In thoracoabdominal aortic dissection of CT angiography, we developed two 

reconstruction techniques using 3D-printed patient-specific graft reconstruction guides. The 

first technique, called MBT, involved a visualizing guide based on a realistic-shaped graft 

model that included the main aortic body and its branching vessels. This allowed manual 

positioning of the branching grafts on the artificial aortic graft. The second technique, called 

GBT, utilized marking guides with slightly protruding marking points instead of the 

branching vessels in the visualizing guide. The surgical repair of Crawford extent II or III 

thoracoabdominal aortic dissection a challenging procedure associated with a high risk of 

mortality and complications. The traditional approach of utilizing a single patch to connect 

all the branches in the Crawford's island technique is no longer favored due to the potential 

risk of aneurysm formation in the remaining aortic island, especially in individuals with 

connective tissue disorders such as Marfan syndrome [118, 143-145]. The alternative 

approach is now favored in order to prevent the development of an aneurysm in the 
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reconstructed aorta [144, 146-148]. In cases where the branching arteries are widely 

separated, a graft with multiple branches may be necessary for successful treatment of the 

diseased aorta. However, the prevention of paraplegia is of utmost importance during the 

open surgical repair of thoracoabdominal aortic dissection, particularly in extent II and III, as 

it is a serious complication. The segmental arteries between thoracic-8 and lumbar-2 are 

crucial for protecting the spinal cord, and many institutions incorporate large intercostal 

arteries into their surgical approach to restore blood flow to the spinal cord [119, 149]. In 

order to address the risk of future patch aneurysms in patients undergoing open surgery for 

thoracoabdominal aortic dissection, we utilized personalized multi-branched aortic grafts 

that were fabricated using 3DP technology. This allowed for more precise reconstruction of 

the aorta during surgery and yielded favorable operative outcomes. In addition, we have 

implemented MBT and GBT techniques to further improve efficiency and accuracy. The aim 

of this retrospective study is to quantitatively evaluate the effectiveness of these techniques.  

Park et al. [120]  developed the octopod technique, which involves using an eight-

branched aortic graft based on the IBT. However, performing the graft reconstruction using 

CT images while the patient is under anesthesia in the operating room can be difficult, as it 

hinders the ability to fully understand the patient's unique characteristics and limits the 

accuracy of the procedure. For example, the second patient's aortic anatomy was atypical due 

to severe scoliosis, which made it difficult to accurately mark the graft for replacement using 

conventional IBT based on CT scans. However, MBT and GBT techniques using visualizing 

and marking guides effectively overcame this anatomical challenge and shortened the graft 

marking time [58].  In our previous study, Rhee et al. [125] conducted a study on the use of 

3DP guidance in open surgical repair of thoracoabdominal aortic dissection and aneurysm. 

Although the number of cases was small, the study found that patients who underwent 3DP 

had a shorter duration of cardiopulmonary bypass time, despite having more segmental 

arteries revascularized which typically requires longer bypass times. This suggests that 3DP 

may allow for more complete procedures with more segmental artery anastomoses, which 

can help prevent paraplegia and decrease bypass time. However, more research is needed due 

to the limited sample size and experience with 3DP guidance in this type of surgery.  

We evaluated three techniques by conducting experiments using 135 mimic grafts ranging 

from the aortic arch to the iliac artery, with 15 patients, 3 researchers, and 3 techniques 

involved. These grafts were designed to mimic standard cylindrical model grafts, which can 

be a cost-effective alternative. The study compared the accuracy and time requirements of 

the DGM, conventional IBT, MBT, and GBT. The errors observed in the experiments were 
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categorized into marking errors with medical images, 3DP errors, and human errors. The 

conventional IBT technique had marking errors that were influenced by subjective 

measurements made from CT images. The direction of the segmental arteries was determined 

based on the horizontal line between the center points of the aorta and the segmental arteries, 

but for patients with aneurysms, the aorta appeared elliptical instead of circular in the axial 

view, which led to errors in determining the center point of the aorta and blood vessel 

(Figure 6-5) [21, 150]. 

 

 

Figure 6-5. The subjective assessment and measurement error of elliptical aortic center and 

blood vessels in CT images. If a red line is selected instead of a green line, there is an error 

in angle measurement. 

 

The differences of MBT and GBT arose from 3DP technologies errors, including machine 

and 3D printed model and guide errors. The errors in 3DP machines are influenced by 

various environmental factors, such as temperature, humidity, and vibration, as well as the 

materials, resolution, and duration of usage of the 3D printers. The errors in 3D printed 

models and guides are affected by factors like their size, shape, 3DP direction, and angle, as 

well as the post-processing methods used, such as support removal, ultraviolet 

polymerization, and surface smoothing [21, 48]. Furthermore, sterilization processes 

involving high temperatures, such as autoclave and steam sterilization, have the potential to 

cause deformation or distortion of the graft reconstruction guide [151]. To mitigate these 

issues, we have chosen to use ethylene oxide gas sterilization, which operates at a relatively 

lower temperature. Three techniques were identified as being susceptible to human errors. In 

experiments conducted by three researchers, errors arose when using a digital caliper and 

digital angle ruler to measure defined landmarks such as the diagonal line, height, and angle.  

In the Bland–Altman analysis, the conventional IBT showed wider ranges of differences in 

the measured diagonal line, height, and angles compared to the MBT and GBT. Specifically, 
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the ranges for the conventional IBT were -45.96 to 33.83 mm for the diagonal line, -46.70 to 

33.34 mm for the height, and -39.05° to 13.05° for the angles. The differences among the 

diagonal line and height tended to fall in the negative or positive region as the distance 

between the segmental artery and celiac artery increased, and the differences between the 

angles tended to be mostly distributed in the negative region from zero. Outliers tended to 

appear in the IBT as the distances from the celiac artery from the segmental arteries 

increased in the diagonal line and height and occurred in patient with tortuous and swelling 

aneurysm aorta or scoliosis in the angle (Figure 5-5 (A)–(C)). For the MBT, the range of 

differences observed in the diagonal line, height, and angle measurements were -21.92 to 

20.39 mm, -25.54 to 18.73 mm, and -39.97° to 23.04°, respectively. In the GBT, the 

corresponding ranges were -21.22 to 19.29 mm, -12.56 to 14.34 mm, and -40.61° to 15.31°, 

respectively (Table 5-2). The diagonal line and height measurements in both the MBT and 

GBT were predominantly distributed in the region of negative differences when the 

measured distance was smaller. Conversely, as the measured distance increased, the 

differences tended to be positive. The bias of the diagonal line and angles was more 

significant in the GBT, whereas the bias of the height measurement was greater in the MBT 

(Figure 5-5 (D)–(I)). Outliers observed in the MBT and GBT measurements had a more 

significant impact on the morphology of the aorta than on the distance between the 

segmental arteries. In addition, both the MBT and GBT methods resulted in a significant 

reduction in graft marking time, and the reduction in time was proportional to the number of 

segmental arteries (Figure 6-6). 

 

 

Figure 6-6. Making time according to the number of segmental arteries for IBT, MBT and 

GBT. 
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For example, the graft marking time required for the first patient, who had the smallest 

number of segmental arteries, was 10.5 minutes for the conventional IBT method, while it 

was reduced to 0.5 and 2.8 minutes with the MBT and GBT methods, respectively. For the 

fourteenth patient, who had 13 segmental arteries, the graft reconstruction time was 36.5 

minutes for the IBT method, while it was reduced to 1.4 and 4.4 minutes with the MBT and 

GBT methods, respectively. On average, the MBT and GBT methods reduced the graft 

marking time by 17.4 and 15.5 minutes, respectively, representing a reduction of more than 

six times compared to the conventional IBT method (Figure 6-6). Despite the MBT being 

faster than the GBT for graft marking, the GBT showed higher accuracy. The correlation 

coefficient (r14) between the DGM and GBT was stronger for the diagonal line and height 

compared to the IBT (r12) and MBT (r13), while the angles had a similar level of correlation. 

This suggests that the GBT was the most similar to the DGM (Table 5-3). The ICC was used 

to assess the reproducibility of graft reconstruction among three researchers for the 

conventional IBT and the two new techniques. The results showed a high level of agreement 

for all techniques, with the GBT having an ICC of 0.995 and the IBT and MBT having an 

ICC of 0.986. After administering a questionnaire to three surgeons experienced in 

conventional IBT and the new techniques of MBT and GBT with 3DP, it was found that the 

latter two techniques with graft reconstruction guides were significantly more helpful to 

surgeons compared to conventional IBT. 

There are several limitations and future studies for automated workflow. Firstly, the 

automated workflows were primarily based on small data, and trials involving multiple 

centers are necessary for validation. Secondly, it is crucial to reduce the various elements 

obtained through manual work such as correction of prediction and inputs of modeling. 

Thirdly, there is a need for the development and application of alternative technologies such 

as AR or VR to overcome the limitations of 3DP, including factors like printing time, cost, 

and equipment errors. In semi-automatic segmentation, the exploration of augmentation for 

each class in automated segmentation using deep learning, as well as optimization of 

parameters and development of more advanced networks, is necessary. Furthermore, deep 

learning was applied using only one CT phase from each study. However, it is known that 

there are organs that exhibit prominent features depending on the CT phase. Therefore, 

conducting training with multiple CT phases can enhance the accuracy for each class and 

improve the overall performance. In semi-automated design and measurement, the algorithm 

requires optimization for a wide of cases to enable a user-friendly and accessible approach 

without requiring specialized knowledge. In addition, abdominal aortic aneurysm was 
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measured in 300 patients as a retrospective study, but follow-up of patients after EVAR is 

needed for the graft stent determined after automated measurement in a future study. In 

developing the patient-specific guides fabricated using 3DP and clinical application, a more 

comprehensive solution is needed such as direct printing using bio-materials, which can be 

applied to surgery without graft reconstruction. 

 

7 Conclusion 
 

In this paper, we developed an automated workflow that includes segmentation, 3D 

modeling, and measurement for the application of 3DP in medical field and demonstrated the 

usefulness and efficiency of 3DP technology for clinical applications. Firstly, the DL-based 

automated segmentation approach is developed using various networks such as 2D U-Net, 

3D U-Net, cascade 3D U-Net, UNETR, and SwinUNETR with AL, which reduce labeling 

effort with smart labeling by dividing multiple stages and stress tests to determine an 

optimized dataset for training in kidney with RCC, mandibular condyle, thoracoabdominal 

aortic dissection, and abdominal aortic aneurysm. The preprocessing methods include 

intensity min-max normalization to rescale various ranges to a 0-1 range, resampling to 

resize different spatial resolutions to a common resolution, cropping to remove irrelevant 

regions such as background or empty space (foreground), padding to restore the removed 

areas to the original image size. Augmentation techniques include random rotation, random 

flip, random scaling, random elastic deformation, random noise, random Gaussian blur, and 

random gamma correction. Secondly, the automated 3D CAD modeling and measurement is 

developed with script-based API based on automated segmentation and compared with 

manual methods in thoracoabdominal aortic dissection and AAA. To perform design and 

measurement for patients with varying anatomical structures, we optimized and modularized 

the series of processes required for automated modeling in our approach. Finally, two graft 

reconstruction techniques, called MBT and GBT, were developed for open surgical repair of 

thoracoabdominal aortic dissection using patient-specific guides fabricated by SLA and CJP 

methods. The accuracy and efficiency of these techniques were confirmed through clinical 

application and compared to the conventional IBT method. We developed an automated 

method to minimize labor-intensive and time-consuming repetitive manual tasks and 

provided solutions to address the major challenges using 3DP technology. Furthermore, the 

development of such automated workflows not only enables the application of 3DP but also 

facilitates faster execution of physicians' diagnosis and treatment plans, anatomical 
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understanding of patients, and researchers' studies compared to conventional methods. 
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Abstract (In Korean) 
 

의료분야에서 3D 프린팅 기술은 환자 맞춤형 수술 가이드, 시뮬레이터, 수술 계획, 

교육, 임플란트 등에 적용이 되어오고 있다. 의료에서 3D프린팅 기술을 적용하기 위

해서는 영상 획득, 분할, 3D CAD (Computed Aid Design) 모델링 혹은 측정과 같은 필수

적인 작업이 수행되어야 한다. 그러나, 이러한 업무들은 반복적이고 수작업으로 진행

되며 시간 소비적이고 노동 집약적인 업무가 될 수 있으며 작업자 간의 일관성도 부족

하다. 이러한 단점을 해결하기 위해서 CT 영상을 기반으로 딥러닝 기술을 사용하여 분

할 하고 3 차원 모델을 생성하여 스크립트 기반 API (Application Programming Interface) 

를 이용하여 자동화 모델링을 함으로서 개선이 될 수 있다.  이 연구는 3 가지로 나눠서 

진행하였다: 1) 레이블링 업무를 줄이기 위한 능동적 학습을 이용하여 자동화 및 강화

된 분할, 2) 자동화된 분할을 기반으로 3D 모델을 생성하여 스크립트 기반 API 를 이용

한 자동화된 환자 맞춤형 모델링과 특정 랜드마크에 대한 자동화 측정, 3) 3D 프린팅 

기술을 이용하여 환자 맞춤형 수술 가이드 제작 및 임상 적용을 통한 환자 맞춤형 수술 

가이드에 대한 유용성과 효율성을 증명하였다. 

첫번째 연구에서 의료영상 분할은 인체 내 다양한 정보를 얻기 위해 필수적이며 해

부학적 구조를 시각화 하여 의료진의 진단, 수술 계획, 장기 혹은 병변에 대한 정보를 

제공할 수 있다. 기존 의료영상 분할은 여러 도구를 사용하여 픽셀 단위로 수동 혹은 

반자동으로 분할하는 경우가 많았다. 그러나, 이러한 분할 방법은 낮은 대비, 영상 잡

음 등 다양한 요인으로 인해 일관된 분할이 어렵고 많은 시간이 소요된다. 최근 몇 년 

동안 심층 합성곱신경망 (convolution neural network, CNN), 완전 합성곱 네트워크 

(fully convolutional networks, FCN), U-Net 등과 같은 모델을 사용하여 이미지 분할에서 

상당한 발전을 이루고 있다. 이 연구에서는 흉복부 대동맥 박리 CT (Computed 

Tomography), 복부 대동맥류 CT, 하악과두 CBCT (Cone Beam CT), 신세포암을 포함한 

신장 CT 에서 데이터셋을 기반으로 여러 단계로 나누고 레이블링이 진행된 초기의 소

량 데이터셋에 대한 학습을 진행하여 새로운 데이터에 예측하고 전문가가 수정하는 

작업을 반복하는 (Human in the loop) 능동적 학습 방법을 도입하였다. 네트워크는 3D 

U-Net, Cascade 3D U-Net, UNETR, SwinUNETR, 그리고 nnU-Net 을 연구에 따라 선택

적으로 사용하여 능동적 학습을 수행했다. 평가 방법으로는 면적의 일치도를 평가하

는 DSC (Dice similarity coefficient) 와 거리의 일치도를 평가하는 95% HD (Hausdorff 

distance)를 사용하여 일정한 데이터셋으로 나눠진 단계에 대한 정확성, 분할하고자 하
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는 분류에 대한 정확성, 수동 분할과 스마트 레이블링을 이용한 분할 시간 비교, 최적

화된 데이터 수를 결정하기 위한 스트레스 테스트를 수행하였다.  

두번째 연구에서 자동화된 분할로 얻어진 3D 모델을 기반으로 3D CAD 기능을 이용

하여 목적에 맞는 모델링이나 진단 및 병변 추적을 위한 랜드마크 측정이 이루어진다. 

CAD 시스템을 통해 디자인을 쉽게 수정하여 임상 적용에서 정확도를 높일 수 있으며 

임상의의 특정 요구에 충족할 수 있도록 최적화 되어있다. 그러나, 수동적인 분할 작업

과 마찬가지로 기존의 모델링 방식은 시간 소비적이고 상당한 노동력이 요구된다. 스

크립트 기반 API를 이용한 자동화된 CAD 모델링 시스템은 기존 모델링 방법의 한계

를 해결하기 위해 짧은 시간에 우수한 성능, 정확성 및 효율성을 제공한다. 자동화된 

CAD 모델링은 일반적으로 3D 모델링에 대한 입력값과 매개변수를 설정하고 해당 사

양을 기반으로 알고리즘 및 프로그래밍 코드를 생성하여 API를 통해 코드를 CAD 소

프트웨어와 통합하여 모델링 및 수정이 가능하다. 흉복부 대동맥 박리 CT 와 복부대동

맥류 CT 에서 자동화된 3D CAD 모델링 및 측정은 기존의 수동 방식과 비교하였으며 

다양한 해부학적 구조를 가진 환자에 대한 설계 및 측정을 수행하기 위해 우리는 자동

화 모델링에 필요한 일련의 과정을 최적화 및 모듈화하고 검증하였다. 평가 방법으로

는 기존의 사용된 수동 방식과 자동화 CAD 모델링으로 수행된 3D 모델과 측정에 대한 

정확성 그리고 모델링에 대한 소요 시간을 분석하였다.  

마지막 연구에서 3D프린팅 기술은 대부분의 의료기기가 일반적인 질병이나 성인

에 맞게 개발되어 있거나 맞춤화 되어 소아, 희귀하고 복잡한 사례, 표준화되기 어려운 

수술에 대한 임상적 미충족 수요를 해결할 수 있는 장점을 가지고 있다. 3D 프린팅 기

술은 물체가 완전히 출력이 될 때까지 한 층씩 적층 하는 원리로 다양한 분야에서 적용

되고 있다. 사용하는 재료, 출력 방식에 따라 다양한 방식으로 분류할 수 있으며 자동

화된 분할과 3D CAD 모델링을 통해 얻어진 3D 모델을 STL 으로 변환하여 알맞은 3D

프린팅 방식을 선택해 출력을 진행하고 멸균을 거처 임상에 적용된다. 흉복부 대동맥 

박리에 대한 수술에서 환자 맞춤형으로 인공혈관 재건을 하기 위해서 3D 프린팅된 시

각화 가이드를 이용한 모델 기반 기술과 마킹 가이드를 이용한 가이드 기반 기술을 개

발하였다. 두개의 새로운 방법과 기존 이미지 기반 기술을 비교하여 정확성, 마킹 소요

시간, 재현성, 임상의를 대상으로 한 유용성과 효율성에 대한 설문조사 결과를 바탕으

로 그 효과를 입증하였다. 3D 프린팅 가이드에 대한 오차는 외부 환경이나 3D프린터

의 사용 기간, 해상도, 사용된 재료, 3D 모델의 형상, 3D 프린팅 조건, 그리고 후처리 등



 

136 

에 여러 영향으로 인해 3D 모델과의 차이가 발생할 수 있다.  

결론적으로 우리는 3D프린팅 기술을 임상에 적용하기 위한 절차인 분할과 모델링

에 대한 자동화 워크프로우를 개발하였으며 기존 작업의 한계점인 반복적인 작업과 

노동 집약적인 과정을 상당히 줄일 수 있었으며 코드화하여 작업에 대한 일관성 유지

와 작업 시간 절약을 통한 작업자의 피로도를 완화 시키고 3D프린팅 기술에 대한 적

용을 기존 방법에 비해 가속화 하였다. 또한, 기존에 존재하는 임상적 미충족 수요를 

3D프린팅 기술로 제작된 수술 가이드를 적용하여 임상적 유용성과 효율성이 증명되

었다. 

 

Key words: Automation, Segmentation, Active learning (AL), Computer aided design 
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할 수 있는 능력을 키울 수 있었습니다. 그리고, 연구실 생활 초기 팀을 이끌어 

주시고 지금까지 저의 연구를 지켜봐주신 김국배 대표님께 감사의 말씀 전합니

다. 박사과정을 시작하기 전 막연한 두려움이 있었을 때 대표님께서 격려 해주

신 덕분에 용기내어 박사과정을 시작 할 수 있었습니다. 또한, 바쁘신 와중에 

박사 심사와 졸업논문에 대해서 의학적 관점에서 가치 있는 조언을 해주신 고범

석 교수님, 유진수 교수님께도 감사의 말씀 전합니다. 교수님들의 의견을 보완

하여 한층 더 완성도가 높은 졸업 논문을 작성하였습니다. 

저의 첫 사수이자 의료 3D 프린팅에 대한 모든 것을 알려주신 이상욱 선생님, 

석사, 박사 학위까지 약 6 년이라는 긴 시간 동안 함께 고생하신 홍다영 선생님, 

연구에 대해서 조언을 구하고 의견을 나눌 수 있는 옥준혁 선생님, 유일한 연구

실 동기이자 정신적 지주가 되어준 권진희 선생님, 딥러닝에 대한 지식을 알려

주시고 박사 졸업에 도움을 주신 함성원 교수님, 저와 비슷한 연구를 하시는 온

성철 선생님, 열정을 가지고 연구하시는 김현정 선생님, 항상 밝은 모습을 보이

시는 김지연께도 깊은 감사의 마음을 전합니다. 선생님들이 계셨기에 함께 다양

한 연구를 하면서 결과를 만들고 즐겁게 연구를 할 수 있었습니다.이외에도 저
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와 같이 연구를 했었고 하고 계신 연구원분들께 감사한 마음을 전하고 좋은 결

과가 있기를 바라겠습니다.  

마지막으로 지금의 제가 있기 까지 항상 곁에서 힘이 되어주시고 관심을 가져

주신 아버지와 어머니, 그리고 형에게도 감사의 말을 전합니다. 많은 분들의 도

움과 성원이 있었기에 힘든 과정을 견디고 한 분야의 어엿한 박사가 되었습니다. 

온전히 저 혼자의 노력만으로는 불가능 했을 것이라 생각하며 지금까지 달려온 

것 처럼 앞으로도 더 성장할 수 있는 연구자가 될 수 있도록 최선과 노력을 다

하도록 하겠습니다.  
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