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ABSTRACT

Resource Optimization in Cooperative NOMA-based 5G Systems with

consideration of Cognitive Radio and Security

by

Carla Estefanı́a Garcı́a Moreta

Supervisor: Prof. In-Soo Koo

Submitted in Partial Fulfillment of the Requirements for the Degree of

Doctor of Philosophy (Electrical Engineering)

May 2023

Currently, the deployment of fifth-generation (5G) networks is underway in numerous

countries and regions, and it is expected to bring about a new era of innovation and connectivity

in the upcoming years. However, to satisfy the increasing demands for high data speed, minimal

delay, and pervasive computing in 5G and future wireless communication technologies, there is a

critical request for advanced communication system design. In particular, the primary challenge is

the efficient assignment of resources, which refers to managing limited quantities such as bandwidth,

power, and time in wireless communications. Furthermore, advancements in technologies accompany

the progress of wireless communication systems to enable faster data transfer rates, lower latency,

and more effective use of network resources. Based on the above observations, this thesis explores

and investigates efficient resource allocation strategies for promising 5G and beyond 5G candidate

technologies in terms of non-orthogonal multiple access (NOMA), beamforming, and mobile edge

computing (MEC). To further enhance the throughput and extend the coverage of the 5G networks,

in this thesis, we utilize collaborative communication techniques including relay selection, cognitive

radio (CR), and power allocation schemes.
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In addition, to address the problem of limited battery life in energy-constrained wireless

devices, energy harvesting (EH) techniques from ambient radio frequency (RF) signals have emerged

as a promising solution. EH techniques provide a sustainable and eco-friendly manner to power

devices, especially in remote locations where traditional power sources may not be available. In

this respect, simultaneous wireless information and power transfer (SWIPT) offers another option

in EH methods since it enables simultaneously both RF EH and information decoding for the user,

utilizing the same RF signal. Moreover, SWIPT eliminates the need for separate power and data

transmission systems, which reduces the complexity and cost of the overall system. Motivated by

the benefits mentioned above, SWIPT, linear and non-linear EH models are part of the wireless

network designs studied in this dissertation. Despite the potential of cooperative communications in

NOMA systems along with CR and SWIPT technologies to meet the requirements of 5G networks,

ensuring wireless security remains a significant challenge. In wireless transmission environments,

confidential information is particularly at risk of being intercepted by eavesdroppers. Although

industry and academia have proposed cryptographic encryption and decryption methods to overcome

this issue, these techniques rely heavily on complex decoding/encoding algorithms and encryption key

management, which require significant computing power and resource consumption. Furthermore,

these complex algorithms can be compromised, as eavesdroppers nowadays have access to high

computational power. Therefore, this thesis proposes an alternative approach to conventional

security techniques by utilizing physical layer security (PLS) in our systems, which takes advantage

of the characteristics of wireless channels. PLS provides security regardless of the computing

ability of the communication equipment even if the eavesdropper has strong computing capability.

Furthermore, resource allocation optimization is a crucial task in 5G networks, which aims to

maximize the utilization of network resources while meeting the quality of service (QoS) requirements

of the users. Nevertheless, resource allocation optimization is a complex problem, and solving it

can be computationally intensive. Therefore, reducing computational complexity is an important
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research field in wireless communications that brings several benefits. For instance, simplifying

computational complexity ensures data is processed faster, preventing delays and ensuring smooth

communication. Moreover, as the number of users in wireless communication systems increases,

so does the computational load. By reducing the computational complexity, the system can scale

easier without requiring additional resources. Hence, in this thesis, we investigate low-complexity

algorithms that can significantly reduce the computational complexity of solutions that lead to

resource allocation optimization in 5G networks. In particular, we study metaheuristics techniques

that utilize a trade-off between randomization and local search to obtain an approximately optimal

solution. In addition, machine learning (ML)-based schemes are considered in this thesis to reduce

computational complexity by learning patterns in the data and optimizing the processing accordingly.

Firstly, we study the problem of secure computation efficiency (SCE) in a NOMA MEC

system with a nonlinear EH user and a power beacon in the presence of an eavesdropper. To further

provide a friendly environment resource allocation design, wireless power transfer is applied. The

SCE problem is solved by jointly optimizing the transmission power, the time allocations for energy

transfer, the computation time, and the central processing unit (CPU) frequency in the NOMA-

enabled MEC system. The problem is non-convex and challenging to solve because of the complexity

of the objective function in meeting constraints that ensure the required QoS, such as the minimum

value of computed bits, limitations on total energy consumed by users, maximum CPU frequency,

and minimum harvested energy and computation offloading times. Therefore, a low-complexity

particle swarm optimization (PSO)-based algorithm is proposed to solve this optimization problem.

For comparison purposes, time division multiple access and fully offloading baseline schemes are

investigated. Simulation results show the superiority of the proposed approach over baseline schemes.

Secondly, we investigate a beamforming design with artificial noise (AN) to improve the

security of a multi-user downlink, multiple-input single-output (MISO) NOMA-CR network with

SWIPT. To further support power-limited, battery-driven devices, EH users are involved in the pro-
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posed network. Specifically, we investigate the optimal AN, power-splitting ratios, and transmission

beamforming vectors for secondary users and EH users to minimize the transmission power of the

secondary network, subject to the following constraints: a minimum signal-to-interference-plus-noise

ratio at the secondary users, minimum harvested energy by secondary users and EH users, maximum

power at the secondary transmitter, and maximum permissible interference with licensed users. The

proposed solution for the challenging non-convex optimization problem is based on the semidefinite

relaxation method. Numerical results show that the proposed scheme outperforms the conventional

scheme without AN, the zero-forcing-based scheme, and the space-division multiple-access-based

method.

Thirdly, we consider a cooperative non-linear SWIPT-enabled NOMA system with a

non-linear EH user. Specifically, we investigate two optimization problems. First, we minimize

transmission power, and second, we maximize energy efficiency subject to meeting QoS constraints.

Furthermore, we develop the optimal solution based on convex optimization and the exhaustive

search (ES) method to validate the results of the proposed PSO-based framework. Afterward,

we investigate the performance of five swarm intelligence-based baseline schemes and evaluate

an additional low-complexity solution based on the cuckoo search technique. For comparison

purposes, we use orthogonal multiple access (OMA), equal power splitting (EPS), and time-fixed

(TF) baseline schemes. From the results in terms of total transmission power and energy efficiency,

the proposed SWIPT NOMA network outperforms the benchmark schemes, and the proposed PSO-

based framework achieves the nearest performance to the optimal scheme with lower complexity

than obtained by the comparative swarm intelligence techniques and from convex optimization with

the ES method.

Finally, we design a novel artificial intelligence (AI)-based framework for maximizing the

secrecy energy efficiency (SEE) in FD cooperative relay underlay CR-NOMA systems with imperfect

successive interference cancellation that are exposed to multiple eavesdroppers. First, we formulate
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the non-convex SEE optimization problem as bi-level optimization, subject to constraints that satisfy

the QoS requirements of secondary users. In particular, the outer problem is solved with ensemble

learning (EL) to select the optimal relay. Regarding the inner problem, we propose a quantum

particle swarm optimization (QPSO)-based technique to optimize power allocation. In addition, for

comparison purposes, we describe a cooperative relay CR network with OMA, rate-splitting multiple

access, and half-duplex technologies. Moreover, we evaluate comparative schemes based on machine

learning algorithms and swarm intelligence baseline schemes. Furthermore, the proposed EL-aided

QPSO-based framework achieves performance close to the optimal solutions, with a meaningful

reduction in computation complexity.
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Chapter 1

Introduction

1.1 Background

1.1.1 Non-orthogonal multiple access

Non-orthogonal multiple access (NOMA) is a multiple access technique used in wireless

communication systems where multiple users share the same frequency band and time slot. Unlike

orthogonal multiple access (OMA) techniques such as time division multiple access (TDMA)

and frequency division multiple access (FDMA), NOMA allows multiple users to share the same

frequency band and time slot simultaneously by using different power levels, codebooks, or signatures

to distinguish between users. Indeed, the user with a stronger channel is assigned a lower power

level, while the user with a weaker channel is assigned a higher power level so that all users can

achieve a comparable quality of service (QoS) [1].

In NOMA, the base station transmits signals to multiple users simultaneously by applying

superposition coding. Thus, NOMA relies on the use of advanced signal processing techniques, such

as successive interference cancellation (SIC), to separate the signals of individual users at the receiver.

With SIC, the receiver first decodes the strongest signal and then subtracts it from the received signal

1
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to cancel out the interference from that user. The process is repeated for the remaining signals until

all users’ signals are decoded [2, 3].

1.1.2 Cooperative NOMA

Cooperative NOMA exploits the advantage of cooperative communications and the NOMA

technique. In particular, NOMA can improve spectral and energy efficiency. Meanwhile, cooperative

communications are able to solve the coverage problem in wireless communications and mitigate

the impact of channel fading. In cooperative communications, the intermediate users are employed

as relays to assist in the transmission of data between the transmitter and the receiver. For this

purpose, amplify-and-forward (AF) or decode-and-forward (DF) protocols can be applied. In the AF

protocol, the intermediate user receives the signal from the transmitter, amplifies it, and forwards it

to the destination. Regarding DF protocol, the intermediate node receives the signal from the source,

decodes it, and re-encodes it before forwarding it to the destination [4–6].

Figure 1.1 presents a simple system model of a cooperative NOMA system comprised of

one source denoted by S, and two users, where a nearby user employs DF protocol. Assume that each

node only has a single antenna and nearby user u1 has better channel conditions than distant user u2.

Then, according to NOMA principles, the data transmission of this scheme involves two phases. In

Phase 1, the source transmits nearby, and distant users’ messages and then nearby user and distant

user receive them. Formally, the source conveys the superimposed signal x =
√

p1x1 +
√

p2x2 where

x1, x2 ∈ are the information bearing messages with the corresponding transmit power p1 and p2 for

nearby user u1 and distant user u2, respectively. Note that p2 > p1 since distant user u2 has weaker

channel conditions than nearby user u1. Moreover, following NOMA fundamentals, SIC is performed

at nearby user u1. Specifically, user u1 first decodes message x2 of distant user u2 by treating x1 as

noise and then subtracts this message x2 from the received signal. Then, nearby user u1 decodes its

own message x1. In Phase 2, u1 retransmits message x2 to distant user u2. At the end of phase 2,
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Figure 1.1: System model of cooperative NOMA communication.

distant user u2 utilizes maximal-ratio combination (MRC) to merge the message x2 received in the

two phases (in Phase 1 from the source and in Phase 2 from the nearby user u1) and then decodes it.

Accordingly, in Phase 1, the received signal at nearby user u1 and at distant user u2 can be

given by (1.1) and (1.2), respectively.

y(1)
u1 = hS ,u1 (p1x1 + p2x2) + z(1)

1 , (1.1)

y(1)
u2 = hS ,u2 (p1x1 + p2x2) + z(1)

2 , (1.2)

where hS ,u1 is the channel coefficient between the source and user u1, and z(1)
1 is the additive white

Gaussian noise (AWGN) at user 1. Similarly, hS ,u2 is the channel coefficient between the source and

user u2, and z(1)
2 is the additive white Gaussian noise (AWGN) at user 2.

In Phase 2, the received signal at distant user u2 can be given by

y(2)
u2 = hu1,u2 pu1x2 + z(2)

2 , (1.3)

where hu1,u2 is the channel coefficient between user u1 and user u2, pu1 is the transmitted power from

user u1, and z(1)
1 is the AWGN at user 2.
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1.1.3 Cognitive Radio

Cognitive radio (CR) allows radio devices to intelligently and dynamically access the

radio frequency spectrum, which is the range of electromagnetic frequencies that wireless signals

used to transmit data. In this sense, CR systems use software-defined radios (SDRs) that can

detect and analyze the available frequency bands in the environment and automatically switch

to the best available frequency band. This allows for more efficient use of the spectrum and

increased data transmission rates [7]. CR systems use various techniques to detect and analyze the

available frequency bands. For instance, the spectrum sensing technique involves analyzing the radio

frequency spectrum to detect the presence of primary users (PUs) (e.g., licensed users such as TV

stations) and avoiding their frequency bands. On the other hand, the spectrum decision technique

selects the optimal frequency band based on the current environment and the user’s communication

requirements [8].

In addition to optimizing spectrum utilization, CR systems can also enhance communica-

tion security and reliability. For example, CRs can use techniques such as dynamic spectrum access,

adaptive modulation and coding, and channel aggregation to provide better QoS and overcome

interference from other wireless devices. In this sense, underlay and overlay CR are two different

approaches for utilizing the spectrum in a dynamic and efficient way. Underlay CR is a technique

where a secondary user (SU) operates in a spectral band that is already occupied by a primary user

(PU). The SU uses the spectrum without interfering with the PU’s transmission by carefully selecting

the power level and modulation scheme. Underlay CR typically operates in a licensed spectrum,

where the PU has priority access to the spectrum. On the other hand, overlay CR is a technique

where the SU uses a spectrum that is not currently being used by any PU. The SU detects and utilizes

spectrum holes or white spaces that are available in the frequency band. Overlay CR can operate in

both licensed and unlicensed spectrum [8, 9].
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1.1.4 Energy Harvesting

Energy harvesting (EH) is the process of capturing and storing energy from natural or

artificial sources such as solar, wind, thermal, kinetic, or electromagnetic sources and converting it

into electricity that can be used to power electronic devices or systems. The goal of EH is to provide

a sustainable and reliable source of power for devices that are not connected to the power grid or

that require power in remote or hard-to-reach locations [6]. In this sense, simultaneous wireless

information and power transfer (SWIPT) provides another choice in EH techniques since it allows

simultaneous information decoding (ID) for the user and RF EH using the same RF signal. The

most used types of SWIPT are power-splitting (PS) SWIPT and time-switching (TS) SWIPT. In PS

SWIPT, the receiver splits the received signal into two parts according to a power splitting ratio -

one part is used for ID, and the other part is used for EH. The power-splitting ratio determines the

proportion of the received signal that is used for ID and EH. In TS SWIPT, the receiver alternates

between two-time slots - one for ID and the other for EH. The duration of the time slots and the

switching time is typically optimized to maximize the overall system performance [10, 11].

1.1.5 Physical Layer Security

Physical Layer Security (PLS) is a technique used to ensure the security of wireless

communication systems by exploiting the physical properties of the communication medium. PLS has

been considered a powerful alternative to the commonly utilized higher-layer encryption technique.

Traditional encryption methods that rely on complex algorithms are susceptible to being broken

by those with advanced computational skills. To overcome this challenge, PLS can achieve secure

communications without relying on cryptographic techniques [12]. In PLS, the properties of the

wireless channel, such as the signal-to-noise ratio, channel fading, and interference patterns, are

exploited in such a way that the information is distorted or obfuscated for anyone who is not the

intended receiver. In [13], Wyner stated that it is possible to have secure communication in a
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wireless system, provided that the channel capacity of the intended recipient is higher than that of the

eavesdropper. The secure capacity can be determined by assessing the achievable secrecy rate, which

calculates the maximum amount of secure information that can be received by the intended receiver.

In particular, PLS techniques include beamforming, artificial noise (AN) generation, and cooperative

communication, among others.

1.2 Optimization Algorithms

1.2.1 Metaheuristic algorithms

Metaheuristic algorithms are used to solve complex optimization problems that are difficult

to solve using conventional optimization techniques. These algorithms are inspired by natural

processes such as evolution, swarm behavior, and the movement of particles, and they rely on

heuristics or rules of thumb to guide their search for the approximately optimal solution. The

general idea behind metaheuristic algorithms is to iteratively explore the search space in a way that

balances exploration and exploitation. They start with an initial solution and then apply a set of

rules to generate a new set of candidate solutions. These candidate solutions are evaluated using an

objective function that quantifies how well they perform relative to the problem’s constraints and

goals. Then, according to this evaluation, the metaheuristic algorithm selects the best candidate

solutions to continue the search process. One of the key advantages of metaheuristic algorithms is that

they can be adapted to different problem settings, such as multi-objective optimization or dynamic

optimization, by modifying the evaluation criteria or the search process [14,15]. In particular, particle

swarm optimization (PSO), and cuckoo search (CS) are two powerful metaheuristic algorithms that

have been applied to a variety of problems, including scheduling, routing, design optimization, and

machine learning (ML) [16, 17].
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Particle Swarm Optimization

PSO is a metaheuristic optimization algorithm inspired by the social behavior of bird

flocking or fish schooling. In PSO, a swarm of particles moves in a search space to find the

approximately optimal solution. The PSO algorithm starts by initializing a population of particles in

the search space. Each particle represents a potential solution to the optimization problem, and its

position in the search space corresponds to a possible set of parameter values for the problem [16].

The particles move through the search space, updating their positions and velocities based on their

own best-known position (personal best) and the best-known position of the swarm (global best).

The movement of each particle is determined by two components: the cognitive component and

the social component. The cognitive component represents the particle’s own experience, while the

social component represents the experience of the entire swarm. These two components guide the

particles toward the best solution in the search space [18].

The velocity of each particle is updated at each iteration based on the following equation:

vi (t + 1) = w ∗ vi (t) + c1 ∗ rand() ∗ (pbesti − xi (t)) + c2 ∗ rand() ∗ (gbest − xi (t)) (1.4)

where vi (t) is the velocity of particle i at iteration t, w is the inertia weight, c1 and c2 are

acceleration coefficients, pbesti is the personal best position of particle i, xi (t) is the current position

of particle i at iteration t, gbest is the best-known position of the swarm, and rand() is a random

number between 0 and 1.

The position of each particle is updated based on its velocity:

xi (t + 1) = xi (t) + vi (t + 1) . (1.5)

The algorithm ends until a stopping criterion is met, such as a maximum number of

iterations that achieves a satisfactory level of convergence. In a nutshell, PSO is a metaheuristic

optimization algorithm that simulates the behavior of a group of particles moving in a search space to
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find the optimal solution. A variant of PSO is quantum particle swarm optimization (QPSO) which

utilizes the principles of quantum mechanics to enhance its performance. In QPSO, each particle is

represented by a quantum state, which is a complex-valued function that can be expressed as a linear

combination of basis states. The quantum state of each particle is updated using the principles of

quantum mechanics [19].

Cuckoo search

CS is a metaheuristic optimization algorithm that is inspired by the behavior of cuckoo

birds. It was proposed by Xin-She Yang and Suash Deb in 2009. The basic idea behind the algorithm

is to mimic the brood parasitism behavior of cuckoo birds. In nature, cuckoo birds lay their eggs in

the nests of other bird species and let them raise their offspring. The cuckoo bird’s goal is to lay its

eggs in the best nests with the highest quality hosts. In the CS algorithm, the nests correspond to

the candidate solutions of an optimization problem and the quality of the nests is evaluated using an

objective function. The algorithm tries to improve the quality of the nests by laying new eggs (i.e.,

generating new candidate solutions) and replacing the eggs in the nests with the poorest quality [20].

1.2.2 Ensemble Learning Algorithms

Ensemble learning (EL) is a ML technique that involves combining multiple models to

improve the accuracy and robustness of predictions. The basic idea of EL is to train several models,

each with different strengths and weaknesses, and then combine their predictions to make a final

prediction that is more accurate than any individual model [21]. The two main types of EL are bagging

and boosting. Specifically, in bagging, multiple models are trained on different random subsets of the

training data, with replacement. Each model is trained independently and then their predictions are

combined to make a final prediction. Bagging is particularly effective for reducing overfitting. On

the other hand, in boosting, a series of weak models are trained sequentially, each one attempting
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to correct the errors of the previous models. Boosting is particularly effective for improving the

performance of weak models. Overall, EL can improve the accuracy and robustness of ML models,

especially when individual models may have different biases or limitations. By combining multiple

models, the overall performance can be improved, and overfitting can be reduced [22, 23].

The most common algorithms used for EL are:

Random Forest (RF): A type of bagging that combines multiple decision trees. RF can

be applied for both classification and regression tasks. It works by creating multiple decision trees

and combining them to produce a more accurate and stable prediction. In RF, each tree is built using

a subset of the training data and a subset of the features. This helps to reduce overfitting and enhance

the accuracy of the model. The subsets of data and features are chosen randomly for each tree. On

the other hand, to make a prediction, each tree in the forest independently makes a prediction, and

the final result is determined by taking the majority vote on the predictions made by all the decision

trees for classification tasks, and the mean of all the predictions for regression tasks [24].

AdaBoost: A type of boosting that assigns weights to the training data to give more

emphasis to misclassified data points. In particular, the AdaBoost algorithm works by iteratively

training a sequence of weak models, each of which is assigned a weight that reflects its performance

on the training data. In each iteration, the algorithm focuses on the instances that were misclassified

by the previous models and assigns higher weights to those instances. This puts more emphasis

on the difficult examples and forces the next weak model to focus on the areas where the previous

models struggled. The final model is a weighted combination of the weak models, with higher weight

given to the more accurate models [25].

Stagewise Additive Modeling (SAM): A technique used for constructing an additive

model by sequentially adding one function at a time. SAM can be used for both regression and

classification tasks. In classification tasks, SAM can use a Multi-class Exponential Loss Function

to optimize the model [22]. The basic idea of the SAM algorithm is that each new function added
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to the model corrects the errors made by the previous functions. The Multi-class Exponential Loss

Function encourages the model to assign high scores to the correct class labels while penalizing

incorrect assignments. In particular, the Multi-class Exponential Loss Function is a commonly used

loss function that measures the difference between the predicted class probabilities and the true class

labels. The goal is to minimize this loss function during training so that the predicted probabilities

are as close as possible to the true probabilities. Accordingly, by minimizing the loss function at

each iteration, the algorithm ensures that the model is optimized for classification performance [26].

1.2.3 Semidefinite Relaxation

Semidefinite relaxation solves quadratically constrained quadratic programs (QCQPs) that

involve relaxing the problem by replacing the quadratic constraints with semidefinite constraints.

The key idea is to reformulate the original QCQP as a semidefinite program (SDP), by introducing

a new matrix variable X = xxH , where X is a rank-one symmetric positive semidefinite matrix.

Then, by applying the SDR technique, the variable x is replaced to X and the constraints of X � 0

and rank (X) = 1 are included. Finally, to obtain a semidefinite programming (SDP) problem, the

rank-one constraint is removed, and the SDP problem is solved by a numerical method [27].

The optimal solution is achieved when X is rank-one. Otherwise, the penalty-based

method [28] or the Gaussian randomization method [29] can aid to approximate the rank-one

solution.

1.3 Motivation and Objective

At present, a significant challenge for the advancement of upcoming wireless technologies

that allow for the widespread use of the Internet of Things (IoT), device-to-device (D2D) communi-

cation, spectrum sharing, and large-scale machine communication is the issue of restricted spectrum
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and efficient energy utilization. To overcome this challenge, resource allocation optimization along

with the application of potential fifth generation (5G) candidate technologies play a crucial role in

wireless communication systems [3]. In this sense, NOMA is a promising technology for the 5G

cellular networks and beyond 5G wireless networks that allows multiple users to share the same

resources (frequency band and time slot) by using a superposition coding technique at the transmitter

and a SIC technique at the receiver [2]. Therefore, NOMA can provide significant benefits in terms of

spectral efficiency, user fairness, energy efficiency, and support for IoT and 5G networks. Moreover,

cooperative wireless communications can also improve energy efficiency by allowing devices to share

resources. This can extend the battery life of devices and reduce the overall energy consumption

of wireless networks. Cooperative wireless communications permit reducing latency by allowing

devices to relay data to each other and create shorter communication paths [5]. This can be particu-

larly important in real-time applications, such as video conferencing or gaming, where even small

delays can be noticeable. CR-inspired NOMA aims to address the shortage of spectrum resources

by promoting smart utilization of spectrum sharing. In particular, CR systems aim to maximize the

utilization of the available radio spectrum by enabling secondary users to access the unused spectrum

bands that are assigned to primary users. By dynamically allocating resources based on the changing

demands of the users, CR systems can provide better QoS guarantees while minimizing interference

and maintaining network stability. In this sense, resource optimization techniques can be used to

mitigate interference between primary and secondary users. For example, power control can be used

to adjust the transmission power of secondary users to reduce interference with primary users [7]. Fur-

thermore, the PLS strategy is of meaningful importance for upcoming wireless networks to improve

the confidentiality of the transmitted information. Specifically, PLS uses techniques such as signal

masking, AN generation, and beamforming to prevent eavesdroppers from intercepting and decoding

the transmitted information. One of the main motivations for implementing PLS is to provide ro-

bustness to the communication system by designing the transmission schemes that are robust against
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intentional interference, jamming attacks and interference from other signals. Moreover, by lever-

aging the inherent properties of the wireless channel, PLS techniques can be implemented without

requiring additional hardware or computational resources. To further enhance secure transmissions,

cooperative wireless communications provide reliability to wireless communication by increasing

signal strength and reducing the effects of fading and interference. By working together, devices can

share information and resources to overcome the limitations of individual devices [12]. In addition,

to address the problem of limited battery lifetime in energy-constrained wireless devices, RF EH

provides a means of harvesting energy from the environment and converting it into electrical energy,

which can be used to power low-power wireless devices. This eliminates the need for batteries, which

reduces the cost and complexity of the device, and also reduces the environmental impact of battery

disposal. Moreover, RF energy harvesting can be used to power devices in remote or hard-to-reach

locations, where it is difficult or impractical to replace batteries [8]. In this sense, SWIPT provides

another option in EH techniques. In particular, SWIPT allows a device can both receive data and

power at the same time by using the same radio frequency signal through a wireless connection.

SWIPT technology has the potential to enable a variety of applications, including wireless charging of

devices, powering sensors in remote locations, and enabling IoT devices to communicate and operate

without the need for external power sources. Hence, SWIPT is an area of ongoing research and

development, with many potential applications and challenges to overcome [10,11]. In order to make

advanced wireless communication systems more efficient, there has been a growing interest in using

artificial intelligence (AI) solutions that incorporate ML and metaheuristic methods. These solutions

aim to decrease the amount of computational work required and effectively manage resources. In

this sense, an innovative and effective approach in wireless networks is to use an intelligent resource

allocation strategy, which can help to reduce complexity and minimize communication delays. As a

result, AI plays a meaningful role in designing resource allocation systems and addressing challenges

related to different aspects of wireless networks. ML is one of the most popular AI technologies and
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is widely used in telecommunications engineering. For example, using ML to select relays in IoT

networks can significantly simplify the selection process and reduce latency. ML algorithms can learn

patterns from vast amounts of data and use this knowledge to make predictions or decisions. This

ability makes ML particularly suitable for optimizing resource allocation in wireless networks, where

complex interactions and constraints make traditional optimization techniques challenging [22]. In

addition to relay selection in IoT networks, ML-based resource allocation has been applied to various

aspects of wireless networks, including power control, scheduling, and interference management.

These approaches have been shown to improve system performance and reduce latency compared to

traditional methods. Regarding metaheuristic algorithms, these techniques are increasingly being

used in wireless communications because they can efficiently solve complex optimization problems.

These algorithms are designed to find near-optimal solutions to problems that are difficult or impossi-

ble to solve using traditional optimization techniques [14]. Wireless communication systems involve

a wide range of complex and dynamic optimization problems, including resource allocation, power

control, interference management, and routing. To this end, metaheuristic algorithms are capable

of handling the complexity of these systems and can optimize solutions over multiple objectives.

By using metaheuristic algorithms, researchers can design and optimize wireless communication

systems to meet the increasing demands for higher data rates, more efficient use of spectrum, and

more reliable and secure communications [15, 16].

1.4 Contribution and Thesis Outline

This dissertation investigates the resource optimization in cooperative NOMA-based

systems with consideration of CR and security taking into account different technologies such as

underlying CR and SWIPT with perfect and imperfect SCI. The thesis first proposes a close-optimal

scheme based on the PSO algorithm to maximize the secure computation efficiency in a power
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beacon-assisted wireless-powered mobile edge computing (MEC) NOMA System. Then, joint

beamforming and AN optimization are considered for secure transmissions in the MISO-NOMA

CR system with SWIPT, where the idea of minimizing transmit power for the SUs and EH users

is to use the rest of the available power at the secondary transmitter to maximize AN and protect

transmitted messages against an eavesdropper. Later, linear and non-linear EH models are considered

in the SWIPT NOMA system to optimize the transmission problem and energy efficiency subject to

meeting quality-of-service (QoS) constraints. After that, a FD cooperative relay CR-NOMA system

with imperfect SIC is investigated with the aim of maximizing the secrecy energy efficiency (SEE) to

prevent multiple-eavesdropper wiretapping, where close-optimal and low complexity schemes based

on ML and metaheuristics algorithms are proposed to solve the non-convex problems. The rest of the

thesis is organized into five chapters as follows:

• Chapter 2: the purpose of this chapter is to improve user connectivity and security when

offloading computation tasks. The study focuses on a wireless-powered NOMA MEC system

with a nonlinear EH user and a power beacon, in the presence of an eavesdropper, where

wireless power transfer is applied to provide a resource allocation design that is friendly

to the environment. The problem of secure computation efficiency (SCE) is addressed by

optimizing the transmission power, energy transfer time allocations, computation time, and

CPU frequency in the NOMA-enabled MEC system. However, this problem is complex

and non-convex, making it challenging to solve while meeting the necessary constraints for

quality of service. To address this, a low-complexity particle swarm optimization (PSO)-based

algorithm is investigated. The proposed approach is compared to time division multiple access

and fully offloading baseline schemes, with simulation results demonstrating the superiority of

the proposed approach.

• Chapter 3: proposes a beamforming design with AN to enhance the security of the network in
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a multi-user downlink, MISO NOMA-CR network with SWIPT and EH users. The solution

optimizes AN, power-splitting ratios, and transmission beamforming vectors for secondary

users and EH users to minimize the transmission power of the secondary network while satis-

fying several constraints, including minimum signal-to-interference-plus-noise ratio (SINR),

minimum harvested energy, and maximum power at the secondary transmitter. The proposed

approach uses the SDR method to solve the non-convex optimization problem. Numerical

results demonstrate that the proposed scheme outperforms other conventional schemes such as

the zero-forcing-based scheme and the space-division multiple-access (SDMA)-based method.

• Chapter 4: proposes a low-complexity PSO-based approach to address the resource alloca-

tion problem in a cooperative non-linear SWIPT-enabled NOMA system. We consider two

optimization problems: minimizing transmission power and maximizing energy efficiency

while meeting QoS requirements. The effectiveness of the proposed system design compared

with the traditional OMA, equal power splitting (EPS), and time-fixed (TF) baseline schemes

is proved through numerical simulations under different scenarios. Moreover, six swarm

intelligence-based baseline schemes are investigated including: CS, the ant lion optimiza-

tion (ALO) method, the butterfly optimization algorithm (BOA), the firefly algorithm (FA),

and the bat algorithm (BA). The proposed SWIPT NOMA network outperforms benchmark

schemes, and the proposed PSO-based optimization solution achieves performance closest to

the optimal method with lower complexity than other swarm intelligence techniques or convex

optimization with the ES method.

• Chapter 5: investigates an innovative AI-based framework that focuses on maximizing the

secrecy energy efficiency (SEE) in full-duplex (FD) cooperative relay underlay CR-NOMA

systems that are vulnerable to multiple eavesdroppers. Initially, the non-convex SEE opti-

mization problem is transformed into a bi-level optimization, while ensuring that the QoS
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requirements of secondary users are met. The outer problem is resolved with EL, which

selects the optimal relay, while the inner problem is solved using a QPSO-based method that

optimizes power allocation. We also provide a comparison of this framework to a cooperative

relay CR network with orthogonal multiple access (OMA), rate-splitting multiple access

(RSMA), and half-duplex technologies, as well as evaluate comparative schemes based on ML

algorithms and swarm intelligence baseline schemes. Simulation results show that EL-aided

QPSO-based framework performs close to optimal solutions, while reducing computation

complexity considerably.

• Chapter 6: summarizes the thesis contributions and gives a discussion on future research

directions.



Chapter 2

Paticle Swarm Optimization-Based

Secure Computation-Efficiency

Maximization in a Power

Beacon–Assisted Wireless-Powered

Mobile Edge Computing NOMA System1

2.1 Introduction

The rapid advances in 5G wireless networks have improved cutting-edge technology

requirements, such as support for massive connectivity due to the proliferation of IoT devices and

growth in the amount of data in modern society [1]. In this sense, recent technological breakthroughs

for next-generation wireless networks have promoted the use of smart applications, such as virtual

1The study in this chapter is published in Energies [30]
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reality, augmented reality, mobile online games, face recognition, and so on. However, latency

sensitivity and high computation intensity are two main features of these applications that represent a

challenging task for mobile devices, which have low computing capabilities and a limited battery

capacity. To tackle these issues, MEC appears to be a technology that can remarkably decrease

the computing burden and improve the computing capabilities of mobile devices [31]. In a MEC

system, servers are used by mobile devices to offload tasks for low-latency computing, which can

be executed in partial or binary modes. In partial mode, computation tasks can be processed into

two parts; one part is executed locally at the mobile device and the other is offloaded to the nearby

MEC server. In binary mode, the complete task is executed locally, or the entire task is offloaded

to a close-proximity MEC server via uplink [31, 32]. Furthermore, future wireless networks should

be able to support massive connectivity of devices because of the rapid advancements in the IoT.

However, this fact entails the spectrum scarcity issue, which can be handled by the application of a

NOMA transmission strategy that works in the power domain and employs superposition coding

and successive interference cancellation techniques. Therefore, NOMA with MEC has aroused

attention in recent research work that pointed out the superiority of NOMA in comparison with the

conventional OMA baseline scheme [33–36]. In [34], the authors applied NOMA to offload tasks

from each user to a MEC server, with the aim being to improve the resource allocation problem

in an ultra-dense network. They demonstrated that NOMA outperforms the conventional TDMA

technique in terms of energy consumption and task delay. A NOMA-based optimization scheme

was investigated in [35] to minimize energy consumption by users in a MEC network through an

efficient heuristic algorithm. The simulation results showed significant energy-consumption lowering

by applying the NOMA framework. Energy-efficiency maximization in NOMA-enabled massive

IoT networks based on resource allocation strategies was investigated by Liu et al. [36]. The paper

concluded that NOMA for offloading can save a considerable amount of energy, in comparison with

existing baseline schemes such as OMA.



2.1 Introduction 19

In [31], Lin et al. considered a NOMA-enabled MEC network in which several users

perform partial offloading under the presence of an eavesdropper. The authors investigated the

maximization of the secure computation efficiency subject to the constraints of minimum computation

rate, maximum transmission power allowed by the users, and maximum CPU frequency, where the

solution was based on the successive convex approximation (SCA) technique. In [32], Wu et al.

considered a MEC system with NOMA composed of two users and one eavesdropper. The authors

used a partial offloading setup with the aim to minimize the weighted sum-energy consumption

of the users subject to the constraints of secrecy offloading rates, channel capacity, and maximum

tolerable secrecy outage probability. The solution was based on the exhaustive search method and

semi-closed form expressions. In [37], Wu et al. studied a multiuser MEC system with NOMA under

the presence of an eavesdropper. The partial offloading mode was used and the authors investigated

the minimization of the weighted sum-energy consumption subject to the constraints of required

bits securely offloaded, channel capacity, and maximum tolerable secrecy outage probability. The

solution was based on the bisection method and semi-closed form expressions. However, none of

the previous three references have considered a wireless power transfer phase, a PB device, and the

presence of an energy harvesting user with its corresponding minimum EH constraint. Therefore,

several new variables and constraints are included in the optimization problem proposed in this

chapter, compared with those in [31, 32, 37] where the solutions proposed in these references are

not suitable for the problem investigated in this chapter. For instance, the variable to define the

time for the wireless power transfer phase is coupled with the transmission power variables and the

variable to define the local computing time is coupled with the variable of the local computing CPU

frequency. In addition, the works in [32,37] considered the minimization of the weighted sum-energy

consumption which is different to the proposed SCE maximization in this chapter. In [37], Wu et

al. considered a NOMA-enabled multi-access MEC system where a single mobile user can offload

part of its task to a group of edge-servers. The authors investigated the minimization of the delay in
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completing the task required by the mobile user under the constraints of maximum available energy at

the mobile user and the maximum allowed energy at the edge-server to process the task requirement.

However, the authors did not study the physical layer security under the presence of an eavesdropper

and did not consider a wireless power transfer phase, a PB device, and the presence of an energy

harvesting user with its corresponding minimum EH constraint. Then, the solution proposed in [37]

can not be used in the problem proposed in this chapter.

Furthermore, wireless power transfer (WPT) has been investigated as a promising solution

to deal with the limited battery capacity of wireless devices in MEC networks. WPT can steadily

reload the batteries of a large number of low-power wireless devices through a dedicated RF

transmitter. The foremost benefits from WPT are focused on prolonging the wireless network

lifetime, reaching sustainability in network operations, and improving the communications capacity

in edge wireless devices. In a WPT-aided MEC network, the access point (AP) sends RF energy to

customers on downlink. Then, the customers use the harvested energy to perform computation tasks

in partial or binary offloading modes. The integration of WPT with MEC is denominated as a wireless-

powered MEC system, which has been studied in recent work [38–42] to extend the operational

lifetime of the battery in both partial [38] and binary [39, 40] offloading modes. In [40, 41], the

authors approached energy-effecient computation offloading for a cooperative MEC network where a

user near a hybrid AP helps to offload tasks from a distant user, and both users benefit by receiving

energy from the hybrid AP through WPT. In [42], a wireless-powered MEC network was studied for

local computing and offloading by jointly optimizing energy and task allocation. In addition, the

wireless signal experiences attenuation as the distances increase and in the presence of obstacles,

where the integration of a power beacon (PB) provides a solution to satisfy EH requirements of the

users. The PB is a low-cost and low-complexity device that provides wireless energy to users, and it

does not need high computational capabilities. In [43], a wireless information and power transfer

system aided by a PB was proposed, with the objective being to minimize total transmit power under
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constraints for QoS and EH requirements. The results showed the benefits from the PB in satisfying

the EH requirements of the users.

Although the application of a NOMA system in MEC networks increases the possibilities

of meeting 5G requirements, wireless security is still a challenging issue to solve. In particular,

confidential information’s vulnerability to being trapped by eavesdroppers increases when compu-

tation tasks are offloaded from mobile devices to MEC servers over wireless channels. PLS has

been considered an alternative to the conventional higher-layer encryption techniques that utilize key

management and complex algorithms, and risk being broken by high computational capabilities of

the eavesdropper. On the other hand, PLS keeps information safe under wireless communications

by exploiting physical layer features of wireless channels, such as noise, interference, fading, and

so on, without the use of cryptographic keys, and regardless of the computing capability of the

eavesdropper. In the literature, there are some recent researches that encompass PLS in NOMA-MEC

networks to accomplish a boost in secrecy transmission and to improve energy-efficient resource

allocation. In this sense, green communication is an essential topic that has been considered for

suitable development in future wireless networks due to excessive energy consumption that will

bring plenty of environmental problems [31, 32, 44]. For instance, in [44], the authors maximized the

computation efficiency of the NOMA-MEC network in both partial and binary offloading modes.

The paper concluded that the computation efficiency achieved by using partial offloading can exceed

the performance obtained by applying binary offloading mode. Moreover, this article pointed out the

superiority of NOMA over the TDMA scheme. Although this study did not consider PLS, it opened

doors for computation-efficiency maximization in different next-generation MEC networks. On the

other hand, PLS in a NOMA-enabled MEC system in the presence of a malicious eavesdropper was

studied [31, 32]. The results demonstrated that partial offloading mode with NOMA outperforms

fully offloading mode with NOMA and other the baseline schemes, such as OMA. Moreover, Lin

et al. [31] highlighted the concept of computation energy-efficiency, which is defined as the ratio
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of total computation bits to energy consumption. Different from the uplink transmission schemes

proposed in [31, 32], our proposed scheme consists of uplink and downlink transmission to further

optimize the energy efficiency of the system through the application of WPT service of the AP and

the energy transmitted from the PB.

None of the research articles discussed above considered the study of PLS in a PB-

assisted wireless-powered NOMA-MEC network with a practical non-linear EH user. In this chapter,

we demonstrate through simulations that by employing a PB in the proposed MEC network, the

secrecy computation efficiency (SCE) is enhanced. The main advantage of PBs is that they can be

densely deployed without a backhaul link installation or complex computational capabilities [45].

We investigate the design of a proper low-complexity resource-allocation scheme to block an

eavesdropper in a wireless-powered NOMA-enabled MEC network with a practical non-linear EH

user and PB. From this, we provide a solution based on the particle swarm optimization (PSO)

algorithm to maximize the SCE while satisfying the QoS requirements of NOMA users in order

to successfully compute their tasks in a safe manner under partial offloading mode. Moreover, the

optimization problem is subject to minimum EH by the non-linear EH user. In the literature, PSO is

considered a powerful optimization method since it has demonstrated high performance in solving

optimization problems. For instance, in our previous works [1, 46], the PSO technique has been

investigated and applied for maximizing the secrecy sum rate and the secrecy energy efficiency of

a cooperative NOMA network, respectively. In both cases, the results showed that the proposed

PSO-based method accomplished yield very close to that obtained by the optimal exhaustive search

method, but with the benefit of low computational complexity. Furthermore, analytical solutions

that provide close-form expressions are unflexible for new system model designs. Particularly when

the system model includes a new network element such as mobile device or transmitter, we have to

reformulate the optimization problem and find a new solution. Moreover, the procedures to transform

non-convex problems into convex problems are not the same for all the cases and depend on the
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constraints and variables of the optimization problem, case by case basis. Therefore, most of the

solutions offered in related references can not be applied to the proposed problem in this chapter. Next,

we analyze the optimization problems in related references and the reason why those approaches can

not be used in this chapter. This motivated us to introduce PSO as a potential optimization solution

in an innovative wireless-powered NOMA-enabled MEC system with a practical non-linear EH user.

Different from [1, 46], where the downlink transmission from the transmitter to the receivers is only

considered to carry messages, in this chapter an uplink-downlink transmission scheme is studied

where the AP integrates a MEC server to alieve the burden of the users. Moreover, the AP provides

the WPT service and practical non-linear EH and PB are integrated into the network.

The main contributions of this chapter are as follows.

• We focus on PLS to study the SCE maximization problem in a wireless-powered NOMA-

enabled MEC network assisted by a PB under partial offloading mode. Moreover, a practical

non-linear EH and power amplifier coefficient are considered in the design of our proposed

scheme.

• We aim to reduce computational complexity. Therefore, we provide a low-complexity PSO-

based solution for the proposed challenging non-convex optimization problem, which maxi-

mizes SCE by satisfying the QoS requirements of NOMA users and meeting the minimum

energy harvested by non-linear EH users. In particular, we jointly optimize the local comput-

ing frequency, the computation time for local computing, and the power allocation variables

involved in the network. Moreover, we obtain the limits of the search range of each variable

to be optimized through mathematical procedures to properly find the global best particle´s

position.

• We further investigate SCE maximization for the conventional TDMA-MEC system under

partial offloading mode (and for NOMA-MEC system, fully offloading) in order to compare
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them with our proposed scheme. Numerical results to assess the performance of each scheme

show that the SCE obtained under our proposed wireless-power NOMA-enabled MEC scheme

is superior to that of other baseline schemes. Moreover, the numerical results show that a

system with a PB improves SCE performance.

The rest of the chapter is organized as follows. Section 2.2 presents the proposed system

model and two baseline schemes for comparison purposes. Section 2.3 describes the problem

formulation. Section 2.4 explains the proposed PSO-based solution. The numerical results are given

in Section 2.5. Finally, the conclusions are presented in Section 2.6.

2.2 System Model

We study a wireless-powered multi-user NOMA-enabled MEC system assisted by a PB in

the presence of an eavesdropper, as illustrated in Figure 2.1, where the AP provides the WPT service

for M users and a non-linear EH user. The AP integrates the MEC server and an RF energy transmitter.

Moreover, each user device contains an energy-harvesting circuit and a rechargeable battery that is

able to store the collected energy for its operations. It is assumed that the communications and power

transferred from the PB and the AP are sent over the same frequency band, and that all nodes are

equipped with a single antenna, similar to the research in [39, 47, 48]. In this chapter, we consider

partial offloading. Note that local computations and the downlink WPT transmission from the AP

and PB can be performed simultaneously, but the uplink offloading operation and downlink WPT

cannot be simultaneously executed [39, 49–52].

The transmission frame duration, T , illustrated in Figure 2.2, is based on four phases.

First, the AP and the PB broadcast the RF energy to charge the M users and the EH user during the

first phase, with duration θT , θ ∈ (0, 1]. Then, users offload tasks to the MEC server by employing

NOMA during the second phase, over duration (1 − θ) T . In the third and fourth phases, respectively,
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(a) First phase (for wireless power transfer).
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ME C Ser verUs er1h1hM Us ermUs er MhmEav esd ropp erg1gmgM

(b) Second phase (for offloading).

Figure 2.1: System model of the wireless-powered NOMA-enabled MEC system.
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Figure 2.2: Frame scheme of the wireless-powered NOMA-MEC network.

the MEC server carries out the computation tasks and downloads the computation outcomes. To

that end, computation time τ1 and downloading time τ2 belonging to the MEC server are omitted,

since the MEC server is considered to have a stronger computation capability than the users, and the

number of bits corresponding to the results of the tasks is negligible [44, 47–52], [19-24].

The baseband equivalent channels from the AP and PB to NOMA users are defined

as hm 2 C, and fm 2 C, respectively. Meanwhile, the channel from each of the m users to the

eavesdropper is defined as gm 2 C. It is understood that the same channel, hm, is used for both uplink

and downlink due to channel reciprocity [39]. Moreover, we consider the noise variance of the MEC

server and the eavesdropper to be the same, denoted as σ2 = σ2
mec = σ2

eav.
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In this chapter, we consider a practical non-linear EH model based on the work in [44, 53],

which was subjected to experimental evaluations to validate effectiveness. In particular, the proposed

EH model satisfies the sensitivity property, which states that when the input RF power does not

exceed the sensitivity boundary, the harvested energy is zero. This differs from the work in [38, 39,

39, 40, 49–52] that employed the ideally linear EH model. Accordingly, the energy harvested by the

m–th user is given by

EHm = θT


 Peh max

exp (λ − µp0)

 1 + exp (λ − µp0)

1 + exp
(
λ − µ

(
PAP|hm|

2 + PPB| fm|2
)) − 1



+

, (2.1)

where PAP and PPB are the transmit power from the AP and the PB, respectively. Peh max represents

the maximum harvested power of the m–th user, m = 1, 2, 3, ...,M; is the sensitivity boundary; µ

and λ are the control parameters for the steepness of the function; and [x]+ = max (x, 0) selects the

bigger value of x and 0. Based on the work in [38, 51], the aforementioned parameters were set to

Peh max = 0.004927 W, p0 = 0.000064W, µ= 274, and λ= 0.29.

In addition, we consider the EH user to be a sensor node that is regularly powered by a

battery with a limited lifetime [54]. Similar to the m-th user, the EH device follows a non-linear EH

model and is expressed as follows:

EHuser = θT


 Peh max

exp (λ − µp0)

 1 + exp (λ − µp0)

1 + exp
(
λ − µ

(
PAP|lAP|

2 + PPB|lPB|
2
)) − 1



+

, (2.2)

where lAP ∈ C and lPB ∈ C are the channels to the EH user from the AP and PB, respectively.

2.2.1 Local Computing Mode

Each m-th user is able to compute tasks and harvest energy simultaneously, since the

computing unit and the energy harvesting circuit are separate [44, 55]. This means that the entire

frame can be used for local computing. The number of CPU cycles required to compute one bit of

raw data at the m-th user is denoted as Cm. Let qm denote the CPU frequency (in cycles per second)

of the m-th user, which should be lower than the maximum computation speed, i.e., qm ≤ qmax.
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The effective capacitance coefficient of the processor’s chip is denoted by αm. Then, the energy

consumption of the local computing mode can be expressed as Eloc
m = αmq3

mtm, where tm represents

the computation time of the m-th user, 0 ≤ tm ≤ T. Thus, the number of locally computed bits for

the m-th user in local computing mode is defined as the amount of bits processed in the time frame

considered, given by

γloc
m =

qmtm
Cm

. (2.3)

To secure sustainable operation for the m-th user, the utilized energy should not exceed

that of the harvested energy, i.e., Eloc
m ≤ EHm.

2.2.2 Partial Offloading Mode with NOMA

Since we consider partial offloading to be separate from local computing, each user can

offload tasks to the AP after completing the θT period for harvesting energy, so the (1 − θ) T period

can be utilized for offloading. On uplink, multiple users apply the NOMA transmission strategy to

offload their computation tasks simultaneously. Following the processes in [39, 44], included in the

offloaded task of the m-th user is communications overhead (represented by δ), such as a packet

header, and it is greater than 1, i.e., δ > 1. Without loss of generality, the distance between the

m-th user and the AP is considered to be sorted as follows: dAP,u1 ≥ dAP,u2 ≥ ... ≥ dAP,uM , and then

channel gain is in descending order: h1 < h2 < ... < hM . According to NOMA principles for uplinks

employing SIC techniques, the decoding process is in descending order of channel power, since the

received signal power that belongs to the stronger channel’s user corresponds to the M-th user, which

is decoded first at the AP and contains interference from all users with relatively weaker channel

conditions. Thus, the secrecy offloading computation of the m-th user is given by the total number of

computed bits at the MEC server minus the total number of computed bits at the eavesdropper, and

can be expressed as follows:

ro f f
m = (2.4)



28 2.2 System Model



B
δ

(1 − θ) T

log2

1 +
pm|hm|

2

m−1∑
j=1

p j
∣∣∣h j

∣∣∣2 + σ2
mec

 − log2

1 +
pm|gm|

2

σ2
eav +

M∑
j=1, j,m

p j
∣∣∣g j

∣∣∣2


+

, 2 ≤ m ≤ M

B
δ

(1 − θ) T

log2

(
1 +

pm|hm|
2

σ2
mec

)
− log2

1 +
pm|gm|

2

σ2
eav +

M∑
j=2

p j
∣∣∣g j

∣∣∣2


+

, m = 1,

where [x]+ ∆
= max (x, 0) means the higher value between x and zero, B represents the channel

bandwidth, σ denotes the power of AWGN, and pm denotes the transmission power for the m–th

user.

The offloading consumed power indicated in equation (2.5) considers the amplifier coef-

ficient, the consumed power during the first phase for receive-signal processing, and the constant

circuit power consumption for transmit signal processing, which are denoted as ϑ, pr, and pc,

respectively [44]:

Eo f f
m = pr,mθT + ϑ (pm + pc) (1 − θ) T. (2.5)

The SCE of the proposed NOMA-enabled MEC WPT system is defined as the ratio of

total computed bits to power consumption in both modes, i.e., local computing and offloading

mode [31, 44], as follows:

S c =

M∑
m=1

[
ro f f

m + γloc
m

]
M∑

m=1

[
pr,mθT + ϑ (pm + pc) (1 − θ) T + αmq3

mtm
] . (2.6)

2.2.3 Offloading Mode with TDMA

For comparison purposes, we describe the system model of the TDMA benchmark scheme

in which time resource (1 − θ) T has to be divided among the M users. Let the offloading time for

the m-th user be denoted as wm. Then, the corresponding secrecy computed bits can be given by

ro f f
m tdma =

B
δ
wmT log2

(
1 +

pm|hm|
2

σ2
mec

)
−

B
δ
wmT log2

(
1 +

pm|gm|
2

σ2
eav

)
. (2.7)
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Consequently, the partial offloading SCE of each user is given by

S c OMA =

M∑
m=1

[
ro f f

m tdma + γloc
m

]
M∑

m=1

[
pr,mθT + ϑ (pm + pc)wmT + αmq3

mtm
] . (2.8)

2.3 SCE Maximization in Wireless-Powered MEC Systems with an EH

User

2.3.1 Problem Formulation of Partial Offloading Mode in the NOMA-MEC System

In this chapter, we develop a low-complexity resource-allocation scheme based on the PSO

algorithm for SCE maximization in a wireless-powered NOMA-MEC system with a non-linear EH

user and in the presence of an eavesdropper. Specifically, period θ, local computing CPU frequency

qm, computation time tm, and power allocation pm are jointly optimized variables subject to the

following constraints:

P1 : max
θ,{pm,tm,qm}

S c (2.9a)

s.t. C1 :
B
δ

(1 − θ) T log2

1 +
pm|hm|

2

m−1∑
j=1

p j
∣∣∣h j

∣∣∣2 + σ2
mec

 +
qmtm
Cm

≥ rmin,m, ∀m (2.9b)

C2 : pr,mθT + ϑ (pm + pc) (1 − θ) T + αmq3
mtm ≤ EHm, ∀m (2.9c)

C3 : 0 ≤ qm ≤ qmax
m , ∀m (2.9d)

C4 : pm ≥ 0, ∀m (2.9e)

C5 : EHUser ≥ ξEH (2.9f)

C6 : 0 < tm ≤ T, ∀m (2.9g)

C7 : 0 < θ ≤ 1, (2.9h)
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where constraint C1 indicates the minimum computed bits required by the m-th user, and this value

is targeted by rmin. Constraint C2 indicates that the total consumed energy by the m-th user for

partial offloading cannot exceed the harvested energy. Constraint C3 establishes the maximum CPU

frequency for each user, while constraint C4 indicates that power allocation should be higher than

zero. Constraint C5 indicates the minimum harvested energy by the EH user, and this target value

is represented by ξEH . Constraints C6 and C7 define the boundaries for the local and offloading

computing times, respectively.

2.3.2 Problem Formulation of Fully Offloading Mode in the NOMA-MEC System

For comparison purposes, the problem formulation for fully offloading was developed. In

offloading mode, local computing is omitted, and problem formulation P2 is given as follows:

P2 : max
θ,{pm}

M∑
m=1

ro f f
m

M∑
m=1

[
pr,mθT + ϑ (pm + pc) (1 − θ) T

] (2.10a)

s.t. C1 :
B
δ

(1 − θ) T log2

1 +
pm|hm|

2

m−1∑
j=1

p j
∣∣∣h j

∣∣∣2 + σ2
mec

 ≥ rmin,m, ∀m (2.10b)

C2 : pr,mθT + ϑ (pm + pc) (1 − θ) T ≤ EHm, ∀m (2.10c)

C3 : (2.9e), (2.9 f ), (2.9h), (2.10d)

2.3.3 Problem Formulation of Partial Offloading Mode in the TDMA-MEC System

SCE maximization is formulated as follows when partial offloading mode is applied in the

TDMA-MEC baseline scheme:

P3 : max
θ,{wm,pm,tm,qm}

M∑
m=1

[
ro f f

m tdma + γloc
m

]
M∑

m=1

[
pr,mθT + ϑ (pm + pc)wmT + αmq3

mtm
] (2.11a)
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s.t. C1 :
B
δ
wmT log2

(
1 +

pm|hm|
2

σ2
mec

)
+

qmtm
Cm

≥ rmin,m, ∀m (2.11b)

C2 : pr,mθT + ϑ (pm + pc)wmT + αmq3
mtm ≤ EHm,∀m, ∀m (2.11c)

C3 :
M∑

m=1

wm ≤ 1 − θ (2.11d)

C4 : 0 ≤ wm < 1.∀m (2.11e)

C5 : (2.9d), (2.9e), (2.9 f ), (2.9g), (2.9h), (2.11f)

where constraints C3 and C4 define the limits for offloading time, which cannot be longer than 1 − θ,

and cannot exceed 1.

2.4 PSO-based resource allocation scheme for SCE maximization

In this chapter, we consider a low-complexity resource-allocation scheme based on PSO

to maximize the SCE in the proposed wireless-powered MEC network. The PSO-based algorithm

has been applied to various optimization problems in the engineering field because it provides high

precision and low computational complexity. This optimization technique focuses on achieving

an approximately optimal solution by iteratively updating each particle’s position, which leads to

the global and local best positions. The position of each particle corresponds to the variables to be

optimized. The global best position corresponds to the particle that achieves the best yield in the

swarm, while the local best position corresponds to the position that achieves the best yield for that

particle. In this context, the global best position is achieved by the particle position that gets the

highest value for SCE.

In the following sections, we describe the development of the PSO algorithm for the

proposed NOMA-MEC system and the baseline schemes, such as the TDMA-MEC system and the

fully offloading MEC system.
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2.4.1 PSO-based Algorithm for Partial Offloading in the NOMA-MEC System

In the proposed NOMA-MEC system, the s-th particle’s position is given by the set of

1 + 3M variables to be optimized, as follows:

xs =
{
xθ,s, xp,s, xq,s, xt,s

}
, (2.12)

where s = 1, 2, ..., S , in which S indicates the number of particles in the swarm, and xθ,s, xp,s, xq,s, xt,s

represent the resource variables: θ, p = {p1, ..., pM}, q = {q1, ..., qM}, and t = {t1, ..., tM}, respectively.

Then, we define the search region of the s-th particle according to the boundaries belonging to each

variable. For instance, the lower boundary for period θ is given by (2.13) and is calculated based on

constraint (2.9f):

θmin =
ξEH

T ×
[(

Peh max
exp(λ−µp0)

(
1+exp(λ−µp0)

1+exp(λ−µ(P|lAP |
2+PPB|lPB|

2)) − 1
))]+ . (2.13)

The lower boundary for transmission power variable pm is given by (2.14) and is calculated

based on constraint (2.9b):

pmin,m =

2
rmin,m−

qmaxT
Cm

B
δ (1−θmin)T − 1


+

σ2
mec

|hm|
2 . (2.14)

The lower boundary for variables tm and qm are obtained based on constraint (2.9b) as

follows:

tmin,m =

[(
rmin,m −

B
δ

(1 − θmin) T log2

(
1 +

pmax|hm|
2

σ2
mec

))
Cm

qmax

]+

, (2.15)

and

qmin,m =

[(
rmin,m −

B
δ

(1 − θmin) T log2

(
1 +

pmax|hm|
2

σ2
mec

))
Cm

T

]+

. (2.16)

The upper boundary of variable θ is given by (2.17), based on constraint (2.9b).

θmax = min


min1≤m≤M

1 − rmin,m −
qmaxT

Cm

BT
δ log2

(
1 +

pmax |hm |
2

σ2
mec

)


+

, 1

 . (2.17)
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The upper boundary of power allocation variable pm is denoted as pmax, and the upper

boundaries for qm and tm are qmax
m and T under constraints (9d) and (9g), respectively. Therefore,

each particle’s position represents a vector of 1 + 3M elements, (θ, {pm, qm, tm}), for which the limits

are [θmin, θmax],
[
pmin,M, pmax

]
,
[
qmin,M, qmax

m
]
, and

[
tmin,M,T

]
, respectively. The initial values of the

s-th particle’s positions are randomly initialized based on the uniform distribution between these

limits established for each particle’s position.

Moreover, a penalty function based on objective function f (xs) = f (θ, pm, qm, tm) of

problem (2.9) is used to deal with the constraint as follows:

f (xs) =

M∑
m=1

[
ro f f

m + γloc
m

]
M∑

m=1

[
pr,mθT + ϑ (pm + pc) (1 − θ) T + αmq3

mtm
] − γ 2m+1∑

i=1

ρ (ki), (2.18)

where the penalty value is denoted as γ, and ki is the i-th constraint of problem (2.9) corresponding

to (9b), (9c), and (9f). In addition, the function based on constraint ρ (ki) = 0 means that the i-th

constraint is satisfied; otherwise, ρ (ki) = 1.

Furthermore, the procedures of the proposed PSO-based algorithm to solve SCE maxi-

mization problem (2.9) are described in Algorithm 1, where the input parameters for PSO are the

maximum number of iterations, the number of particles in a swarm, the inertia weight for velocity

updates, and the cognitive and social parameters, which are denoted as Imax, S , Iw, c1, and c2,

respectively. The initial values of the m-th particle’s velocities are randomly initialized between the

boundaries established for each particle’s position: [θmin, θmax],
[
pmin,m, pmax

]
,
[
qmin,m, qmax

m
]
, and[

tmin,m,T
]
. Accordingly, in each successive b-th iteration, the velocity of each m-th particle is updated

towards the relative global best position, gb, and the local best position, pbs, as follows:

vb+1
θ,s = I(b)

w v(b)
θ,s + n1c1

(
pbθ,s − x(b)

θ,s

)
+ n2c2

(
gbθ − x(b)

θ,s

)
(2.19a)

vb+1
pm,s = I(b)

w v(b)
pm,s + n1c1

(
pbpm,s − x(b)

pm,s

)
+ n2c2

(
gbpm − x(b)

pm,s

)
, ∀m (2.19b)

vb+1
qm,s = I(b)

w v(b)
qm,s + n1c1

(
pbqm,s − x(b)

pm,s

)
+ n2c2

(
gbqm − x(b)

qm,s

)
, ∀m (2.19c)
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vb+1
tm,s = I(b)

w v(b)
tm,s + n1c1

(
pbtm,s − x(b)

tm,s

)
+ n2c2

(
gbtm − x(b)

tm,s

)
, ∀m, (2.19d)

where n1 and n2 are random numbers between zero and one.

The update of the particle’s position is based on the current particle’s position plus the

corresponding updated velocity. Therefore, the m-th particle’s position belonging to the set of

elements pointed out in (2.20) is updated as follows:

xb+1
θ,s = xb

θ,s + vb+1
θ,s (2.20a)

xb+1
pm,s = xb

pm,s + vb+1
pm,s, ∀m (2.20b)

xb+1
qm,s = xb

qm,s + vb+1
qm,s, ∀m (2.20c)

xb+1
tm,s = xb

tm,s + vb+1
tm,s , ∀m. (2.20d)

In this chapter, the low-complexity PSO-based optimization technique allows us to find the

best values of the variables θ, pm, qm, and tm to maximize the SCE by iteratively updating the global

and local best particle positions until reaching the stopping criterion.

Regarding the computational complexity of the PSO algorithm in solving problem (2.9),

it is necessary to compute the number of iterations used and the number of particles in the swarm.

Therefore, the total complexity is given by O (ImaxS ). We highlight the fact that matrix operations

are not needed to solve the proposed optimization problem.

2.4.2 PSO-based Algorithm for Fully Offloading in the MEC

The procedure of the PSO-based algorithm in the fully offloading MEC system is devel-

oped in a way similar to that described in Algorithm 2.1. However, in this case, each particle’s

position represents a vector of 1 + M elements, (θ, {pm}), for which the limits are
[
θmin, θmax o f f

]
,[

pmin o f f ,m, pmax
]
, respectively. These boundaries are indicated as follows:

θmax o f f = min

min1≤m≤M

1 − rmin,m

B
δ T log2

(
1 +

pmax |hm |
2

σ2
mec

)

+

, 1

 , (2.21a)
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Algorithm 2.1 PSO-based algorithm to solve SCE problem P1.
1: Input: Set the PSO parameters: Imax, S , Iw, c1, and c2.

2: Set iteration count b=1.

3: Initialize the position of particles xs = fθ,p,q, tgwhich are randomly selected in [θmin, θmax] ,

�
pmin,m, pmax

�
,
�
qmin,m, qmax

m
�
, and ,

�
tmin,m,T

�
, respectively. Then, evaluate f (xs).

4: Find the index of the best particle position: gbest = arg max
1[ s[ S

f (xs).

5: Initialize the local best position: pbs = xs, s and the s-th particle’s velocities: v(b)
s =

�
v(b)
θ,s, v

(b)
pm,s, v

(b)
qm,s, v

(b)
tm,s

�
.

6: For b = 1 : 1 : Imax do

7: For each particle s = 1, . . . , S do

8: From (2.19a) to (2.19d), update the particles’ velocity.

9: Update particle position by using equations (2.20a) to (2.20d): xb+1
s ( xs + vb+1

s .

10: Restrict each particle’s position for vector in accordance with boundaries

[θmin, θmax],
�
pmin,m, pmax

�
,
�
qmin,m, qmax

m
�
, and

�
tmin,m,T

�
.

11: Evaluate the local best position:

12: if f
�
x(b+1)

s

�
> f (pbs) then pbs ( x(b+1)

s

13: end if

14: Evaluate the global best position:

15: if f
�
x(b+1)

s

�
> f (gbest) then gbest ( x(b+1)

s

16: end if

17: end for

18: end for

19: Result: Set f (gbest) as the maximum SCE in the wireless-powered NOMA-enabled MEC system

for problem (2.9).
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pmin o f f ,m =

[(
2

rmin,m
B
δ (1−θmin)T − 1

)
σ2

mec

|hm|
2

]+

. (2.21b)

2.4.3 PSO-based Algorithm for Partial Offloading in the TDMA-MEC System

In the TDMA-MEC system, a particle’s position is composed of the following 1 + 4M

elements: θ, {wm, pm, qm, tm}. Thereby, the search space is established according to the following

limits:

0 ≤ θ ≤ 1, (2.22a)2
rmin,m−

qmaxT
Cm

B
δ T − 1


+

σ2
mec

|hm|
2 ≤ pm ≤ pmax, ∀m (2.22b)

[(
rmin,m −

B
δ

T log2

(
1 +

pmax|hm|
2

σ2
mec

))
Cm

qmax

]+

≤ tm ≤ T, ∀m (2.22c)[(
rmin,m −

B
δ

T log2

(
1 +

pmax|hm|
2

σ2
mec

))
Cm

T

]+

≤ qm ≤ qmax, ∀m (2.22d)

0 ≤ wm < 1, ∀m. (2.22e)

Then, the procedure to apply the PSO algorithm is similar to that expressed in Algorithm

2.1.

2.5 Numerical Results

In this section, we numerically evaluate the performance of our proposed wireless-powered

NOMA-MEC system with an EH user and PB. The simulations were programmed in Matlab by

utilizing a Core i7-6700K CPU with 16 GB of main memory. In addition, the application of TDMA

and fully offloading mode are considered baseline schemes to be evaluated and compared with our

proposed scheme. The results presented in this chapter were averaged over 50 independent channel

realizations. In addition, the PSO algorithm was executed ten times for each channel realization,

where the average value was used to evaluate the results.
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In the considered work, the channels follow circularly symmetric, complex Gaussian

random variables as follows: hm : CN
(
0, d−vAP−um

)
, fm : CN

(
0, d−vPB−um

)
, gm : CN

(
0, d−vEav−um

)
,

lAP : CN
(
0, d−vAP−EH

)
, and lPB : CN

(
0, d−vPB−EH

)
, where di j denotes the distance between node i and

j and the path-loss exponent is denoted by v. The distances between the nodes were d−vAP−u1
= 10,

d−vAP−u2
= 5, d−vPB−u1

= 6, d−vPB−u1
= 4, d−vEav−u1

= 6, d−vEav−u2
= 10, d−vAP−EH = 5, and d−vPB−EH = 3, in

meters. Moreover, the simulation parameters listed in Table 2.1 were chosen based on the work

in [6, 44, 46, 53–58]. Specifically, the parameters for the non-linear EH model such as the maximum

EH power, sensitivity threshold, circuit parameters were chosen based on [44,53], the communication

bandwidth, the minimum computation bits, the number of cycles for one bit, the amplifier coefficient,

the constant circuit power were selected based on [44] and the maximum cycles per second was

selected based on [54, 55].

The simulation parameters for PSO are selected based on [6, 46, 56–58], which frequently

provide good converge behavior. In addition, simulations were carried out to set the suitable PSO

parameters such as inertia weight for velocity update, cognitive and social parameters. Then, the

cognitive and social parameters were set c1 = 2 and c2 = 2, and the inertia weight for velocity update

was set Iw = 0.7. Figure 2.3 shows the convergence of the PSO algorithm of our proposed scheme in

partial offloading mode with four different combinations of the inertia weight, cognitive and social

parameters where typical values in the literature [6, 46, 56–58] are used. For instance, in [57], the

linear decreasing inertia weight is established as Iw (t) = Iw,max −
Iw,max−Iw,min

Imax
× t, where Iw,max = 0.9,

Iw,min = 0.4, t is the current iteration and Imax is the maximum number of iteration. In addition, we

set the number of particles S =40, qmax = 108 cycles/s, Imax = 200, and the rest of the simulation

parameters were as indicated in Table 2.1. We can observe that the case with c1 = c2 = 2 and Iw = 0.7

achieves the fastest convergence among all the cases. Then, we set c1 = c2 = 2 and Iw = 0.7 for the

rest of the simulations.

In [59], the authors proposed some initialization strategies for the particles’ positions in
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Table 2.1: Simulation parameters.

Parameter Notation Value

Number of users M 2

Communication bandwidth B 2 MHz

Communication overhead δ 1.1

Minimum computation bits rmin,m 104 bits

Minimum harvested energy by EH user ξEH 0.0006 W

Number of cycles for one bit Cm 103 cycles/bit

Maximum CPU frequency qmax 108 cycles/s

Transmission power from the AP and PB PAP, PPB 0.2 W

Capacitance coefficient αm 10−24

Amplifier coefficient ϑ 3

Maximum transmission power of the user pmax 0.04 W

Consumed power for receive-signal processing pr 5 dBm

Constant circuit power pc 5 dBm

Path-loss exponent v 4

Noise variance σ2 -80 dBm

Maximum EH power Peh max 0.004927 W

Sensitivity threshold p0 0.000064 W

Circuit parameter λ 0.29

Circuit parameter µ 274

Constant circuit power pc 5 dBm
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Figure 2.3: The convergence behavior of the proposed PSO-based algorithm for different combina-

tions of the inertia weigh, cognitive and social parameters.

PSO, such as the logarithmic and normal distributions. In the case of the logarithmic, the position

of the particle for the variable θ is initialized as exp
(
ln (θmin) + ln

(
θmax/θmin

)
× rnd

)
, where rnd is a

random number from the uniform distribution in [0, 1). In the case of the normal, the position of the

particle for the variable θ is initialized based on the normal distribution with mean µ =
θmax+θmin

2 and

the standard deviation between 1 to 5. From the numerical simulations with a number of particles

S =40 and Imax = 200, we obtain a SCE value of 441342.39 bits/joule for the uniform distribution

(used in the proposed approached), a SCE value of 423160.11 bits/joule with the logarithmic strategy,

and a SCE value of 436509.85 bits/joule for the normal distribution with a standard deviation of 5.

We conclude that the uniform distribution strategy achieves a better SCE than the other initialization

strategies.

Next, we present the PSO convergence behavior with ten runs of the PSO algorithm by

using a different number of particles for each scheme, i.e., the TDMA baseline scheme and the

wireless-powered NOMA-MEC system in partial offloading mode and fully offloading mode, with

the simulation parameters indicated in Table 2.1.
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Figure 2.4: The convergence behavior of the proposed PSO-based algorithm with different numbers

of particles, S , in the proposed wireless-powered NOMA-MEC system for partial offloading mode

when qmax = 4 × 108 cycles/s.

Figure 2.4 shows the convergence of the PSO algorithm given in Algorithm 1 for our

wireless-powered NOMA-MEC system with an EH user and PB, based on four different numbers

of particles, S = {15, 25, 30, 40}, and with qmax = 4 × 108 cycles/s. The rest of the simulation

parameters were as indicated in Table 2.1. We can see that the performance of the SCE was enhanced

as the iteration index and the number of particles increased. Moreover, we observe that the SCE

achieved steady behavior after about 100 iterations. However, as we reached a greater number of

particles and iterations, the computational complexity increased, since each particle evaluated the

objective function and constraints for a total time equal to the maximum number of iterations.

Similar to Figure 2.4, Figure 2.5 shows the convergence of the PSO algorithm of our pro-

posed scheme in partial offloading mode with four different numbers of particles, S = {15, 25, 30, 40}.

In this case, we set the value of the maximum CPU frequency parameter at qmax = 108 cycles/s to

verify the convergence of our proposed scheme in a different scenario. From Figure 2.5, we can

see that the SCE showed stable behavior from around 100 iterations, and its highest performance
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Figure 2.5: The convergence behavior of the proposed PSO-based algorithm with different numbers

of particles, S , for the proposed wireless-powered NOMA-MEC system in partial offloading mode

with qmax = 108 cycles/s.

was achieved at S = 40. In order to select a suitable value for the number of particles and the

maximum number of iterations, we have analyzed the computation time of the PSO algorithm and

the other baseline schemes. Then, in Table 2.2, we have compared the incidence for the number of

particles in terms of the relative error and computation time of our proposed scheme, NOMA-MEC

in fully offloading mode, and those of TDMA-MEC system. To compute relative error, we set the

one obtained by using S = 40 as the true value for each scheme since this value is correspondent

to the highest SCE, and the computation time was calculated with 200 as the number of iterations

for the proposed scheme and fully offloading mode. On the other hand, the computation time for

the TDMA-based scheme was evaluated with 400 iterations. As a result, we can see that the higher

number of particles entails the lower relative error at the expense of a longer computation time.

Therefore, we set Imax = 170 and S = 35 for further simulations of our proposed wireless-powered

NOMA-MEC system.

Figure 2.6 shows the convergence of the PSO algorithm for the wireless-powered NOMA-
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Table 2.2: Effects of the number of particles on PSO

TDMA-MEC system in partial

offloading mode

NOMA-MEC system in fully

offloading mode

The proposed NOMA-MEC

system in partial offloading mode

Particles

S
15 25 35 40 15 25 35 40 15 25 35 40

Time

(ms)
80.43 134.77 158.65 208.99 27.44 45.68 57.45 72.12 30.99 48.63 58.97 79.63

Relative

error

(%)

8.631 6.750 5.740 — 0.0031 0.0012 0.0009 — 0.0708 0.0082 0.0020 —

MEC system in fully offloading mode in accordance with four different numbers of particles,

S = {15, 25, 30, 40} and with qmax = 108 cycles/s. From Figure 2.6, we can see that the SCE is

converged after iteration 180, and its highest performance was achieved with 40 particles, followed

slightly by using 35 particles. However, the larger number of particles, the longer the computation

time required to complete the process of the PSO algorithm, as shown in Table 2.2. Therefore, we

used Imax = 180 and S = 35 for the simulations performed in the NOMA-MEC system with the fully

offloading scheme.

Figure 2.7 shows the convergence of the TDMA-MEC system baseline scheme in partial

offloading mode. From Figure 2.7, it is observed that the SCE can be stable after 600 iterations. It

is noteworthy that the required number of iterations for convergence of SCE in the TDMA-MEC

scheme was higher than those of the previous schemes since an extra variable for offloading time,

wm, needs to be optimized to solve the optimization problem in the TDMA-MEC scheme, as shown

in problem formulation (11). Moreover, the SCE performance reached a higher value with S = 40.

Thus, we used the tradeoff values of S = 40 and Imax = 250 for simulations of the TDMA-MEC

baseline system in partial offloading mode.
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Figure 2.6: The convergence behavior of the proposed PSO-based algorithm with different numbers

of particles, S , for the wireless-powered NOMA- MEC system in fully offloading mode when

qmax = 108 cycles/s.
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Figure 2.7: The convergence behavior of the proposed PSO-based algorithm with different numbers

of particles, S , for the wireless-powered TDMA-MEC system in partial offloading mode when

qmax = 108 cycles/s.
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Figure 2.8: SCE based on the transmission power of the wireless AP.

Figure 2.8 shows a comparison of SCE performance from our proposed scheme applying

NOMA in the wireless-powered MEC system in partial offloading mode, from the NOMA-enabled

MEC system in fully offloading mode, and from the TDMA-MEC scheme in partial offloading mode.

In Figure 2.8, observe that the NOMA-assisted MEC system outperformed the baseline schemes.

We can particularly see that the proposed scheme had a much better SCE performance than that

obtained by the conventional TDMA-MEC scheme. This is because only one phase is required to

offload the tasks from the users to the MEC server in our proposed NOMA-MEC scheme, where the

same time interval can be shared by all users. Thus, resources are efficiently used. Using TDMA in

the MEC system, more resources are employed to complete offloading the computation tasks, since

each user offloads to the MEC server at different times. Accordingly, the eavesdropper has more

opportunities to trap messages that are transmitted in the wireless environment. Hence, the SCE in

the TDMA-MEC system was lower than that achieved in the proposed NOMA-MEC system.

Figure 2.9 shows the SCE achieved with three different values for transmission power

PPB. We can see that the SCE performance increased as the transmission power of the AP and PB

increased. This is because when transmission power increases, users can harvest a greater amount of
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Figure 2.9: SCE based on transmission power of the wireless AP at different transmission power

levels for the PB.

energy to be used in the local computing and offloading processes.

Figure 2.10 shows the SCE versus the number of cycles for one bit, C, for the TDMA-MEC

baseline scheme and the proposed scheme with two different transmission power levels at the AP.

From Figure 2.10, we can observe that the SCE performance decreased as C increased. This is

because the relation between the number of locally computed bits of the m−th user in local computing

mode, γloc
m , is inversely proportional to C, i.e., γloc

m decreases as C increases. This relation is indicated

in equation (2.3). The main objective in this chapter is to maximize the SCE, and it depends directly

on γloc
m . Consequently, if γloc

m decreases, the SCE performance also decreases. Moreover, from Figure

2.10, we verify that our proposed scheme outperforms the TDMA-MEC baseline scheme, and SCE

is enhanced with higher values for the wireless power transmitted from the AP to users.
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Figure 2.10: The SCE versus the number of cycles for one bit, C, at different transmission power

levels of the AP.

2.6 Closing Remarks

In this chapter, we considered a wireless-powered NOMA-enabled MEC system assisted

by a PB, with an EH user, and in the presence of an eavesdropper. The objective is to maximize

the SCE under the constraints of minimum computation bits required by the users, minimum EH

required by the EH user, and a limitation on the consumed energy. We proposed a low-complexity

approach based on the PSO algorithm, and achieved high performance with a low computation time.

Simulation results demonstrated the superiority of the proposed scheme in comparison with fully

offloading mode and TDMA-based mode. The advantages of the NOMA technique were proved,

compared with the TDMA method, where NOMA permits more efficient utilization of the spectrum

resources. Moreover, numerical results showed that the presence of a low-cost and low-complexity

PB allows us to improve the SCE in the studied scenarios.



Chapter 3

Joint Beamforming and Artificial Noise

Optimization for Secure Transmissions in

MISO-NOMA Cognitive Radio System

with SWIPT 1

3.1 Introduction

The rapid development of wireless communications requires advanced communications

techniques that can provide massive connectivity, high spectral efficiency, high energy efficiency,

and low latency in support of the fast proliferation of the IoT, mobile devices, and so on. Therefore,

integration of promising technologies, such as CR and NOMA techniques, has been investigated

by the industry and by academics to enable future wireless networks [6, 61]. Specifically, CR

tackles spectrum scarcity issues and improves spectrum efficiency based on its strategy of dynamic

1The study in this chapter is published in Electronics [60]
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spectrum access, which permits the use of licensed spectrum by unlicensed users, called SUs, without

interfering with licensed users [62, 63]. There are two types of spectrum sharing in accordance with

access technology: underlay and overlay spectrum sharing. Underlay spectrum sharing permits

SUs to use the licensed spectrum while keeping their power levels below a certain threshold to

prevent unacceptable interference with licensed users, also known as PUs [7, 64]. On the other hand,

overlay spectrum sharing tries to minimize the risk of any interference with the PUs at the expense

of spectrum use, allowing SUs to use the licensed spectrum in the absence of the PUs [8, 65].

Meanwhile, NOMA has surged as another powerful technology to enhance spectrum

efficiency while providing high transmission rates and high user densities for future mobile commu-

nications [2, 3]. NOMA can be categorized into code-domain and power-domain NOMA. Complex

encoding or decoding techniques are required in code-domain NOMA, while the key idea of power-

domain NOMA is to assign different power levels to users according to their channel strength, such

that higher transmission power is assigned to users with weaker channels. Moreover, on the receiver

side, users with stronger channels apply SIC to first decode the signals of the weaker users, and then,

they decode their own signals. In this chapter, we focus on power-domain NOMA, which can be

further combined with other communications technologies MIMO, cooperative communications) to

reach a better yield [29, 58, 66–69].

Furthermore, energy-efficient techniques have been investigated for future wireless net-

works in support of environmental concerns and battery-limited devices, such as sensors and wear-

ables [70]. In this sense, achieving high energy efficiency and recycling energy are the main goals of

energy-efficient techniques, where SWIPT brings technological innovations and plays a key role in

energy and information transmission [71–73]. In contrast to the conventional EH technologies that

rely on unpredictable natural sources, or where the communications nodes are only able to recharge

from electromagnetic radiation, such as wireless power transfer (WPT), SWIPT enables users to

perform ID and RF EH simultaneously [74, 75]. Hence, the study of SWIPT in NOMA with CR
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networks is of meaningful importance in supporting massive numbers of mobile devices with limited

battery power [76–78].

However, a NOMA-CR network assisted by SWIPT technology operates in a wireless

transmission environment, which is vulnerable to malicious receivers that can intercept confidential

information transmitted from the sources to either the legitimate or the unlicensed users. Therefore,

security is a critically challenging issue that must be handled for the suitable deployment of wireless

communications networks. In this sense, PLS has emerged as a complementary technology to address

the eavesdropping security issue by exploiting the physical characteristics of wireless channels, e.g.,

propagation delay, multipath fading, and so on. Although traditional cryptographic encryption

and decryption techniques have been pointed out to secure communication systems using complex

algorithms and encryption keys. They require key management, maintenance and distribution

procedures that use network resources and may become an issue in large-scale decentralized and

heterogeneous wireless network. Moreover, the encryption keys are prone to being broken by high

computational capabilities of an eavesdropper [79, 80]. These drawbacks are the motivations for the

study and research on PLS to complement cryptographic techniques. PLS is independent of complex

algorithms and key management of which initial idea was investigated in Wyner’s work [13]. Wyner

et al. explained that it is possible to achieve secure communication between legal users without

sharing a secret key if the eavesdropper’s channel is a much noisier version than the legitimate

user’s channel. In addition, PLS metrics include secrecy channel capacity or secrecy rate, secrecy

outage probability, secrecy throughput, bit error rate-based and packet error rate-based metrics. One

of the most common metric used in various research works is the secrecy channel capacity which

indicates the maximum secrecy rate at which the message is retrieved safely at the legitime user

while preventing it to be recovered at the eavesdropper. This metric is calculated by the difference

between the legitimate and eavesdropper’s channel capacities.
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3.1.1 Related Work

In the literature, to further improve the secure performance of wireless transmissions,

different strategies have been proposed, such as multiple antennas, beamforming designs, AN

or jamming, and resource allocation schemes [1, 30, 46]. For instance, security in cooperative

single-input single-output (SISO) NOMA networks has been investigated in [30, 46], aiming to

maximize the SSR and SEE, respectively, by applying a low-complexity solution based on PSO.

Recently, PLS in MEC system was studied in [30] to maximize the secure computation efficiency

by jointly optimizing the resource allocations such as the transmission power, the computation

time, and the central processing unit frequency. The results showed the superiority of NOMA over

the TDMA) conventional scheme. However, none of these studies previously discussed consider

MISO and SWIPT technology which can increase the spectral efficiency of the network. Secure

NOMA transmission in a MISO scenario was investigated [81–85] via joint beamforming and AN

optimization. The authors of both [81, 82] maximized the SSR by using joint precoding optimization,

while in [83], the authors provided secure NOMA transmission by maximizing the jamming power,

and they applied SIC at the receiver to avoid affecting legitimate transmissions. In [81], the authors

considered downlink MISO-NOMA system with the presence of an eavesdropper. The objective was

to obtain the optimal precoder vectors to maximize the SSR of the users subject to the constraints of

maximum available power and rate requirement in each user. The solution was an iterative algorithm

based on the second-order cone programming. However, the authors did not consider the SWIPT

technology, EH users, AN along with an underlying CR system, which involves extra constraints

related to EH requirements and maximum interference allowed to the primary network. Therefore,

the solution proposed in [81] cannot be used to solve the optimization problem proposed in this

chapter. Another optimization approach to improve the SSR of a MISO-NOMA network has been

studied in [84] which is based on a dynamic user scheduling, grouping strategy, and the application of

efficient algorithms such as outer polyblock approximation and Dinkelbach. The authors considered
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the zero-forcing (ZF) criteria to define the beamforming vectors and investigated the minimum

secrecy rate maximization problem to design the optimal power allocation strategy under three main

constrains: QoS requirements, secrecy outage probability (SOP) and maximum available power.

However, they did not consider EH users and an underlying CR system, which entails new EH

constraints and maximum interference constraints in the optimizations problem. In addition, the

proposed approach optimized the beamforming vectors and considered an scheme. Therefore, the

algorithm in [84] cannot be used for the proposed system model in this chapter.

Security for the primary network of a NOMA-CR system assisted by SWIPT was studied

in [85]. The authors considered SU users with the ability to only decode information and several

EH users which are considered to be eavesdropper, where the secondary base station (BS) transmits

a jamming signal to increase the security of the primary network. The objective was to minimize

the total transmission power under the constraints of minimum secrecy rates and EH requirements,

in which the solution was based on the SCA algorithm and the SDR technique. It was shown that

application of NOMA consumed lower transmission power than baseline schemes and satisfied QoS

requirements such as the minimum secrecy rate of legitimate users. Although this paper opened

doors to future secure wireless systems integrated with SWIPT in CR-NOMA networks, the authors

did not consider SUs with the ability to simultaneously receive information and harvest energy, and

it was assumed that channel vectors to the eavesdroppers are known at the secondary BS, which is

not always possible in practical scenarios where eavesdroppers are hidden from the secondary BS.

Please note that the PS structure considered in this chapter involves the optimization of PS ratios,

which are coupled to the beamforming vectors in the optimization problem.

In general, the mathematical algorithms used to solve optimization problems are problem-

dependent. The proposed algorithms to solve the optimization problems in the aforementioned

literature are developed based on specific characteristic of the problems such as objective function,

type of users, type of constraints and so on. For instance, the procedures and techniques used to
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transform non-convex problems to convex ones will differ from system to system and depend on the

assumptions and elements considered for the optimization problem. When a system model includes

new elements with other applications such as SWIPT users or CR capabilities, the previous proposed

algorithms cannot be used anymore directly, and a novel algorithm needs to be developed to solve the

new problem. Therefore, previous proposed algorithms for a PLS in MISO-NOMA system cannot

be applied for the proposed cognitive MISO SWIPT NOMA system with AN.

None of the research described above was specifically proposed to enhance the security of

the secondary network in a SWIPT-assisted NOMA-CR with EH users. In addition, the proposed

scheme in the chapter can be applied for the security in different scenarios such as IoT systems with

RF EH user where spectrum scarcity is a critical issue due to the massive deployment of IoT devices.

Here, NOMA is used to achieve better connectivity and to enhance spectrum use while EH can be

used for improving the energy efficiency of IoT systems [86].

Furthermore, in the case that malicious EH users exist in the system as the work in [85],

where a secondary transmitter sends information signals to SUs and energy to EH user, the EH user

can eavesdrop the information transmitted to SUs because of the broadcast nature of NOMA. In this

scenario, a channel state information (CSI) of the EH user is available at the secondary transmitter,

which can be used for a more precise beamforming design of the AN to interfere with the malicious

EH user. In addition, the SSR for the SUs can be directly maximized in the optimization problem to

improve the security in the network. On the other hand, in the chapter we propose a more challenging

scenario when the eavesdropper is completely hidden from the secondary transmitter and the CSI

of the eavesdropper is not available. In this case, the transmission power for legitimate users is

minimized to use the remaining available power to maximize the AN. In addition, there is no any

impact on the system even though the eavesdropper performs EH since the eavesdropper is not a

legitimate user and the secondary transmitter does not transfer extra energy signals to satisfy some

EH requirement at the eavesdropper.
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3.1.2 Contributions and Organization

The main contributions of this chapter are summarized as follows.

• Secure transmission for a MISO-NOMA-CR network applying SWIPT and assisted by AN is

studied to enhance the security of the secondary network. We jointly optimize the precoder

vectors and power-splitting (PS) ratios to minimize the transmit power to the SUs and EH users,

subject to the constraints of minimum SINR at the SUs, minimum EH for EH users, maximum

available power at the secondary transmitter, denoted as SU-Tx, and maximum permissible

interference with the PUs. By minimizing the transmit power for SUs and EH users, we can

assign the residual power to AN to generate interference against the eavesdropper, by which

the security can be improved in the underlying network.

• The formulated non-convex minimization problem is challenging to solve due to coupling

between the PS ratios and transmission beamforming vectors. The proposed solution consists

of two steps. First, an SDR-based algorithm converts the formulated problem into a SDP

problem. Second, a Gaussian randomization technique is applied to obtain the approximate

rank-one solutions for beamforming vectors, and a linear program problem is used to guarantee

the feasibility of the candidate solutions of the Gaussian randomization technique.

• The SDMA method and the ZF technique are studied as a comparative schemes to solve the

minimization problem in which the solution to the non-convex problems are based on the

SDR technique. In addition, a MISO-NOMA-CR without AN is considered to be the baseline

scheme to prove the advantages of AN.

• Numerical simulations prove the superiority of the proposed approach based on NOMA with

AN for increasing the security of the secondary network, in comparison with NOMA without

AN, SDMA and ZF schemes. In particular, the proposed AN method shows a significant

improvement in SSR over the no-AN scheme under several studied scenarios.
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The rest of this chapter is organized as follows. The MISO-NOMA-CR network model

with SWIPT and EH users is described in Section 3.2. In Section 3.3, the beamforming optimization

with AN is presented along with the proposed solution, and the comparison SDMA and ZF schemes

are formulated. The numerical results are presented in Section 3.4. Finally, the conclusions are

presented in Section 3.5.

3.2 System Model

In this chapter, we investigate downlink transmissions in a cognitive MISO SWIPT NOMA

system with l-th SUs denoted by S Ul, and m-th EH receivers denoted by EHm that coexist with k-th

PUs denoted by PUk via the underlay scheme, as shown in Figure 3.1. In the proposed underlying

CR system, the secondary network can operate in the same frequency band as the primary network,

provided that the interference towards the PUs is kept at a tolerable level. We also consider the

presence of one malicious eavesdropper that attempts to intercept confidential information of the SUs.

Furthermore, the SU-Tx is equipped with N antennas, while there are single antennas for the PU,

SU, and EH receivers, and for the eavesdropper. Moreover, we consider the SUs to be hybrid users

capable of decoding information and harvesting energy at the same time by employing a PS structure

in the receiver, while energy is harvested by the EH receivers. Moreover, the SU-Tx transmits AN

to cause interference with the eavesdropper while improving information secrecy. The SU-Tx is

in charge of transmitting the signals towards the SU and the EH receivers, as well as, design the

beamforming vectors for the multi-antenna scheme. Then, the signal transmitted from the SU-Tx can

be expressed as:

x =

L∑
l=1

vlsS U
l +

M∑
m=1

wmsEH
m +fr, (3.1)

where vl ∈ C
N×1 represents the beamforming vector for the l-th SU with l ∈ Q ∆

= {1, 2, .., L}, sS U
l is

the transmitted signal of the l-th SU with unit power
∣∣∣sS U

l

∣∣∣2 = 1, wm ∈ C
N×1 denotes the beamforming
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Figure 3.1: Downlink MISO SWIPT CR-NOMA system.

vector for the m-th EH receivers with m = 1, 2, ..,M, sEH
m is the energy signal of the m-th EH receiver

with unit power
∣∣∣sEH

m

∣∣∣2 = 1, f ∈ CN×1 corresponds to the beamforming vector for the AN, and r

is a zero-mean Gaussian random variable with unit power |r|2 = 1, which is artificial jamming.

Beamforming vector f is used to prevent anything from affecting legal transmissions, and artificial

jamming r is randomly generated to effectively disturb any eavesdropping [58].

Accordingly, the received signal at the l-th SU is written as

yS U,l = gH
l vlsS U

l + gH
l

 L∑
l′=1,l′,l

vl′ sS U
l′ +

M∑
m=1

wmsEH
m + fr

 + nS U,l, l ∈ Q, (3.2)

where gH
l ∈ C

Nx1 is the channel vector from the SU-Tx to the l-th SU, nS U,l ∼ CN
(
0, σ2

l

)
is the

AWGN at the l-th SU, with zero mean and variance denoted as σ2. In addition, we assume the SU-Tx

has perfect CSI.

Without loss of generality, we consider the first SU to have the strongest channel strength,

whereas the L-th SU has the weakest. As such, the order for channel gain between the SU-Tx and the
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SUs can be expressed as follows:

‖gL‖
2 ≤ ‖gL−1‖

2 ≤ ... ≤ ‖g1‖
2. (3.3)

In NOMA systems, by using the successive interference cancelation procedure, the l-th

SU (S Ul) should be capable of successively extracting and decoding the signal intended for the

weaker SUs S UL, ..., S Ul+1 from the received signal. Therefore, the following condition for SIC in

MISO-NOMA networks with different channel strengths should be satisfied:

∣∣∣gH
l vL

∣∣∣2 ≥ ∣∣∣gH
l vL−1

∣∣∣2 ≥ ... ≥ ∣∣∣gH
l v1

∣∣∣2, l ∈ Q. (3.4)

The condition expressed in (3.4) will be referred to as the SIC constraint in the rest of the

chapter. The condition (3.4) guarantees that at the l-th SU, we have a higher SINR from messages

of more distant users since these messages need to be decoded prior to decode the l-th user’s own

message. Accordingly, the received signal after removing the last L − l user signals can be given by

yS U,l = gH
l vlsS U

l + gH
l

l−1∑
l′=1

vl′ sS U
l′ + gH

l

M∑
m=1

wmsEH
m + gH

l fr + nS U,l, (3.5)

where the first term in (3.5) denotes the intended signal for the l-th SU, whereas the second term

represents the interference caused by the first l − 1 signals intended for the SUs {S U1, ..., S Ul−1}.

The PS structure at the SUs is based on a PS factor which divides the incoming RF signals into two

streams; one to be used for ID and another to harvest energy. It is noteworthy that optimizing the PS

factor is required to achieve an optimal trade-off. Then, the achievable SINR for the l-th SU when

decoding the signal intended for the i-th SU can be expressed as

S INRi
l =

θl
∣∣∣gH

l vi
∣∣∣2

θl

(
i−1∑
l′=1

∣∣∣gH
l vl′

∣∣∣2 +
M∑

m=1

∣∣∣gH
l wm

∣∣∣2 +
∣∣∣gH

l f
∣∣∣2 + σ2

l

)
+ σ2

cn,l

, l ∈ Q,∀l ≤ i, (3.6)

where θl is the PS factor to divide the incoming signal into the ID and EH modules, and the additive

circuit noise in the ID module of the l-th SU is defined as nS U,cn,l ∼ CN
(
0, σ2

cn,l

)
. It is worth

highlighting that (3.6) is true only after performing SIC on the preceding L − i signals.
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Moreover, the energy harvested by the EH module in the l-th SU can be written as follows:

EHS U,l = ηS U,l (1 − θl)

 L∑
l′=1

∣∣∣gH
l vl′

∣∣∣2 +

M∑
m=1

∣∣∣gH
l wm

∣∣∣2 +
∣∣∣gH

l f
∣∣∣2 + σ2

l

 ,∀l. (3.7)

In (3.7), ηS U,l is the energy-harvesting efficiency for the l-th SU. For simplicity, we assume

that energy-harvesting efficiency is always equal to 1, ηS U,l = 1. The energy harvested by the EH

user is given by

EHEH,m =

L∑
l=1

∣∣∣eH
mvl

∣∣∣2 +

M∑
m′=1

∣∣∣eH
mwm′

∣∣∣2 +
∣∣∣eH

mf
∣∣∣2 + σ2

EH,m, (3.8)

where em ∈ C
Nx1 is the channel vector from the SU-Tx to the m-th EH user, and σ2

EH,m is the variance

of the antenna noise nEH,m at the m-th EH user, i.e., nEH,m ∼ CN
(
0, σ2

EH,m

)
.

The power of the SU-Tx causing interference with the k-th PU can be defined as

PIk =

L∑
l=1

∣∣∣hH
k vl

∣∣∣2 +

M∑
m=1

∣∣∣hH
k wm

∣∣∣2 +
∣∣∣hH

k f
∣∣∣2, (3.9)

where hH
k ∈ C

Nx1 is the channel vector from the SU-Tx to the k-th PU.

Moreover, the SINR for information signals of the SUs overheard by the eavesdropper is

given by

S INRl
ev =

∣∣∣hH
evvl

∣∣∣2
L∑

l′=1,l′,l

∣∣∣hH
evvl′

∣∣∣2 +
M∑

m=1

∣∣∣hH
evwm

∣∣∣2 + σ2
ev

, (3.10)

where hH
ev ∈ C

Nx1 is the channel vector from the SU-Tx to the eavesdropper, and σ2
ev is the variance

of the antenna noise nev at the eavesdropper i.e., nev ∼ CN
(
0, σ2

ev

)
. Moreover, we assume that

σ2
EH,m = σ2

l = σ2
cn,l = σ2

ev = −80 dBm.

3.3 Beamforming Optimization with AN

In this chapter, we propose a beamforming optimization scheme to provide security in a

MISO SWIPT CR-NOMA network. We consider a practical scenario where the SU-Tx does not

have the CSI of the eavesdropper. To further increase the secrecy performance of the network, AN is
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generated to tackle eavesdropping and guarantee the security of the confidential information of the

unlicensed users. In particular, we minimize the transmit power for the SUs and EH users, subject to

the constraints of a minimum SINR for the SUs, minimum EH by the SUs and EH users, maximum

available power for the SU-Tx, and maximum interference power to ensure the PUs’ legitimate

transmissions are not affected. The idea of minimizing transmit power for the SUs and EH users is to

use the rest of the available power at the SU-Tx to maximize AN and protect transmitted messages

against an eavesdropper. In addition, SDMA and ZF baseline schemes are developed along with

MISO CR and SWIPT for comparison purposes.

3.3.1 Beamforming Optimization with AN in the MISO SWIPT CR-NOMA Network

The SU-Tx power for transmitting to SUs and EH users is minimized in the proposed

network by satisfying the QoS requirements of each user and in accordance with the decoding order

of the SIC indicated in (4), as follows:

min
{vl,wm,θl},f

L∑
l=1

‖vl‖
2 +

M∑
m=1

‖wm‖
2 (3.11a)

s.t.
θl
∣∣∣gH

l vi
∣∣∣2

θl

(
i−1∑
l′=1

∣∣∣gH
l vl′

∣∣∣2 +
M∑

m=1

∣∣∣gH
l wm

∣∣∣2 +
∣∣∣gH

l f
∣∣∣2 + σ2

l

)
+ σ2

cn,l

≥ γi, ∀l, i ∈ Q, l ≤ i (3.11b)

L∑
l′=1

∣∣∣gH
l vl′

∣∣∣2 +

M∑
m=1

∣∣∣gH
l wm

∣∣∣2 +
∣∣∣gH

l f
∣∣∣2 + σ2

l ≥
ψl

(1 − θl)
, ∀l (3.11c)

L∑
l=1

∣∣∣eH
mvl

∣∣∣2 +

M∑
m′=1

∣∣∣eH
mwm′

∣∣∣2 +
∣∣∣eH

mf
∣∣∣2 + σ2

EH,m ≥ ξm, ∀m (3.11d)

L∑
l=1

‖vl‖
2 +

M∑
m=1

‖wm‖
2 + ‖f‖2 = Pmax, (3.11e)

L∑
l=1

∣∣∣hH
k vl

∣∣∣2 +

M∑
m=1

∣∣∣hH
k wm

∣∣∣2 +
∣∣∣hH

k f
∣∣∣2 ≤ φPU,k, ∀k (3.11f)

1 > θl > 0, ∀l (3.11g)∣∣∣gH
l vL

∣∣∣2 ≥ ∣∣∣gH
l vL−1

∣∣∣2 ≥ ... ≥ ∣∣∣gH
l v1

∣∣∣2, ∀l, (3.11h)
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where γi is the minimum targeted SINR for the i-th message, i ∈ Q, ψl is the minimum harvested

energy required by the l-th SU, ξm is the minimum harvested energy required by the m-th EH

user, Pmax denotes the maximum available power at the SU-Tx, and φPU,k denotes the maximum

permissible interference with the k-th PU. Constraint (3.11b) is to guarantee a minimum SINR for

the messages from sS U
l to sS U

L at the l-th SU, while constraints (3.11c) and (3.11d) represent the

minimum harvested energy required by the SUs and the EH users, respectively. Constraint (3.11e)

indicates the maximum available power, Pmax that can be consumed by the SUs, the EH users, and

AN. Constraint (3.11f) indicates that the transmit power for the SUs, the EH users, and for AN must

not exceed the maximum permissible interference with the k-th PU, given by φPU,k. Problem (3.11)

is not convex or challenging to solve due to the coupling between the PS ratios, θl, and the precoding

vectors, vl, wl, and f, in constraint (3.11b). Therefore, problem (3.11) cannot be solved directly.

We derive an optimal solution via SDR [27] for problem (3.11). Define Vl = vlvH
l ,

Wm = wmwH
m , F = ffH , Gl = glgH

l , Em = emeH
m , and Hk = hkhH

k , ∀l, ∀m, ∀k. Based on the

properties ‖x‖2 = xHx, Tr (AB) = Tr (BA), and x = Tr (x), we can derive the following expressions:

‖vl‖
2 = Tr (Vl), ‖wl‖

2 = Tr (Wl), ‖f‖2 = Tr (F),
∣∣∣gH

l vl
∣∣∣2 = Tr (GlVl),

∣∣∣gH
l wm

∣∣∣2 = Tr (GlWm), and∣∣∣gH
l f

∣∣∣2 = Tr (GlF). Moreover, a matrix variable, Vl = vlvH
l , is equivalent to Vl being a rank-one

symmetric positive semidefinite (PSD) matrix, i.e., Vl � 0, and rank (Vl) = 1. Thus, we can express

problem (3.11) in the following equivalent form:

min
{Vl,Wm,θl},F

L∑
l=1

Tr (Vl) +

M∑
m=1

Tr (Wm) (3.12a)

s.t.

 i−1∑
l′=1

Tr
(
GlVl′

)
+

M∑
m=1

Tr
(
GlWm

)
+ Tr

(
GlF

)
+ σ2

l +
σ2

cn,l

θl

 γi

− Tr
(
GlVi

)
≤ 0, ∀l, i ∈ Q, l ≤ i (3.12b)

ψl

(1 − θl)
−

L∑
l′=1

Tr
(
GlVl′

)
−

M∑
m=1

Tr
(
GlWm

)
− Tr

(
GlF

)
− σ2

l ≤ 0, ∀l (3.12c)
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ξm −

L∑
l=1

Tr
(
EmVl

)
−

M∑
m′=1

Tr
(
EmWm′

)
− Tr

(
EmF

)
− σ2

EH,m ≤ 0, ∀m (3.12d)

L∑
l=1

Tr (Vl) +

M∑
m=1

Tr (Wm) + Tr (F) = Pmax, (3.12e)

L∑
l=1

Tr (HkVl) +

M∑
m=1

Tr (HkWm) + Tr (HkF) − φPU,k ≤ 0, ∀k (3.12f)

Vl,Wm,F � 0, ∀l, ∀m (3.12g)

1 > θl > 0, ∀l (3.12h)

rank (Vl) = 1, rank (Wm) = 1, rank (F) = 1, ∀l, ∀m (3.12i)

Tr (GlVL) ≥ Tr (GlVL−1) ≥ ... ≥ Tr (GlV1) , ∀l. (3.12j)

Problem (3.12) is still non-convex due to the rank-one constraints. Then, we can drop the

rank-one constraints to get an SDP problem denoted as (3.12)-SDR, which is convex and can be

solved by using the CVX toolbox of MATLAB. To define the computational complexity to solve the

(3.12)-SDR problem, we define T = L + M + 1 as the number of matrix variables of size N × N, and

Υ = 3L + M + K + 1 is the linear constraint. Then, we can denote the computational complexity to

solve problem (3.12)-SDR as O
(√

TΥ
(
T3Υ6 + T2Υ2

)
log

(
1/χ

))
with a solution accuracy of χ > 0.

The solution to problem (3.12)-SDR is denoted as
{
V∗l ,W

∗
m, θ

∗
l

}
,F∗, which is unlikely to satisfy the

following constraints: rank (Vl) = 1, rank (Wm) = 1, rank (F) = 1, ∀l, ∀m. Therefore, we propose a

Gaussian randomization technique to obtain the close-to-optimal solutions for problem (3.11).

In the Gaussian randomization technique [29, 58, 87], the first step is to perform eigen

decomposition of the precoder matrices obtained from problem (3.12)-SDR, i.e., we evaluate Vl =

QS U,lΛS U,lQH
S U,l, Wm = QEH,mΛEH,mQH

EH,m, and F = Q fΛ f QH
f . Next, we generate candidate

solutions based on vectors κS U,l, κEH,m, and κ f , where the elements follows a complex, circularly

symmetric Gaussian distribution, CN (0, 1), i.e., vl = QS U,lΛ
1/2
S U,lκS U,l, wm = QEH,mΛ

1/2
EH,mκEH,m and

f = Q fΛ
1/2
f κ f . However, there exists the possibility that the obtained candidate precoder vectors are
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not feasible for problem (3.11). Then, we can adjust the value of the candidate precoded vectors

based on scalar factors,
{
τS U,l, τEH,m

}
τ f , which can be obtained through the solution to the following

optimization problem:

min
{τS U,l,τEH,m},τ f

L∑
l=1

τS U,l‖vl‖
2 +

M∑
m=1

τEH,m‖wm‖
2 (3.13a)

s.t.

 i−1∑
l′=1

τS U,l′
∣∣∣gH

l vl′
∣∣∣2 +

M∑
m=1

τEH,m
∣∣∣gH

l wm
∣∣∣2 + τ f

∣∣∣gH
l f

∣∣∣2 + σ2
l +

σ2
cn,l

θl

 γi

− τS U,i
∣∣∣gH

l vi
∣∣∣2 ≤ 0, ∀l, i ∈ Q, l ≤ i (3.13b)

ψl

(1 − θl)
−

L∑
l′=1

τS U,l′
∣∣∣gH

l vl′
∣∣∣2 − M∑

m=1

τEH,m
∣∣∣gH

l wm
∣∣∣2 − τ f

∣∣∣gH
l f

∣∣∣2 − σ2
l ≤ 0, ∀l (3.13c)

ξm −

L∑
l=1

τS U,l
∣∣∣eH

mvl
∣∣∣2 − M∑

m′=1

τEH,m′
∣∣∣eH

mwm′
∣∣∣2 − τ f

∣∣∣eH
mf

∣∣∣2 − σ2
EH,m ≤ 0, ∀m (3.13d)

L∑
l=1

τS U,l‖vl‖
2 +

M∑
m=1

τEH,m‖wm‖
2 + τ f ‖f‖2 = Pmax, (3.13e)

L∑
l=1

τS U,l
∣∣∣hH

k vl
∣∣∣2 +

M∑
m=1

τEH,m
∣∣∣hH

k wm
∣∣∣2 + τ f

∣∣∣hH
k f

∣∣∣2 − φPU,k ≤ 0, ∀k (3.13f)

1 > θl > 0, ∀l (3.13g)

τS U,L
∣∣∣gH

l vL
∣∣∣2 ≥ τS U,L−1

∣∣∣gH
l vL−1

∣∣∣2 ≥ ... ≥ τS U,1
∣∣∣gH

l v1
∣∣∣2, ∀l. (3.13h)

Problem (3.13) is a linear program that can be solved with the CVX module of MATLAB.

In the Gaussian randomization technique, we generate Grand candidate precoder vectors, where the

final solution is the one that achieves the lower transmit power. The proposed algorithm with SDR

and the Gaussian randomization technique is summarized in Algorithm 3.1.

3.3.2 Beamforming Optimization with AN in the MISO SWIPT CR-SDMA Network

In this subsection, we describe the baseline scheme based on SDMA for the MISO SWIPT

CR system. In SDMA, the messages from other users are considered interference, and no SIC
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Algorithm 3.1 The proposed algorithm based on SDR and Gaussian randomization to solve problem

(3.11).
1: inputs: Number of randomizations, Grand, Powmin = Pmax, optimal solution to the (12)-SDR

problem:
{
V∗l ,W

∗
m

}
,F.

2: Obtain the eigen decomposition of the precoder matrices from the solution to problem (3.12)-

SDR Vl = QS U,lΛS U,lQH
S U,l, Wm = QEH,mΛEH,mQH

EH,m, and F = Q fΛ f QH
f .

3: For i = 1 : 1 : Grand do

4: Generate the candidate precoder vectors based on random vectors κi
S U,l, κ

i
EH,m, and κi

f :

vi
l = QS U,lΛ

1/2
S U,lκ

i
S U,l, wi

m = QEH,mΛ
1/2
EH,mκ

i
EH,m, and fi = Q fΛ

1/2
f κi

f .

5: Use the CVX module to solve problem (3.13) to get scalar factors
{
τi

S U,l, τ
i
EH,m

}
τi

f .

6: Use the scalar factors to transform the candidate precoder vectors into feasible solutions to

problem (3.11): vi
l =

√
τi

S U,lQS U,lΛ
1/2
S U,lκ

i
S U,l, wi

m =
√
τi

EH,mQEH,mΛ
1/2
EH,mκ

i
EH,m, and

fi =
√
τi

f Q fΛ
1/2
f κi

f .

7: Define Ob jFi =
L∑

l=1

∥∥∥vi
l

∥∥∥2
+

M∑
m=1

∥∥∥wi
m

∥∥∥2.

8: if Ob jFi < Powmin then

9: Powmin = Ob jFi,
{
v∗l = vi

l,w
∗
m = wi

m

}
, f∗ = fi

10: end if

11: End for

12: Result: The precoder vectors:
{
v∗l ,w

∗
m

}
, f∗.

procedure exists at the receiver. Therefore, the SINR at the l-th user is as follows:

S INRS DMA,l =
θl
∣∣∣gH

l vl
∣∣∣2

θl

(
L∑

l′=1,l′,l

∣∣∣gH
l vl′

∣∣∣2 +
M∑

m=1

∣∣∣gH
l wm

∣∣∣2 +
∣∣∣gH

l f
∣∣∣2 + σ2

l

)
+ σ2

cn,l

, ∀l. (3.14)

Although the energy harvested by the SUs and the EH users, as well as the power interfering

with the PUs, are expressed in the same way as NOMA, and are defined in (3.7), (3.8) and (3.9),

respectively. Then, the minimization of the transmit power for the SUs and EH users under the
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constraints of minimum SINR, minimum EH required, and maximum interference with the PUs can

be expressed as follows:

min
{vl,wm,θl},f

L∑
l=1

‖vl‖
2 +

M∑
m=1

‖wm‖
2 (3.15a)

s.t.
θl
∣∣∣gH

l vl
∣∣∣2

θl

(
L∑

l′=1,l′,l

∣∣∣gH
l vl′

∣∣∣2 +
M∑

m=1

∣∣∣gH
l wm

∣∣∣2 +
∣∣∣gH

l f
∣∣∣2 + σ2

l

)
+ σ2

cn,l

≥ γl, ∀l (3.15b)

(11c), (11d), (11e), (11f), and (11g). (3.15c)

Problem (3.15) is non-convex and can be solved by using the SDR technique described in

Section 3.1. Then, problem (3.15) can be reformulated as follows

min
{Vl,Wm,θl},F

L∑
l=1

Tr (Vl) +

M∑
m=1

Tr (Wm) (3.16a)

s.t.

 L∑
l′=1,l′,l

Tr
(
GlVl′

)
+

M∑
m=1

Tr
(
GlWm

)
+ Tr

(
GlF

)
+ σ2

l +
σ2

cn,l

θl

 γl

− Tr
(
GlVl

)
≤ 0, ∀l (3.16b)

(12c), (12d), (12e), (12f), (12g), (12h), and(12i). (3.16c)

After removing the rank-one constraints, the problem is denoted as (3.16)-SDR, which is

convex and can be solved with the CVX toolbox of MATLAB. Then, the Gaussian randomization

technique can be used if the precoder matrices,
{
V∗l ,W

∗
m

}
,F, do not satisfy the rank-one condition.

3.3.3 Beamforming Optimization with an in the MISO SWIPT CR-ZF Network

In this section, we include a comparative scheme based on ZF to solve the power minimiza-

tion problem in the cognitive MISO SWIPT system. The ZF scheme allows the nullification of the

interference signals from other users, which is considered to be a common approach used to simplify

the system design [82, 88]. At the l-th SU user, we design the ZF scheme to null the interference

from other SU’s messages and from the energy signals. At the k-th PU user, the ZF scheme nulls
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the interference from the SU’s messages and from the energy signals. However, to increase the

harvested energy at the EH users, we allow interference signals at the EH users. Then, we define

Al =
[
g1, ..., gl−1, g1+1, ..., gL,h1, ...,hK

]
∈ CN×(L+K−1) and Bm =

[
g1, ..., gL,h1, ...,hK

]
∈ CN×(L+K).

Therefore, we denote the beamforming vectors as follows:

ṽl =
ΩA,lΩ

H
A,lgl∥∥∥∥ΩA,lΩ
H
A,lgl

∥∥∥∥ , (3.17)

vl =
√

pS U,lṽl, (3.18)

w̃m =
ΩB,mΩ

H
B,mem∥∥∥∥ΩB,mΩ
H
B,mem

∥∥∥∥ , (3.19)

wm =
√

pEH,mw̃m, (3.20)

where pS U,l and pEH,m are the power variables to be optimized, ΩA,l ∈ C
N×(N−(L+K−1)) is the orthogo-

nal basis of the null space of Al and ΩB,m ∈ C
N×(N−(L+K)) is the orthogonal basis of the null space of

Bm. Based on the ZF scheme, the transmit power minimization problem (3.11) can be transformed

into the following problem:

min
{pS U,l,pS U,m,θl},f

L∑
l=1

pS U,l +

M∑
m=1

pEH,m (3.21a)

s.t.
θl pS U,l

∣∣∣gH
l ṽl

∣∣∣2
θl

(∣∣∣gH
l f

∣∣∣2 + σ2
l

)
+ σ2

cn,l

≥ γl, ∀l (3.21b)

pS U,l
∣∣∣gH

l ṽl
∣∣∣2 +

∣∣∣gH
l f

∣∣∣2 + σ2
l ≥

ψl

(1 − θl)
, ∀l (3.21c)

L∑
l=1

pS U,l
∣∣∣eH

m ṽl
∣∣∣2 +

M∑
m′=1

pEH,m′
∣∣∣eH

mw̃m′
∣∣∣2 +

∣∣∣eH
mf

∣∣∣2 + σ2
EH,m ≥ ξm, ∀m (3.21d)

L∑
l=1

pS U,l +

M∑
m=1

pEH,m + ‖f‖2 = Pmax, (3.21e)

∣∣∣hH
k f

∣∣∣2 − φPU,k ≤ 0, ∀k (3.21f)



3.4 Numerical Results 65

1 > θl > 0,∀l. (3.21g)

Next, we solve the problem (3.21) by using the SDR technique. We denote F = ffH ,

Gl = glgH
l , Em = emeH

m , Hk = hkhH
k , ‖f‖2 = Tr (F),

∣∣∣gH
l f

∣∣∣2 = Tr (GlF),
∣∣∣eH

mf
∣∣∣2 = Tr (EmF) and∣∣∣hH

k f
∣∣∣2 = Tr (HkF).

min
{pS U,l,pS U,m,θl},F

L∑
l=1

pS U,l +

M∑
m=1

pEH,m (3.22a)

s.t. γl

Tr
(
GlF

)
+ σ2

l +
σ2

cn,l

θl

 − pS U,lκS U,l ≤ 0, ∀l (3.22b)

ψl

(1 − θl)
− pS U,lκS U,l − Tr

(
GlF

)
− σ2

l ≤ 0, ∀l (3.22c)

ξm −

L∑
l=1

pS U,lκS U−EH,l −

M∑
m′=1

pEH,m′κEH,m′ − Tr (EmF) − σ2
EH,m ≤ 0, ∀m (3.22d)

L∑
l=1

pS U,l +

M∑
m=1

pEH,m + Tr (F) = Pmax, (3.22e)

Tr (HkF) − φPU,k ≤ 0, ∀k (3.22f)

1 > θl > 0,∀l (3.22g)

F � 0, (3.22h)

rank (F) = 1, (3.22i)

where κS U,l =
∣∣∣gH

l ṽl
∣∣∣2, κS U−EH,l =

∣∣∣eH
m ṽl

∣∣∣2 and κEH,m =
∣∣∣eH

mw̃m
∣∣∣2. Then, we drop the constraint (3.22i)

and obtain an SDP problem denoted as (3.22)-SDR, which is convex. The solution of (3.22)-SDR can

be obtained through the CVX toolbox. The Gaussian randomization technique, detailed in Section

3.3.1, is used to obtain the approximate rank-one solution for the ZF-based problem (3.21).

3.4 Numerical Results

In this section, simulation results are provided to assess the performance of the proposed

MISO-NOMA-CR aided by SWIPT with EH users, in comparison with an SDMA approach and with
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a scheme without AN. We used MATLAB software on a Core i7-6700K CPU with 16 GB of main

memory to perform the simulations over several channel realizations. The simulation parameters

listed in Table 3.1 were selected based on the work in [68,89,90]. More specifically, the transmission

power of the SU-Tx is set to 30 dBm since it is a common value used in the literature for CR

systems [46, 89]. In addition, the channel vectors parameters such as the channel gain and the Rician

factor were set to 10−3 and 5 dB, respectively, based on the work in [68]. The number of SUs and the

value for the path-loss exponent are stablished according to the reference [90].

In the considered chapter, we consider a quasi-static channel condition, which is usually

assumed for indoor channels where the degree of time variation in the signal strength is small

compared with the symbol duration. The channel model used in the simulations considers different

distances from the SU-TX to the users, as well as different angle directions. The channel vectors were

modeled based on an independent Rician fading, which is composed of a line-of-sight component

and scattering components, and it is given as follows [68]:

gl =

√
Lo

(
d−αS U,l

) √ KR

1 + KR
gLOS

l +

√
1

1 + KR
gNLOS

l

 , (3.23)

where gNLOS
l is the Rayleigh fading component, which follows a circularly symmetric complex

Gaussian random variable with zero mean and unit variance, and gLOS
l is the line-of-sight component.

The line-of-sight component is based on a uniform linear array from [69] with a wavelength equal to

the double of the spacing between successive antenna elements, and it is given as follows:

gLOS
l =

[
1 e− jπ sin(φS U,l) e− j2π sin(φS U,l) ... e− j(N−1)π sin(φS U,l)

]T
, (3.24)

where φS U,l denotes the direction from the SU-Tx to the l-th SU, set at φS U,1 and φS U,2. Channel

vectors em from the SU-Tx to the m-th EH user were generated by following the aforementioned

procedure, with the directions φEH,1 and φEH,2 pointed out in Table 3.1. Moreover, channels vectors

hk and hev follow Rayleigh fading with an attenuation equal to Lo
(
d−αPU,k

)
and the distances from the

SU-Tx to SUs, EH users, PUs, and the eavesdropper are defined in Table 3.1.
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Table 3.1: Simulation parameters.

Parameter Notation Value

Number of SUs L 2

Number of EH users M 2

Number of PUs K 2

Number of SU-Tx antennas N 8

Maximum SU-Tx transmission power Pmax 30 dBm

Channel gain Lo 10−3

Path-loss exponent α 2

Rician factor KR 5

Distance from the SU-Tx to the SU 1 dS U,l 10

Distance from the SU-Tx to the SU 2 dS U,2 15

Distance from the SU-Tx to the EH user 1 dEH,1 5

Distance from the SU-Tx to the EH user 2 dEH,2 5

Distance from the SU-Tx to the PU 1 dPU,1 20

Distance from the SU-Tx to the PU 2 dPU,2 20

Distance from the SU-Tx to the eavesdropper dev 13

Direction from the SU-Tx to the SU 1 φS U,1 300

Direction from the SU-Tx to the SU 2 φS U,2 400

Direction from the SU-Tx to the EH user 1 φEH,1 −150

Direction from the SU-Tx to the EH user 2 φEH,2 −250

Furthermore, the proposed model can be adapted to several scenarios since we do not

consider a fixed number of users. Instead we assume that there exist L SUs and M EH receivers. It
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is worth highlighting that the proposed approach is valid for other channel model because in a real

deployment the inputs are channel state information (CSI), which can be obtained by a feedback

process between the transmitter and the users and by cooperation between the primary and secondary

network.

The simulation results in this section are the average over several independent channel

realizations, where the Rayleigh fading component of the channel vectors varies in each channel

realization. Please note that new beamforming vectors and PS ratios should be obtained each time

the channel conditions changes, which is not the best solution in fast time-varying channels because

of the computational complexity of solving the optimization problem.

First, we investigated the results for problem (3.11) by using the SDR technique. Further-

more, we compared the results with the SDMA scheme, ZF technique and with the scheme without

using AN.

Figure 3.2 shows AN power, ‖f‖2 according to the minimum SINR required at the SUs

when minimum EH requirements of the SUs and EH users are given as ψl = ξm = −25 dBm and

ψl = ξm = −30 dBm, respectively. We observed that the radiated AN power is decreased as the

minimum required SINR increases, because the SU-Tx needs to allocate more power to satisfy the

SINR constraint while reducing the available power for the artificial noise. In addition, the proposed

scheme based on the NOMA technique outperforms the SDMA method and ZF scheme for two

considered cases of minimum EH. The improvement from the NOMA technique is due to the ability

to decode part of the interference from other messages via the SIC procedure, which allows an

increase in the achievable SINR at the SUs while reducing the required transmit power to satisfy the

minimum SINR constraint. Subsequently, the NOMA technique can provide a high level of PLS,

because the interference with the eavesdropper increases as the AN power increases, which makes

it difficult for the eavesdropper to decode the SU’s messages. The SDMA method outperforms the

ZF scheme because ZF nulls the interference from other SU’s and EH’s messages at the l-th SU
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Figure 3.2: AN power according to the minimum SINR required at the SUs.

which permits an increase of the SINR but affects the harvested energy. Subsequently, the ZF scheme

harvests lower energy than that harvested by the SDMA approach, which makes that the SU-Tx

increases the transmission power to satisfy the EH constraint while reducing the available power to

allocate to the AN.

Figure 3.3 illustrates the SSR achieved with the proposed approach and with the scheme

without AN, according to the minimum SINR and minimum EH requirements, with maximum

permissible interference with the PUs equal to φPU = −60 dBm. From Figure 3.3, we can observe

the benefit of the proposed approach with AN on increasing the achievable SSR, because AN can

effectively generate interference with the eavesdropper while the beamforming technique minimizes

that interference at the SUs. We note that the SSR grows as the minimum SINR increases, and this

trend coincides with previous research [58, 69] because the achievable transmission rate at the SUs

increases. In addition, the SSR reduces as the minimum EH requirement increases because more

power needs to be allocated to satisfy the EH requirements while reducing the available power for

AN.

Figure 3.4 shows AN power according to the minimum harvested energy by the SUs and
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Figure 3.3: SSR performance comparison between the proposed approach and the scheme without

AN, in accordance with the minimum harvested energy at the SU and EH users, and the minimum

SINR at the SUs.

the EH users when the minimum SINR of the SUs is given as γl = 5 dB and γl = 10 dB, respectively.

From Figure 3.4, we can see that AN power decreases for all the considered schemes as the minimum

EH requirement increases. The reason is because as the minimum EH increases, more transmission

power should be allocated to the users to satisfy their EH requirements. Subsequently, less power

is assigned for the AN. Furthermore, we can see that the proposed scheme outperforms SDMA

and ZF, since NOMA can achieve higher values of AN power due to the SIC application to nullify

interference with other users while causing interference with the eavesdropper to improve network

security. Similar to Figure 3.2, the ZF condition of canceling the interference makes it necessary to

transmit more power to satisfy the EH requirements at SUs.

Figure 3.5 shows the AN power according to the interference threshold when the minimum
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Figure 3.4: AN power versus the minimum harvested energy at the EH users and SUs.

EH requirements of the SUs and EH users are given as ψl = ξm = −25 dBm, and the minimum SINR

for the SUs are γl = 5 dB and γl = 10 dB. From Figure 3.5, we can see that the AN power increases

along with increasing interference threshold values for the PUs. As the interference threshold

increases, the SU-Tx can transmit more power to the SUs and EH users that includes AN power

to tackle the eavesdropper’s wiretap. Moreover, Figure 3.5 also verifies that the proposed scheme

outperforms the other baseline schemes. This can be explained as follows: Unlikely to SDMA and

ZF, NOMA can perform SIC to decode part of the interference caused by other users, which allows

transmitting less power to satisfy the QoS requirements of the users and more AN power which

results in better PLS in the network. The results obtained by ZF are due to the condition of designing

the beamforming vectors to null the interference at the PUs, where the constraint (3.21f) of maximum

interference allowed to the PUs only depends on the beamforming vector of the AN.
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Figure 3.5: AN power versus the interference threshold, φPU,k.

3.5 Closing Remarks

In this chapter, we consider a MISO-NOMA-CR network assisted by SWIPT with the

presence of EH users and an eavesdropper. To improve the security of the secondary network,

we investigate a beamforming design and optimal PS ratios to minimize the transmit power of the

secondary transmitter. Moreover, AN is considered in the proposed scheme to disrupt eavesdropping.

The formulated non-convex optimization problem is subject to satisfying QoS constraints of the SUs

and EH users, and maximum allowable power of the SU-Tx and maximum acceptable interference

with the PUs. We provide a solution based on SDR, and develop performance comparison with

baseline schemes such as SDMA, ZF, and a conventional approach without AN. Numerical results

show that the proposed AN-aided beamforming and PS-ratio design furnishes secure transmissions

of confidential information, and provides better secrecy than that obtained by the scheme without

AN. Furthermore, it was shown that the application of NOMA in the proposed network overcomes

the drawbacks of the traditional SDMA and ZF baseline schemes.



Chapter 4

Low-Complexity PSO-based Resource

Allocation Scheme for Cooperative

Non-linear SWIPT-enabled NOMA1

4.1 Introduction

Currently, the limited spectrum and energy resource utilization problem is one of the main

concerns for the development of future wireless technologies that permit proliferation of the IoT,

device-to-device (D2D) communications, spectrum sharing, massive machine-type communications,

and so on [91]. To enhance spectrum efficiency, NOMA is an emerging technique enabling multiple

users to share the same time–frequency resource block. NOMA can be classified into power and

code domains. In this chapter, we focus on power-domain NOMA where the transmitter sends all

the messages of the users by utilizing different power levels for each user in accordance with their

channel conditions, i.e., the messages of users with weaker channel conditions are transmitted with

1The study in this chapter is published in IEEE Access [16]
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more power than messages of users with stronger channel conditions. At the receiver, users with

better channel conditions perform SIC to remove interference caused by users with stronger channel

conditions, and users with the weakest channel conditions decode messages by treating the other

messages as noise [30].

Moreover, EH techniques have been investigated to improve energy efficiency in limited-

processing-power and low-power energy-constrained communication networks, such as wireless

body area networks, IoT devices, and wireless sensor networks [92–95]. Particularly with small

communication devices, one of the main challenges is to autonomously maintain connectivity and

maximize network lifetime. In this regard, the RF EH technique is capable of receiving RF signals

and converting them to electricity to extend the battery lifetime of communications devices and

avoid wasted power [95]. Indeed, through the application of EH technology, conventional batteries

can be eliminated, which entails cost reductions, eliminating wires, and promoting environmentally

friendly technologies [96]. One main application of the RF-EH technique is SWIPT. SWIPT

technology allows users to receive information and harvest energy from the received RF signal at

the same time [97]. SWIPT appears to be a powerful technique, providing energy-efficient green

communications, especially in emergency situations. For instance, in [98], SWIPT was integrated

into a D2D system to assist natural disaster communications where replacing or recharging batteries

is a critical issue.

Among the benefits of SWIPT is prolonging the lifetime of energy-constrained networks

since SWIPT users can serve as cooperative relays to edge nodes. Furthermore, SWIPT-enabled

NOMA systems have demonstrated meaningful yields over the conventional OMA scheme in terms

of spectral efficiency [99], energy efficiency [10, 99, 100], power consumption [6, 73, 101], and

secrecy sum rate [11]. For instance, the authors in [99, 100], and [102] maximized energy efficiency

in NOMA SWIPT systems subject to the QoS by utilizing analytical approaches. The results showed

that SWIPT-enabled NOMA systems satisfactorily outperformed the conventional OMA. Moreover,
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energy-saving designs are crucial to establishing eco-friendly communication systems. Therefore,

optimization problems have been addressed to minimize the power in wireless networks [6, 101]. In

this sense, the authors in [101] designed a deep learning scheme to find an approximately optimal

solution for minimizing total transmission power in a SWIPT NOMA network. In [6], the authors

derived a closed-form solution to minimize the total transmission power of a cooperative system

aided by a collaborative SWIPT user. The outcomes of these studies verified the superiority of

NOMA over baseline multiple access schemes. It is worth noting that not one of the previous articles

considered non-linear EH, which greatly increases the difficulty in solving the optimization problem

due to coupled variables involved in problem resolution.

To suitably design a SWIPT system, a fundamental requirement is to accurately model the

EH circuit that allows transforming the received RF signal into a direct current (DC) signal. Although

the employment of linear EH models still prevails in most of the literature, recent investigations

have highlighted the importance of including realistic models of EH circuits in the analysis of

communications systems [103, 104]. Indeed, practical EH reveals a non-linear relation between the

stored energy and the received RF power because of physical impairments, such as non-ideal energy

conversion efficiency, storage imperfections, non-linear circuits, etc [105, 106]. Consequently, to

leverage the advantages of SWIPT and acquire more-accurate results, the application of realistic EH

models must be integrated into wireless SWIPT systems.

Although nonlinear EH models consider a more realistic environment, reluctance to adopt

them still exists because of the complexity in solving the optimization problems. Conventional

optimization methods attempting to find the optimal solution may entail high computational com-

plexity, and a closed-form solution is inflexible to change since it needs to be reformulated after a

change in the network [6]. Therefore, the metaheuristic branch of AI algorithms has opened doors

to dealing with complex computational problems. Metaheuristics generate possible solutions to

optimization problems and select the best one with low complexity and high accuracy. Overall, the
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most popular metaheuristic algorithms in the fields of science and engineering include the genetic

algorithm [107], the CS [20], and PSO [18]. For instance, the authors in [20] discussed different

metaheuristic algorithms and identified which ones work the best to optimize the placement of tasks

for network-on-chip cores. The paper concluded that CS is more suitable for placement with a low

computational overhead. Moreover, hybrid schemes have been developed by combining two or more

characteristics of the original metaheuristic algorithms to enhance optimization results [108].

Motivated by the advantages provided by metaheuristic algorithms for solving complex

optimization problems, this chapter investigates the application of swarm intelligence schemes for

solving resource allocation optimization problems in a nonlinear SWIPT NOMA green communica-

tion system. Among them, we propose the PSO-based scheme as a potential solution that achieves

high accuracy with low complexity. To evaluate the performance of the proposed network even

further, we formulated two different optimization problems: power transmission minimization and

energy efficiency maximization. The main contributions of this chapter can be summarized as

follows.

• The goal is to optimize total transmission power and energy efficiency in a cooperative,

non-linear, SWIPT-enabled NOMA system with a non-linear EH user while satisfying the

constraints on minimum data rates, minimum harvested energy at the terminal, time fraction,

and power splitting ratio range.

• The optimization problems considered are non-convex involving joint optimization of the

time transmission fraction, power-splitting ratio, and power allocation and are thus difficult to

solve directly. To tackle this issue, we propose a low-computational-complexity scheme based

on PSO. Moreover, we compare the performance of five swarm intelligence-based baseline

schemes and develop a low-complexity solution based on CS [17, 109, 110]. To validate the

performance of the proposed PSO scheme, we provide an analytical approach based on convex
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optimization with the ES method, denoted as CVX+ES.

• Furthermore, we analyze the effect from linearity of EH on the transmit power and energy

efficiency of the proposed scheme (SWIPT NOMA cooperative communication optimizing the

power variables, time factor, and the power-splitting ratio) and the following baseline schemes:

SWIPT NOMA cooperative communication with a time fixed (TF) scheme, and SWIPT NOMA

cooperative communication with equal power splitting (EPS). Moreover, we investigate the

conventional OMA baseline scheme for comparison purposes. To our satisfaction, simulation

results demonstrated that the proposed cooperative non-linear SWIPT-NOMA system reduces

more transmission power and can obtain higher energy efficiency than the benchmark schemes.

• Numerical results show that the outcomes obtained by PSO reach near-optimal performance,

compared to those obtained by optimal (but time- and energy-consuming) convex optimization

with the ES method [109]. In addition, we provide a complexity comparison between the

optimal scheme (CVX+ES) and the swarm intelligence schemes in terms of computation time.

Thus, we validated PSO as achieving convergence faster than the CS-based framework and

with less computational time.

The rest of the chapter is organized as follows. The system model is described in Section

4.2. In Section 4.3, we formulate the optimization problems of total transmission power minimization

and energy efficiency maximization, and we present the proposed PSO-based solution and comparison

approaches. Finally, numerical results and the conclusion are presented in Section 4.4 and Section

4.5, respectively.

4.2 System Model

We propose a cooperative, non-linear, SWIP-enabled NOMA system composed of three

users and one transmitter, as shown in Figure 4.1, where all nodes have one single antenna. Moreover,
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Figure 4.1: Cooperative non-linear SWIPT-enabled NOMA system.

the user close to the transmitter, denoted by u2, acts as a cooperative DF relay that provides SWIPT

to aid a distant user, u1, to receive messages. Assume there is no direct transmission link between

the transmitter and distant user u1 because of the shadowing effect and obstacles. User 3 acts as

a non-linear RF EH user (denoted by u3) capable of providing an alternative power supply for

electronic devices where conventional energy sources are costly or difficult to implement because of

remote locations, areas of catastrophic damage, or toxic environments.

A transmission is completed in two phases, as shown in Figure 4.2. In the first phase,

the transmitter performs superposition coding according to the NOMA principles by sending the

messages of u1 and u2 to nearby user u2, while u3 extracts RF power by receiving the superimposed

signal from the transmitter. In the second phase, u2 forwards message 1 to u1 by utilizing the stored

energy obtained during the first phase. More details on the first and second phases are in the following

subsections.
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Figure 4.2: Frame structure of the considered cooperative non-linear SWIPT enabled NOMA system.

4.2.1 First Phase

In the first phase, the transmitter conveys a superimposed signal denoted by x, x =

m1x1 + m2x2, where x1, x2 ∈ C are the independent and identically distributed (i.i.d) messages for u1

and u2, respectively. Moreover, the transmitted symbol is normalized as E
(
|x1|

2
)

= E
(
|x2|

2
)

= 1, and

the power variables are denoted by m1 and m2, for u1 and u2, respectively. At the receiver, u2 provides

SWIPT by dividing the superimposed received signal into two parts according to power-splitting

ratio α, one for information decoding and the other for energy harvesting. Accordingly, the received

signal for information decoding at u2 can be given by

y(1)
2 =

√
1 − αk̃2 (m1x1 + m2x2) + z(1)

2 , (4.1)

where k̃2 is the channel coefficient between the transmitter and user 2, z(1)
2 ∼ CN

(
0, σ2

2

)
is the

AWGN, and α ∈ (0, 1) is the power-splitting ratio.

In accordance with NOMA principles, since u2 has the strongest channel conditions, it

employs SIC to first decode the message of u1 and then subtracts this message from the received

signal to decode its message, x2, without interference. Consequently, the SINR of u2 when decoding

message 1, x1, is described in equation (4.2), and the SNR of u2 when decoding its own message, x2,

is equation (4.3):

S INR(1)
2,x1

=
(1 − α) k2m2

1

(1 − α) k2m2
2 + σ2

2

, (4.2)
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where k2 =
∣∣∣∣k̃2

∣∣∣∣2,
S NR(1)

2,x2
=

(1 − α) k2m2
2

σ2
2

. (4.3)

Hence, the rate for the distant user’s data and the rate for the nearby user’s data at u2 can

be given by (4.4) and (4.5), respectively:

R(1)
x1,u2 = τlog2

(
1 + S INR(1)

2,x1

)
, (4.4)

and

Ru2
= τlog2

(
1 + S NR(1)

2,x2

)
, (4.5)

where τ ∈ (0, 1) is the transmission time fraction for the first phase.

Furthermore, in the theoretical linear model of an EH circuit, the users harvest all the

power of the incoming signal. For instance, the linear model of the energy harvested by u2 can be

written as:

Eh(1)
2 linear = τηαk2

(
m2

1 + m2
2

)
, (4.6)

where η is the energy harvesting efficiency. However, the practical non-linear EH model is given by

the logistic function that includes the saturated harvested power and circuit specifications. Therefore,

the energy stored by u2 follows the nonlinear EH model in [97], and can be calculated as follows:

Eh(1)
2 = τ

ψu2 − LΩ

1 −Ω
, (4.7)

where Ω = 1
1+exp(ab) and ψu2 = L

1+exp
(
−a

(
pintu2−b

)) , in which pintu2 denotes the input power. In this

case, pintu2 = αk2
(
m2

1 + m2
2

)
. L is a constant that sets the maximum harvested power at the EH

receiver when the EH circuit is saturated. Parameters a and b are constants depending on the detailed

circuit specifications, for example, capacitance, resistance, and diode turn-on voltage. We consider

the values adopted in [97], which are L = 3.9mW, a = 1500, and b = 0.0022. For simplicity, we

assume the energy stored by user 2 is only utilized for transmitting information to user 1, and energy
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consumption for signal processing and maintaining the circuit can be ignored [100]. Therefore, the

transmit power at user 2 can be given by

Psw =
Eh(1)

2

1 − τ
. (4.8)

Finally, the energy harvested by u3 utilizes the nonlinear EH model described in [97] and

can be expressed by

Eh(1)
3 = τ

ψu3 − LΩ

1 −Ω
. (4.9)

Here, ψu3 = L
1+exp

(
−a

(
pintu3−b

)) , and pintu3 = |ẽ|2
(
m2

1 + m2
2

)
, where ẽ is the channel coefficient

from the transmitter to user 3. Note that the ideal linear EH model for u3 can be expressed as

Eh(1)
3 linear = τη|ẽ|2

(
m2

1 + m2
2

)
. (4.10)

4.2.2 Second Phase

In this phase, nearby user u2 utilizes its stored energy to forward message x1 to u1. Thus,

the received signal at u1 is

y(2)
1 =

√
Psw f̃ x1 + z(2)

1 , (4.11)

where f̃ is the channel coefficient from u2 to u1, and z(2)
1 ∼ CN

(
0, σ2

1

)
is AWGN at u1. Then, the

SNR to decode x1 is expressed by

S NR(2)
1,x1

=
Psw

∣∣∣ f̃ ∣∣∣2
σ2

1

=
Eh(1)

2 · f
(1 − τ)

, (4.12)

where f =
| f̃ |

2

σ2
1
. Then, the rate for the distant user’s data at u1 can be written as seen in (4.13):

R(2)
x1,u1 = (1 − τ) log2

(
1 + S NR(2)

1,x1

)
. (4.13)
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4.3 PROBLEM FORMULATION AND SOLUTION

4.3.1 Transmission Power Optimization Problem

In this problem, we aim to minimize the total transmission power of the cooperative

non-linear SWIPT-enabled NOMA system with a nonlinear EH user by jointly optimizing the

transmission time fraction, τ, the power-splitting ratio, α, and power allocation variables m2
1 and m2

2

while satisfying the QoS constraints from all users. For simplicity, let us define m2
1 = p1 and m2

2 = p2.

Then, the resource allocation problem to minimize the total transmission power is equivalent to the

minimization of p1 + p2, which can be formulated as follows:

min
p1,p2,τ,α

p1 + p2 (4.14a)

s.t. τlog2

1 +
(1 − α) k2 p1

(1 − α) k2 p2 + σ2
2

 ≥ γ1, (4.14b)

(1 − τ) log2

(
1 + f τ

ψu2 − LΩ

(1 −Ω) (1 − τ)

)
≥ γ1 (4.14c)

τlog2

1 +
(1 − α) k2 p2

σ2
2

 ≥ γ2, (4.14d)

τ
ψu3 − LΩ

1 −Ω
≥ φ, (4.14e)

p1 + p2 ≤ Pmax (4.14f)

0 < α < 1, (4.14g)

0 < τ < 1, (4.14h)

where (4.14b) and (4.14c) guarantee that the rate of distant-user data at u2 and u1, respectively, can

reach the minimum rate requirement constraint, γ1. Equation (4.14d) corresponds to the minimum

rate constraint for u2, in which γ2 denotes the minimum rate target. Equation (4.14e) corresponds to

the minimum harvested power constraint for u3, in which φ denotes the minimum harvested power

requirement. Constraint (4.14f) guarantees that the power to transmit message 1 and message 2 does

not exceed the maximum available power at the transmitter. Constraint (4.14g) indicates that the



4.3 PROBLEM FORMULATION AND SOLUTION 83

power splitting ratio, α, is between 0 and 1. Constraint (4.14h) points out that the time factor, τ, is

between 0 and 1.

We can see that this problem is non-convex because of constraints (4.14b) to (4.14e).

Specifically, (4.14b) is non-convex due to coupled power allocation variables p1 and p2, power-

splitting ratio α, and time fraction τ. Moreover, (4.14c) is non-convex due to the coupled fraction time,

τ, and due to ψu2 , which is challenging because ψu2 involves the sum of the power allocation variables

p1 and p2 multiplied by power splitting ratio α. Similarly, constraint (4.14e) is non-convex due to the

coupled fraction time, τ, and ψu3 . In (4.14e), ψu3 involves the sum of the power allocation variables

p1 and p2. Thus, optimization problem (4.14) is difficult to solve directly. Conventional optimization

techniques and ES methods are used to solve resource allocation problems when searching for the

optimal solution. However, these techniques involve high complexity due to a high computational

load that entails undesired delays in updating the optimal solution. Moreover, if an additional element

is involved in the network, a closed-form solution should be reformulated. Therefore, we investigate

low-complexity solutions to solve the proposed resource allocation problems more efficiently with

much lower complexity and without degrading the network performance. We particular studied the

potential PSO framework to obtain a low-complexity solution in the proposed cooperative non-linear

SWIPT-enabled NOMA system. Moreover, we investigated CS and CVX+ES-based frameworks for

comparison purposes. In addition, we considered two baseline schemes based on an EPS ratio and a

TF scheme.

Analytical Solution For Transmission Power Minimization

Since problem (4.14) is non-convex and cannot be directly solved, let us fix the value of

variable τ for any given τ ∈ (0, 1) to transform non-convex optimization problem (4.14). Then, after

some derivations, problem (4.14) is transformed into a convex problem as follows:

min
p1,p2,α

p1 + p2 (4.15a)



84 4.3 PROBLEM FORMULATION AND SOLUTION

s.t. νu1,2k2 p2 +
νu1,2σ

2
2

(1 − α)
− k2 p1 ≤ 0, (4.15b)

κu2

α
− k2 (p1 + p2) ≤ 0, (4.15c)

νu2σ
2
2

(1 − α)
− k2 p2 ≤ 0, (4.15d)

κu3 − |ẽ|2 (p1 + p2) ≤ 0, (4.15e)

p1 + p2 ≤ Pmax (4.15f)

0 < α < 1, (4.15g)

where νu1,2 =
(
2
γ1
τ − 1

)
, νu2 =

(
2
γ2
τ − 1

)
, κu3 = b−1

a ln
(

L
LΩ+(1−Ω) φτ

− 1
)
, κu2 = b− 1

a ln
(

L
LΩ+(1−Ω)χu2

− 1
)
,

χu2 =
νu1,1(1−τ)

f τ , and νu1,1 =
(
2

γ1
1−τ − 1

)
.

Problem (4.15) is convex and can be solved by the CVX toolbox in MATLAB [111]. The

optimal value of τ is obtained with a one-dimensional ES method. For each candidate value of

τ, problem (4.15) needs to be solved to evaluate the objective function. The ES method gives the

optimal value of τ but entails high computational complexity. Then, this method can be considered

the optimal solution for comparative analysis. In addition, a near-optimal value of τ can be obtained

by using metaheuristic methods, such as PSO or CS, to reduce the load computational complexity.

Therefore, in Subsection 4.3.1, we propose PSO and CS-based approaches for transmission power

minimization.

Proposed PSO-based Framework For Transmission Power Minimization

PSO is a potential optimization scheme based on a population called the swarm, which

is composed of particles that move together in a search space, with the objective being to find the

optimal solution. Each particle contains the variables to be optimized, and its position is updated each

iteration towards the local and global best positions. The global best position indicates the position in

which a particle has reached the best yield in the population, whereas the local best position indicates
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the position in which the particle has reached its own best yield so far. In this chapter, each particle

position is denoted by qr, which is a vector of four elements (p1, p2, α, and τ) that correspond to the

set of variables to be optimized, and it can be written as follows:

qr =
{
qp1,r, qp2,r, qα,r, qτ,r

}
, (4.16)

where r = 1, 2, 3, ...,Rp, in which Rp denotes the number of particles in the swarm. Moreover, the

feasible search region for each element of the particle’s position, qp1,r, qp2,r, is denoted as [0, Pmax] ,

where Pmax is the maximum transmission power at the transmitter. The search region for the particle’s

position, qα,r and qτ,r, is the range (0, 1) .

Since proposed problem (4.14) is a constrained optimization problem, a method to deal

with constraints is required. Therefore, we utilize the penalty method, where fitness function

f (qr) = f (p1, p2, α, τ) is based on the objective function of problem (4.14) as follows:

f (qr) = p1 + p2 + ς

4∑
i=1

ξ (gi), (4.17)

where ς is the penalty value, gi is the i-th constraint of problem (4.14), and ξ (gi) = 0 if gi is satisfied,

whereas ξ (gi) = 1, otherwise. If all constraints are satisfied, f (qr) is the objective function without

penalty.

Furthermore, the search strategy to find the optimal solution is based on updating each

particle’s velocity and position. Based on [6], the velocities of the particles are updated as follows:

vt+1
r = Inetvt

r + j1c1
(
lbt

r − qt
r

)
+ j2c2

(
gbt − qt

r

)
, (4.18)

where Inet denotes the inertia weight for the velocity update, vt
r is the velocity of the r-th particle in

the t-th iteration, lbt
r denotes the local best position of the r-th particle, qt

r denotes the position of the

r-th particle in the t-th iteration, and gbt denotes the global best position of all particles in the t-th

iteration; j1 and j2 are random numbers between 0 and 1, and c1 and c2 are the cognitive and social

parameters, respectively.
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Then, to update the r-th particle’s position for each of the elements described in (4.16), the

previous particle position plus the updated velocity indicated in (4.18) are considered as follows:

qt+1
r = qt

r + vt+1
r . (4.19)

The procedure of the proposed PSO-based algorithm in solving the power minimization

problem (4.14) is described in Algorithm 4.1, where the input parameters correspond to the maximum

transmission power at the transmitter, Pmax; the target rate of user 1, γ1; the target rate value of user

2, γ2; the minimum energy harvesting at user 3, φ; the maximum number of iterations, denoted by

Itotal
PS O; the number of particles, R; the inertia weight for the velocity update, Ine; random numbers

j1, j2, and cognitive and social parameters c1 and c2. Moreover, the initial global best position is

allocated in accordance with the objective function, wherein this chapter the initial gb selects the

minimum objective value from among all the initial particle positions.

Moreover, the computational complexity of PSO is based on the number of particles, Rp,

and the total number of iterations, Itotal
PS O [112]. Thus, the total complexity of the proposed PSO

scheme is O
(
Rp · Itotal

PS O

)
.

CS-based Framework With Lévy Flights For Transmission Power Minimization

The CS algorithm was inspired by the brood parasitism of the cuckoo species, laying their

eggs in the nests of other birds. However, when a host bird realizes the eggs are not its own, it will

either leave its nest and build a new one or push the intruding cuckoo’s eggs out of the nest. This

action can be represented by probability pa ∈ [0, 1].

Some cuckoo species are able to mimic the pattern and color of the eggs of a few select

host species. This is a key feature that increases cuckoo chick reproduction and prevents them from

being abandoned. Overall, the advantage is that the cuckoo eggs hatch slightly earlier than the host

eggs, and once the first cuckoo chick emerges, its first act is to dislodge the host species’ eggs. This

increases its access to feeding opportunities [113].
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Algorithm 4.1 The proposed PSO-based algorithm to solve problem (4.14).
1: Establish the input parameters of PSO. Set iteration counter t = 1.

2: Initialize particle positions that are randomly selected according to the feasible search region

[0, Pmax] , and (0, 1) . qt =
{(

qt
p1,1

, qt
p2,1

, qt
α,1, q

t
τ,1

)
, ...,

(
qt

p1,Rp
, qt

p2,Rp
, qt

α,Rp
, qt

τ,Rp

)}
3: Initialize the particles’ velocities: vt =

(
vt

1, v
t
2, ..., v

t
r

)
4: Calculate minimum transmission power f

(
qt

r
)

by evaluating (4.17) for each r-th particle.

5: Set the initial best particles’ positions, ∀r, lbt
r = qt

r.

6: Set the initial global best position, gbt = arg min
1≤r≤Rp

f
(
lbt

r
)
.

7: For each particle r do

8: From (4.18), update the particles’ velocities.

9: From (4.19), update the particles’ positions.

10: Update the best particles’ positions,

if f
(
qt+1

r

)
< f

(
lbt

r
)

then lbt+1
r = qt+1

r

else

lbt+1
r = lbt

r

end if

11: end for

12: Update the global best particles’ positions, gbt+1 = arg min
1≤r≤Rp

f
(
lbt+1

r

)
.

13: if t < Itotal
PS O, then t = t + 1 and go to Step 8

else

go to Step 15

end if

14: Return: the best values of resource allocation variables,
{
p∗1, p∗2, α

∗, τ∗
}

= gb, to obtain the

minimum value of total transmission power indicated in problem (4.14).
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The main idea is that each egg in a nest represents a solution, and the nests with high-quality

eggs, i.e., those with potentially the best solutions, will replace a not-so-good solution in the nest and

will be carried over to the next generation. In this chapter, we assume each nest has one egg.

Then, each egg is a vector of four elements, p1, p2, α, and τ, that are the variables to be

optimized, qn =
{
p1,n, p2,n, αn, τn

}
, where n = 1, 2, 3, ...,N, in which N denotes the number of nests.

Similar to equation (4.17), indicated in the PSO-based algorithm, we use a penalty function to deal

with constraints, as follows:

f (qn) = p1 + p2 + ς

4∑
i=1

ξ (gi). (4.20)

Then, each solution, f (qn), is based on the objective function of problem (4.14), which

aims to minimize total transmission power. After that, the generation of new solutions is carried out

by Lévy flights [104–106]. For instance, the procedure in Lévy flights to generate a new solution for

power allocation variable p1 can be expressed as follows:

pt,new
1 = pt

1 + R · β · L (s, λ)
(
pt

1 − pt
1,g

)
, (4.21)

where R is random number N (0, 1), pt
1,g is the nest with the best fitness function, L (s, λ) =

λΓ(λ) sin(πλ/2)
π

1
s1+λ , β > 0 is the step size, and factor 1 < λ ≤ 3 we consider to have a value of

λ = 3/2. Parameter s denotes the step length based on Mantegna’s algorithm [14], and it can be

calculated by

s =
u

|υ|1/β
, (4.22)

where u ∼ N
(
0, σ2

u

)
, υ ∼ N

(
0, σ2

υ

)
, σ2

u =
{

Γ(1+λ) sin(πλ/2)
Γ[(1+λ)/2]λ2(λ−1)/2

}
, σ2

υ = 1.

Similarly, the process to compute the new solution for power allocation variables p2, α,

and τ can be written as

pt,new
2 = pt

2 + R · β · L (s, λ)
(
pt

2 − pt
2,g

)
, (4.23)

αt,new = αt + R · β · L (s, λ)
(
αt − αt

g

)
, (4.24)
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and

τt,new = τt + R · β · L (s, λ)
(
τt − τt

g

)
. (4.25)

For simplicity, we denote that qt
g =

{
pt

1,g, pt
2,g, α

t
g, τ

t
g

}
. It is worth mentioning that in this

chapter, we implement an improved CS version described in [109]. In the conventional CS algorithm,

the probability, pa, and the step size, β, are fixed parameters. However, fine-tuning these parameters

can be essential to enhancing the convergence rate and the performance of the algorithm. Therefore,

we implemented the improved CS version, which dynamically changed the parameters, pa and β,

based on the number of generations. Accordingly, probability pa was modified as follows:

pa = pmax
a −

t
Itotal
CS

(
pmax

a − pmin
a

)
, (4.26)

where t denotes the current iteration, and Itotal
CS denotes the total number of iterations. According to

the experiment results, we consider pmax
a = 0.5, and pmin

a = 0.25.

Moreover, step size parameter β is modified as follows:

β = βmax exp (q · t) , (4.27)

where q = 1
Itotal
CS

ln
(
βmin
βmax

)
. A fraction of the worst nests, pa, are abandoned and their positions are

updated as follows [110]:

pt,new
1 = pt

1 + R ·
(
pt

1,g − pt
1,u

)
, (4.28)

pt,new
2 = pt

2 + R ·
(
pt

2,g − pt
2,u

)
, (4.29)

αt,new = αt + R ·
(
αt
g − α

t
u

)
, (4.30)

τt,new = τt + R ·
(
τt
g − τ

t
u

)
, (4.31)
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where qt
u =

{
pt

1,u, pt
2,u, α

t
u, τ

t
u

}
is a randomly selected nest.

The procedure of the CS-based algorithm in solving power minimization problem (4.14)

is described in Algorithm 4.2. The input parameters are the maximum transmission power at the

transmitter, Pmax; the target rate value of user 1, γ1; the target rate value of user 2, γ2; the minimum

energy harvesting at user 3, φ; the maximum iteration number, Itotal
CS ; the number of nests, denoted

by N; the probability that a host bird discovers the intruder cuckoo’s egg, pa; step size β, factor λ,

and step length s. In addition, as input parameters, the lower and upper boundaries of the variables

to be optimized are considered. Then, power allocation variables p1 and p2 are within the range

[0, Pmax], while variables for fraction transmission time τ and power splitting ratio β fall within

(0, 1) . Moreover, the computational complexity of the CS depends on the number of nests, N, and the

total number of iterations, Itotal
CS [114]. Thus, the total complexity of the CS scheme is O

(
N · Itotal

CS

)
.

4.3.2 Energy Efficiency Optimization Problem

In this problem, we aim to maximize the total energy efficiency of the proposed cooperative

non-linear SWIPT-enabled NOMA system that also considers an additional nonlinear EH user. Here,

we jointly optimized the transmission time fraction, τ, the power-splitting ratio, α, and the power

allocation variables, p1 and p2, while satisfying the QoS constraints of all users. The energy efficiency

is defined as the ratio of total rate to power consumption, as shown in the objective function of the

problem, and it can be formulated as follows:

max
p1,p2,τ,α

Ru1 + Ru2

τ (p1 + p2 + pc1) + (1 − τ) (Psw + pc2)
(4.32a)

s.t. (14b), (14c), (14d), (14e), (14f), (14g), (14h),

where Ru1 = min
(
R(1)

x1,u2 ,R
(2)
x1,u1

)
, pc1 and pc2 are the circuit power variables at user 1 and user 2,

respectively.

It is worth highlighting that the energy efficiency maximization problem is more challeng-



4.3 PROBLEM FORMULATION AND SOLUTION 91

Algorithm 4.2 CS-based framework to solve power minimization problem (4.14).
1: Input parameters of CS scheme, define objective function f (qn) in (4.20).

2: Initialize a population of N host nests for each variable to be optimized, qn =
{
p1,n, p2,n, αn, τn

}
,

n ∈ {1, .2, ...,N} .

3: Initialize t = 0.

4: Evaluate fitness function for each nest, Ft
n = f

(
qt

n
)
,∀n, and find qt

g.

5: For t < Itotal
CS do

6: Calculate β with (4.27) and obtain new position qt,new
n =

{
pt,new

1,n , pt,new
1,n , αt,new

1,n , τt,new
n

}
for each nest via Lévy flights with (4.21), (4.23), (4.24), and (4.25).

7: Evaluate the fitness function for each nest, Ft,new
n ,∀n.

8: For all nests do:

if Ft,new
n < Ft

n then Ft+1
n = Ft,new

n , qt+1
n = qt,new

n

else Ft+1
n = Ft

n, qt+1
n = qt

n

end if

9: Calculate the value of pa with (4.26).

10: A fraction, pa, of the worst nests are abandoned,and the corresponding positions of the nests

are updated based on (4.28)-(4.31).

11: Evaluate fitness of new nests and execute Step 8; rank all solutions and find the current

12: best nest.

13: t = t + 1

14: end for

15: Return: the best values,
{
p∗1, p∗2, α

∗, τ∗
}

= best nest, to obtain the minimum transmission power

indicated in problem (4.14).

ing to solve since the cost function is in fractional form and constraints are non-convex. Therefore,

in Subsection 4.3.2, we propose a swarm-intelligence-based scheme called PSO to reduce the com-
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putational complexity. In addition, we develop a CS-based benchmark scheme for comparison

purposes.

Proposed PSO-based Framework For Energy Efficiency Maximization

Similar to (4.16), we define the objective function as follows:

f (qn) =
Ru1 + Ru2

τ (p1 + p2 + pc1) + (1 − τ) (Psw + pc2)

− ς

4∑
i=1

ξ (gi).
(4.33)

Then, the PSO algorithm to solve problem (4.32) is based on Algorithm 4.1 with the

following modifications: (a) the objective function is evaluated with (4.33); (b) the global best

position is obtained with gbt = arg max
1≤r≤Rp

f
(
lbt

r
)

; (c) in Step 11, the condition to update the local best

position is f
(
qt+1

r

)
> f

(
lbt

r
)
.

Cuckoo-Search-Based Framework with Lévy Flights For Energy Efficiency Maximization

To maximize the energy efficiency of the proposed NOMA SWIPT network based on CS

with Lévy flights, we follow Algorithm 4.2 with minor modifications. Since the current optimization

problem is one of maximization, in Step 9 of Algorithm 4.2, we replace inequality Ft,new
n < Ft

n with

Ft,new
n > Ft

n. In addition, the objective function is given in (4.33). Then, we obtain the best values,{
p∗1, p∗2, α

∗, τ∗
}

= best nest, to achieve the maximum energy efficiency indicated in (4.32a).

4.4 NUMERICAL RESULTS

In this section, we present the simulation results programmed into MATLAB software,

of the proposed cooperative non-linear SWIPT-enabled NOMA system. The results are averaged

over several channel realizations. More specifically, we present a performance comparison between

the optimal scheme provided by the convex optimization with the ES method, denoted as CVX+ES,
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and the proposed PSO-based scheme. Moreover, we assess the performance of the following swarm

intelligence-based baseline algorithms: CS, the ALO method, the BOA, the firefly algorithm (FA),

and the BA. In addition, we compare the performances between NOMA and OMA transmission

cooperative communication with a TF scheme (τ = 0.5) [115–119], and SWIPT NOMA cooperative

communication with the EPS scheme (α = 0.5) [6].

Rayleigh fading channels k̃2, f̃ , ẽ have i.i.d. complex Gaussian entries with zero mean

and a certain variance, i.e, k̃2 ∼ CN
(
0, d−pl

tru2

)
, f̃ ∼ CN

(
0, d−pl

u1u2

)
, and ẽ ∼ CN

(
0, d−pl

tru3

)
, respectively,

where di j denotes the distance between nodes i and j, and pl is the path-loss exponent; index tr

indicates the transmitter. In the simulations, we assume the path-loss exponent is pl = 2 for channels

k̃2, f̃ , ẽ, and noise power is σ2
1 = σ2

2 = −60 dBm. The distances in meters between the nodes are

dtru2
= 15, du1u2

= 18, and dtru3
= 6. Moreover, the maximum transmission power at the transmitter

is Pmax = 30 dBm.

4.4.1 Transmission Power Minimization

In this subsection, we analyze the numerical results obtained for transmission power

minimization. Figure 4.3 shows the total transmit power of the proposed PSO-based scheme

compared with those of the following swarm intelligence algorithms: CS, ALO, BAO, FA, and BA.

The parameters of each algorithm in Table 4.1 are set based on the best results achieved through

several experiments. The description of these baseline swarm algorithms and their parameters are

explained in [120]. From Figure 4.3, it is observed that the trend of all schemes rises as the minimum

rate at user 1 increases. However, the proposed PSO scheme outperforms the comparison swarm

intelligent algorithms in terms of total transmit power. It is noteworthy that the performance of CS

is very close to that obtained by PSO. Thus, to validate the superiority of PSO, we evaluate the

convergence behavior between PSO and CS. In addition, we compare the average (central processing

unit) CPU running time of the proposed PSO-based framework, the optimal CVX+ES method, and
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Figure 4.3: Total transmit power of the proposed PSO-based scheme, CS, ALO, BOA, FA, and BA

according to the minimum rate at user 1, γ1.

the performance of five benchmark swarm intelligence algorithms.

Figure 4.4 illustrates the convergence behavior of the proposed low-complexity PSO

algorithm and the CS baseline algorithm according to the number of iterations. We can see that as

the number of iterations increases, the total transmission power is minimized. Moreover, Figure

4.4 shows that for the PSO-based scheme, the transmit power converges within about 60 iterations.

Therefore, we fix the number of iterations, Itotal
PS O, equal to 60 at other simulations. Moreover, we

also set the number of particles at Rp = 30, the inertia weight to Ine = 0.7, along with the scaling

factors, c1 = 1.494, and c2 = 1.494. Meanwhile, for the CS-based scheme, Figure 4.4 shows that the

transmit power converges within about 250 iterations, which is a bit more than double that of PSO

and entails higher complexity. After the fine-tuning process for CS, we set its parameters: number

of nests, N = 35, and total iterations, Itotal
CS = 250. Furthermore, we can see that total transmission

power increases as the minimum requirement for EH at u3, and the minimum target rates, γ1 and
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Table 4.1: Simulation parameters for transmission power minimization

Algorithm Simulation parameters

PSO Itotal
PS O = 60, Rp = 30, Ine = 0.7, c1 = 1.494, c2 = 1.494

CS Itotal
CS = 250, N = 35, βmin = 0.01, βmax = 0.5

ALO Number of iterations, Itotal
ALO = 120, Number of ants, NALO = 30

BOA

Number of generations, GBOA = 250, Number of agents, S BOA = 35

Sensory modality, sm = 0.01, Power exponent, pe = 0.01

Switch probability, sp = 0.5

FA

Number of iterations, Itotal
FA = 500, Number of fireflies, NFA = 40

Randomness strength, Rstr = 1, Attractiveness constant, Atc = 1

Absorption coefficient, ac = 0.01, Randomness reduction factor, Rr f = 0.97

BA

Number of iterations, Itotal
BA = 200, Number of bats, NBA = 40

Pulse emission rate, pBA = 0.001, Maximum frequency, f max
BA = 2

Minimum frequency, f min
BA = 0, Constant for loudness, lBA = 0.5

Constant for emission rate, ler = 0.5

γ2, respectively, increases. This is because more power must be allocated to users as the QoS

requirements increase.

To validate the optimality of the proposed low-complexity PSO-based framework, Figure

4.5 shows the performance comparison between the optimal scheme, CVX+ES, the PSO-based

scheme, the CS-based scheme, and cooperative SWIPT-OMA for transmission power minimization.

Note that CVX with the ES method corresponds to the analytical solution indicated in subsection

III.A. Figure 4.5 shows the transmission power when the minimum EH requirement is φ = −23dBm,

and target rate at u2 is γ2 = 1 bit/s/Hz. From Figure 4.5, we verify that the proposed PSO and
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Figure 4.4: Convergence of the proposed PSO-based algorithm and CS with different required rates

γ1, γ2, and minimum harvested energy, φ, for transmission power minimization.

CS-based frameworks provide near-optimal performance, compared with the CVX+ES method. In

addition, it is worth highlighting that the PSO-based scheme can reach a result closer to the optimal

solution provided by CVX+ES in fewer iterations than under the CS, which means that less time is

needed to compute a solution with higher performance. Therefore, in this chapter, we propose the

PSO-based framework as the most suitable low-complexity solution in the cooperative non-linear

SWIPT-NOMA network.

Furthermore, the average CPU running times are compared in Table 4.2 among the proposed

PSO-based framework, the optimal CVX+ES method, and five benchmark swarm intelligence

algorithms. The results are obtained by using a computer with a 4 GHz i7-6700K CPU and 16 GB

RAM. Firstly, we can observe that CVX+ES requires the most computation time. By contrast, the low-

complexity solutions provided by the proposed PSO-based scheme and the swarm intelligence-based

baseline algorithms can reduce the CPU running time to obtain a sub-optimal solution. However,

it is remarkable that the PSO scheme requires the least CPU running time to reach a solution than
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Figure 4.5: Performance comparison among the optimal scheme (CVX+ES), the PSO-based scheme,

the CS-based scheme, and cooperative SWIPT-OMA for transmission power minimization.

their counterparts to reach a solution. This is because PSO requires fewer iterations compared to

the benchmark swarm intelligence schemes, as shown in Table 4.1. Particularly, from Figure 4.5,

we can observe that CS and PS achieve a very close performance to the optimal CVX+ES method.

However, we can also see that CS needs more time than PSO to reach a solution. This is because

PSO requires fewer iterations to achieve convergence compared to the CS method. Moreover, the

number of particles, Rp, utilized in PSO is lower than the number of nests, N, required under CS.

Recall that the computation complexity depends on the number of iterations and the number of

particles used by each algorithm. Specifically, the computational complexity of PSO is computed by

O
(
Rp · Itotal

PS O

)
while the computation complexity of CS is computed by O

(
N · Itotal

CS

)
. In this sense,

since the PSO-based scheme requires fewer iterations and a lower number of particles than that

required by CS, the least computational complexity with the highest accuracy is achieved by the

proposed PSO-based solution. Regarding CVX+ES, the problem (4.15) should be solved for each

possible time value for τ and it is needed to check if the candidate solution satisfies all the constraints.
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Table 4.2: CPU running time

Scheme CPU time (sec)

PSO 0.671

CVX+ES 3584

CS 6.017

ALO 3.495

BOA 25.106

FA 119.641

BA 2.784

Next, the candidate solution with the lowest objective function is defined as the best solution. Then,

the CVX+ES method cannot have a convergence behavior like the presented in Figure 4.4 for PSO

and CS because the possible values of τ are tested in order from 0 to 1 with a predefined step. For

instance, we considered increments of 0.0001 for τ, and thus, solved the problem (4.15) a total of

10,000 times, whereas the average time to solve the problem (4.15) is 0.358 sec.

Moreover, we considered the total power minimization problem for the cooperative non-

linear SWIPT-enabled OMA benchmark. We used the TDMA technique in which three phases are

required to complete transmission in the comparison SWIPT-OMA scheme. Specifically, TDMA

allocates a fraction of time τ1 and τ2 to u1 and u2, respectively. Moreover, a fraction of time τ3

is assigned to the cooperative transmission from u2 to u1. From Figure 4.5, we observed that the

proposed cooperative SWIPT-NOMA scheme outperforms the conventional OMA strategy in the

cooperative network since OMA increases the total transmission power compared with the proposed

cooperative NOMA scheme. This is because, in NOMA, the users share the same frequency at the

same time, which improves the spectral efficiency of the system. By contrast, OMA requires more
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resources to complete a transmission because users share the same frequency channel at different

times.

Figure 4.6 and Figure 4.7 illustrate the effect from linearity of EH on the transmit power

of the proposed scheme (cooperative SWIPT NOMA communication optimizing resource alloca-

tion variables p1, p2, τ, and α) and the following baseline schemes: SWIPT NOMA cooperative

communication with TF, and SWIPT NOMA cooperative communication with EPS. In cooperative

non-linear SWIP-NOMA, we used the non-linear EH model at u2 specified in (4.7) and the non-linear

EH model at u3 specified in (4.9). On the other hand, for application of the ideal linear EH model in

the cooperative SWIPT-enabled NOMA system, we used the linear EH model at u2 specified in (4.6)

and the linear EH model at u3 specified in (4.10). Moreover, we considered η = 1 for the linear EH

models. Overall, we verified that the cooperative SWIPT-NOMA scheme with a linear EH model

achieved lower transmission power since it considers the users to be storing all the power of the

incoming signal. By contrast, the non-linear EH model considers a more realistic environment where

the relationship between stored energy and received RF power is non-linear because of physical

impairments, saturated harvested power, and circuit specifications. Moreover, from Figure 4.6 and

Figure 4.7, we can see that the proposed cooperative non-linear SWIPT-NOMA scheme outperforms

the EPS and TF baseline schemes. This verifies that including the power splitting ratio and time

fraction variables in the optimization problem improves the performance of the network. Recall that

the EPS and TF schemes considered the power splitting ratio to be α = 0.5, and the time transmission

fraction to be set at τ = 0.5, respectively.

4.4.2 Energy Efficiency Maximization

In this subsection, we assess the results for energy efficiency maximization in the proposed

nonlinear SWIPT NOMA system.

Figure 4.8 shows energy efficiency among the proposed PSO-based scheme and the
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Figure 4.6: Transmit power comparison between the proposed cooperative non-linear SWIPT-NOMA

and cooperative linear SWIPT-NOMA according to different required rate, γ1, γ2 = 1 bit/s/Hz,

φ = −15 dBm.

following swarm intelligence algorithms: CS, ALO, the BAO, FA, and BA. The parameters of each

algorithm in Table 4.3 are set based on the best results achieved through several experiments. From

Figure 4.8, it is observed that the energy efficiency of all schemes diminishes as the minimum rate

at user 1 increases. However, the proposed PSO scheme outperforms the other swarm intelligent

algorithms by utilizing fewer iterations to obtain the maximum energy efficiency which entails less

computational time. Similar to the transmit power problem, the performance of CS is very close to

that obtained by PSO. Thus, to validate the superiority of PSO, we evaluate the convergence behavior

and the CPU time between PSO and CS.

Figure 4.9 illustrates the convergence behavior of energy efficiency of the proposed low-

complexity PSO-based algorithm and the CS baseline scheme. As the number of iterations increases,

energy efficiency is maximized. Moreover, Figure 4.9 shows that in the case of PSO, the energy

efficiency is converged within about 125 iterations. Therefore, we set the number of iterations, Itotal
PS O,
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Table 4.3: Simulation parameters for energy efficiency

Algorithm Simulation parameters

PSO
Itotal
PS O = 125, Rp = 35, Ine = 0.7

c1 = 1.494, c2 = 1.494

CS
Itotal
CS = 400, N = 35, βmin = 0.01

βmax = 0.5

ALO Itotal
ALO = 250, NALO = 35

BOA
GBOA = 250, S BOA = 60, sm = 0.01

pe = 0.01, sp = 0.5

FA
Itotal
FA = 500, NFA = 60, Rstr = 1

Atc = 1, ac = 0.01, Rr f = 0.97

BA

Itotal
BA = 250, NBA = 50, pBA = 0.001

f max
BA = 2, f min

BA = 0, lBA = 0.5

ler = 0.5

at 125. Moreover, we set the number of particles to Rp = 35, the inertia weight to Ine = 0.7, and

for the scaling factors, c1 = 1.494, and c2 = 1.494. Regarding CS, from Figure 4.9, we can see that

the energy efficiency is converged within about 400 iterations. Similar to the convergence behavior

for the power minimization problem, the number of iterations for energy efficiency is also more

than double that of PSO, which entails higher complexity. After performing various experiments

with CS, we selected the parameters for the number of nests, N = 35, and the total iterations,

Itotal
CS = 400. Moreover, from Figure 4.11, we can see that the energy efficiency decreases as the

minimum requirements for EH at u3, and for the minimum target rates, γ1 and γ2, increase. This is

because when QoS requirements increase, more power needs to be allocated to users. Accordingly,
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Figure 4.9: Convergence of the proposed PSO-based algorithm and CS with different required rates,

γ1, γ2, and minimum harvesting energy, φ, for energy efficiency maximization.

energy efficiency is reduced, since its relationship to power consumption is inversely proportional.

From Figure 4.10, we verified that the energy efficiency performances obtained by the

proposed PSO- and CS-based frameworks are close to that by the ES method with the minimum

EH requirement, φ = −23 dBm, and for the target rate at u2, γ2 = 1 bit/s/Hz. In contrast to the ES

method, the low-complexity solutions provided by PSO and CS can lessen the time needed to achieve

an approximately optimal solution with low computational complexity. It is worth noting that the

proposed PSO-based scheme can reach a result closer to the optimal solution provided by ES in fewer

iterations than the CS-based scheme. This means less time is needed to compute a solution with

higher performance. Therefore, we propose the PSO-based scheme as a powerful low-complexity

solution in cooperative non-linear SWIPT-NOMA networks. Moreover, from Figure 4.10, we verify

that the proposed cooperative SWIPT-NOMA network outperforms the OMA scheme in terms of

energy efficiency.

Figure 4.11 and Figure 4.12 illustrate the effect from linearity of EH on energy efficiency
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Figure 4.10: Energy efficiency performance of ES, cooperative non-linear SWIPT-NOMA with PSO,

cooperative non-linear SWIPT-NOMA with CS, and cooperative non-linear SWIPT-OMA with PSO.

in the proposed cooperative SWIPT NOMA communication that optimizes the variables p1, p2, τ,

and α, and on the following baseline schemes: SWIPT NOMA cooperative communications with a

TF scheme, and SWIPT NOMA cooperative communications with EPS. Besides, we consider η = 1.

From Figure 4.11 and Figure 4.12, we verify that the cooperative SWIPT-NOMA scheme with the

ideal linear EH model achieves higher energy efficiency. This is due to a linear relationship between

the stored energy and the received RF power. Thus, users can store all the power of the incoming

signal. This differs from the proposed non-linear EH model, which considers a more realistic

environment that involves saturated harvested power and circuit specifications. Furthermore, from

Figure 4.11 and Figure 4.10, we can see that the proposed cooperative non-linear SWIPT-NOMA

scheme outperforms the EPS and TF baseline schemes in terms of energy efficiency.
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4.5 Closing Remarks

In this chapter, we propose to optimize transmission power and energy efficiency in a

collaborative non-linear SWIPT-NOMA system with a non-linear EH user while satisfying constraints

on minimum target rate at the users and minimum harvested energy at the terminal. The considered

optimization problems are non-convex, involving joint optimization of the transmission time fraction,

the power splitting ratio, and power allocation, and are thus difficult to solve directly. To tackle this

issue, we propose a PSO–based solution with low computational complexity where results reach

performance near-optimal to those obtained by the optimal but time- and energy-consuming convex

optimization and ES methods. In addition, we also study and develop a CS-based benchmark as

an alternative low-complexity solution and evaluate the performance of five swarm intelligence

benchmark schemes. Simulation results showed that PSO requires fewer iterations than the swarm

intelligence baseline schemes to achieve convergence, which leads to the least CPU time for PSO.

Furthermore, we investigate cooperative non-linear SWIPT-OMA, EPS, and TF benchmark schemes

for performance comparison with the proposed cooperative non-linear SWIPT-NOMA system.

Results showed that the proposed cooperative non-linear NOMA with SWIPT can reduce transmit

power and achieved higher spectral efficiency compared to the OMA, EPS, and TF baseline schemes.

It is worth highlighting that the optimization of the time variable provided a significant performance

improvement, but it is conventionally kept as a constant in the literature. Furthermore, we analyzed

the application of a non-linear EH model with the ideal linear EH. The developed schemes with

linear EH achieved lower transmission power and high energy efficiency because they consider an

ideal case where the receiver harvests all the power of the incoming signal.



Chapter 5

Ensemble Learning aided QPSO–Based

Framework for Secrecy Energy Efficiency

in FD CR-NOMA Systems1

5.1 Introduction

Cooperative communications integrating full-duplex (FD) operation mode, CR, and NOMA

are emerging technologies for deployment of IoT networks, and 5G-and-beyond wireless systems

[121]. These technologies enable a vast variety of applications with a diverse set of requirements that

strain orthogonal technology resources to their limits. Therefore, among the recognized promising

multiple access techniques to support massive connectivity and combat spectrum scarcity, NOMA

holds a significant role. Different from the conventional multiple access technologies, such as FDMA,

TDMA, and code division multiple access, NOMA simultaneously serves multiple users on the same

channel, and thus increases the spectral efficiency of wireless networks. For instance, power-domain

1The study in this chapter is published in IEEE Transactions on Green Communications and Networking [22]

107
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NOMA conveys superposition signals to receivers at the same frequency and time but with different

transmit power levels. Power level assignment is realized according to the user’s channel conditions,

i.e., more power will be allocated to users with poor channel conditions while less power will be

assigned to those with better channel conditions. On the receiver side, NOMA users employ SIC to

eliminate multi-user interference and extract the desired signal [122, 123].

To further tackle and relieve the spectrum resource–shortage issue, CR-inspired NOMA

promotes intelligent use of spectrum sharing. In particular, CR allows unlicensed users to access

licensed communication channels in an opportunistic or non-interfering manner [60]. In addition,

FD systems have gained attention from the research community owing to their main benefits—high

velocity, diverse gain, and low delay in data transmission. Theoretically, FD achieves spectral

efficiency that is twice that of a HF system because, in FD systems, messages can be transmitted and

received simultaneously. Moreover, SIC techniques assist FD systems to significantly diminish the

power self-interference because of the simultaneous transmissions [124]. On the other hand, security

is still a serious concern that limits the development of next-generation communications due to the

open wireless communications environments. To tackle this issue, conventional encryption security

techniques implemented at the upper layers of the network protocol stack are utilized to ensure

secure information transmission. Although these security techniques employ complex cryptographic

keys, with the breakthrough of quantum computing and the constant improvement of computational

methods, encryption techniques become more untrustworthy. The main drawback of these traditional

techniques is that their encryption algorithms can be broken by the high computational capabilities

of malicious users [125]. In this regard, PLS is considered a potent choice to complement the use of

conventional secure technologies. The core idea of PLS is to leverage the inherent randomness of

wireless communication channels to avoid malicious users from successfully decoding data addressed

to others. It is worth noting that, in the information-theoretic approach, PLS has proven trustworthy.

Research developments in PLS techniques are of meaningful importance for future wireless
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networks, including collaborative relay nodes and FD, NOMA, and CR networks. In the literature, an

effective research direction relied on the integration of PLS and cooperative networks has attracted

meaningful interest to enhance secure communications (e.g., [12, 126–130]). For instance, CR

networks employing a collaborative relay have been proposed to potentially improve reception

reliability in cooperative NOMA networks [126, 127]. Moreover, different relay networks employing

NOMA were investigated in [128, 129] to improve secrecy affected by external eavesdroppers. The

authors of these papers analyzed security performance through closed-form expressions of secrecy

outage probability (SOP) and confirmed the superiority of NOMA over OMA. Furthermore, rate-

splitting multiple access (RSMA) has drawn the attention of the academy because it is considered a

powerful transmission scheme in wireless communications [131, 132], especially in MIMO systems.

The authors in [132] stated that in a SISO broadcast channel (BC) system, there is no need to employ

the RSMA technique since the NOMA scheme can achieve the capacity region.

In [12, 130], the authors studied PLS for a NOMA network with collaborative relays

exposed to eavesdroppers in terms of SOP and secrecy sum rate, respectively. The results showed that

relays can aid in forwarding signals from source to destination in the challenging scenario of multiple

eavesdroppers. However, it is worth highlighting that conventional relay selection techniques rely

on closed-form expressions that entail high latency and communication overhead, which is not

appropriate for practical networks [133, 134]. For instance, in [12], the relay selection process is

performed by applying the ES technique, which requires a lot of computational time searching for

the optimal relay from all available relays that permit maximizing the objective function. Therefore,

in this chapter, we propose a smart relay selection technique based on a ML approach that greatly

reduces the computational time.

A smart resource-allocation scheme is a prominent and useful strategy in wireless networks

with collaborative relay nodes because it alleviates trouble from high complexity, and reduces latency

in communications systems [124]. Thus, AI holds a key position in resource allocation design and in
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solving challenges linked to various aspects of wireless networks [133]. ML leads the most popular

AI technologies, and is widely used in the telecommunications engineering field. For instance,

ML-based relay selection in IoT networks can significantly reduce selection complexity, which

further achieves low latency. Therefore, different ML algorithms have been proposed in cooperative

relay networks [133–136],. In [135], the authors proposed a low-complexity iterative algorithm

along with a deep neural network (DNN) method to solve the relay selection problem and to predict

throughput in an IoT network. The results showed that the proposed DNN-based solution achieved

high accuracy with a short execution time. Similarly, the authors in [136] investigated a regression

problem based on a DNN scheme to predict sum throughput and energy efficiency. Meanwhile, a

supervised ML technique was studied in [137] to enable a relay selection scheme that requires two

relay nodes to retransmit signals on multiple subcarriers. The paper concluded that ML reached

optimal performance close to that provided by the optimal ES method but with lower computing

latency. To the best of our knowledge, the aforementioned research articles did not consider PLS

and the application of FD technology. In this regard, although HD relays are frequently used in

cooperative wireless networks, FD-enabled relays can considerably enhance the data rate and reduce

communication latency by utilizing the SIC technique [133, 138, 139]. Moreover, network security is

an essential research topic to promote continuous technological advancement in a safe manner.

To further reduce the computational complexity and provide suitable resource management

in the implementation of innovative wireless communications systems while ensuring secrecy

performance, AI-based solutions integrated by ML [140–142] and heuristic approaches [12, 30, 46]

have attracted a great deal of interest in the industry and research community. For instance, in [142],

the authors designed a power allocation (PA) scheme with the aid of a neural network model for

enhancing PLS. The paper concluded that the proposed ML method can improve the security sum rate

by optimizing PA at the relay node. Similarly, in [139, 142], the authors developed PA assignments

in NOMA networks based on a PSO algorithm to maximize secure computational efficiency and
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SEE, respectively. To this end, PSO is among the AI techniques that aim to find approximate

solutions to acutely tough optimization problems [143]. PSO is a potent optimization algorithm that

iteratively attempts to enhance a candidate solution based on updating positions and velocities of

the swarm [144]. However, the limitations in PSO arise when constraints and restrictions increase

or when the network becomes more complex. As a result, its convergence behavior is severely

degraded in trying to reach the desired optimal solution. Therefore, it is essential to find alternative

optimization techniques that provide low complexity, deal with complex environments, and ensure

high reliability in wireless communications.

Computational complexity reduction and low processing latency are among the major

objectives of network models [124, 135]. Therefore, in this chapter, we propose a novel AI-based

framework to maximize the SEE in FD cooperative relay CR-NOMA networks in the presence of

multiple eavesdroppers. Specifically, we investigate QPSO to perform power allocation assignment

while smart relay selection is performed by EL algorithms. To this end, QPSO [145] is a PSO variant

inspired by quantum mechanics. Different from the standard PSO, QPSO overcomes the problem of

slow convergence, which considerably reduces processing time. Moreover, EL schemes belong to a

subset of ML algorithms that integrate multiple classifiers to improve the prediction accuracy. The

proposed EL is composed of RF and Stagewise Additive Modeling using a Multi-class Exponential

loss function (SAMME) algorithms. In this context, RF utilizes a multiple decision–tree-based

bagging approach, whereas SAMME uses the boosting technique to sequentially build a tree-based

ensemble model.

Our aim is to build an AI framework to maximize the SEE in a low-complexity manner

that can converge faster than optimization techniques like the ES method. To this end, ES (a brute

force technique) is used to search for the best solution to optimization problems by searching over all

possible candidate options. It entails high computational complexity, and it increases when more

nodes are attached to the communication network. The goal is to solve the SEE optimization problem,
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which is first transformed into a challenging bi-level optimization task, where the inner problem

corresponds to optimizing the power allocation real-value variables, and the outer problem solves

relay selection. The relay selection procedure is based on an EL module. Hence, in this chapter,

we investigate joint relay-selection and power-allocation problems for SEE maximization in the

proposed FD cooperative CR-NOMA network. Furthermore, we compare the SEE performance of

the proposed system with that of OMA, RSMA, and the conventional HD operation mode.

The main contributions of this chapter are summarized as follows.

• We formulate the optimization problem to maximize SEE in the proposed FD cooperative

relay CR-NOMA system with imperfect SIC to prevent multiple-eavesdropper wiretapping.

The optimization solution satisfies QoS requirements corresponding to the minimum rate for

SUs, the maximum interference threshold, and maximum transmission power at the secondary

transmitter (ST) and relay. It is worth noting that the proposed optimization problem is non-

convex and challenging to solve because the objective function is in fractional form, and

constraints are non-convex.

• We designe the AI framework based on EL and QPSO modules to provide a low-complexity

solution. First, we start with construction of the EL module, which is composed of the potent

RF and SAMME algorithms. This module is in charge of solving the relay selection issue

because RF and SAMME were shown to be efficient and robust ML classifier algorithms in

complex network environments.

• After construction of the EL module, we investigate swarm intelligence methods to design a

power allocation scheme based on QPSO. The efficient and low-complexity QPSO module is

used to complement the proposed AI framework. The proposed QPSO method is capable of

maximizing the non-convex SEE of the proposed system with fewer iterations than needed by

the standard PSO method.
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• We assemble the EL and QPSO modules to build the AI framework. Therefore, we designed

the EL module for smart relay selection. Then, we use the best relay as one of the input

parameters for the QPSO algorithm to efficiently solve the formulated optimization problem.

• Finally, according to simulation results, we verify that the proposed AI-based solution can

reach near-optimal performance with much lower complexity, compared with an ES-based

scheme. Moreover, convergence behavior is significantly improved by the proposed QPSO,

which results in computational complexity reduction. Furthermore, we include results on

the performance of more swarm intelligence-based baseline algorithms in terms of SEE,

converge behavior and computational complexity. The swarm intelligence-based baseline

algorithms [16,120] include the standard PSO, CS, the ALO method, and the BOA. In addition,

in Appendix A, we provide a mathematical solution based on the SCA [146,147] method aided

by PSO.

• In addition, for comparison purposes in terms of wireless network design, we describe the

conventional OMA, RSMA, and HD mode in the considered cooperative relay CR network

affected by various eavesdroppers. Satisfactorily, the proposed FD CR system with the aid

of the NOMA transmission strategy improves the security of the network and outperforms

comparison approaches in terms of SEE. Moreover, we analyze the scenario of multiple

antennas at eavesdroppers.

The remainder of this chapter is organized as follows. The system model of the proposed

FD cooperative relay CR-NOMA network and the HD comparison approach are described in Section

5.2. The problem formulation for SEE maximization is discussed in Section 5.3. The AI framework

is described in Section 5.4, and the baseline OMA and RSMA transmission strategies are described in

Section 5.5. Simulation results of the proposed scheme and the comparison approaches are presented

in Section 5.6. Finally, the conclusion is Section 5.7.



114 5.2 System Model

1

R

.

.

.

Link ST - Relayr

Link Relayr - SUs

Wiretap link

Interference link

ST

M1

M2

2

r

PT

PU

PU PU

e1

eV

.

.

.

.

.

.

Figure 5.1: The considered FD cooperative relay CR-NOMA network with imperfect SIC.

5.2 System Model

In this chapter, we propose a FD cooperative relay CR-NOMA network consisting of a ST,

two SUs denoted as M1 and M2, R relays, K PUs, and multiple eavesdroppers (ev, v = {1, ...,V}) as

illustrated in Figure 5.1. All nodes are equipped with a single antenna. Without loss of generality,

we consider the distance of the ST–R–M1 link is significantly longer than the ST–R–M2 link, and

this means the ST–M1 link can support a lower QoS than ST–M2 [12]. Therefore, the M1 user is

considered the weak user, and M2 is considered the strong user.

The proposed FD CR-NOMA network is assisted by an intermediate DF relay since it is

assumed there is no direct link between the ST and the SUs. The relay is selected from the R available

relays; it is denoted as r and operates in FD mode. Based on [130], we consider the eavesdroppers to

be located in the neighborhood of the target users, and as such, eavesdroppers overhear messages
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only from the relay.

In this section, we describe both the proposed cooperative relay CR-NOMA network in

FD mode and its counterpart based on HD technology.

5.2.1 Full-Duplex Operation

First, let us describe FD mode in the proposed CR-NOMA system. Because of FD

transmission, the ST and the relay transmit their messages simultaneously to the intended destinations.

Then, the ST sends the superimposed signal, m = m1
√

p1 + m2
√

p2, where m1,m2 ∈ C are

independent and identically distributed (i.i.d.) information-bearing messages for M1 and M2. The

power of the transmitted symbol is normalized, i.e., E
(
|m1|

2
)

= E
(
|m2|

2
)

= 1, and p1 and p2 are the

corresponding transmit-power control variables. Accordingly, the received signal at relay r can be

given by

yr = hr
(√

p1m1 +
√

p2m2
)

+ nr, (5.1)

where hr is the channel coefficient between the ST and relay r while nr ∼ CN
(
0, σ2

r

)
is additive

Gaussian noise with zero mean and σ2
r variance.

The relay, r, first decodes message m1 by treating message m2 as noise, and it then executes

SIC to decode m2. Consequently, the received SINR for M1 and M2 at relay r can be described by

(5.2) and (5.3), respectively, as follows:

SINRr
m1

=
|hr |

2 p1

|hr |
2 p2 + ρ

(
pr,M1 + pr,M2

)
+ σ2

r
, (5.2)

and

SINRr
m2

=
|hr |

2 p2

ζ |hr |
2 p1 + ρ

(
pr,M1 + pr,M2

)
+ σ2

r
, (5.3)

where ζ is the remaining residual noise interference due to imperfect SIC. When the signal intended

for weaker user M1 is decoded without error, the remaining residual noise interference is ζ = 0.

Otherwise, ζ > 0. Moreover, ρ
(
pr,M1 + pr,M2

)
represents the residual self-interference at the relay, in
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which ρ denotes the level of self-interference cancellation [148]. The power allocations assigned to

M1 and M2 from the relay are denoted as pr,M1 and pr,M2, respectively.

Based on (5.2) and (5.3), the rates of the weak-user data and the strong-user data at the

relay are formulated by (5.4) and (5.5), respectively:

γr,M1 = log2

(
1 + SINRr

m1

)
, (5.4)

γr,M2 = log2

(
1 + SINRr

m2

)
, (5.5)

Moreover, (5.6) and (5.7) are conditions to guarantee that relay r can successfully decode

messages m1 and m2:

log2

(
1 + SINRr

m1

)
≥ φ1, (5.6)

and

log2

(
1 + SINRr

m2

)
≥ φ2, (5.7)

where φ1 and φ2 are the target data rates for SUs, M1 and M2, respectively.

Assuming relay r can decode both signals, the SUs, Mi, i ∈ {1, 2}, receive the following

signal from the relay:

yr,Mi = fr,Mi

 2∑
j=1

√
pr,M jm j

 + nMi, i ∈ {1, 2} , (5.8)

where fr,Mi is the channel coefficient between relay r and the SU, Mi, i ∈ {1, 2}. nMi ∼ CN
(
0, σ2

Mi

)
denotes the additive Gaussian noise at M1 and M2.

According to NOMA principles, weak-user M1 decodes its own message, m1, by treat-

ing m2 as noise. Therefore, the SINR at M1 to decode message m1 takes into consideration the

interference caused by SU, M2 and can be described as follows:

SINRr
m1,M1 =

∣∣∣ fr,M1
∣∣∣2 pr,M1∣∣∣ fr,M1

∣∣∣2 pr,M2 + σ2
M1

. (5.9)
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Furthermore, in accordance with NOMA principles, strong-user M2 subtracts the message

of weak-user M1 by applying SIC. In this chapter, we consider imperfect SIC for more realistic

conditions. Therefore, the SINR for M2 to decode its message can be written as follows:

SINRr
m2,M2 =

∣∣∣ fr,M2
∣∣∣2 pr,M2

ζ
∣∣∣ fr,M2

∣∣∣2 pr,M1 + σ2
M2

. (5.10)

Accordingly, the rates of the weak-user data at M1 and M2 can be described with (5.11)

and (5.12), respectively:

γm1,rM1 = log2

(
1 + SINRr

m1,M1

)
, (5.11)

γm1,rM2 = log2

1 +

∣∣∣ fr,M2
∣∣∣2 pr,M1∣∣∣ fr,M2

∣∣∣2 pr,M2 + σ2
M2

 . (5.12)

The rate of the strong-user data at user M2 can be expressed as

γm2,rM2 = log2

(
1 + SINRr

m2,M2

)
. (5.13)

Furthermore, the maximum rate of SUs’ data at the eavesdroppers can be expressed as

γMi
r,E = log2

(
1 + SINRMi

r,ev

)
, i ∈ {1, 2} , (5.14)

where SINRMi
r,ev = max

v∈{1,2,...V}, j,i

pr,Mi|gr,ev |
2

pr,M j|gr,ev |
2
+σ2

ev

, gr,ev is the channel coefficient between relay r and

eavesdropper v, and σ2
ev denotes the variance in the additive Gaussian noise at the eavesdropper.

The achievable data rate for the message of SU, M1 should satisfy the minimum rate at the

relay and at SUs, M1 and M2 because the relay applies the DF protocol, and strong user M2 employs

SIC:

γm1,min = min
(
γm1,rM1, γm1,rM2, γr,M1

)
. (5.15)

Similarly, the achievable data rate of the message for SU, M2 should meet the minimum

rate at the relay and at SU, M2, as follows:

γm2,min = min
(
γm2,rM2, γr,M2

)
. (5.16)
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Accordingly, the secrecy rates of SU, M1 and M2 are given by their achievable rates minus

their corresponding maximum rates at the eavesdroppers, which can be expressed as (5.17) and

(5.18), respectively:

γsec,M1 =
[
γm1,min − γ

M1
r,E

]+
, (5.17)

and

γsec,M2 =
[
γm2,min − γ

M2
r,E

]+
, (5.18)

where [x]+ = max (0, x).

Eavesdroppers equipped with multiple antennas If we consider the scenario where the eaves-

droppers are equipped with Neve ≥ 2 antennas. Then, the maximum SINR of the i-th message at the

eavesdroppers is given by

SINRMi
r,ev = max

v∈{1,2,...V},

pr,Mi
∣∣∣qH

evgr,ev

∣∣∣2
qH

ev

(
pr,M j,igr,evgH

r,ev + σ2
ev I

)
qev

∀i, i ∈ {1, 2} , (5.19)

where qev is the receiver beamforming vector at the v-th eavesdropper and gr,ev ∈ CNeve×1 is the

channel vector between relay r and eavesdropper v. Based on the maximum-ratio combining method,

the beamforming vector is defined by qev =
gr,ev

‖gr,ev‖
[149]. Therefore, we can simplify (5.19) into the

following expression:

SINRMi
r,ev = max

v∈{1,2,...V},

pr,Mi
∥∥∥gr,ev

∥∥∥2

pr,M j,i
∥∥∥gr,ev

∥∥∥2
+ σ2

ev

,∀i, i ∈ {1, 2} . (5.20)

Note that the solution to the SEE maximization problem when the eavesdroppers are equipped with

multi antennas follows the proposed scheme detailed in Section 5.4 by replacing the SINRMi
r,ev in

(5.14) with (5.20).

5.2.2 Half-Duplex Mode Baseline Scheme

In this subsection for comparison purposes, we describe the cooperative relay CR-NOMA

system by applying HD technology. In HD mode, transmission is completed in two phases. In Phase
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1, the ST conveys messages m1 and m2. Then, the relay, r, decodes m1 by treating m2 as interference,

and applies imperfect SIC to decode m2. In Phase 2, the relay transmits the superimposed signal

composed of m1 and m2 to the SUs. In the following subsections, we explain phases 1 and 2 in more

detail.

Phase 1: Direct Transmission

In this phase, the received SINR for M1 incorporates the noise caused by M2 while

the SINR for M2 incorporates the remaining residual noise interference, ζ, due to imperfect SIC.

Therefore, the SINR for M1 and M2 at the relay can be described with (5.21) and (5.22), respectively:

SINRr,HD
m1

=
|hr |

2 p1

|hr |
2 p2 + σ2

r
, (5.21)

SINRr,HD
m2

=
|hr |

2 p2

ζ |hr |
2 p1 + σ2

r
. (5.22)

Based on (5.21) and (5.22), the rates of the weak-user data and the strong-user data at the

relay are formulated by (5.23) and (24), respectively:

γHD
M1

= τlog2

(
1 + SINRr,HD

m1

)
, (5.23)

and

γHD
M2

= τlog2

(
1 + SINRr,HD

m2

)
, (5.24)

where τ is the transmission time fraction allocated for the first phase. For a fixed time, the allocation

value is equal to τ = 0.5.

Phase 2: Relay Transmissionn

In Phase 2, the relay conveys the information to intended SUs, M1 and M2. Then, the

rates of the weak-user data at M1 and M2 in HD mode can be described with (5.25) and (5.26),
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respectively:

γHD
m1,rM1 = (1 − τ) log2

(
1 + SINRm1,M1

)
, (5.25)

γHD
m1,rM2 = (1 − τ) log2

1 +

∣∣∣ fr,M2
∣∣∣2 pr,M1∣∣∣ fr,M2

∣∣∣2 pr,M2 + σ2
M2

 . (5.26)

Moreover, the rate of the strong-user data at SU, M2 can be expressed as

γHD
m2,rM2 = (1 − τ) log2

(
1 + SINRm2,M2

)
. (5.27)

The maximum rate for SUs’ data at the eavesdroppers in HD mode can be expressed as

γMi,HD
E = (1 − τ) log2

(
1 + SINRMi

ev

)
, i ∈ {1, 2} . (5.28)

Similar to FD mode, the achievable data rate conditions for the messages of SUs, M1 and

M2 can be expressed with (5.29) and (5.30), respectively:

γHD
m1,min = min

(
γHD

m1,rM1, γ
HD
m1,rM2, γ

HD
M1

)
, (5.29)

γHD
m2,min = min

(
γHD

m2,rM2, γ
HD
M2

)
. (5.30)

Accordingly, the secrecy rates of SUs, M1 and M2 can be expressed as (5.31) and (5.32),

respectively:

γHD
sec,M1 =

[
γHD

m1,min − γ
M1,HD
E

]+
, (5.31)

γHD
sec,M2 =

[
γHD

m2,min − γ
M2,HD
E

]+
, (5.32)

where [x]+ = max (0, x) .
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5.3 Problem Formulation

In this chapter, our goal is to build an AI framework that provides a low-complexity

solution for maximizing SEE in FD cooperative relay CR-NOMA systems. SEE is defined as the

ratio of total secrecy rate to power consumption. This maximization of SEE is formulated as bi-level

optimization, which can be performed in two steps; the inner stage encompasses the solution search

for the transmit power variables, and the outer stage finds the best relay index, as given below:

max
r

Υ (r) = max
p1,p2,{pr,M1,pr,M2}

γsec,M1 + γsec,M2

Pcomsup

)
(5.33a)

s.t. C1 :γm1,min ≥ φ1, (5.33b)

C2 :γm2,min ≥ φ2, (5.33c)

C3 :p1 + p2 ≤ Pmax
ST , (5.33d)

C4 :pr,M1 + pr,M2 ≤ Pmax
r , (5.33e)

where Pcomsup = p1 + p2 + pc1 + pr,M1 + pr,M2 + pc2, and Υ (r) represents the inner optimization

problem with respect to the lower-level variables given by the power allocation variables: p1, p2, and

pr,M1, pr,M2. Meanwhile, r ∈ {1, 2, ...,R} belongs to the upper-level variable of the outer optimization

problem. Moreover, pc1 and pc2 are constant circuit power for transmit signal processing at the ST

and relay, respectively. Constraint C1 and constraint C2 indicate the minimum data rate targeted

by φ1 and φ2, which are required by SUs, M1 and M2, respectively. Constraint C3 indicates that

the value of the power allocation variables in Phase 1, i.e., p1 and p2, should be lower than or equal

to the allowed transmission power at the ST. Constraint C4 indicates that the value of the power

allocation variables in Phase 2, i.e., pr,M1 and pr,M2, should be lower than or equal to the allowed

transmission power at the relay.

In an underlay CR network, the interference caused by unlicensed users or SUs should stay

below a certain threshold on the primary network, since both PUs and SUs, are allowed to perform
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transmissions simultaneously. Therefore, transmission powers at the ST and the relay, Pmax
S T and Pmax

r

are constrained as shown in (5.34) and (5.35), respectively, as follows:

Pmax
S T = min

 Intmax
S T

max
k∈ψk
|hsk|

2 , PS T

 , (5.34)

where Intmax
S T is the maximum permissible interference power at the PUs from the ST, ψk is the set of

PUs, PS T is the maximum power at the ST, and hsk is the channel coefficient from the ST to the k-th

PU.

Pmax
r = min


Intmax

r

max |hrk|
2

k∈ψk

, Pr

 , (5.35)

where Intmax
r is the maximum permissible interference power at the PUs from relay r, Pr is the

maximum power at relay r, and hrk is the channel coefficient from relay r to the k-th PU.

5.4 Proposed Artificial Intelligence Framework For SEE Maximization

In this chapter, we design an AI framework based on integration of the EL module and the

QPSO algorithm. Figure 5.2 shows the framework of the proposed method, which encompasses two

main modules: EL and QPSO. Specifically, the EL module utilizes the RF and SAMME algorithms

to select the best relay to achieve the highest SEE. The QPSO module solves the inner optimization

problem, detailed in (5.33), for power allocation assignment.

The training dataset, Dtr = {(qi, li)} where i ∈ {1, 2, ..., ns} , in which ns represents the

number of samples and qi =
(
q1

i , ..., q
dim
i

)T
, qi ∈ R

dim, is composed of the features of channels |hr |
2,

|hsk|
2,

∣∣∣ fr,M1
∣∣∣2,

∣∣∣ fr,M2
∣∣∣2,

∣∣∣gr,ev

∣∣∣2, the strongest channel from the relay to the PUs given by max
k∈ψk
|hrk|

2,

and the rate requirement of the users. The notation dim represents the number of features, and li is

the integer response variable that corresponds to the relay that achieves the highest SEE performance.

Hence, response variable li is qualitative and assumes values in a finite set, li ∈ {1, 2, ...,R}, where R

is the number of classes (relays). Note that the output variable is the best relay that will be used. The
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Figure 5.2: General overview of the proposed EL aided QPSO-based scheme.

total dataset contains 52,500 samples or instances. It is divided into 80% for training dataset Dtr and

20% for testing dataset Dts. Moreover, to obtain a common scale, we normalize all the features to

Z-scores.

5.4.1 EL module

In this subsection, we introduce the proposed EL module comprising RF and SAMME

algorithms. Overall, EL methods are composed of multiple learning algorithms that integrate the

prediction results in some manner, usually by weighted or unweighted voting, to attain a superior

predictive performance than that obtained from any of the integrant single algorithms [21, 150]. For

this purpose, EL utilizes different ensemble techniques; among them boosting and bagging are widely

used for tree-based ensemble models.

First, RF is an ensemble of m decision trees that utilize the bagging technique. According

to the bagging approach, the training data are divided into several independent subsets of samples,

with replacement. Then, a learning model is applied to each subset, and the most voted class is
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selected as the final prediction outcome in classification problems. When the output is categorical

data, most voted means the class predicted by the majority in each model. In the case of regression

problems, which are outside the scope of this chapter, the result is the average prediction value of

all independent learning models. Therefore, in this chapter, RF starts creating each decision tree by

randomly selecting samples with replacement. Then, each decision tree calculates an output, and the

most voted class is selected as the final result.

Regard the SAMME algorithm [26], it is an extension of AdaBoost with multiclass

capabilities. SAMME utilizes the boosting technique to sequentially combine the predictions of other

individual learners, in accordance with weight assignment, to indicate the relevance of a specific

instance. In this chapter, RF acts as the individual learner to develop the SAMME–aided EL module.

In each iteration, SAMME trains a different RF model using all the input data. For the next iteration,

the method compensates for incorrectly predicted instances by allocating a greater weight to them.

Weights are recomputed after each of the iterations to focus on instances with a higher error in

the predicted outcome, such that each individual incoming learner has a redefined dataset to train

on, which allows the algorithm to learn from previous mistakes. The final prediction is a weighted

majority vote. The proposed EL scheme composed of SAMME with RF is described in Algorithm 1,

where the maximum number of iterations is denoted by MI, lr ≤ 1 is the learning rate, and I
(
l , _r

)
is the indicator variable which gets a value of 1 if l , _r , and 0, otherwise.

In the testing stage, test instance q passes through each individual learner, RF(mi) (q), and

the prediction outcome of the AdaBoost algorithm is denoted by AB f (q).

In the next subsection, we explain the operation of the QPSO module to complement the

solution for optimization problem (5.33), and we build the proposed AI framework. Note that QPSO

utilizes the relay obtained by the EL module as one of its inputs to optimize the power allocation

assignment.
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Algorithm 5.1 SAMME with the RF baseline scheme for relay selection in problem (5.33).
1: Set the inputs: training dataset Dtr = {(qi, li)} of size ns, maximum number of iterations MI.

2: Initialize w1
i = 1/ns, ∀i ∈ Dtr.

3: For mi = 1, ...,MI do

4: Train the mi individual learner with Dtr utilizing

weight vector wmi, and get the RF(mi) (q) model.

5: Compute the error for each training sample for

model RF(mi) (q).

∈(mi) =
∑ns

i=1 w
mi
i I(li,RF(mi)(qi))∑ns

i=1 w
mi
i

.

6: Compute the update parameter, α
(mi)

:

α
(mi)

= lr · log
(

1−∈(mi)

∈(mi)

)
+ log (R − 1).

7: Update the weights

wmi
i ← wmi

i · exp
(
α

(mi)
I
(
li , RF(mi) (qi)

))
, ∀i.

8: End: the result of SAMME AB f (q) can be expressed as follows:

AB f (q) = arg max
r∈R

∑MI
mi=1 α

(mi)I
(
RF(mi) (q) = r

)
.

5.4.2 QPSO module

To complement the construction of the AI framework, we describe the module with the

QPSO algorithm. QPSO is an extension of PSO, inspired by quantum mechanics, in which a wave

function, ψ (x, t), represents the state of a particle. QPSO came from the hypothesis that each particle

is in a quantum state, and its probability density function, |ψ (x, t)|2, is utilized to determine the

probability of a particle’s appearing in position x at any time t [145]. Each n-th particle’s position is a

vector composed of J elements that represent the variables to be optimized. Therefore, the dimension

of the proposed optimization problem is denoted by J = 4. Accordingly, the vector of a particle’s
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position can be expressed as follows:

xn =
{
xn,p1 , xn,p2 , xn,pr,M1 , xn,pr,M2

}
, (5.36)

where n = 1, 2, ...,NP, Np indicates the number of particles in the swarm, and j ∈
{
xn,p1 , xn,p2 , xn,pr,M1 , xn,pr,M2

}
corresponds to the particle’s position in transmission power variables p1, p2, pr,M1, and pr,M2, re-

spectively. Moreover, the limits of the search space for each power allocation variable, p1, p2, pr,M1,

and pr,M2 are
[
0, Pmax

S T

]
,
[
0, Pmax

S T

]
,
[
0, Pmax

r
]
, and

[
0, Pmax

r
]
, respectively. Based on the SEE obtained

with particle xn by using (33a), we define f (xn) as follows:

f (xn) =
γsec,M1 + γsec,M2(

p1 + p2 + pc1 + pr,M1 + pr,M2 + pc2
) − δ 4∑

i=1

gi, (5.37)

where δ is a penalty factor, and gi depends on the i-th constraint in problem (5.33), taking a value of

1 if the i-th constraint is not satisfied, and 0, otherwise.

Then, the position of the particles is updated in accordance with the following equation:

xt+1
n, j = pt

n, j ± β
∣∣∣∣mbestt

n, j − xt
n, j

∣∣∣∣ ln  1
ut

n, j

 , (5.38)

where ut
n, j is a random number uniformly distributed in the range (0, 1); β is the contraction expansion

coefficient, which is used to control the convergence behavior and provide good balance between the

exploration and exploitation search mechanisms. It is set up, according to [19], as follows:

β =
sin (1 − rand)

(1 + t)e1−log(t) −
(QI − t)

QI
, (5.39)

where QI denotes the maximum number of iterations, t is the current iteration index, and rand is a

random number uniformly distributed in the range (0, 1). Moreover, mbestt
n, j denotes the mean of the

best positions of the particles and can be expressed, according to the equation in [146], as follows:

mbestt
n, j =

(
stt

1Pn, j + stt
2Pg, j

)
2

, (5.40)

where st1 and st2 are the two random numbers generated from the Student’s t distribution. Pn =[
Pn,p1 , ..., Pn,pr,M2

]
and Pg =

[
Pg,p1 , ..., Pg,pr,M2

]
represent the personal best local position and global
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optimal position vectors of each particle, respectively. Furthermore, each particle converges to a

local attractor, defined as

pt
n, j = ϕt

n, jPn, j +
(
1 − ϕt

n, j

)
Pg, j, (5.41)

where ϕt
n, j is a random number uniformly distributed in (0, 1). In Algorithm 5.2, we describe the

procedure for implementing QPSO along with the EL module to construct the proposed AI framework

for maximizing the SEE of proposed optimization problem (5.33).

The computational complexity of the proposed AI framework depends on the complexity

of the EL module and the QPSO algorithm. At first, the computational complexity of the EL depends

on the size of the ensemble of SAMME denoted as nS AMME and the specific base model utilized

in the ensemble, which in this case is RF [151]. The computational complexity of RF is based on

the number of used features m f , the number of trees in RF denoted as mRF , and the depth of the RF

tree denoted as d [152]. Therefore, the computational complexity of the proposed EL algorithm is

O
(
nS AMMEm f mRFd

)
. Note that for the EL module, we consider the computational complexity of

the online prediction because the training process is offline. Second, the computational complexity

of the QPSO algorithm depends on the number of particles NP and the number of iterations QI.

Hence, the computational complexity of the proposed QPSO-based algorithm is O (NPQI) [153].

Accordingly, the computational complexity of the proposed AI framework, which is composed of the

EL and QPSO-based technique, is O
(
nS AMMEm f mRFd

)
+ O (NPQI) .

5.5 Multiple-Access Baseline Schemes

In this section, we describe the system model and problem formulation for the comparison-

approaches such as FD cooperative relay OMA scheme and RSMA scheme.
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Algorithm 5.2 Proposed AI framework to solve problem (5.33).

1: Set the input parameters of the system and selected relay r∗ from the SAMME algorithm.

2: Input the population size, NP and start iteration count, t = 1.

3: Initialize the n-th particle’s position: xt
n =

{(
xt

n,p1, x
t
n,p2, x

t
n,pr,M1

, xt
n,pr,M2

)}
, ∀n.

4: Initialize the best local position, Pn = xt
n, ∀n.

5: Obtain the global optimal position, Pg = arg max
1≤n≤Np

f (Pn).

6: While t ≤ QI do

7: Calculate β with (5.39) and mbestt
n, j with (5.40).

8: For each particle n do

9: For j = 1 : J do

10: Compute local attractor pt
n, j according to (5.41).

11: if rand (0, 1) > 0.5 then xt+1
n, j = pt

n, j + β
∣∣∣∣mbestt

n, j − xt
n, j

∣∣∣∣ ln [
1

ut
n, j

]
else xt+1

n, j = pt
n, j − β

∣∣∣∣mbestt
n, j − xt

n, j

∣∣∣∣ ln [
1

ut
n, j

]
end if

12: end for

13: if f (xn (t + 1)) > f (Pn) then Pn = xn (t + 1)

end if

14: end for

15: Update the global optimal position, Pg = arg max
1≤n≤Np

f (Pn).

16: Increase the counter, t = t + 1.

17: end while

18: End QPSO: for relay r∗, the optimal power allocation values are
{
p∗1, p∗2, pr,M1,p

∗, pr,M2
∗
}

= Pg

to obtain the maximum value of SEE indicated in problem (5.33).
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5.5.1 SEE Maximization in the OMA Baseline Scheme

In OMA, SUs, utilize TDMA such that a time slot is assigned for the transmission infor-

mation of each user. In the proposed network, the application of the traditional such as FD-OMA

scheme involves two phases as following.

In Phase 1, the ST conveys the signal, m1 OMA =
√

p1 OMAm1, to the relay, r, where p1 OMA

is the power allocated to M1 from the ST. Then, the rate for the data of user M1 can be expressed

with (5.42) and should be equal to or higher than the minimum target value, φ1:

γsm1 OMA =
1
2

log2

(
1 +

|hr |
2 p1 OMA

ρpr,M1 OMA + σ2
r

)
≥ φ1, (5.42)

where pr,M1 OMA is the power intended for user M1 from the relay.

Moreover, assuming that relay r successfully decodes the message, m1 OMA, the rate at

user M1 can be expressed as:

γrm1 OMA =
1
2

log2

1 +

∣∣∣ fr,M1
∣∣∣2 pr,M1 OMA

σ2
M1

 . (5.43)

Accordingly, the achievable rate for M1 can be given by

γm1,min OMA = min
(
γsm1 OMA, γrm1 OMA

)
. (5.44)

Furthermore, the maximum rate for the data of user M1 at the eavesdroppers can be given

by

γM1
E OMA =

1
2

log2

1 + max
v∈{1,2,...V}

pr,M1 OMA
∣∣∣gr,ev

∣∣∣2
σ2

ev

 . (5.45)

Consequently, the achievable secrecy rate for M1 can be expressed as

γsec,M1 OMA =
[
γm1,min OMA − γ

M1
E OMA

]+
. (5.46)

In Phase 2, the ST transmits the signal, m2 OMA =
√

p2 OMAm2, to the relay r where p2 OMA

is the power allocated to M2 from the ST. Then, the rate for the data of user M2 can be expressed by
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(5.47) and should be equal to or higher than the minimum target value φ2 such that we have

γsm2 OMA =
1
2

log2

(
1 +

|hr |
2 p2 OMA

ρpr,M2 OMA + σ2
r

)
≥ φ2, (5.47)

where pr,M2 OMA is the power intended for user M2 from the relay. Moreover, assuming that relay r

successfully decodes message m2 OMA, the rate at M2 can be expressed as

γrm2 OMA =
1
2

log2

1 +

∣∣∣ fr,M2
∣∣∣2 pr,M2 OMA

σ2
M2

 . (5.48)

Accordingly, the achievable rate of user M2 can be expressed as

γm2,min OMA = min
(
γsm2 OMA, γrm2 OMA

)
. (5.49)

The maximum rate for the data of M2 at the eavesdroppers can be given by

γM2
E OMA =

1
2

log2

1 + max
v∈{1,2,...V}

pr,M2 OMA
∣∣∣gr,ev

∣∣∣2
σ2

ev

 . (5.50)

Consequently, the achievable secrecy rate of user M2 can be expressed by

γsec,M2 OMA =
[
γm2,min OMA − γ

M2
E OMA

]+
. (5.51)

According to the definition of SEE (the ratio of total secrecy rate to power consumption),

then the cost function for the OMA baseline scheme considers the minimum data requirement of the

SUs, and the power constraints of the ST and the relay, which are as follows:

max
r

Υ (r) = max
p1 OMA,p2 OMA,

{pr,M1 OMA,pr,M2 OMA}

γsec,M1 OMA + γsec,M2 OMA
1
2 (pcOMA)

 (5.52a)

s.t. C1 :γm1,min OMA ≥ φ1, (5.52b)

C2 :γm2,min OMA ≥ φ2, (5.52c)

C3 :p1 OMA ≤ Pmax
ST , (5.52d)

C4 :p2 OMA ≤ Pmax
ST , (5.52e)
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C5 :pr,M1 OMA ≤ Pmax
r , (5.52f)

C6 :pr,M2 OMA ≤ Pmax
r , (5.52g)

where pcOMA = p1 OMA + pc1 + p2 OMA + pc2 + pr,M1 OMA + pc1 + pr,M2 OMA + pc2.

5.5.2 SEE Maximization in the RSMA Baseline Scheme

Recent studies have promoted the application of RSMA as a powerful transmission scheme

in wireless communications. Thus, in addition to the NOMA and OMA transmission strategies, we

consider the RSMA-based multiple access technique as a comparative approach. RSMA spits the

user messages into common and private parts at the transmitter. At the receiver, the common message

is decoded by treating all the private messages as interference, and the SIC technique is employed to

remove the contribution of the common message. Accordingly, let us describe FD mode operation in

the CR-RSMA baseline scheme. In this chapter, we utilize the one-layer rate splitting strategy in

which the SIC procedure is applied once by the receivers.

First, since the transmission from the ST is intended to one node identified as the relay

device, the messages are sent from the ST by using superposition coding and the relay performs SIC

to decode the messages. Therefore, the SINR for M1 and M2 at relay, r, can be described by (53)

and (54), respectively, as follows:

SINRr
m1 RS MA =

|hr |
2 p1

|hr |
2 p2 + ρ

(
pr,pM1 + pr,pM2 + pr,cm

)
+ σ2

r

(5.53)

SINRr
m2 RS MA =

|hr |
2 p2

ζ |hr |
2 p1 + ρ

(
pr,pM1 + pr,pM2 + pr,cm

)
+ σ2

r

, (5.54)

where the power allocation assigned to the private message M1, the private message M2, and the

common message from the relay r are denoted as pr,pM1, pr,pM2, and pr,cm, respectively.

Based on (5.53) and (5.54), the rates of the weak-user data and the strong-user data at the
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relay are formulated by (5.55) and (5.56), respectively, as follows:

γM1 RS MA = log2

(
1 + SINRr

m1 RS MA

)
, (5.55)

γM2 RS MA = log2

(
1 + SINRr

m2 RS MA

)
. (5.56)

According to RSMA principles, the original message w j intended to the user j, is divided

into a private and a common part wc
j, and the private parts are independently encoded into the private

stream m j, j ∈ {1, 2} . Therefore, the relay r transmits the signal m = m1
√

p1 + m2
√

p2 + mc
√

pr,cm,

where
{
wc

1, w
c
2

}
are jointly encoded into a common stream, mc, and pr,cm is the power intended for

the common message. Then, the received signal at the SUs, M1 and M2 from the r-th relay can be

expressed as follows:

yRS MA
r,Mi = fr,Mi

mc
√

pr,cm +

2∑
j=1

√
pr,pM jm j

 + nMi, i ∈ {1, 2} . (5.57)

Accordingly, the SINR of the common stream mc at the SUs, M1 and M2 can be formulated

by (5.58) and (5.59), respectively, as follows:

SINRr
mc,M1 =

∣∣∣ fr,M1
∣∣∣2 pr,cm∣∣∣ fr,M1

∣∣∣2 2∑
j=1

pr,pM j + σ2
M1

, (5.58)

SINRr
mc,M2 =

∣∣∣ fr,M2
∣∣∣2 pr,cm∣∣∣ fr,M2

∣∣∣2 2∑
j=1

pr,pM j + σ2
M2

. (5.59)

Then, the achievable rate of the common stream at SUs, M1 and M2 can be formulated by

(5.60) and (5.61), respectively, as follows:

γr
mc,M1 = log2

(
1 + SINRr

mc,M1

)
, (5.60)

γr
mc,M2 = log2

(
1 + SINRr

mc,M2

)
. (5.61)
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Moreover, the SINRs to decode the private stream at the SUs, M1 and M2 are given by

(5.62) and (5.63), respectively, as follows:

SINRr
p,M1 =

∣∣∣ fr,M1
∣∣∣2 pr,pM1∣∣∣ fr,M1

∣∣∣2 pr,pM2 + ζ
∣∣∣ fr,M1

∣∣∣2 pr,cm + σ2
M1

, (5.62)

SINRr
p,M2 =

∣∣∣ fr,M2
∣∣∣2 pr,pM2∣∣∣ fr,M2

∣∣∣2 pr,pM1 + ζ
∣∣∣ fr,M2

∣∣∣2 pr,cm + σ2
M2

. (5.63)

Consequently, the rate of the private stream at M1 and M2 can be expressed by (5.64) and

(5.65), respectively, as follows:

γr
p,M1 = log2

(
1 + SINRr

p,M1

)
, (5.64)

γr
p,M2 = log2

(
1 + SINRr

p,M2

)
. (5.65)

To ensure that the common stream mc is successfully decoded during the SIC procedure

by all the SUs, the super-common rate Rmc should not exceed any γr
mc,M1, γr

mc,M2 i.e., Rmc ≤ γ
r
mc,M1,

and Rmc ≤ γ
r
mc,M2. Moreover, Rmc is given by Rmc = C1 + C2 where {C1,C2} are the common rate

variables to transmit the common parts of the messages
{
wc

1, w
c
2

}
, respectively.

Moreover, the SINR of the SUs, M1 and M2 at the eavesdropper to decode the common

message can be expressed by

SINRmc
r,ev = max

v∈{1,2,...V}, j,i

pr,mc
∣∣∣gr,ev

∣∣∣2
pr,pM j

∣∣∣gr,ev

∣∣∣2 + σ2
ev

, i ∈ {1, 2} . (5.66)

Consequently, the maximum rate of the common message at the eavesdroppers when the

r-th relay is selected is given by

γmc
r,ev = log2

(
1 + SINRmc

r,ev

)
. (5.67)
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Furthermore, the maximum rate of the private messages of the SUs at the eavesdroppers is

formulated in (68).

γ
pMi
E = log2

(
1 + SINRMi

ev

)
, i ∈ {1, 2} (5.68)

where SINRMi
r,ev = max

v∈{1,2,...V}, j,i

pr,pMi|gr,ev |
2

(pr,pM j+pr,mc)|gr,ev |
2
+σ2

ev

.

Hence, the secrecy for the common message is Rmc
sec =

[
C1 + C2 − γ

mc
E

]+
. Meanwhile, the

secrecy rates of the private messages of SUs, M1 and M2 are given by their achievable rates minus

their corresponding maximum rates at the eavesdroppers, which can be expressed as (5.69) and

(5.70), respectively, as follows:

γsec,M1 RS MA =
[
γr

p,M1 − γ
pM1
E

]+
, (5.69)

γsec,M2 RS MA =
[
γr

p,M2 − γ
pM2
E

]+
, (5.70)

where [x]+ = max (0, x) .

Accordingly, the secrecy rate for the RSMA benchmark is given by (71) which considers

the secrecy for the common message plus the secrecy rates of the private messages of SUs, M1 and

M2.

Rtotal RS MA
sec = Rmc

sec +

2∑
i=1

γsec,Mi RS MA. (5.71)

Consequently, the SEE problem for RSMA in (5.72) can be given as a bi-level optimization

problem subject to constraints that satisfy the QoS requirements of all nodes.

max
r

R (r) = max
p1,p2,{pr,pM1,pr,pM2,pr,mc,C1,C2}

Rtotal−RS MA
sec

PRS MA
consump

 (5.72a)

γM1 RS MA ≥ φ1, (5.72b)

γM2 RS MA ≥ φ2, (5.72c)

C1 + γr
p,M1 ≥ φ1, (5.72d)
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C2 + γr
p,M2 ≥ φ2, (5.72e)

γM1 RS MA ≥ C1 + γr
p,M1, (5.72f)

γM2 RS MA ≥ C2 + γr
p,M2, (5.72g)

C1 + C2 ≤ γ
r
mc,M1, (5.72h)

C1 + C2 ≤ γ
r
mc,M2, (5.72i)

p1 + p2 ≤ Pmax
S T , (5.72j)

pr,pM1 + pr,pM2 + pr,mc ≤ Pmax
r , (5.72k)

where PRS MA
consump = p1 + p2 + pc1 + pr,pM1 + pr,pM2 + pc2 + pr,mc and R (r) represents the inner optimiza-

tion problem with respect to the lower-level variables such as p1, p2, pr,pM1, pr,pM2, pr,mc,C1,C2.

Similarly to NOMA case, constraint (5.72b) and constraint (5.72c) indicate the minimum data rate

labeled by φ1 and φ2, which are required by SUs, M1 and M2, respectively. Constraint (5.72d) and

constraint (5.72e) indicate that the common rate variables C1 and C2, and the rate of the private stream

at M1 and M2 should meet the minimum data rate targeted by φ1 and φ2, respectively. Constraint

(5.72f) and constraint (5.72g) guarantee that the achievable rate of the messages from the relay to

users does not overpass the corresponding achievable rates from the BS to the relay. Constraint

(5.72h) and constraint (5.72i) guarantee that the sum of the common rate variables do not exceed

the achievable rate of the common stream at SUs, M1 and M2, γr
mc,M1 and γr

mc,M2. Constraint (5.72j)

indicates that the value of the power allocation variables transmitted from the ST to the relay should

be lower or equal to the permitted transmission power at the ST. Constraint (5.72k) indicates that the

value of the power allocation variables transmitted from the relay to the SUs, M1 and M2 should be

lower or equal to the permitted transmission power at the relay.
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5.6 Simulation Results

In this section, we present the simulation results programmed into MATLAB and Python

to validate the proposed AI framework maximizing SEE in the FD cooperative relay CR-NOMA

network. We used an Intel Core i7-6700K CPU with 16GB of main memory. Afterward, we present

the performance comparison against the proposed EL module. Then,we present the performance

comparison against the proposed QPSO module. Next, we present the results obtained by the AI

framework in comparison with benchmark schemes. In addition, we exhibit comparison approaches

that use HD mode, the conventional OMA scheme, and the RSMA technique.

In the considered network, the channels coefficients follow a circularly symmetric complex

Gaussian distribution [154–156] with zero mean and variance that relies on the distance between

the nodes, as follows, hr : CN
(
0, d−pa

S T−r

)
, fr,M1 : CN

(
0, d−pa

r−M1

)
, fr,M2 : CN

(
0, d−pa

r−M2

)
, gr,ev :

CN
(
0, d−pa

r−ev

)
, hsk : CN

(
0, d−pa

S T−PUk

)
, and hrk : CN

(
0, d−pa

r−PUk

)
, where di− j denotes the distance

between nodes i and j, and pa is the path-loss exponent. In addition, we set noise variance at

σ2
M1 = σ2

M2 = σ2
r = σ2

ev = −80dBm and Pmax
S T = Pmax

r = Pmax = 30dBm. Hence, the channel

conditions of the nodes vary for each different channel realization.

Note that in this chapter, we use Gaussian inputs that are optimal in theory [156]. However,

the outcomes obtained from the gaussian inputs to the signals with finite-alphabet inputs (FAI) can

result in a meaningful performance loss because the practical implementation faces many challenges,

for instance, large storage capacity, high computational complexity, and extremely long decoding

delay [157]. In this sense, in [158,159], precoding schemes were designed with finite-alphabet signals

in MIMO systems to reduce the complexity of the precoder optimization. Although in practical

communication systems, FAI attain better practical implementations. In this chapter, the analysis

of the capacity for different types of modulations is not feasible due to the lack of closed-form

expression for the data rate in the proposed system model. Therefore, we aim to optimize the
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resource allocation by considering the theoretical bound of the Shannon capacity, which represents

the maximum capacity at zero error rate for an infinitely complex digital modulation/demodulation

transmission system [160]. Another option would be to consider the resource allocation in NOMA

systems with FAI, e.g., by employing quadrature amplitude modulation (QAM) and phase shift

keying (PSK), but this falls outside of the scope of the current chapter and is left for our future

investigation.

The values of the network parameters considered in these simulations are listed in Table 5.1.

The relays were randomly distributed within transmission range of the ST, the PUs were randomly

distributed within transmission range of the ST and the chosen relay, and the eavesdroppers were

randomly distributed within transmission range of the relay.

The eavesdroppers were also randomly distributed between the relays and SUs, M1 and

M2. The results were averaged over 1750 channel realizations.

For the considered system setup, the dataset was 52,500 samples, with 80% intended for

training, to learn the prediction model, and 20% for testing, to measure performance. Note that the

testing samples have independent channel realizations, that are different from the ones considered

in the training samples. Moreover, we train only one time the EL module to simulate the different

scenarios, varying the rate requirements.

5.6.1 Performance comparison against the proposed EL module

In this chapter, we assessed the performance of the relay selection scheme with three error

metrics: accuracy, precision, and recall. Accuracy is the ratio of correctly predicted samples to total

samples evaluated with the testing data. To understand the definition of precision and recall, let us

briefly describe the confusion matrix.

Table 5.2 shows the confusion matrix, which is in a table layout to visualize the performance

of a classifier, where each row of the matrix indicates the true class, while each column indicates
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Table 5.1: Simulation Parameters of the Network.

Parameter Value Parameter Value

Network area 100m × 60m ST coordinates (0,50)

Number of relays, R 4 M1 coordinates (100,50)

Number of eavesdroppers,V 4 M2 coordinates (70,42)

Number of PUs, K 3 Relay 1 coordinates (50,54)

Path-loss exponent, pa [134] 3 Relay 2 coordinates (50,50)

Maximum power at the ST, PS T 30 dBm Relay 3 coordinates (50,46)

Maximum permissible interference power

at the PUs from the ST, Intmax
S T [161]

-10 dBm Relay 4 coordinates (50,42)

Maximum permissible interference power

at the PUs from the relay, Intmax
r

-10 dBm PU1 coordinates (75,59)

Level of self-interference, ρ [148] 10−12 PU2 coordinates (25,59)

The remaining residual noise interference

due to imperfect SIC, ζ [134]
0.05 PU3 coordinates (50,37)

Constant circuit power, pc1, pc2 [44] 5 dBm

the predicted class. The true class is obtained by the ES method. ES exhaustively selects each

possible relay and chooses the one with the best SEE as the true class. It is worth highlighting that

the computational time required by the ES method is significantly higher than that required by the

proposed EL module.

Accordingly, the precision and recall scores were assessed in each class, based on the

confusion matrix, as follows:

Precisioni =
Cii∑4

j=1 C ji
, (5.73)
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Table 5.2: Confusion Matrix.

Predicted class

Relay 1 Relay 2 Relay 3 Relay 4

True

class

Relay 1 C11 C12 C13 C14

Relay 2 C21 C22 C23 C24

Relay 3 C31 C32 C33 C34

Relay 4 C41 C42 C43 C44

Table 5.3: Normalized confusion matrix for the proposed scheme.

Predicted class

Relay 1 Relay 2 Relay 3 Relay 4

True

class

Relay 1 0.9221 0.0201 0.0352 0.0226

Relay 2 0.0270 0.9303 0.0202 0.0225

Relay 3 0.0127 0.0233 0.9089 0.0551

Relay 4 0.0437 0.0230 0.0391 0.8943

and

Recalli =
Cii∑4

j=1 Ci j
, (5.74)

where i refers to each class, with i = 1 for Relay 1, i = 2 for Relay 2, i = 3 for Relay 3, and i = 4 for

Relay 4. Table 5.3 shows the normalized confusion matrix for the proposed scheme.

To simplify the comparison results, Table 5.4 shows the average precision and recall for

the proposed EL scheme and the comparison methods such as AdaBoost, RF, extremely randomized

trees (ERT) [162], and multi-layer perceptron (MLP). From Table 5.4, we can see that the proposed

EL scheme attained the highest accuracy, precision, and recall among the comparison methods. In

the chapter, the hyperparameters of max depth, the number of estimators, and the learning rate of the
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Table 5.4: Error Metrics of the ML schemes.

Algorithm Accuracy (%) Precision (%) Recall (%)

RF+SAMME (Proposed EL

technique)
91.371 91.349 91.390

AdaBoost 85.657 85.862 85.584

RF 88.467 88.468 88.407

ERT 86.114 86.227 85.964

MLP 85.867 85.869 85.835
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Figure 5.3: Average accuracy in each class.

proposed EL scheme were set to 2, 150, and 0.1, respectively.

Furthermore, Figure 5.3 shows the average accuracy per class for the proposed EL scheme

and the baseline schemes. We can see that the proposed scheme outperformed the other algorithms

in all classes: Relay 1, Relay 2, Relay 3, and Relay 4. Therefore, we utilized the EL scheme in the

construction of the AI framework as an essential module for the relay selection task.
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5.6.2 Performance comparison against the proposed QPSO module

In this subsection, we analyze the performances of the proposed QPSO-based technique

and more swarming algorithms in terms of SEE, converge behavior, and computational complexity.

Moreover, we compare the performance of the proposed QPSO-based scheme with the optimal values

obtained by the ES method. To validate the outcomes obtained by the swarm intelligence algorithms,

we consider that the relay selection task is performed exhaustively. That is, each algorithm must be

executed based on the number of available relays in the network to select the best one that achieves

the highest SEE. Thus, in addition to the proposed QPSO-based scheme, we evaluate the performance

of the following swarm intelligence-based baseline algorithms: standard PSO algorithm, CS, the

ALO algorithm, and the BOA. These benchmark schemes are explained in detail in [120].

The simulation parameters in Table 5.5 for each swarm intelligence algorithm are set

according to the best result obtained through several experiments.

Figure 5.4 shows the convergence of the proposed QPSO and the baseline swarm intel-

ligence algorithms to maximize the SEE when the minimum rate of user 1 is equal to φ1 = 1.5

bits/s/Hz and the minimum rate of user 2 is equal to φ2 = 1.2 bits/s/Hz. From Figure 5.4, we can

observe that as the iteration index increases, the SEE is improved. Moreover, Figure 5.4 shows that

the QPSO algorithm achieves convergence in fewer iterations than its counterparts. Therefore, we set

the number of iterations equal to QI = 250 when the number of particles is equal to Np = 45. By

contrast, ALO requires more iterations to obtain the maximum SEE which entails high computational

time. After QPSO, PSO achieves the second-best convergence behavior within about 650 iterations

when the number of particles is equal to NPS O
p = 45. The CS and BOA follow the PSO with 850 and

1000 iterations, respectively.

Figure 5.5 shows the SEE performance of the proposed QPSO algorithms and the following

swarm intelligence baseline schemes: PSO, CS, BOA, and ALO when the minimum rate of user

1 is equal to φ1 = 1.5 bits/s/Hz and the minimum rate of user 2 is equal to φ2 = 1.2 bits/s/Hz.
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Table 5.5: Simulation parameters of swarm intelligence-based algorithms.

Algorithm Simulation parameters

Proposed QPSO Number of iterations QI = 250, Number of particles Np = 45

PSO

Number of iterations ItPS O = 650, Number of particles NPS O
p = 45

Minimum inertia weight Inemin = 0.4, Maximum inertia weight Inemax = 0.9

Cognitive component c1 = 1.494, Social component, c2 = 1.494

CS
Number of iterations ItCS = 850, Number of nests NCS = 45

Minimum step size factor βmin = 0.01, Maximum step size factor βmax = 0.5

ALO Number of iterations ItALO = 1000, Number of ants NALO = 50

BOA

Number of generations GBOA = 950, Number of agents S BOA = 55

Sensory modality sm = 0.01, Power exponent pe = 0.01

Switch probability sp = 0.5
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Figure 5.4: Convergence of the proposed QPSO scheme and the swarm intelligence baseline schemes.
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Figure 5.5: SEE performance of the proposed QPSO scheme and the swarm intelligence baseline

schemes.

From Figure 5.5, it can be observed that the proposed QPSO outperforms the benchmark schemes.

Although the outcome of PSO is very near to that of QPSO as shown in Figure 5.5, PSO requires

more iterations and more particles as shown in Figure 5.4 and Table 5.5. Furthermore, it is worth

highlighting that the computational complexity of the swarm intelligence-based schemes relies on

the number of iterations and the number of particles. Particularly, the computational complexities of

QPSO and PSO, which achieve the best outcomes in terms of SEE and convergence behavior, are

computed by O
(
QI · Np

)
and O

(
ItPS O · NPS O

p

)
, respectively. Accordingly, QPSO achieves the least

computational complexity with the highest performance since it requires fewer iterations and a lower

number of particles.

To further validate the superiority of the proposed QPSO algorithm over PSO technique

in the proposed optimization problem (5.33), Figure 5.6 presents the convergence behavior of the

QPSO algorithm and the baseline PSO scheme when the maximum available powers at the ST and

the relay are all 30 dBm, and when the minimum rate requirements of user M2, φ2, and user M1,
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Figure 5.6: Convergence behavior of the proposed QPSO-based algorithm and PSO baseline scheme.

φ1, are 1.2 and 0.4. The results were averaged over 1750 channel realizations. We can see that the

proposed QPSO algorithm converges faster than the standard PSO method. QPSO achieved a stable

condition after 200 iterations, whereas PSO reached convergence within about 600 iterations. Then,

the maximum iteration value and number of particles for QPSO were set to QI = 250 and NP = 45,

respectively, for the rest of the simulations. Moreover, it is observed that increases in the minimum

data rate resulted in decreasing the SEE. This is because, as the minimum data rate increases, more

power needs to be allocated from the ST and the relay to satisfy the requirements; Subsequently,

the multiple eavesdroppers can detect these messages with more power, and leverage them to trap

information, which results in the reduction of SEE.

5.6.3 Performance comparison against the proposed AI model

Figure 5.7 shows total SEE versus the minimum required rate of user M1, φ1, when the

minimum data rate requirement of M2 is φ2 = 0.8 bits/s/Hz. In Figure 5.7, it is observed that the

proposed EL aided QPSO-based framework achieves performance close to the optimal ES method.
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Table 5.6: Computational time and absolute error of the proposed and baseline schemes.

Scheme CPU time (s) Absolute error

EL-QPSO (Proposed scheme) 1.0041 0.0023678

QPSO-ES 2.1487 0.0005587

Standard PSO-ES 3.7288 0.0008678

The main drawback of ES is the high computational complexity and computational time, since it

systematically searches all possible options to find the best values for the optimal solution. Therefore,

the computational complexity of ES increases when more receivers are aggregated to the network.

Under QPSO-ES, the main issue is that QPSO must be executed based on the number of available

relays in the network, and then, the QPSO algorithm selects the relay that achieves the highest SEE.

Thus, the benefit of the proposed AI framework is the reduction of computational complexity since it

avoids executing QPSO for each available relay in the network. Instead, the proposed AI framework

utilizes the EL technique to directly predict the best relay, which is used as an input parameter in the

QPSO framework to maximize SEE. Table 5.6 shows the computational time and absolute error of

the proposed EL aided QPSO-based scheme, QPSO-ES, and the standard PSO-ES baseline scheme.

The absolute error was evaluated by taking into account the SEE obtained by the ES method.From

Table 5.6, we can see that the proposed scheme achieved the lowest CPU running time. The absolute

error of the proposed scheme was slightly greater than those of the baseline schemes. In particular,

the standard PSO-ES slightly gets a higher absolute error than the QPSO-ES, and the corresponding

CPU running time is around four times that of the investigated QPSO-EL scheme. Similarly, the

accuracy obtained by QPSO-ES requires two times more computational time than the developed

QPSO-EL scheme.

Moreover, from Figure 5.7, we can see that adopting the EL module in the proposed

AI framework achieved superior performance in terms of SEE than the random relay–selection
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Figure 5.7: Total SEE versus the minimum rate requirement.

technique, even though this comparison approach also utilizes QPSO for SEE maximization. This is

because the random relay selection baseline scheme selects any available relay in the network, which

is not necessarily the best one that allows achieving the highest SEE.

In addition, in Appendix A, we provide a mathematical solution based on the SCA method

aided by PSO to solve the proposed optimization problem (5.33). Accordingly, Figure 5.8 shows the

SEE performance of the proposed QPSO-EL scheme and the SCA-PSO baseline scheme according

to the minimum data rate at user M1, φ1, when the rate requirement for user M2 is equal to φ2 = 1.2

bits/s/Hz. In the simulation, the number of particles for the comparative SCA-PSO scheme is equal

to NPS O = 10, the number of iterations of the PSO algorithm is equal to IPS O = 30, and the number

of iterations of the SCA-based scheme is equal to Nmax = 20. From Figure 5.8, we observe that

the proposed QPSO-EL achieves a higher SEE compared with the baseline scheme SCA-PSO. The

reason is that the SCA-based scheme is composed of different convex approximation methods and

depends on initial feasible points. Since the initial feasible points are not guaranteed to be optimal,

the SCA-based method may converge to sub-optimal solutions. Note that in the SCA-PSO algorithm,

the problem (A.11) should be solved a total time of NPS O × IPS O × Nmax, which is equal to 7161 s.
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SCA-PSO scheme.

Thus, SCA-PSO method leads to a significant higher computational time and lower performance

compared with the proposed QPSO-EL.

Figure 5.9 shows the SEE performance versus the minimum data rate requirement, φ1, of

our proposed cooperative FD CR-NOMA system and the HD CR-NOMA baseline approach when

the minimum rate requirement of user M2 is φ2 = 0.8 bits/s/Hz. We developed two scenarios for

the HD-NOMA scheme. The first considers optimizing time, and the other uses fixed time. Then,

from Figure 5.9, we can see that the performance of FD-NOMA, in terms of SEE, is superior to its

counterpart, HD-NOMA. This is because FD mode can receive and transmit data simultaneously,

which greatly increases spectrum utilization. On the other hand, HD mode utilizes the same medium

to receive and transmit data, but at different times. Furthermore, from Figure 5.9 we can see that the

proposed FD CR-NOMA network reaches a higher SEE when the selection of the relay is optimized,

compared to the case that the relay is selected randomly.

Figure 5.10 shows SEE performance versus the minimum data rate requirements for φ1 and
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φ2 in our proposed scheme using FD-NOMA and the conventional FD-OMA scheme in accordance

with two different values of noise: σ = −80 dBm and σ = −90 dBm. From Figure 5.10, we can see

that the performance from the NOMA transmission strategy overcomes the OMA benchmark. This

is because NOMA users can share the same frequency at the same time, which improves utilization

of resources, and thus, in the proposed cooperative FD-NOMA scheme, a complete transmission

requires only one phase. Meanwhile, the comparison FD-OMA scheme needs to allocate its resources

to a different frequency or time. In this chapter, we utilize the TDMA technique. Therefore, two

phases are required to complete the transmission under OMA, which degrades the performance of

the network in terms of SEE. Furthermore, we can see that SEE performance diminishes as noise

power increases. This is because the power of noise is inversely proportional to the SINR of M1 and

M2. Subsequently, the secrecy rate is reduced at higher power for noise.

Figure 5.11 shows the convergence behavior of the proposed secure cooperative FD NOMA
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Figure 5.10: SEE performance comparison between the FD cooperative relay CR-NOMA network

and the FD cooperative relay CR-OMA network.

scheme and the RSMA method with a different number of antennas at the eavesdroppers when the

number of particles of the QPSO algorithm used for the NOMA scheme is set to 45 and the number

of particles of the PSO algorithm used for the RSMA algorithm is set to 100. From Figure 5.11, we

observe that the proposed secure cooperative FD NOMA method converges within 200 iterations

while the RSMA method requires more than 1500 iterations. The significant increase in the number

of iterations required by the RSMA method is due to the greater number of variables and constraints

compared with the NOMA method which is necessary to satisfy the QoS requirements of the system.

In particular, in RSMA, three extra variables
{
pr,mc,C1,C2

}
and four extra constraints are added per

relay compared with the NOMA method, which significantly increases the computational complexity

required to solve the problem. Furthermore, from Figure 5.11, it can be observed that the NOMA

method achieves a higher SEE compared with the RSMA scheme, which is in concordance with

the results obtained in [132]. According to [132], in a SISO BC system, there is not necessary to

implement the RSMA scheme because the NOMA method can achieve the capacity region. Then,

in SISO BC, the benefits of RSMA are only focused on reducing the number of SIC required at
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Figure 5.11: Convergence behavior between the proposed secure coop. FD NOMA and the secure

coop. FD RSMA baseline scheme.

the receiver. However, our system is composed of two users, where only one SIC is required at

the receiving. Therefore, there is no advantage to using the RSMA method in our proposed system

model.

For the scenario of multiple antennas at eavesdroppers described in Subsection 5.2.1, the

channel from the relay to the eavesdroppers is modeled based on the Rician fading [54] as follows:

gr,ev =

√
KR

1+KR
gLOS

r,ev +

√
1

1+KR
gNLOS

r,ev , where KR is the Rician factor equal to 3, gLOS
r,ev represents

the line-of-sight (LOS) component with
∥∥∥gLOS

r,ev

∥∥∥2
= d−pa

r−ev , and gNLOS
r,ev denotes the Rayleigh fading

component defined by gNLOS
r,ev ∼ CN

(
0, d−pa

r−evI
)
. Moreover, the model in [69] is applied to model

the LOS component. Accordingly, from Figure 5.11 and Figure 5.12, we can observe that as the

number of antennas in the eavesdropper increases, the SEE decreases. The reason is that the received

signals from the antennas are added together while increasing the SINR at the eavesdroppers, which

decreases the SEE of the system. Particularly, Figure 5.12 shows the SEE performance comparison

for the scenario of multi-antenna eavesdroppers when the rate requirement for M2 user is equal

to φ2 = 2 bits/s/Hz. Similar to Figure 5.11, we observe that the proposed NOMA-based scheme
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Figure 5.12: SEE performance between the proposed QPSO-EL scheme and the benchmark RSMA-

based scheme with multi-antenna eavesdroppers.

achieves a higher SEE compared with the RSMA-based scheme. Moreover, a greater SEE is achieved

with a lower number of antennas at the eavesdroppers.

5.7 Closing Remarks

In this article, we proposed a new method based on AI to maximize the SEE of a cooperative

relay FD CR-NOMA in the presence of multiple eavesdroppers. In particular, we designed an AI

framework for the considered system setup, where the EL was developed for the relay selection

problem, and QPSO was investigated for power allocation assignment. Simulation results showed that

the proposed EL scheme overcame the state-of-the-art ML techniques in all error metrics (accuracy,

precision, and recall). Moreover, the QPSO algorithm improved the convergence behavior more than

the swarm intelligence baseline schemes without affecting performance. Satisfactorily, the proposed

AI design achieved a performance very close to the optimal ES method with low computational

complexity. In addition, the proposed FD CR-NOMA network outperformed its counterpart HD,
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OMA, and RSMA baseline schemes. As potential future work, an interesting study can be conducted

by integrating simultaneous wireless information and transfer technology in the relays, as well as

NOMA users, to enhance the network lifetime and provide sustainability.



Chapter 6

Summary of contributions and further

works

6.1 Introduction

In this chapter, the primary focus is to highlight the dissertation’s key findings and outline

potential avenues for future research. The previous chapters (Chapters 2 to 5) presented the disserta-

tion’s motivation, research techniques, and results. The first Subsection 6.2 summarizes the primary

contributions of these studies, while the second Subsection (6.3) explores effective and significant

areas for future investigation.

6.2 Summary of Contributions

This dissertation investigated and proposed close-optimal solution methods focusing on

resource allocation in NOMA with underlying CR and SWIP technologies by considering different

EH users and security. The main contributions of this dissertation, in the context of resource

optimization for cooperative NOMA-based 5G systems with consideration of CR and security is

153
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appended below:

• Firstly, we investigated the SCE maximization problem in a wireless-powered NOMA-enabled

MEC network assisted by a PB under the partial offloading mode, where a practical nonlinear

EH and power amplifier coefficient are considered in the design of the system. The problem

was formulated and solved by a low-complexity PSO-based solution, which maximizes SCE by

satisfying the QoS requirements of NOMA users and meeting the minimum energy harvested

by non-linear EH users. Specifically, we jointly optimized the local computing frequency,

the computation time for local computing, and the power allocation variables involved in

the network. Moreover, we determined the limits of the search range of each variable to be

optimized through mathematical procedures to properly find the global best particle’s position.

Numerical showed that the SCE obtained under our proposed wireless-power NOMA-enabled

MEC scheme is superior to that of other baseline schemes. Moreover, the numerical results

showed that a system with a PB improves SCE performance.

• Secondly, we considered the secure transmission for a MISO-NOMA-CR network applying

SWIPT and assisted by AN to enhance the security of the secondary network. The goal of this

work was to optimize the precoder vectors and PS ratios to minimize the transmit power to the

SUs and EH users, subject to the constraints of minimum SINR at the SUs, minimum EH for

EH users, maximum available power at the ST, and maximum permissible interference with

the PUs. The key point of the proposed scheme is that by minimizing the transmit power for

SUs and EH users, we can assign the residual power to AN to generate interference against the

eavesdropper, by which the security can be improved in the underlying network. The proposed

solution consists of two steps. First, an SDR-based algorithm converted the formulated problem

into a SDP problem. Second, a Gaussian randomization technique was applied to obtain the

approximate rank-one solutions for beamforming vectors, and a linear program problem is
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used to guarantee the feasibility of the candidate solutions of the Gaussian randomization

technique. Numerical simulations proved the superiority of the proposed approach based on

NOMA with AN for increasing the security of the secondary network, in comparison with

NOMA without AN, SDMA, and ZF schemes. In particular, the proposed AN method showed

a significant improvement in SSR over the no-AN scheme under several studied scenarios.

• Thirdly, we studied the optimization of total transmission power and energy efficiency problems

in a cooperative, non-linear, SWIPT-enabled NOMA system using a practical non-linear EH

user. The optimization problems considered are non-convex involving joint optimization of the

time transmission fraction, power-splitting ratio, and power allocation, and are thus difficult to

solve directly. To tackle this issue, we proposed a low-computational-complexity scheme based

on PSO. Moreover, we compared the performance of five swarm intelligence-based baseline

schemes and developed an alternative solution based on CS. In addition to the metaheuristics

baseline schemes, to confirm the effectiveness of the proposed PSO scheme, we provided an

analytical approach based on convex optimization with the ES denoted as CVX+ES. Moreover,

we analyzed the effect from linearity of EH on the transmit power and energy efficiency of the

proposed system (SWIPT NOMA cooperative communication optimizing the power variables,

the time factor, and the power-splitting ratio) and the following baseline schemes: SWIPT

NOMA cooperative communication with a TF scheme, and SWIPT NOMA cooperative

communication with EPS. Simulation results demonstrated that the proposed cooperative

non-linear SWIPT-NOMA system reduces transmission power and can obtain higher energy

efficiency than the benchmark schemes. Furthermore, numerical results showed that PSO

can reach a near-optimal performance, compared to those obtained by the optimal (but time-

and energy-consuming) CVX+ES method. In addition, we validated that the proposed PSO

achieves a convergence faster than the CS-based framework and with less computational time.
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• Finally, we raised a solution based on AI techniques that integrated EL and QPSO modules

for solving the optimization problem to maximize SEE in the proposed FD cooperative relay

CR-NOMA system with imperfect SIC to prevent multiple-eavesdropper wiretapping. First,

we started with the construction of the EL module, which is composed of the potent RF and

SAMME algorithms. This module is in charge of solving the relay selection issue because

RF and SAMME were shown to be efficient and robust ML classifier algorithms in complex

network environments. Second, we investigated swarm intelligence methods to design a power

allocation scheme based on QPSO. The efficient and low-complexity QPSO module is used

to complement the proposed AI framework. Accordingly, we assembled the EL and QPSO

modules to build the AI framework. Therefore, we designed the EL module for smart relay

selection. Then, we use the best relay as one of the input parameters for the QPSO algorithm

to efficiently solve the formulated optimization problem. Simulation results showed that the

proposed AI-based solution can reach near-optimal performance with much lower complexity,

compared with an ES-based scheme. Moreover, convergence behavior is significantly improved

by the proposed QPSO, which results in computational complexity reduction. Furthermore,

we include results on the performance of the standard PSO, cuckoo search (CS), the ant

lion optimization (ALO) method, and the butterfly optimization algorithm (BOA) baseline

algorithms in terms of SEE, converge behavior, and computational complexity. To further

prove the effectiveness of the proposed AI framework, we provided a mathematical solution

based on the SCA method aided by PSO. In addition, for comparison purposes in terms of

wireless network design, we described the conventional OMA, RSMA, and HD mode in the

considered cooperative relay CR network affected by various eavesdroppers. Satisfactorily,

the proposed FD CR system with the aid of the NOMA transmission strategy improved the

security of the network and outperforms comparison approaches in terms of SEE. Moreover,

we analyzed the scenario of multiple antennas at eavesdroppers. In addition, simulation results
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showed that the proposed AI design achieved a performance very close to the optimal ES

method with low computational complexity.

6.3 Future Direction

The primary focus of this dissertation is to enhance the resource optimization of collab-

orative NOMA systems by optimizing the total transmission power and secrecy energy efficiency

while satisfying the minimum QoS requirements. To achieve this objective, we proposed resource

allocation-based optimization techniques as discussed in Chapters 2 to 5. The research carried out in

this dissertation suggests several interesting further directions that need to be explored in the future.

This study ends by outlining future research directions as follows:

• To fully utilize the benefits of NOMA technique, NOMA can be extended to support massive

IoT applications, which require low power consumption, high reliability, and high connectivity.

NOMA-based solutions can enable massive IoT devices to share the same resources efficiently

and increase the network capacity and coverage. However, several challenges need to be

addressed, such as user mobility, interference management, and synchronization. It is worth

highlight that massive IoT devices entails the integration of more nodes in the network which

increases the difficulty to solve the resource optimization problem. Therefore, innovative

schemes that provide a close-optimal solutions with low computational complexity are essential

challenges to be investigated.

• Recently, hybrid beamforming has been proposed as an effective approach to improve the

security of cooperative NOMA systems. Moreover, by using hybrid beamforming in NOMA

systems, the number of RF chains required can be significantly reduced compared to fully

digital beamforming. This can lead to cost savings in hardware and power consumption while

still achieving the benefits of beamforming. Therefore, the design of secure beamforming



158 6.3 Future Direction

algorithms for hybrid beamforming architectures in cooperative NOMA systems is a promising

research direction.

• AI techniques has shown great potential in addressing complex problems in wireless communi-

cation systems. In the context of cooperative NOMA, ML-based approaches can be combined

with metaheuristic algorithms to optimize resource allocation, interference management, and

relay selection. In particular, reinforcement learning algorithms, deep learning methods and

nature-inspired algorithms can be promising solutions to replace traditional optimization

techniques.

• As potential future work, an interesting study can be conducted by integrating physical

layer authentication. This technique is a security mechanism that utilizes the characteristics

of wireless communication channels such as the path loss, channel fading, and multipath

propagation to verify the identity of communicating devices. It relies on the fact that wireless

communication channels have unique and random features that can be used to identify the

transmitting device. In this sense, physical layer authentication provides an additional layer

of security to NOMA systems that can prevent unauthorized access to the system and protect

against eavesdropping and other attacks.

• The enhancement of physical layer security (PLS) through the use of RSMA is a meaningful

area of investigation. Although RSMA-aided PLS is in its initial research stages, it is antici-

pated to become a potential research area in the future, especially in multi-antenna wireless

systems.
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Appendix A

Proof in Chapter 5

A.1 SCA-PSO method to solve the proposed optimization problem

(5.33)

In this appendix, we develop a comparative scheme based on the SCA method and the PSO

algorithm to solve the problem (5.33). First, let us rewrite the objective function (5.33a) as follows:

max
r

h (r) = max
p1,p2,{pr,M1,pr,M2}

log2 (1 + t1) − log2 (1 + d1)
w

+

log2 (1 + t2) − log2 (1 + d2)
w

)
, (A.1a)

s.t. C1 :
(
p1 + p2 + pc1 + pr,M1 + pr,M2 + pc2

)
≤ w, (A.1b)

C2 : max
v∈{1,2,...V},

pr,Mi
∣∣∣gr,ev

∣∣∣2
pr,Mj,i

∣∣∣gr,ev

∣∣∣2 + σ2
ev

≤ di,∀i, i ∈ {1, 2} , (A.1c)

C3 :

∣∣∣fr,M1
∣∣∣2pr,M1∣∣∣fr,M1

∣∣∣2pr,M2 + σ2
M1

≥ t1, (A.1d)

C4 :

∣∣∣fr,M2
∣∣∣2pr,M1∣∣∣fr,M2

∣∣∣2pr,M2 + σ2
M2

≥ t1, (A.1e)

C5 :
|hr|

2p1

|hr|
2p2 + ρ

(
pr,M1 + pr,M2

)
+ σ2

r
≥ t1, (A.1f)
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C6 :

∣∣∣fr,M2
∣∣∣2pr,M2

ζ
∣∣∣fr,M2

∣∣∣2pr,M1 + σ2
M2

≥ t2, (A.1g)

C7 :
|hr|

2p2

ζ |hr|
2p1 + ρ

(
pr,M1 + pr,M2

)
+ σ2

r
≥ t2 (A.1h)

Next, from [146], − ln (1 + t) ≥ − ln
(
1 + t̂

)
− t−t̂

1+t̂ is used to approximate −log2 (1 + d1)

into the following:

−
ln (1 + d1)

ln(2)
≥ −

ln (
1 + d(n)

1

)
+

d1 − d(n)
1

1 + d(n)
1

 / ln(2), (A.2)

where d(n)
1 is the value of the variable d1 at the n-th iteration. By using the aforementioned inequality

over −log2 (1 + d2), the objective function (A.1a) can be approximated as:

δ1

w
= Ω(n) (t1, t2, d1, d2) , (A.3)

where δ1 = log2 (1 + t1) −
(
ln

(
1 + d̂1

)
+

d1−d̂1
1+d̂1

)
/ ln(2) + log2 (1 + t2) −

(
ln

(
1 + d̂2

)
+

d2−d̂2
1+d̂2

)
/ ln(2).

To deal with the non-convex constraint (A.1d), we can approximate (A.1d) as below

∣∣∣ fr,M1
∣∣∣2 pr,M1 ≥ t1b1, (A.4)

∣∣∣ fr,M1
∣∣∣2 pr,M2 + σ2

M1 ≤ b1. (A.5)

Next, the AGM inequality [147] is used to approximate the non-convex term xy ≤ z into

the convex expression 2xy ≤ (ax)2 +
(
y
a

)2
≤ 2z with a =

√
y/x. Then, constraint (A.4) can be

approximated as (
a(n)

t1,U1t1
)2

+

 b1

a(n)
t1,U1

2

≤ 2
∣∣∣ fr,M1

∣∣∣2 pr,M1, (A.6)

where the value of a(n+1)
t1,U1 is updated in each n-th iteration and can be described by

a(n+1)
t1,U1 =

√√√
b(n)

1

t(n)
1

. (A.7)
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By using the aforementioned AGM inequality procedure, the constraint (A.1c) can be approximated

as follows: (
a(n)

di,ev

(
pr,Mi

∣∣∣gr,ev

∣∣∣2))2
+

 ri

a(n)
di,ev

2

≤ 2
(
pr,M j,i

∣∣∣gr,ev

∣∣∣2 + σ2
ev

)
,∀i,∀v (A.8)

1
di
≤ ri, (A.9)

where the value of a(n+1)
di,ev

can be update by

a(n+1)
di,ev

=

√√√√ r(n)
1

p(n)
r,Mi

∣∣∣gr,ev

∣∣∣2 ,∀i,∀v. (A.10)

Moreover, the constraints (A.1e)-(A.1h) are approximated by following the same procedure

used in (A.6). Therefore, given the value of the variable w, the problem (5.33) can be reformulated as

follows:

max
p1,p2,{pr,M1,pr,M2},t1,t2,b1,b2,b3,
c1,c2,d1,d2,r1,r2

Ω(n) (t1, t2, d1, d2) (A.11a)

s.t.
(
a(t)

t1,U2t1
)2

+

 b2

a(t)
t1,U2

2

− 2
∣∣∣ fr,M2

∣∣∣2 pr,M1 ≤ 0, (A.11b)

∣∣∣ fr,M2
∣∣∣2 pr,M2 + σ2

M2 − b2 ≤ 0, (A.11c)

(
a(t)

t1,T t1
)2

+

 b3

a(t)
t1,T

2

− 2|hr |
2 p1 ≤ 0, (A.11d)

|hr |
2 p2 + ρ

(
pr,M1 + pr,M2

)
+ σ2

r − b3 ≤ 0, (A.11e)

(
a(t)

t2,U2t2
)2

+

 c1

a(t)
t2,U2

2

− 2
∣∣∣ fr,M2

∣∣∣2 pr,M2 ≤ 0, (A.11f)

ζ
∣∣∣ fr,M2

∣∣∣2 pr,M1 + σ2
M2 − c1 ≤ 0, (A.11g)

(
a(t)

t2,T t2
)2

+

 c2

a(t)
t2,T

2

− 2|hr |
2 p2 ≤ 0, (A.11h)

ζ |hr |
2 p1 + ρ

(
pr,M1 + pr,M2

)
+ σ2

r − c2 ≤ 0, (A.11i)
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(
2φ1 − 1

) (∣∣∣ fr,M1
∣∣∣2 pr,M2 + σ2

M1

)
−

∣∣∣ fr,M1
∣∣∣2 pr,M1 ≤ 0, (A.11j)(

2φ1 − 1
) (∣∣∣ fr,M2

∣∣∣2 pr,M2 + σ2
M2

)
−

∣∣∣ fr,M2
∣∣∣2 pr,M1 ≤ 0, (A.11k)(

2φ1 − 1
) (
|hr |

2 p2 + ρ
(
pr,M1 + pr,M2

)
+ σ2

r

)
− |hr |

2 p1 ≤ 0, (A.11l)(
2φ2 − 1

) (
ζ
∣∣∣ fr,M2

∣∣∣2 pr,M1 + σ2
M2

)
−

∣∣∣ fr,M2
∣∣∣2 pr,M2 ≤ 0, (A.11m)(

2φ2 − 1
) (
ζ |hr |

2 p1 + ρ
(
pr,M1 + pr,M2

)
+ σ2

r

)
− |hr |

2 p2 ≤ 0 (A.11n)

(75b), (79), (80), (82), (83), (33d), (33e).

The constraints (A.11b)-(A.11i) are obtained based on the AGM inequality following a

similar procedure used in (A.6). Constraints (A.11b) and (A.11c) are derived from (A.1e). Constraints

(A.11d) and (A.11e) are obtained from (A.1f). Constraints (A.11f) and (85g) are derived from (75g).

Constraints (A.11h) and (A.11i) are obtained from (A.1h). Constraints (A.11j), (A.11k), and (A.11l)

are derived from (33b). Constraints (A.11m) and (A.11n) are obtained from (33c). Finally, the value

of the a(t)
x is updated in each n-th iteration with (A.7), (A.10), and the following equations:

a(t+1)
t1,U2 =

√√√
b(t)

2

t(t)
1

, (A.12a)

a(t+1)
t1,T =

√√√
b(t)

3

t(t)
1

, (A.12b)

a(t+1)
t2,U2 =

√√√
c(t)

1

t(t)
2

, (A.12c)

a(t+1)
t2,T =

√√√
c(t)

2

t(t)
2

, (A.12d)

where the initial value of a(t)
x is set to be one. Note that the problem (A.11) is convex and can be

solved based on the CVX module in MATLAB. The iterative SCA-based algorithm is presented
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Algorithm A.1 Comparative SCA-based scheme to solve problem (A.11).

1: Inputs: w,a(0)
di,ev

, a(0)
t1,U1, a

(0)
t1,U2, a

(0)
t1,T , a

(0)
t2,U2, a

(0)
t2,T , d

(0)
1 , d(0)

2 .

2: Start n = 1.

3: while n ≤ Nmax do

4: Solve problem (5.85) with CVX to obtain

p∗1, p∗2,
{
p∗r,M1, p∗r,M2, q

∗
i,Ev

}
, t∗1, t

∗
2, b
∗
1, b
∗
2, b
∗
3, c
∗
1, c
∗
2, d
∗
1, d
∗
2.

5: Update the auxiliary values of a(t)
x based on (A.7),

(A.10), (A.12a), (A.12b), (A.12c), (A.12d).

6: Update d(n+1)
1 = d∗1 and d(n+1)

2 = d∗2.

7: Update the counter n = n + 1.

8: end while

9: outputs: The close-optimal transmit power variables p∗1, p∗2, p∗r,M1, p∗r,M2, which are used to

evaluate the objective function (5.33a).

in Algorithm 3. The PSO algorithm is used to update the value of the variable w in an iterative

manner. First, the initial positions of the particles in PSO are randomly initialized in the range

of
[
pc1 + pc2, Pmax

S T + Pmax
R + pc1 + pc2

]
. Then, the fitness function for each particle is obtained by

solving the problem (A.11) with Algorithm A.1. Next, the obtained fitness function is used to update

the position and velocity of the particles. Finally, the fitness function of the updated particles is

obtained by solving the problem (A.11) with Algorithm A.1. The aforementioned procedure is

repeated until convergence is being reached. Moreover, the relay selection is performed by the ES

method.
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