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Abstract

Recently, human motion estimation is an important task and attracting significant atten-

tion in sports and medical applications, as it presents both theoretical and practical interest

from bio-mechanical, computer vision and robotics perspectives. We focus on developing

algorithms to: 1) estimate gait parameters, and 2) analysis human motion during walking

activity, with reduced number of sensor count. In this dissertation, gait parameters are es-

timated as well as human lower-limb motion is reconstructed using a single waist-mounted

Intel Realsense Depth Camera D455, which has an integrated 6-DOF Inertial Measurement

Unit (IMU).

An inertial navigation algorithm is primarily proposed with only IMU data to obtain

spatio-temporal gait parameters, such as: attitude, position, velocity of a human body;

and stance phase duration, stride length, and walking distance. However, low-cost inertial

sensors come with noise and bias that lead to unavoidable accumulative errors. Therefore,

straight-line walking with a constant speed constraints is imposed in the filtering algorithm

to improve attitude estimation. Visual odometry (VO) algorithm provides relative pose from

image sequence, which plays as a measurement updating role for the filter. Detected stance

foot from color and depth image data are used as landmarks to update foot position. Finally,

a smoothing algorithm is proposed as a linear optimization problem to minimize estimation

errors. Stance foot position is derived and other gait parameters can be calculated from step

information.

A deep learning-based segmentation model with custom dataset is proposed to improve

foot detection not only in stance phases but also in swing phases. 3-D dual foot trajectories are

then calculated from proposed filter results and relative position of dual foot with respect to

the camera. However, foot position in between Toe-Off and Mid-Stance phases are missing

due to obscurity. To tackle this problem, a Graph Convolutional Network (GCN) based

model is proposed to predict pose from previous poses. Complete foot trajectories are finally

reconstructed with only a single waist-mounted RGB-D camera.

Through experiments, the proposed system shows promising results and could be applied

for human motion estimation in real application with a considerable accuracy.
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Chapter 1. Introduction

1.1 Motivation

Human motion analysis has grown in popularity in a variety of fields, including clinical

gait analysis, rehabilitation, robotics, sports science, animation and entertainment, video

surveillance, and smart housing. Any process for acquiring quantitative information including

the assessment of bio-mechanical variables such as spatial-temporal gait, kinematic, and

kinetic factors is referred to as human motion estimation [1, 2]. The challenge for healthcare

providers, sports bio-mechanistic, and researchers is to explore the mechanics of motion and

their relationship with various diseases and/or injuries affecting the musculoskeletal system

in less-constrained conditions outside of laboratory settings.

Recently, a variety of sensor-based systems are developed to perform gait analysis, par-

ticularly wearable sensing technologies, which provide intriguing potential for continuous

monitoring of human kinematics and kinetics in free-living circumstances. Sensors can be

placed on the floor (force sensors), inside insole of shoes (pressure or sensors), or on the sub-

ject body (wearable systems like inertial sensors or EMG electrodes). Floor platform-based

and pressure sensors provide an accurate measurement of force pattern and foot pressure

distribution to detect step and gait phases [3]. A force sensing resistor or piezoelectric-based

in-socket sensor system can be used to detect gait phases from signal responses [4, 5]. EMG

is used to measure the muscle electrical activity during walking, and to derive gait phases

using the amplitude of EMG signals [6]. There are limitations of space and cost for those

non-wearable systems.

Inertial sensors provide a cost effective solution with high sampling rates and require

low computing capability to detect steps and estimate gait parameters [7, 8, 9]. Body-worn

IMUs have demonstrated excellent capabilities to measure temporal gait parameter. However,

accuracy and robustness of inertial sensors-based systems in measuring spatial parameters

need to improve due to accumulative errors.

Vision based gait analysis can be separated into direct and indirect approaches. Direct

method with optoelectronic systems is a gold standard for movement tracking based on

markers placed on certain key points of the body with a sub-millimeter precision [10, 11].

However, those systems are expensive, difficult to set up, and cannot be used outside the

clinic or laboratory. Indirect vision based approach extract features of the subjects (gender

or human identity [12]) and gait parameters (step length and duration or ankle angles and

2



Chapter 1. Introduction

distance [13, 14]) from image processing and machine learning technique through a sequence of

images. Others use single or multiple fixed depth cameras embedded into living environments

to reconstruct 3-D shape and volume during walking which can be used to extract skeleton

data and detect symmetrical gait troubles [15, 16].

While third-person view (TPV) systems have shows the potential to detect small changes

over long period, these approaches suffer from visual occlusions (e.g., furniture) and the dif-

ficulty in detection when the full-body view is unavailable. Moreover, they are restricted

to fixed areas. Egocentric first-persion view (FPV), in which images are acquired from

body-mounted cameras, provides rich and readable information on the propertises of the

environment.

There are relatively few previous works aiming to extract spatial gait parameters using

FPV cameras. A novel approach was using a walker-mounted depth and/or color camera to

estimate 3D pose of lower limbs, mainly in frontal plane [17, 18, 19]. The key limitation of

these works is the dependency on a stable platform (i.e., walker) to afford consistent views

of the lower limbs and monitor pose over time, which is not generalizable to individuals that

do not require a walking aid for ambulations.

The methods using of one or several body-mounted cameras are investigated for 3D full

body [20, 21, 22] and upper limb [23, 24] pose estimation. In [20], more than ten cameras were

attached to all the persons joints, and structure from motion approach was used to localize the

cameras, estimate the joint angles and reconstruct human motion. The main disadvantage

of the proposed method is the obtrusive multi-camera setup and intensive computational

load. In [21], a 3D body pose model employs camera egomotion to infer body pose from

synchronized videos captured by a chest-mounted camera and a Kinect sensor. However, the

work were restricted to relatively static activities such as sitting and standing, and failed to

examine dynamic scenarios.

Starting from these motivation, this dissertation studies the methods of using a single

waist-mounted inertial sensors and RGB-D camera to obtain gait parameters as well as to

reconstruct lower body trajectories. More precisely, the spatial gait parameters and for-

ward/inverse kinematics of lower body motion, including step length, foot position, foot

trajectory are specially considered in this dissertation.

3



Chapter 1. Introduction

1.2 Thesis Contribution

The dissertation presents the human motion estimation methods using a single waist-mounted

RGB-D camera with integrated inertial sensors. Based on the flexibility and rich information

provided by the sensors, human lower body motion can be reconstructed in order to provide

a complete solution for gait analysis applications. In summary, the contributions of this

research are as follows:

• We address the problem of the existing basic inertial navigation algorithms in human

motion estimation and identify the motivation of this study.

• We propose a visual inertial odometry method for estimating human body walking

trajectory and global foot position in the stance phases.

• We propose a segmentation algorithm based on deep learning to extend the foot detec-

tion algorithm in swing phases.

• We propose a graph convolution based network for predicting human lower body pose

from a set of previous pose in order to reconstruct full lower body motion.

• We conduct experiments to evaluate the performance of the proposed method. A custom

dataset including color and depth image data is created for foot detection framework.

1.3 Thesis Organization

The rest of this dissertation is organized as follows. In Chapter 2, an inertial navigation

algorithm using a standard indirect Kalman filter and a smoother algorithm is introduced.

This is fundamental method using to estimate attitude, position and velocity of the human

body where the inertial sensor is attached. Chapter 3 proposes a visual inertial odometry

algorithm to estimate human body walking trajectory and stance foot position. Relative

attitude and relative position estimated from a visual odometry algorithm and detected

stance foot position from depth image are used as measurement updates for the filtering and

smoothing algorithm. In Chapter 4, the foot detection algorithm is extend to detect feet

not only in the stance phases, but also in the swing phases by using deep learning-based

segmentation method. Human lower body motion is then fully reconstructed by predicting

next pose from a set of previous poses. Chapter 5 illustrates the experimental setup and the

4



Chapter 1. Introduction

evaluation results of the proposed method. Finally, Chapter 6 presents the conclusions and

future directions for the dissertation.
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Chapter 2. Human Motion Estimation using Inertial Navigation Algorithms

An inertial navigation algorithm is a crucial part in pedestrian navigation systems. In

this chapter, a standard filter-based inertial navigation algorithm is presented to estimate

attitude, position, and velocity of the human body from wearable inertial sensor data (in-

cluding accelerometers and gyroscopes). Estimated errors can be reduced by applying a

optimization-based smoothing algorithm.

Two coordinate frames are used in this chapter: the body coordinate frame and the

navigation coordinate frame. The body coordinate frame is defined as a frame with three

axes coincide with three axes of the IMU. The navigation (or global) coordinate frame is a

local level frame with the z-axis coincides with the local gravitational direction (normally

pointing upward). The x and y-axis of the navigation coordinate frame can be arbitrarily

chosen. The notation pn (pb) is used to denote that a vector p is represented in the navigation

(body) coordinate frame.

The IMU attitude can be represented using a quaternion q = [q0, q1, q2, q3]′ ∈ R4 [25],

which represents the rotation relationship between the navigation coordinate frame and the

body coordinate frame. The directional cosine matrix corresponding to the quaternion q is

defined by

C(q) = Cbn(q) ,


2q2

0 + 2q2
1 − 1 2q1q2 + 2q0q3 2q1q3 − 2q0q2

2q1q2 − 2q0q3 2q2
0 + 2q2

2 − 1 2q2q3 + 2q0q1

2q1q3 + 2q0q2 2q2q3 − 2q0q1 2q2
0 + 2q2

3 − 1

 ∈ SO(3).

Let rn ∈ R3 and vn ∈ R3 be the position and velocity of the IMU, expressed in the

navigation coordinate frame, respectively. The basic equation for inertial navigation are

given as follows [26]:

q̇ =
1

2
q ⊗ ωb =

1

2
Ω(ωb)q

v̇n = an = C ′(q)ab

ṙn = vn,

(2.1)

where an and ab are the acceleration made by forces other than gravitational field in the

navigation coordinate frame and the body coordinate frame, respectively. ωb = [ωx, ωy, ωz]
′

7



Chapter 2. Human Motion Estimation using Inertial Navigation Algorithms

is the body angular rate. The symbol Ω ∈ R4×4 is defined by

Ω(ω) =

0 −ω′

ω − [ω×]

 =



0 −ωx −ωy −ωz

ωx 0 ωz −ωy

ωy −ωz 0 ωx

ωz ωy −ωx 0


,

where [ω×] ∈ R3×3 denotes the skew symmetric matrix of ω.

The IMU used in this research consists of three axes accelerometer and three axes gy-

roscope. The accelerometer output ya ∈ R3 and the gyroscope output yg ∈ R3 are given

by

ya = C(q)g̃ + ab + ba + ηa

yg = ωb + bg + ηg,

(2.2)

where g̃ = [0, 0, g]′ ∈ R3 denotes the local gravitational acceleration vector. Sensor noises

ηa ∈ R3 and ηg ∈ R3 are assumed to be zero mean white Gaussian noises, whose covariances

are given by

E
{
ηa(t)η

′
a(s)

}
= raI3δ(t− s)

E
{
ηg(t)η

′
g(s)

}
= rgI3δ(t− s),

(2.3)

where ra and rg are positive scalars.

Accelerometer bias ba ∈ R3 and gyroscope bias bg ∈ R3 are assumed to be nearly constant

and can be modeled as follows

ḃa = ηba

ḃg = ηbg ,

(2.4)

where ηba ∈ R3 and ηbg ∈ R3 are small zero mean white Gaussian noise whose covariance

E
{
ηba(t)η′ba(s)

}
= Qbaδ(t− s)

E
{
ηbg(t)η′bg(s)

}
= Qbgδ(t− s).

8



Chapter 2. Human Motion Estimation using Inertial Navigation Algorithms

2.1 Standard Inertial Navigation Algorithm using Indirect

Kalman Filter

In this section, q, r and v are estimated using a standard inertial navigation algorithm using

indirect Kalman filter. We implicitly understand that r and v are expressed in the navigation

coordinate frame if there is no subscript.

Let q̂, r̂, v̂, b̂g and b̂a be the estimated values of q, r, v, bg and ba using (2.1), where ωb and

ab are replaced by yg − b̂g and ya − C(q̂)g̃ − b̂a. From (2.2) and (2.1), we have

˙̂q =
1

2
Ω(yg − b̂g)q̂

˙̂v = C ′(q̂)(ya − b̂a)− g̃

˙̂r = v̂.

(2.5)

The inertial navigation algorithm in this section uses an indirect Kalman filter to estimate

the errors in quaternion, position and velocity instead of directly estimate quaternion, position

and velocity. Let qe, re, ve, bg,e, ba,e denote the small error in q̂, r̂, v̂, b̂g, b̂a [27]:

q = q̂ ⊗ qe

re = r − r̂

ve = v − v̂

bg,e = bg − b̂g

ba,e = ba − b̂a,

(2.6)

where ⊗ is the quaternion multiplication operation, and qe can be approximated by

qe = fquat(q̄e) ≈

 1

q̄e

 ∈
R

R3

 .
From [27] and [28], we have

˙̄qe =
1

2

(
ωb − (yg − b̂g)

)
+

1

2
q̄e ×

(
ωb − (yg − b̂g)

)
− yg × q̄e

≈ −yg × q̄e −
1

2
(bg,e + ηg).

(2.7)

9



Chapter 2. Human Motion Estimation using Inertial Navigation Algorithms

Representing the first equation of (2.6) with the rotation matrix, we obtain

C(q) = C(qe)C(q̂) ≈ (I − 2[q̄e×])C(q̂). (2.8)

The state x ∈ R15×1 of an indirect Kalman filter is defined by

x(t) =



q̄e

re

ve

bg,e

ba,e


.

The dynamic equation of x(t) is given by

ẋ(t) = Ax(t) + ζ, (2.9)

where

A ,



[−yg×] 03×3 03×3 −0.5I3 03×3

03×3 03×3 I3 03×3 03×3

−2C ′(q̂)[ya×] 03×3 03×3 03×3 −C ′(q̂)

06×3 06×3 06×3 06×3 06×3


∈ R15×15, ζ =



−0.5ηg

03×1

−C ′(q̂)ηa

ηbg

ηba


∈ R15×1.

The noise ζ is process noise for compensation of slowly time-varying gyroscope and ac-

celerometer bias. Assuming the noises in (2.9) are uncorrelated, zero mean white Gaussian

noise, we obtain

E
{
ζζ ′
}

= E





−0.5ηg(t)

03×1

−C ′(q̂)ηa(t)

ηbg(t)

ηba(t)





−0.5ηg(s)

03×1

−C ′(q̂)ηa(s)

ηbg(s)

ηba(s)



′
= Qδ(t− s),

where Q = diag
{

0.25Rg, 03×3, C
′(q̂)RaC(q̂), Qbg , Qba

}
.

10
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Let T denotes the sampling preriod of an IMU sensor data. For a continuous time signal

y(t), the discrete value is denoted by yk = y(kT ). The system (2.9) is discreted as follows

xk+1 = Fkxk + ζk, (2.10)

where

Fk = exp(AT )

Qk = E{ζkζ ′k} =

∫ (k+1)T

kT
exp(At)Q exp(At)′dt.

Note that Fk and Qk should be computed at every step since A is time-varying. In this

chapter, the following approximation is used [28]:

Fk ≈ I15 +AkT + 0.5A2
kT

2

Qk ≈ QT + 0.5(AkQ+QA′k),

where Ak = A(kT ).

Based on discrete model (2.10), a standard project ahead algorithm is used [29]:

x̂−k+1 = Fkx̂k

P−k+1 = FkPkF
′
k +Qk,

(2.11)

where x̂−k and x̂k are a priori state estimate before a measurement update and a state estimate

after a measurement update, respectively. Estimation error covariance P−k and Pk are defined

by

P−k = E
{

(xk − x̂−k )(xk − x̂−k )′
}

Pk = E
{

(xk − x̂k)(xk − x̂k)′
}
.

2.2 Measurement updates for Indirect Kalman Filter

When the object is being transformed, including moving and rotating, only the state projec-

tion (2.11) is used in the filter without any measurement update. The integrating process

11
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might cause accumulate error if the error and bias are not compensated.

A so-called zero-velocity update (ZUPT) technique uses the fact that the velocity must

be zero whereas the object is not moving in a specific time interval to reduce the error drift

in the integration part of the filter, including position, velocity, and attitude estimations.

This technique is usually used with foot-mounted inertial navigation systems, where the foot

is stationary during stance phases. However, with the sensor unit attached on other body

parts rather than on the feet, it is relatively difficult since there is no periodical instance of

zero-velocity during walking.

A more appropriate approach for the attitude estimation is to apply gravity measure-

ment update (GMU) and the zero-angular-rate update (ZARU) at detected events. The

GMU model employs the acceleration measurement to compensate roll and pitch under the

condition that no significant linear acceleration is present. Hence, the measured acceleration

is considered to be due to gravitational acceleration and bias only. Whereas, the ZARU model

relies on the condition that there is no rotational motion at the detected ZARU events, and

the gyroscope measurement is due to sensor bias only.

In this section, we propose a two step measurement update for indirect Kalman filter,

which consists of a gravity measurement update (GMU) and a zero-angular-rate update

(ZARU). From (2.2) and (2.8), we obtain

ya,k − C(q̂k)g̃ − b̂a,k ≈ 2 [C(q̂k)g̃×] q̄e,k + ba,e,k + ab,k + ηa,k (2.12)

yg,k − b̂g,k = bg,e,k + ωb,k + ηg,k. (2.13)

GMU is utilized under the condition that no significant linear acceleration is present. An

acceleration-moving-variance detector or an acceleration-magnitude detector can be used to

determine when the IMU is stationary. A discrete time index k belongs to a non-moving

interval if exist a moving window around k that satisfy the following conditions:

‖ya,i − ya,i−1‖ ≤ δa, ∀k − Na

2
≤ i ≤ k +

Na

2
(2.14)

where δa is threshold value and Na is specified window length for detecting the non-moving

intervals.

When (2.14) is satisfied, the term ab,k in (2.12) can be ignored. Prior estimation is

12
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calculated by (2.11), and ya,k − C(q̂k)g̃ − b̂a,k is used as measurement update term for the

filter as follows

Ka,k+1 = P−a,k+1H
′
a,k+1

(
Ha,k+1P

−
a,k+1H

′
a,k+1 +Ra

)−1

x̂k+1 = x̂−k+1 +Ka,k+1(za,k+1 −Ha,k+1x̂
−
k+1)

Pa,k+1 = (I15 −Ka,k+1Ha,k+1)P−a,k+1(I15 −Ka,k+1Ha,k+1)′,

where

Ha,k+1 =

[
2
[
C(q̂−k+1)g̃×

]
03×3 03×3 03×3 I3

]
za,k+1 = ya,k+1 − C(q̂−k+1)g̃ − b̂−a,k+1.

(2.15)

ZARU is performed when no remarkable rotation is present. This can be determined by

using a magnitude detector as follows:

‖yg,i‖ ≤ δg, ∀k − Ng

2
≤ i ≤ k +

Ng

2
(2.16)

where δg is threshold value and Ng is specified window length.

When (2.16) is satisfied, the term ωb,k in (2.13) can be ignored. yg,k − b̂g,k is used as

measurement update term for the filter as follows

Kg,k+1 = P−g,k+1H
′
g,k+1

(
Hg,k+1P

−
g,k+1H

′
g,k+1 +Rg

)−1

x̂k+1 = x̂−k+1 +Kg,k+1(zg,k+1 −Hg,k+1x̂
−
k+1)

Pg,k+1 = (I15 −Kg,k+1Hg,k+1)P−g,k+1(I15 −Kg,k+1Hg,k+1)′,

where

Hg,k+1 =

[
03×3 03×3 03×3 I3 03×3

]
zg,k+1 = yg,k+1 − b̂−g,k+1.

(2.17)

A combination of above-mentioned detectors (2.14) and (2.16) can be used to detect the

zero-velocity intervals, which appear in the before walking and after walking period, or in

foot-mounted sensor cases.
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2.3 Optimization-based Smoother for Inertial Navigation

Algorithm

To reduce the estimation errors of the Kalman filter, a smoothing algorithm in [30] is applied

in which the estimation problem is expressed as a quadratic optimization. Let Zm be the

set of discrete-time indices when the measurement is available. The measurement equation

is given by

zk = Hkxk + ηk, k ∈ Zm,

where ηk is the measurement noise whose covariance matrix is Rk.

Let q̂SM,k, r̂SM,k and v̂SM,k be the smoothed estimations of the quaternion, position, and

velocity, respectively. The estimation errors in q̂SM,k, r̂SM,k and v̂SM,k are defined as follows

xSM,k =


q̄SM,k

r̄SM,k

v̄SM,k

 =


[03×1 I3] (q̂∗k ⊗ qk)

rk − r̂k

vk − v̂k

 ∈ R9

b̄g,SM = bg − b̂g,N

b̄a,SM = ba − b̂a,N ,

(2.18)

where q∗ denotes the quaternion conjugate of a quaternion q.

Let an optimization variable X̃ is defined by

X̃ =



xSM,1

xSM,2

...

xSM,N

b̄g,SM

b̄a,SM


∈ R(9N+6)×1.
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We can formulate the smoothing problem as the following optimization problem:

J(X̃) =
1

2

N−1∑
k=1

(xSM,k+1 − FkxSM,k)
′Q−1

k (xSM,k+1 − FkxSM,k)

+
1

2

∑
k∈Zm

(zk −HkxSM,k)
′R−1

k (zk −HkxSM,k)

+
1

2
(xSM,1 − xinit)′P−1

xinit
(xSM,1 − xinit)

+
1

2
(b̂g,N + b̄g,SM − bg,init)′P−1

bg,init
(b̂g,N + b̄g,SM − bg,init)

+
1

2
(b̂a,N + b̄a,SM − ba,init)′P−1

ba,init
(b̂a,N + b̄a,SM − ba,init),

(2.19)

where xinit ∈ R3, bg,init ∈ R3, ba,init ∈ R3 are the initial information.

We can easily see that (2.19) is a quadratic function of X̃, the matrix form of the opti-

mization is given by

J(X̃) =
1

2
X̃ ′M1X̃ +M2X̃ +M3, (2.20)

where M1 ∈ R(9N+6)×(9N+6),M2 ∈ R(9N+6)×1, and M3 ∈ R can be computed from (2.19).

Since (2.20) is a quadratic function of X̃, it can be computed efficiently using the quadratic

optimization method in [31]. Minimizing (2.20) will provide a set of estimation errors. From

these values, q̂, r̂ and v̂ can be updated using (2.6).

2.4 Chapter Summary

An inertial navigation algorithm using the indirect Kalman filter is simple but still provides

a good quality of estimation for motion tracking. The Kalman filter’s recursive structure

allows its real-time execution without storing observations or past estimates. The limitation

is that Kalman filter is only applied for white Gaussian noise processes and for linear models.

The smoothing-based inertial navigation algorithm uses a different approach for estimat-

ing the motion. In the optimization-based smoothing algorithm, all the data are used together

to estimate each state at each sampling time. The advantage of this method is its high ac-

curacy estimation comparing to other estimators. However, since all the data are used, it

requires a high computational cost that is not feasible for real-time applications.
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Visual Inertial Odometry for Gait

analaysis Appication
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Visual odometry (VO) is widely used in autonomous navigation systems, humanoid robots

or aerial vehicles to track and reconstruct the motion of the camera in real-time using se-

quential images [32, 33, 34]. However, the currently research on applying visual inertial

odometry to gait analysis is surprisingly limited. In this chapter, we propose a visual-inertial

approach to detect feet and estimate walking trajectory for gait parameter estimation, where

a body-installed RGB-D camera are used for data acquisition. Relative attitude and relative

position estimated from a visual odometry algorithm and detected stance foot position from

depth image are used as measurement updates for a filtering and smoothing algorithm to

compute two feet’s trajectories. The proposed algorithm in this chapter is designed based on

the structure given in Fig. 3.1, where stance foot position estimation is the main objective.

Time update

Measurement update

Inertial
Navigation
Algorithm

Camera position,
orientation in

world coord. frame

Filtering and Smoothing Algorithm

IMU

RGB-D

Foot position
in camera

coordinate frame

Plane detection

RANSAC

Camera orientation
Camera translation

Foot detection

Ellipse
approximation

Foot position
in image

Relative attitude
Relative position

Direct
Visual Odometry

Initial and Final
Camera orientation

Apriltag
Reading

Marker position
measurement

Stance foot
position

measurement

Relative orientation
and translation

mesurement

Optimization

Quadratic
Optimization

Problem

Foot position
in world

coordinate frame

Walking
trajectory

Stride length

Output

Figure 3.1: Algorithm structure.

The remainder of this chapter is organized as follows. Section 3.1 presents our system

setup for data acquisition, the definition of the coordinate systems, and some notations. Sec-

tion 3.2 describes the system equations and state definition for an inertial system along with

extended states for the visual odometry information. Measurement equation from the visual

odometry algorithm is derived for updating relative position and relative orientation. Section

3.3 presents the floor plane parameter estimation and foot tracking algorithm. Measurement

equations for the markers at the initial and final step, and the measurement equation for the

stance foot which is used as a landmark, are derived in Section 3.4. The filtering algorithm

and the formulation of the smoothing algorithm are summarized in Section 3.5.
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3.1 System Overview

3.1.1 Hardware setup

The system setup is shown in Fig. 3.2. Images are acquired using an Intel Realsense D455

RGB-D camera with a resolution of 640 × 480 pixels and a frame rate of 30Hz. A 6-DOF

internal IMU of the camera is configured to provide 200Hz accelerometer and 200Hz gyroscope

data. Two infrared markers are mounted on top of both feet to provide ground truth data

from an optical tracker system. The intrinsic parameters of the camera are pre-calibrated

using a chessboard with Camera Calibration Toolbox of MATLAB. Images and inertial data

timestamps are synchronized.

World
coordinate

system

Foot mounted
infrared markers

Walking
direction

Intel Realsense
RGB-D camera

with IMU

Camera
coordinate

system

Body
coordinate

system

Figure 3.2: System overview.

3.1.2 Notation

Recall some notations from Chapter 2, for a vector a ∈ R3, [a×] ∈ R3×3 denotes the cor-

responding skew-symmetric matrix. For a quaternion q ∈ R4, C(q) ∈ SO(3) denotes the

corresponding rotation matrix.
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qidentity =

[
1 01×3

]′
denotes the identity quaternion. Let q̂ denote the estimated value

of a quaternion q. Assuming the estimation error is small, we use the following three vector

error model q̄e ∈ R3 [35]:

q = q̂ ⊗ fquat(q̄e), (3.1)

where ⊗ denotes the quaternion multiplication, and

fquat(q̄e) =

 1

q̄e

 ∈
 R

R3

 .
Representing (3.1) with the rotation matrix, we obtain

C(q) ≈ (I − 2[q̄e×])C(q̂).

Let fvector : R4 → R3 be a function extracting the vector part of a quaternion. For

a matrix A ∈ Rn×m, A(r1 : r2, c1 : c2) ∈ R(r2−r1+1)×(c2−c1+1) denotes a submatrix of A

consisting of rows {r1, · · · , r2} and columns {c1, · · · , c2}.

3.2 Visual inertial odometry filtering

In this section, the state variables are defined to derive dynamic equations for a Kalman-based

filter using IMU data. These states are extended to include visual odometry information. The

visual odometry algorithm provides relative position and attitude of consecutive image frames

as the measurement updating for the filter.

3.2.1 System equation and state definition

Let q ∈ R4, r ∈ R3 and v ∈ R3 be quaternion, position and velocity of IMU. The quaternion

q represents the rotation from the world coordinate system to the body coordinate system.

Let ya ∈ R3 and yg ∈ R3 be the accelerometer and gyroscope outputs:

ya = C(q)g̃ + ab + ba + ηa

yg = ωb + bg + ηg,
(3.2)
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where g̃ ∈ R3 is the local gravitation vector, ab ∈ R3 is the external acceleration and

ωb ∈ R3 is the angular velocity. ba ∈ R3 and bg ∈ R3 are the accelerometer and gyroscope

bias. ηa ∈ R3 and ηg ∈ R3 are white Gaussian sensor noises, whose covariances are given by

raI3 and rgI3.

Usually, the sampling period Tcamera of a camera is larger than the sampling period Timu

of an IMU. In this work, we assume that the sampling period of a camera is an integer multiple

of the sampling period of an IMU: that is, Tcamera = MratioTimu for a positive integer Mratio.

There are two discrete time indices k (with the sampling period Tcamera) and i (with the

sampling period Timu). The function fdiscrete(k) relates two discrete indices:

i = fdiscrete(k) = (k − 1)Mratio + 1.

In the attitude and position filtering and smoothing, estimation error terms are usually

estimated instead of direct estimation of attitude and position [27]. The estimation error

terms q̄e,i ∈ R3, re,i ∈ R3 and ve,i ∈ R3 are defined by:

qi = q̂i ⊗ fquat(q̄e,i)

ri = r̂i + re,i

vi = v̂i + ve,i,

(3.3)

where q̂i ∈ R4, r̂i ∈ R3 and v̂i ∈ R3 represent estimated values of qi, ri and vi, respectively.

The dynamic equation of estimation error terms is given by [35]



q̄e,i+1

re,i+1

ve,i+1

bg,e,i+1

ba,e,i+1


= Fi



q̄e,i

re,i

ve,i

bg,e,i

ba,e,i


+ ζi, (3.4)

where bg,e,i ∈ R3 and ba,e,i ∈ R3 are error terms of sensor biases bg and ba. The covariance

of noise ζi is given by [35]

Qd = E{ζiζ ′i} = Diag(0.25rgI3, 03×3, raI3, Qbg , Qba).
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Fi is computed by

Fi =

 F11,i F12,i

06×9 I6

 = exp


 A11,i A12,i

06×9 06×6

Timu
 , (3.5)

where

A11,i =


[−yg,i×] 03×3 03×3

03×3 03×3 I3

−2C ′(q̂i)[ya,i×] 03×3 03×3

 ∈ R9×9

A12 =


−0.5I3 03×3

03×3 03×3

03×3 −C ′(q̂i)

 ∈ R9×6.

Note that (3.4) is a discrete-time system equation with the sampling period Timu. Since

measurement information from the camera is available with the sampling Tcamera, (3.4) is

transformed to a discrete-time system equation with the sampling period Tcamera.

Let Uk ∈ R9 (notice that the image discrete index k is used instead of IMU discrete index

i) be an error state vector defined by

Uk =


q̄e,fdiscrete(k)

re,fdiscrete(k)

ve,fdiscrete(k)

 ∈ R9×1. (3.6)

Let Vi ∈ R15 be a state vector with bias terms defined by

Vk =


Uk

bg,e,fdiscrete(k)

ba,e,fdiscrete(k)

 ∈ R15×1. (3.7)

where bg,e ∈ R3 and ba,e ∈ R3 are error terms of sensor biases bg and ba.

By repeating (3.4) Mratio times, the following equation is given by

Vk+1 = F̄kVk + ζ̄k, (3.8)
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where

F̄k =

fdiscrete(k)+Mratio−1∏
i=fdiscrete(k)

Fi,

Qζ̄ = E{ζ̄kζ̄ ′k} =

Mratio∑
j=1

Gk+j−1QdG
′
k+j−1,

Gk = I15, Gk+j = Gk+j−1F̄fdiscrete(k+1)−j ,

1 ≤ j ≤Mratio − 1.

From the structure of Fi (see (3.5)), F̄k and ζ̄k are partitioned as follows for later use:

F̄k =

 F̄11,k F̄12,k

06×9 I6

 ∈
 R9×9 R9×6

R6×9 R6×6

 ,

ζ̄k =

 ζ̄k,1

ζ̄k,2

 ∈
 R9

R6

 ,

Qζ̄k =

 Qζ̄k,11 Qζ̄k,12

Qζ̄k,21 Qζ̄k,22

 ∈
 R9×9 R9×6

R6×9 R6×6

 . (3.9)

The visual odometry information at k-th discrete time is obtained using (k − 1)-th and

k-th images; thus the information imposes constraints on Uk−1 and Uk. To cope with this

fact, we construct an extended state Xk containing both Uk−1 and Uk [36].

Let the extended state Xk be defined by

Xk =



Uk

Uk−1

bg,e,k

ba,e,k


∈ R24×1.

From (3.8), we have the following system equation for the Kalman filter.

Xk+1 =


F̄11,k 09×9 F̄12,k

I9 09×9 09×6

06×9 06×9 I6

Xk + η̄k, (3.10)
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where

η̄k =


ζ̄k,1

09×1

ζ̄k,2

 ∈


R9

R9

R6

 .
Let Qη̄k be the covariance of η̄, which can be computed from Qζ̄ .

3.2.2 Visual odometry updating

Visual odometry estimates the motion of a camera using sequential images [37]. Visual

odometry can be divided into two methods: indirect and direct methods. Indirect methods

extract and track point features in the environment. Direct methods use raw image data by

comparing pixel intensities of consecutive images. In this work, the direct method in [38]

is used since this method is known to be robust in low-texture environments. Note that

the camera in this paper is looking downward to the floor, which generally gives low-texture

images.
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camera

imu

[ ]
C B

t
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imu
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1 framek -
th framek

,vo k
t

1k
r - k

r

world coordinate origin

Figure 3.3: Relative camera pose of two consecutive image frames

Let rk and qk be the position and attitude of the IMU represented in the world coordinate

corresponding to k-th image frame (see Fig. 3.3). Let [tC ]B and qCB be the position and orien-

tation of the camera in IMU (body) coordinate. Since [tC ]B and qCB are known constants, the

position and attitude of the camera in world coordinate can be calculated as rk +C(qk)
′[tC ]B

and qk ⊗ qCB [35].

The visual odometry algorithm provides the relative attitude qvo,k and relative position

tvo,k of the camera with its previous frame, (represented in the camera coordinate at the k-th

discrete time) that are (k − 1)-th and k-th images.
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The relative attitude qvo,k and relative position tvo,k satisfies the following equations:

qk ⊗ qCB = qk−1 ⊗ qCB ⊗ qvo,k. (3.11)

tvo,k = CCBC(qk)((rk−1 + C(qk−1)′[tC ]B)

−(rk + C(qk)
′[tC ]B)).

(3.12)

Let q̂vo ∈ R4 and t̂vo ∈ R3 be visual odometry estimate values and qvo,e ∈ R4 and

tvo,e ∈ R3 be estimation error terms defined by

qvo,k = q̂vo,k ⊗ fquat(q̄vo,e,k)

tvo,k = t̂vo,k + tvo,e,k.
(3.13)

Inserting (3.3) and (3.13) into (3.11), we have

qidentity = (qCB)∗ ⊗ q∗k ⊗ qk−1 ⊗ qCB ⊗ qvo,k

= (qCB)∗ ⊗ q̂∗k ⊗ q̂k−1 ⊗ qCB ⊗ q̂vo,k

−(qCB)∗ ⊗ fquat(q̄e,k)⊗ q̂∗k ⊗ q̂k−1 ⊗ qCB ⊗ q̂vo,k

+(qCB)∗ ⊗ q̂∗k ⊗ q̂k−1 ⊗ fquat(q̄e,k−1)⊗ qCB ⊗ q̂vo,k

+(qCB)∗ ⊗ q̂∗k ⊗ q̂k−1 ⊗ qCB ⊗ q̂vo,k ⊗ fquat(q̄vo,e,k).

(3.14)

In deriving the above equation, second-order error terms are ignored.

Let zvo,q,k ∈ R3 (the vector part of a quaternion) be defined by

zvo,q,k = fvector
(
(qCB)∗ ⊗ q̂∗k ⊗ q̂k−1 ⊗ qCB ⊗ q̂vo,k

)
. (3.15)

Let a ∈ R4 and b ∈ R4 be quaternions and c̄ ∈ R3 be a vector. It is straightforward to

verify that

a⊗

 0

c̄

⊗ b =

 ?

L(a, b)c̄

 , (3.16)

where ‘?’ term is irrelevant and

L(a, b) = −(b̄ā′) + (a0b0)I + b0[ā×]− a0[b̄×]− [b̄×][ā×].
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Combining (3.14), (3.15) and (3.16), we obtain

zvo,q,k = L((qCB)∗, q̂∗k ⊗ q̂k−1 ⊗ qCB ⊗ q̂vo,k)q̄e,k

−L((qCB)∗ ⊗ q̂∗k ⊗ q̂k−1, q
C
B ⊗ q̂vo,k)q̄e,k−1

−L((qCB)∗ ⊗ q̂∗k ⊗ q̂k−1 ⊗ qCB ⊗ q̂vo,k, qidentity)q̄vo,e,k.

(3.17)

Let zvo,t,k be defined by

zvo,t,k = t̂vo,k − t̂k, (3.18)

where

t̂k = CCBC(q̂k)(r̂k−1 − r̂k) + CCB (C(q̂k)C(q̂k−1)′ − I)[tC ]B.

Combining (3.14) and (3.18), we obtain

zvo,t,k ≈ CCBC(qk)(re,k−1 − re,k)

−2CCB [q̄e,k×]C(q̂k)(r̂k−1 − r̂k)

−2CCB [q̄e,k×]C(q̂k)C(q̂k−1)′[tC ]B

−2CCBC(q̂k)C(q̂k−1)′[q̄e,k−1×]′[tC ]B − tvo,e,k

= CCBC(qk)(re,k−1 − re,k)

+2CCB [(C(q̂k)(r̂k−1 − r̂k))×]q̄e,k

+2CCB [(C(q̂k)C(q̂k−1)′[tC ]B)×]q̄e,k

−2CCBC(q̂k)C(q̂k−1)′[[tC ]B×]q̄e,k−1 − tvo,e,k.

(3.19)

Let zvo,k be defined by

zvo,k =

 zvo,q,k

zvo,t,k

 ∈
 R3

R3

 . (3.20)

The measurement equation from the visual odometry algorithm is given by

zvo,k = Hvo,kXk + ηvo,k, (3.21)

where Hvo,k ∈ R6×24 can be derived from (3.17) and (3.19). Let Rvo,k ∈ R6×6 denote the

covariance of ηvo,k which is given by

Rvo,k = Jvo,k

 rvo,qI3 03×3

03×3 rvo,tI3

 ,
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where Jvo,k ∈ R is the sum of squares of brightness residual of each pixel [38].

3.3 Floor and foot detection

As in Fig. 3.4, walking cycle consists of stance period (when a foot is on the floor) and swing

period (when a foot is swinging). A stance period is detected (Section 3.3.2) and is used as

a landmark (Section 3.4.2) since a foot does not move during stance period even if the other

body parts are moving.

Stance periodSwing periodLeft foot Swing period

S         periodwingStance periodRight foot S periodtance

Step Length

Stride Length

right, 1l
r

- right, 1l
r

+

left, lr

Figure 3.4: Stance and swing period

Let rleft,l ∈ R3 be the position (expressed in the world coordinate system) of the l-th

left stance period foot. Similarly, rright,l ∈ R3 is defined for the right foot. The final goal of

this chapter is to estimate foot positions rleft,l and rright,l and the walking stride length is

computed from the foot positions (see Fig. 3.4).

In this section, the stance period foot is detected from depth images. The foot could have

been detected from RGB images. However, it is not easy to detect foot if the shoe and floor

have similar color or lighting condition is poor. Since depth image does not depend on color

and lighting conditions, more robust foot detection is possible.

3.3.1 Floor plane detection

From depth image, floor plane is detected. The floor plane helps to detect a stance period

foot.

Let [p(u, v)]C ∈ R3 be a point on the floor represented in the camera coordinate system

corresponding to (u, v) pixel, which is obtained from the depth camera. The floor plane
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equation is given by

[nfloor]C [p]C + [hfloor]C = 0, [hfloor]C > 0, (3.22)

where [nfloor]C ∈ R3 is the unit normal vector of the floor plane and [hfloor]C ∈ R > 0 is the

distance to the plane from the camera.

Plane parameters are estimated using RANSAC algorithm [39].

3.3.2 Foot detection and ellipse approximation

A stance period foot instep is slightly above the floor plane. Based on this observation, foot

candidate points are selected.

Firstly, the height matrix Fheight(u, v) (the height from the floor) is constructed as follows:

Fheight(u, v) = [ĥfloor]C − n̂′floor[p(u, v)]C . (3.23)

Then the foot candidate points are selected using the following condition:

hfoot,min ≤ Fheight(u, v) ≤ hfoot,max. (3.24)

For the pixels (u, v) satisfying (3.24), connected (8-direction connectivity) pixels are

grouped [40]. If the number of points in a connected group is less than Nfoot,min, then

the group is discarded. If the number of remaining groups is greater than 2, only the two

largest groups are selected as possible foot candidates.

For each candidate group of points, the foot edge is detected. Once foot edge is detected,

foot is approximated by an ellipse with known major and minor axes length assuming that

foot size is known.

Using a simple tracking algorithm, left and right feet are separated and stance period foot

is detected. If a left stance period foot is detected at the k-th image, the position of a foot

represented in the camera coordinate system is denoted by yleft,k ∈ R3. Similarly yright,k is

defined for the right foot. The detected stance feet belonging to the same stance period are

grouped. For the l-th stance period step, let Sleft,l be a set of discrete indices with yleft,k is
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available. An example is given in Fig. 3.5, where Sleft,l is given by

Sleft,l = {k, k + 1, k + 2, k + 3}. (3.25)

Note that yleft,k and yleft,k+1 are different since the camera is moving as the body is moving.

However, if yleft,i and yleft,i+1 are transformed to the world coordinate system, they should

be the same since a stance period foot is not moving. Similarly, a set Sright,l is defined for

the right foot. Let sindex(k) be a function representing the step number given image with

discrete index k. For the example in (3.25), sindex is given by

l = sindex(k) = sindex(k + 1) = sindex(k + 2) = sindex(k + 3).

Let Sfoot be the union of all Sleft,l and Sright,l: that is, k ∈ Sfoot means that at least one

stance foot is observed in the k-th image.

Stance periodSwing periodLeft foot

Discrete indices
foot is observed foot is not observed

Swing period

k k+1 k+2 k+3 k+4 ... k+9 k+10

Figure 3.5: Example of stance foot set Sleft,l

Let [yfoot]C ∈ R3 be the stance foot (either left or right foot) position represented in the

camera coordinate frame. The measured foot position is denoted by ŷfoot and the following

measurement model is used:

yfoot = ŷfoot + ηfoot, (3.26)

where ηfoot is a zero mean white Gaussian measurement noise with covariance rfootI3 ∈ R3×3.

3.4 Measurement equations

In this section, in addition to measurement equation (3.21) from visual odometry algorithm,

we propose two additional measurement updating as follows. April tags at known positions

provide measurement updates in initial and final stances. Detected stance feet in Section 3.3

are used as landmarks to reduce estimated foot position errors.
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3.4.1 Measurement equation for markers on the floor

Two A3 size papers containing 5 × 7 Apriltag markers [41] are placed both in the starting

and final walking points as in Fig. 3.6. Two papers are placed along the world coordinate y

axis and the distance between the left upper Apriltags of two papers is denoted by L, which

is measured with a tape measure.

X

Walking
direction

World
coordinate
origin

D
is

ta
n
c
e
: 
L

Initial stance

Final stance

Y

Figure 3.6: Markers in the starting and final points

Let [rtag,j ]C ∈ R3 be four corners of Apriltags and rimg,j ∈ R2 be the corresponding

measured image coordinates. Then the two points are related as follows

rimg,j = fimg([rtag,j ]C) + ηimg,j , (3.27)

where

[rtag,j ]C = C ′(qBC )(C(q)([rtag,j ]W − r)− [Pc]B). (3.28)
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Function fimg : R3 → R2 is defined by

fimg



xj

yj

zj


 =

 xj
zj

yj
zj

 .

An image measurement noise ηimg,j ∈ R2 is assumed to be independent Gaussian noise

whose covariance is ε1I2 ∈ R2×2. Note that [rtag,j ]W is known since the tag location on the

A3 paper is known.

Attitude and position of the camera can be estimated using the homography estimation

method in [42]. Let q̂tag,k ∈ R4 and r̂tag,k ∈ R3 denote estimated attitude and position and

let q̄tag,e,k ∈ R3 and rtag,e,k ∈ R3 denote the corresponding estimation errors, where the

following is satisfied

qk = q̂tag,k ⊗ fquat(q̄tag,k,e)

rk = r̂tag,k + rtag,k,e.
(3.29)

The estimation error covariance Rtag,k ∈ R6×6 is given by

Rtag,k =


 q̄tag,k,e

rtag,k,e


 q̄tag,k,e

rtag,k,e


′

= ε1

(∑Ntag,k

j=1 H̄ ′tag,j,kH̄tag,j,k

)−
,

(3.30)

where Ntag,k is the number of observed tag corners in the k-th image.

H̄tag,j,k ∈ R2×6 is given by

H̄tag,j,k =
∂fimg

∂rtag,j

∂rtag,j
∂Xk

∣∣∣
rtag,j=r̂tag,j

= 1
ẑ2i

 ẑj 0 −x̂j

0 ẑj −ŷj

 Jtag,j ,
where

[P̂tag,j ]C = C ′(qBC )(C(q̂)([rtag,j ]W − r̂)− [tC ]B) =


x̂j

ŷj

ẑj

 (3.31)

Jtag,j =
[
2C ′(qBC )[(C(q̂)([rtag,j ]W − r̂))×], C ′(qBC )C(q̂)

]
∈ R3×6. (3.32)
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q̂tag,1 and r̂tag,1 are used as initial attitude and position. After that only r̂tag,k is used in

the following measurement equation:

ztag,k = r̂tag,k − r̂k = Htag,kXk + ηtag,k (3.33)

where

Htag,k =

[
03×3 I3 03×18

]
∈ R3×24. (3.34)

Recall that there are two A3 papers as in Fig. 3.6 which are in the starting and final

positions. When tags are observed in the starting point, Rtag,k(4:6,4:6) is used as a measure-

ment noise covariance. When tags are observed in the final point, the measurement noise

covariance is increased to compensate uncertainties in L. Thus, the following measurement

covariance is used:

Rtag,k(4:6,4:6) +

 ε2I2 02×1

01×2 0

 .
3.4.2 Measurement equation for the stance foot

The stance foot detected in Section 3.3 is used as a landmark. The detected stance foot

position is given by

[yfoot]C = (CBC )′

C(q)


 r̄foot

0

− r
− [tC ]B


= ffoot(q, r, r̄foot),

(3.35)

where r̄foot ∈ R2 is xy world coordinates for the stance foot position. The z axis value is 0

since a stance foot is on the ground.

As in SLAM algorithms [43], a new stance foot position in the world coordinate frame is

estimated whenever a new stance foot is observed.

Let ˆ̄rfoot ∈ R2 be the estimated foot position, which can be computed from (3.35) once

[ŷfoot]C is given. Let r̄foot,e,m ∈ R2 be the m-th stance foot position estimation error:

r̄foot,e,m = r̄foot,m − ˆ̄rfoot,m.

31



Chapter 3. Visual Inertial Odometry for Gait analaysis Appication

The state Xk is extended to include r̄foot,e,m term. Let the extended state X̄m−1,k with

m− 1 observed stance feet be defined by

X̄m−1,k =



Xk

r̄foot,e,1,k
...

r̄foot,e,m−1,k


∈



R24

R2

...

R2


. (3.36)

Let the estimation error covariance of ˆ̄Xm−1,k be denoted by P̄m−1,k:

P̄m−1,k =

 PX,m−1,k PX,foot,m−1,k

Pfoot,X,m−1,k Pfoot,m−1,k

 ∈
 R24×24 R24×2(m−1)

R2(m−1)×24 R2(m−1)×2(m−1)

 . (3.37)

When m-th stance foot is newly detected, the estimated state is extended as follows:

ˆ̄Xm,k =

 ˆ̄Xm−1,k

ˆ̄rfoot,e,m,k

 . (3.38)

The state estimation error covariance P̄m,k is given by

P̄m,k =

 P̄m−1,k P ′?,m,k

P?,m,k Pfoot,m,k

 , (3.39)

where

Pfoot,m,k = GXPX,m−1,kG
′
X + rfootGyG

′
y (3.40)

P?,m,k = GX

[
PX,m−1,k PX,foot,m−1,k

]
(3.41)

and GX =
∂r̄foot
∂X and Gy =

∂r̄foot
∂vfoot

are computed from (3.44):

GX = E12

[
2C(q̂)′[([tC ]B + CBC ŷfoot)×] I3 03×18

]
∈ R2×24 (3.42)

Gy = E12C(q̂)′CBC ∈ R2×3 (3.43)

E12 =

 1 0 0

0 1 0

 .
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GX is computed from the following equation (ignoring second-order error terms):

r̄foot = E12(r̂ + re + C(q̂)′(I + 2[qe×])([tC ]B

+CBC (ŷfoot + vfoot)))

= E12(r̂foot − 2C(q̂)′[([tC ]B + CBC ŷfoot)×]qe

+re + C(q̂)′CBC vfoot).

(3.44)

If the m-th detected foot ŷfoot,m,k has been observed before, it is used in the Kalman

filter as a measurement. Let zfoot ∈ R3 be defined by

zfoot,m,k = ŷfoot,m,k − ffoot(q̂k, r̂k, ˆ̄rfoot,m,k). (3.45)

From (3.35), we have

zfoot,m,k = ffoot(qk, rk, r̄foot,m,k)− ηfoot,k

−ffoot(q̂k, r̂k, ˆ̄rfoot,m,k)

= 2(CBC )′[(C(q̂)(E′12
ˆ̄rfoot,m,k − r̂))×]q̄e,k

+(CBC )′C(q̂)(E′12r̄foot,e,m,k − re,k)− ηfoot,k.

(3.46)

Inserting (3.46) into (3.45), we obtain

zfoot,m,k = H̄foot,m,kX̄m,k − ηfoot,k, (3.47)

where

H̄foot,m,k =

[
Hfoot1,m,k 03×18+2(m−1) Hfoot2,m,k

]
(3.48)

Hfoot1,m,k =
[
2(CBC )′[(C(q̂)(r̂foot,m,k − r̂))×],

−(CBC )′C(q̂), 03×3

]
∈ R3×9.

Hfoot2,m,k = (CBC )′C(q̂)E′12 ∈ R3×2.

When a state is extended, Htag in Section 3.4.1 should also be extended to be compatible

with the extended dimension by filling zeros.
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3.5 Filtering and smoothing algorithm

In this section, the results in Section 3.2 and 3.4 are combined. A Kalman filter is used to

estimate q, r, v and rfoot, where q̂filter, r̂filter, v̂filter and r̂filter,foot are estimated values.

Then based on the estimated value, a smoother algorithm is applied to obtain more accurate

estimation, where q̂smoother, r̂smoother, v̂smoother and r̂smoother,foot are estimated values.

The filtering algorithm is fairly standard and is summarized in Algorithm 1.

initialization;
while k ≤ Nimg do

time update (3.10);
measurement update using visual odometry (3.21);
if foot is detected then

if first observed then
extend state (3.38);

else
measurement update using the foot (3.47);

end

end

end
Algorithm 1: Filtering algorithm

The smoothing problem is formulated as a linear optimization problem, where small errors

in the filter estimated values are computed. For example, the true position rk ∈ R3 can be

modeled as

rk = r̂filter,k + re,k. (3.49)

In the smoothing algorithm, re,k is estimated, where r̂e,k is the estimated value. Then the

position is given by

r̂smoother,k = r̂filter,k + r̂e,k. (3.50)

34



Chapter 3. Visual Inertial Odometry for Gait analaysis Appication

Let the state of the smoother Xsmoother be defined by

Xsmoother =



U1

...

UNimage

bg,e

ba,e

rfoot,e,1
...

rfoot,e,Mfoot



∈ R9Nimage+6+2Mfoot ,

where Mfoot is the total number of detected stance periods (both left and right feet).

The smoothing algorithm can be formulated as a linear quadratic optimization problem:

J(X) =
∑Nimage−1

k=1 quad(ζ̄k,1, Qζ̄k,11)

+
∑Nimage

k=2 quad(zvo,k −Hvo,k(1:6,1:18)

 Uk

Uk−1

 , Rvo,k)
+
∑k∈Stag quad(ztag,k −Htag,k(1:3,1:9)Uk, Rtag,k(1:3,1:3))

+
∑

k∈Sfoot
quad(zfoot,sindex(k),k −Hfoot1,sindex(k),kXk

−Hfoot2,sindex(k),k rfoot,e,sindex(k),k, Rfoot,k)

+quad(b̂+ bg,e − bg,init, Pbg,init
)

+quad(b̂+ ba,e − ba,init, Pba,init
)

+quad(Uinit − U1, PU,init)

+quad(Ufinal − UNimage , PU,final),

where quad is defined by

quad(a,B) =
1

2
a′Ba.
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The initial and final constraints Uinit and Ufinal are given by

Uinit =


fvector(q̂1 ⊗ q̂tag,1)

r̂tag,1 − r̂1

03×1 − v̂1

 ,

Ufinal =


fvector(q̂fdiscrete(Nimage) ⊗ q̂tag,Nimage)

r̂tag,Nimage − r̂fdiscrete(Nimage)

03×1 − v̂fdiscrete(Nimage)

 .

From (3.8), ζ̄k,1 in the quadratic term quad(ζ̄k,1, Qζ̄k,11) is given by

ζ̄k,1 = Uk+1 − F̄11,kUk − F̄12,k

 bg,e

ba,e

 .
Once the optimal X is computed, q̂smoother, r̂smoother, v̂smoother and r̂smoother,foot can be

computed with (3.50).

3.6 Chapter Summary

This chapter has proposed a filter and smoother algorithm to fuse IMU data with RGB-D

camera data to estimate stance foot positions and reconstruct human body walking trajectory.

Hence, gait parameters such as stride length, step time, walking speed can be directly derived

from these information.

With the IMU-camera system attached to user waist, walking range is unrestricted.

Therefore, longer walking range can be achieved in comparison with pressure mat or op-

tical tracker system. Visual odometry algorithm provides incremental attitude and position

of the camera alongside with position of the detected stance foot as a landmark in the mea-

surement update equations of the filter. However, the proposed foot detection algorithm is

restricted to only stance foot due to the height from the floor constraints.

In the next chapter, the deep learning-based model is applied in foot detection algorithm

in order to extend the problem to foot walking trajectory estimation. From estimated waist

and two feet walking trajectory, human lower body shape and pose during walking motion

are reconstructed using another deep learning-based model.
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This chapter introduces an implementation of a semantic segmentation model to extend

the foot detection algorithm (Section 3.3) in order to reconstruct two feet trajectories in

walking motion. It is clear that with image data from downward-looking waist-mounted

camera, foot is missing sometimes due to visual self-occlusion. To fully reconstruct human

lower-body motion, we proposed a graph convolutional network to predict human pose from

a set of previous poses.

4.1 Foot detection framework

Few studies interest in detecting 3D foot position from outside fixed camera in application of

Augmented Reality, i.e. Virtual Try-On of Footwear [44], Virtual Mirror [45] or Magic Mir-

ror [46]. Similar task is hand detection in human-computer interaction (HCI), gesture/sign

language recognition and VR/AR [47, 48]. However, detecting feet in images from wearable

downward looking camera is not a popular study [49].

Semantic Segmentation is the task of assigning each pixel a class label given an input

image. Therefore, instead of a bounding box for each detected object, the segmentation

framework gives a mask-like with labeled class for each object (see Fig. 4.1). It can be

considered as image classification at the pixel level. Because the label is predicted for every

pixel in the image, the task is also commonly referred as dense prediction.

Figure 4.1: An illustration of the progression from coarse to fine inference.

Related works on semantic segmentation are widely used in indoor/outdoor scene under-

standing or biomedical imaging purposes, where the context of the environment is crucial.

Fig. 4.2 shows an example of groundtruth labels from Pascal VOC 2010 dataset [50]. Each

class is represented by a specific color that enable user to understand and evaluate a scene

context.
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Figure 4.2: An example of semantic segmentation from Pascal VOC 2010.

In our study, the image only contains ground, feet, legs, and some objects placed on the

ground. Hence, in most cases, there are only 3 classes are needed to be labeled: ground, foot

and leg. Fig. 4.3 illustrates an example of a labeled data with defined classes in our created

custom dataset.

Figure 4.3: An example of visualizing the groundtruth data in our custom
dataset.
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Before Deep Neural Networks, quiet a few algorithms have been designed to solve this

non-trivial task, such as Watershed algorithm, Image thresholding, K-means clustering, Con-

ditional Random Fields, etc. In spite of many traditional image processing techniques the

deep learning methods has been a game changer in the field of computer vision. One of

the very early deep convolutional neural networks used for semantic segmentation is Fully

Convolutional network (FCN). A variety of more advanced FCN-based approaches have been

proposed to address this issue, including SegNet, U-Net, PSPNet, and DeepLab. In this

study, FCN [51] is used to evaluate the semantic segmentation task.

4.1.1 FCN for Semantic Segmentation

A fully convolutional network (FCN) is the first work that re-architects and fine-tunes clas-

sification networks to direct, dense prediction of semantic segmentation. Both learning and

inference are performed whole-image-at-a-time by dense feedforward computation and back-

propagation (see Fig. 4.4).

Figure 4.4: FCN structure.

In classification networks, conventionally, an input image is downsized and goes through

convolution layers and fully connected layers, and output a predicted label. If the fully

connected layers turn into 1 × 1 convolutional layers and the image is not downsized, the

output will not be a single label. Instead, the output is a feature map with smaller resolution

than the input image (due to max pooling). If the output is upsampled to the original

resolution, then the pixelwise label map is obtained. Thus, by simply applying these tricks

on any state-of-the-art deep CNNs for image classification, we can acquire corresponding

FCNs for semantic segmentation.
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Figure 4.5: FCN strides prediction.

While fully convolutional classifiers can be fine-tuned to segmentation with even high

score on the standard metrics, their output is unsatisfactorily coarse. The 32 pixel stride at

final prediction layer limits the scale of the detail in the output. The authors addressed this

problem by adding a links that combine the final prediction layer with lower layers with finer

strides (see Fig. 4.5). Combining fine layers and coarse layers lets the model make predictions

that respect global structure.

4.1.2 Custom Dataset

Sufficiently large datasets are challenging to collect. Some example benchmarks for semantic

segmentation task are Cityscapes, PASCAL VOC, ADE20k. Those dataset include a huge

number of scenes and classes. Dataset of egocentric hand segmentation are also available as

EgoHands, Ego2Hands, Mo2Cap2, GTEA. However, these dataset are also not appropriate

for foot segmentation task. To our knowledge, there is no existing dataset of downward

looking camera for foot detection.

To create dataset for our task, we define a custom dataset classes based on VOC dataset.

In addition to three RGB channels of input images, we include three more channels for

HHA images, which is encoded from depth data with three channels at each pixel, including

horizontal disparity, height above ground, and the angle that the pixel’s local surface normal

makes with the inferred gravity direction. The HHA representation encodes properties of

geocentric pose that emphasize complementary discontinuities in the image (depth, surface
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normal and height) because of which it works better than using raw depth images for learning

feature representations with convolutional neural networks [52].

Color image and depth information are extracted from Intel Realsense RGB-D camera

with a size of 640 × 480. From our set of walking experiments, approximately 2500 images

(6 channels) data are extracted. Among them, 250 images data is annotated in Pascal VOC

format by drawing polygon regions around the legs and feet, using Labelme tool [53]. Fig. 4.6

shows the grid of some image data and labels generated from the tool.

Figure 4.6: An example of our custom dataset, including RGB, HHA, and
groundtruth images using Labelme tool.

Train and validate dataset are create from images data with label, test dataset is created

from images extracted from other experiments.

4.1.3 Foot detection model training

To implement foot segmentation, the original FCN-8s and our modified FCN-8s was trained

with our custom dataset as the following setup:

• RGB: Only RGB image as three-channel input

• HHA: Only HHA image as three-channel input

• RGBD: RGB and HHA images are fused with modified network structure
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The modified FCN-8s net is jointly trained late fusion model that sums RGB and HHA

predictions.

Cross entropy loss is typically used in semantic segmentation. However, class imbalance

is one problem for one-stage detector using cross entropy loss. In our case, the background

class is the dominant in most image frame. Focal loss [54] is a more effective alternative

to deal with class imbalance. Stochastic Gradient Descent (SGD) is used as the optimizer

during training process.

4.1.4 Foot position estimation

In this section, visible legs and feet are detected from RGB color and HHA images. Output

of the foot detection network is an image with each pixel is assigned to its predicted label.

This result is then post-processed to separate left and right legs and feet, and calculate foot

positions in the image coordinate frame.

Before calculating foot position, the predicted image is fused with depth data to remove

outliers smooth the predicted edges of feet and legs. We apply a simple threshold constraint

on height information to correctly redefine the edges of each detected foot.

Let Ii be the ith frame in a sequence of images with the length N retrieved from the

waist-mounted camera in an experiment. Let the detected f -foot (f = {left, right}) in the

Ii represented by Pf,i = [ptf,i, p
m
f,i, p

b
f,i] ∈ R3×3, where pjf,i(u, v) ∈ R3 be a point on the foot

surface represented in the camera coordinate frame corresponding to (u, v) pixel in the image

(Fig. 4.7), and j ∈ {t,m, b} which stands for {top,mid and bot}.

Image

Camera

Figure 4.7: Keypoints on a detected foot.
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Let Sf be set of (u, v) pixel that belongs to the f -foot. Three keypoints {top,mid and

bot} are calculated as follows

(ut, vt) = mean{(u, v)|(u, v) ∈ Sf & umax −Mt < u < umax}

(ub, vb) = mean{(u, v)|(u, v) ∈ Sf & umin < u < umin +Mb}

(um, vm) = mean{(u, v)|(u, v) ∈ Sf},

(4.1)

where umax = max(u|(u, v) ∈ Sf ), umin = min(u|(u, v) ∈ Sf ) and Mt,Mb is arbitrarily chosen

as the scalar margin pixel threshold.

Pf,i is then calculated from corresponding point cloud depth data. Hence, foot positions

in the world coordinate frame are estimated from Pf,i and camera position and orientation.

4.2 Human lower-body motion prediction framework

Human lower body motion prediction is a specific subtask of human motion prediction that

focuses on forecasting the future movements of the hips, legs and feet of a human in a given

environment. This task is important in applications such as sports training, physical therapy,

and human-robot interactions.

The spatial and temporal structure of the human pose is an important aspect of human

motion prediction. Spatial structure refers to the positions and orientations of the different

body parts of a human, while temporal structure refers to the changes in these positions and

orientations over time.

Various methods have been proposed to model the spatial and temporal structure of

human pose for prediction. One popular approach is to use a hierarchical representation of

the body, such as a kinematic chain or a tree structure. These representations can capture

the relationships between different body parts and enable the modeling of the joint angles

and positions. Another approach is to use a graph-based representation, where each node

represents a body part and the edges represent the connections between them. Graph-based

methods can capture more complex relationships between body parts and enable the modeling

of non-linear dependencies.

Recurrent neural networks (RNNs) can capture the temporal dependencies in human

motion trajectories and generate accurate predictions [55, 56, 57], while convolutional neural

networks (CNNs) can extract spatial features from the input data and predict future poses
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based on current poses and environmental factors such as obstacle positions [58, 59]. Recent

research has also explored the use of graph neural networks (GNNs) to model the spatial

and temporal structure of human pose. GNNs can learn the underlying graph structure

and incorporate temporal information to predict future poses. One popular type of GNN

for human pose prediction is the graph convolutional neural network (GCN). GCNs can be

used to learn spatial and temporal features of the body pose by propagating information

across the graph structure. GCNs have been used for both full body [60] and lower body

pose prediction [61], and have shown promising results in terms of accuracy. Another type of

GNN that has been used for human pose prediction is the graph attention network (GAT),

which uses attention mechanisms to selectively weight the contributions of different nodes to

the output. GATs have been shown to outperform traditional GCNs in some tasks and can

better capture the complex relationships between different body parts [62, 63]. In this study,

a GCN framework based on the work of [60] is used for predicting human lower body poses

in walking activities, hence, to fully reconstruct trajectories of the dual foot.

4.2.1 GCN for human motion prediction

Problem formalization

We assume to be given the 3D coordinates or angles of the body consists of V joints and

T frames. The history motion sequence is denoted by the tensor X1:T = [x1,x2, . . . ,xT ] ∈

R3V×T , where xk = [(x1
k)
′, (x2

k)
′, . . . , (xVk )′]′ ∈ R3V×1 represents the pose at specific frame

k. Let xv = [(xv1)′, (xv2)′, . . . , (xvT )′]′ ∈ R3T×1 be the motion of vth joint (3D coordinates or

angles). Our goal is to predict the future K poses XT+1:T+K = [xT+1,xT+2, . . . ,xT+K ] ∈

R3V×K .

DCT-based Temporal encoding

To encode the temporal nature of human motion, we can either directly use the trajec-

tories xv as input and output of for the motion prediction, or represent a trajectory using

the Discrete Cosine Transform (DCT), which can provide more compact representation by

discarding the high frequencies. Given a trajectory xv, the corresponding lth DCT coefficient

can be computed as

Cvl =

√
2

T

T∑
n=1

xvn
1√

1 + δl1
cos
( π

2T
(2n− 1)(l − 1)

)
, (4.2)
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where δij denotes the Kronecker delta function with δij =


1, if i = j

0. if i 6= j

In practice, l ∈ 1, 2, . . . , T , but one can ignore the higher values, to remove the high

motion frequencies. Equation (4.2) allows us to model the temporal information for each

joint using DCT coefficients. Given such coefficients, the original pose representation (3D

coordinates or angle) can be obtained via the Inverse Discrete Cosine Transform (IDCT) as

xvn =

√
2

T

T∑
l=1

Cvl
1√

1 + δl1
cos
( π

2T
(2n− 1)(l − 1)

)
, (4.3)

where n ∈ 1, 2, . . . , T .

To make use of the DCT representation, instead of treating motion prediction as the

problem of learning a mapping from X1:T to XT+1:T+K , we reformulate it as a mapping

between observed and future DCT coefficients.

Graph Convolution Layer

To encode the spatial structure of human pose, we make use of GCNs by assuming that

human body is modeled as a fully-connected graph with V nodes. The strength of the edges

in this graph can be represented by a weighted adjacency matrix A ∈ R3V×3V . A graph

convolution layer p then takes as input a tensor H(p) ∈ R3V×Fp , with Fp is the number of

features output by the previous layer. For the first layer, the network takes as input the

3V × L matrix of DCT coefficients. Given this information and a set of trainable weights

W(p) ∈ RFp×Fp+1 , a graph convolutional layer outputs a matrix of the form

H(p+1) = σ(A(p)H(p)W(p)), (4.4)

where A(p) is the trainable weighted adjacency matrix for pth layer and σ is the activation

function, such as ReLU, PReLU or tanh.

Network Structure

We used the similar structure from [60] as in Fig. 4.8. It consists of 12 residual blocks,

each of which consisting 2 graph convolutional layers and two additional graph convolutional

layers, one at the beginning and one at the end, to encode the temporal information and

decode the features to the residual DCT coefficients,respectively. Each layer p relies on a

learnable weight matrix W(p) ∈ R256×256, and a learnable weighted adjacency matrix A(p).
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Figure 4.8: Implemented network architecture with GCN.

4.2.2 Dataset: Lower body pose in walking action

From the Archive of Motion Capture as Surface Shapes (AMASS [64]) dataset, we use the

SMPL [65] parameterization to derive a representation of human pose based on a shape vector,

which defines the human skeleton, and its joints rotation angles. Overall, AMASS consists of

40 human-subjects that perform the action of walking. Each human pose is represented by

52 joints, including 22 body joints and 30 hand joints. Here we consider for predicting lower

body joints only and model as 7-joints human pose (root, 2-hips, 2-knees, 2-ankles). These

sequences are downsampled to 30fps.

4.2.3 Model training

The model is trained to minimize the losses that measure error with respect to (w.r.t) ground

truth in terms of Mean Per Joint Position Error (MPJPE) and Mean Angle Error (MAE).

The loss based on MPJPE is defined as follows

LMPJPE =
1

V (T +K)

T+K∑
k=1

V∑
v=1

‖p̂vk − pvk‖2, (4.5)

where p̂vk ∈ R3 denotes the predicted 3D coordinates of the joint v in the frame k, and

pvk ∈ R3 is the corresponding groundtruth. The loss based on MAE is given by

LMAE =
1

V (T +K)

T+K∑
k=1

V∑
v=1

|x̂vk − xvk|, (4.6)

where x̂vk ∈ R3 denotes the predicted joint angles in exponential map representation of the

joint v in the frame k, and xvk ∈ R3 is its groundtruth.
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4.2.4 Pose prediction

In this section, dual foot trajectories are fully reconstructed by predicting future poses from

a set of previous poses and the measurements are the estimated dual foot positions and the

camera position and orientation. The pose forecasting is the feed-forward process, thus, a nu-

merical optimizer is added to correct the predicted pose in order to align with measurements.

In this study, the human pose representation is chosen as joint angles. The corresponding

joint positions are calculated from forward kinematic (i.e. joint regressor in SMPL model).

Assume a walking sequence contains total N frames with the poses in first T frames are

known. Let x̄i = x̂i+K−1 ∈ R21×1(i > T ) be the last pose in the set of K poses X̂i:i+K−1

predicted from the last T poses Xi−T :i−1 at the ith frame

X̂i:i+K−1 = net(Xi−T :i−1).

The optimal estimated pose x∗i is defined as the pose that minimizes the following opti-

mization problem

J(x) = winit|x̄i − x|+ wroot(|x̃ri − xr|+ ‖p̃ri − pr‖2) + wfoot‖p̃fi − p
f‖2, (4.7)

where the terms x̃ri , p̃
r
i refer to the measurements of root joint r at frame i (angle and position,

respectively). Similarly, p̃fi is the measurement of foot joint f (position of left or right feet)

at frame i. The weights winit, wroot and wfoot are arbitrarily chosen. Besides, the constraints

of the shank length and thigh length can be added into the optimization as follows

J(x) =winit|x̄i − x|+ wroot(|x̃ri − xr|+ ‖p̃ri − pr‖2) + wfoot‖p̃fi − p
f‖2

+ wshank(‖pk − pa‖2 − Lshank) + wthigh(‖pk − ph‖2 − Lthigh),

(4.8)

where pk, pa, ph are position of knee, ankle and hip joint, respectively. Lshank and Lthigh are

the constrained shank and thigh length.

4.3 Chapter Summary

This chapter has presented two deep learning-based frameworks to improve foot positions

estimation and reconstruct human lower-body walking trajectory.
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A FCN-based semantic segmentation model is trained with our custom dataset for legs

and feet detection. The network is modified to use both color and depth information in the

framework. The segmented output is then post-processed to separate left and right foot, and

compute each foot 3-D position with respect to camera and world coordinate frame. The foot

trajectories are derived from these information. However, foot positions are missing during

the interval between a foot Toe Off and Mid Swing events due to self occlusion.

A lower-body human pose prediction framework is used to deal with foot missing problem

and reconstruct the whole foot trajectories in walking action. The prediction framework is

based on a GCN to model the spatial and temporal structure of human pose. We use the DCT

representation to encode the temporal nature, and the graph-based model of human body

to encode the spatial structure of human motion. The framework is trained with existing

AMASS dataset with selected walking sequences and extracted lower-body with 7 joints. The

optimal pose is corrected by apply some constraints to the predicted pose in a optimization

problem.

In the next chapter, the experiments are conducted to verify the algorithm accuracy.
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5.1 Experiments

Experiments are performed to verify the proposed algorithm. Camera frame is attached to

user’s waist by velcro tapes and buckles clips, and two reflective markers (for the motion

capture system) are mounted on top of both feet (see Fig. 5.1). A motion capture system is

set up with 6 cameras from Optitrack, creating a tracking space of about 5m long in Fig. 5.2.

Figure 5.1: Participant with equipped camera system doing the experiments.

5m 10m 15m

Corridor

Optical tracker
working area

Walking

Figure 5.2: Experiment setup, volunteer walks three straight paths from
green triangle to red square through the working range of the optical tracker

system.
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Table 5.1: Five Subjects Information

Volunteer Age Weight(kg) Height(cm)

Range 26-35 55-75 161-185
Mean 30.2 62.2 170.2

Standard deviation 3.27 7.60 6.05

Five healthy persons are recruited to perform the data acquisition. Subjects information

is given in Table 5.1.

In the experiment, volunteers are asked to walk in a straight line inside a long corridor.

Each person walks in separated paths with walking distance of 5, 10, and 15 meters, five

times each. At the starting and ending point of each walking path, two identical printed

Apriltag of A3 size are placed with the same orientation. All walking paths are designed so

that the tracking range is at the middle of each path as in Fig. 5.2.

5.2 Results

5.2.1 Visual Inertial Odometry results

Fig. 5.3 shows detected stance foot from point cloud depth data using foot detection algorithm

in Section 3.3, where foot candidate points a selected using a simple threshold constraint of

the height from the floor. Candidate points are grouped to defined foot edge. An ellipse

approximation algorithm is used to fit the detected foot edge. Foot position in the camera

coordinate is then calculated from ellipse position in the RGB images.

1 2

3 4

Figure 5.3: Detected stance foot from point cloud data and masked in RGB
image: 1) initial states; 2) first detected right foot; 3) already detected right

foot, used as landmark; 4) first detected left foot.
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Fig. 5.4 shows a 16.5-meter-walking example of an estimated walking trajectory integrat-

ing the waist-mounted internal IMU data only without any measurement updating. It is clear

that just integrating IMU data method leads to divergence.
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estimated walking trajectory

final position

initial position

Figure 5.4: Estimated walking trajectory using integrating internal IMU data
only, proposed filter and smoother.

From the proposed filter in Algorithm 1 and the smoothing algorithm, estimated walking

trajectories are given in the Fig. 5.5 and Fig. 5.6. Left and right foot positions in world co-

ordinate system are computed. The relative position, relative attitude from visual odometry

and foot position as landmarks are used in the measurement updating equation. The esti-

mated walking trajectory is improved and corrected in the smoothing algorithm. Note that

the initial foot position is slightly negative since it is aligned with the origin of the calibrated

optical tracker system.
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Figure 5.5: xy-plane estimated walking trajectory and foot position using
proposed Kalman filter and smoother.
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Figure 5.6: 3-axis estimated walking trajectory and foot position using pro-
posed Kalman filter and smoother (IC: Initial Contact, TO: Toe Off).
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Figure 5.7: Compare estimated foot position with ground truth.

To evaluate the accuracy, foot positions are compared with ground truth from optical

tracker system in Fig. 5.7. In each trial, three strides in 5-meter working space of optical

tracking system are selected to provide ground truth data. In total, there are 5 (person)

x 3 (path) x 5 (trial) x 3 (stride) x 2 (left,right) = 450 strides data. Since the difference

in walking paths might cause different estimated results, the number of selected strides for

calculating stride length is the same for the whole experiment, and average stride length error
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over the walking paths for each volunteer is computed and given in Table 5.2. The overall

root mean square errors (RMSE) is about 3.8 centimeters.

Table 5.2: Estimated stride length error (Unit: Meter).

Left Right

ID Max. error RMSE Std. Max. error RMSE Std.

1 0.043 0.033 0.017 0.039 0.033 0.014
2 0.049 0.027 0.019 0.037 0.026 0.012
3 0.075 0.067 0.031 0.056 0.047 0.029
4 0.050 0.030 0.025 0.073 0.059 0.024
5 0.057 0.036 0.024 0.046 0.020 0.017

5.2.2 Deep learning-based foot trajectory estimation results

To evaluate deep learning-based foot detection algorithm, some evaluation metrics is used as

follows:

Pixel Accuracy Pixel accuracy is the most basic metric which can be used to validate

the results. Accuracy is obtained by taking the ratio of correctly classified pixels with respect

to total pixels. The main disadvantage of using such a technique is the result might look

good if one class overpowers the other. Say for example the background class covers 90% of

the input image, we can get an accuracy of 90% by just classifying every pixel as background.

Intersection over Union (IoU) IoU is defined as the ratio of intersection of ground

truth and predicted segmentation outputs over their union. If we are calculating for multiple

classes, IoU of each class is calculated and their mean is taken. It is a better metric compared

to pixel accuracy as if every pixel is given as background in a 2 class input the IOU value

is (90/100+0/100)/2 i.e 45% IOU which gives a better representation as compared to 90%

accuracy.

Frequency weighted IoU This is an extension over mean IOU which we discussed and

is used to combat class imbalance. If one class dominates most part of the images in a dataset

like for example background, it needs to be weighed down compared to other classes. Thus

instead of taking the mean of all the class results, a weighted mean is taken based on the

frequency of the class region in the dataset.

Fig. 5.8 shows the evaluation results of our foot detection network, while Fig. 5.9 shows

an example of prediction output from the network.
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Figure 5.8: FCN evaluation results: 1) Pixel accuracy; 2: Mean IoU; 3:
Frequency weighted average accuracy.

Figure 5.9: Deep learning-based foot detection results: prediction: 1) pre-
dicted classes from network; post-processing: 2) filted blobs and smooth with
depth data; 3) left and right feet separation; 4) 3d point cloud segmentation.
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The post-processing step provides us the filtered blobs and smooth the blobs with con-

straints of depth information, and robust separation of left and right feet, even in the case

that only one feet is visible from the image.

Once foot position in camera coordinate frame is derived, its position expressed in world

coordinate frame can be calculated with the camera position and orientation. Fig. 5.10

presents three-axis estimated trajectories of both the camera and two foot. We can see that

two foot trajectories still have missing data, due to the occlusion of the feet between Toe Off

and Midswing.
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Figure 5.10: Three axis estimated trajectory of: 1) camera; 2) left and right
feet; 3) 3d position of both camera and two foot.
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Figure 5.11: 3d position of estimated foot trajectory and ground truth.

The estimated dual foot trajectories are compared with the groundtruth in Fig. 5.11.

Since the sampling rate of two systems are different, the groundtruth data is downsampled

to 30Hz and both data are filtered to remove missing data. To quantitatively evaluate the

quality of an estimated trajectory, we use the method in [66], where the estimated trajectory

is aligned towards the groundtruth, and compute the distance errors. The norm of mean of

absolute trajectory error (NMATE) within 5 meters of working space is given in Table 5.3.

Table 5.3: Estimated dual foot trajectories error (Unit: Meter).

Left Right

ID NMATE Std. NMATE Std.

1 0.069 0.070 0.060 0.041
2 0.055 0.050 0.051 0.034
3 0.049 0.034 0.048 0.034
4 0.076 0.030 0.074 0.028
5 0.046 0.047 0.043 0.049
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5.2.3 Human lowerlimb motion estimation results

GCN-based model is implemented using Pytorch, and we used ADAM [67] optimizer in the

training process. The training rate is set to 0.0005 with a 0.96 decay every two epochs. The

batch size is set to 32. Our model is trained for 50 epochs on a NVIDIA Geforce RTX3070

8GB. We use L-BFGS [68] optimizer with the learning rate of 2, maximum iteration is 25,

tolerance change is 1e−6 in the measurement optimization (4.7), which run faster than ADAM

but still takes about 0.3 seconds on each frame. We predict 10 future poses from the past 10

poses with DCT encoding of the depth 20. The dual foot trajectories are reconstructed in

Fig. 5.12.
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Figure 5.12: 3d position of GCN-based predicted left and right foot.

The predicted left feet trajectory comparing with estimated one from VIO algorithm is

shown in Fig. 5.13, and with the ground truth is given in Fig. 5.14. We can easily see that

the results are not very good because of the misalignment in x-axis and z-axis trajectories.

This may be caused by the lack of foot joints in 7-joint lower-body model that leads to foot

joint position is not coincide with ankle joint position. However, the y-axis trajectory shows

the good prediction along the walking direction.
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Figure 5.13: 3d position of GCN-based predicted and VIO-based estimated
left foot trajectory.
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Figure 5.14: 3d position of GCN-based predicted and groundtruth of dual
foot trajectory.
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6.1 Conclusions

A human motion estimation system used for tracking lower-body motion during walking

activity with a single waist-mounted RGB-D camera and integrated inertial sensors has been

the main topic of this dissertation. Firstly, with the achievement of applying standard indirect

Kalman filter for waist-mounted inertial sensor in position and attitude estimation during

walking, we are motivated to develop an novel navigation algorithm based on visual inertial

odometry (VIO). The VIO algorithm is able to estimate relative pose, including position and

attitude, of the camera from image sequence. These information are used as a measurement

for the proposed filter. Moreover, from color and depth image data, the visible foot in

stance phases can be detected using an threshold-based image processing framework. Due

to the fact that position of the foot are unchanged during stance phases, they are used as

landmarks for updating the measurements. A smoothing algorithm is proposed as linear

optimization problem to reduce the estimation errors. The body walking trajectory and

detected foot positions can be used to derive gait parameters such as walking stride length,

step time, speed, etc. Secondly, a deep learning-based framework is proposed to extend foot

detection algorithm as a semantic segmentation problem. Visible foot on the image can be

detected, thus, 3-D dual foot trajectories during walking can be derived from the proposed

filter results and the relative position of dual foot with respect to the camera. Thirdly, a

Graph Convolutional Network (GCN) based model is proposed to predict pose from previous

poses to tackle the problem of missing feet on the images. Complete foot trajectories are

finnaly reconstructed with only a single waist-mounted RGB-D camera with integrated IMU.

Chapter 2 introduces the standard position and attitude estimation algorithm based on

indirect Kalman filter for wearable inertial sensor data during walking. The method uses the

inertial sensor data including accelerometer and gyroscope outputs to estimate attitude and

position by double integrating method in time update process. To reduce the accumulation

errors, we apply two measurement updating models: Gravity measurement update (GMU)

and Zero-angular-rate update (ZARU). Due to the limitation of the algorithms for low-

cost inertial sensors-based in a long walking distance or period, we propose a constrained

optimization-based smoothing algorithm to improve the accuracy.

Chapter 3 presents the VIO filtering algorithm, where the filter state is extended to

combine consecutive image sequences, that enable us to use the estimated relative position
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and attitude from visual odometry algorithm as an measurement update in the filter. Color

and depth image data are combined to detect the floor plane, measure the height information,

and detect the candidate group of points that belongs to the stance feet. The foot is then

detected by a simple ellipse approximation algorithm. Left and right feet are easily separated

and their position in the camera and world coordinate frame can be computed from depth

image data. We propose the measurement from Apriltag, which is put on the floor at the

starting and ending location, to provide initial and final value for constraints of foot position

and camera orientation. The truth that position of a stance feet is unchanged during stance

phases enable us to use stance foot as the landmarks for updating the camera position in the

filter. An smoothing-based algorithm is also used to improve the accuracy.

In chapter 4, we extend the foot detection framework using a deep learning-based method.

A Fully Convolutional Network (FCN) is modified to be able to trained with both color and

depth image from our created custom data set of first person view foot and legs images. The

output of the network is an image whose each pixel indicates its class. Predicted image is

then post-processed to calculate foot position in camera and world coordinate frames. A

Graph Convolutional Network (GCN) is trained with selected walking data from AMASS

dataset to propose a model for predicting human lower body pose from previous poses. The

problem of missing feet on the image, which led to missing data on estimated foot trajectory,

is now solved.

Chapter 5 shows the experimental setup and the results of estimated body trajectory,

stance foot position, and the whole foot trajectory. The proposed method gives small errors

in comparison with groundtruth from optical tracker system. Besides, the human poses can

be reconstructed and visualized with an acceptable errors and processing time. Therefore,

we conclude that the proposed methods are highly suitable for human motion estimation

applications using a single wearable camera and inertial sensors.

6.2 Future works

The custom dataset is created with small-scale, related and fixed-size images. That can

cause difficulty in improving foot detection results. The similarity of floor color and lighting

condition can also effect the estimated relative attitude and position of the visual odometry

algorithm. Besides, the proposed methods are used in an offline manner.
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In future research, we will investigate how to extend the dataset scale and diversity,

and automatically obtain the data label for foot detection framework. The visual inertial

odometry algorithm can be integrated in SLAM framework for multi-floor indoor or outdoor

navigation applications. The quality and processing time of the lower body pose prediction

are needed to improve to work in real-time applications. Camera and root joint position and

orientation need to be carefully calibrated. Other deep learning models can be considered in

the future research.

64



Publications

[1] Duc-Cong Dang and Young-Soo Suh, “Improved Single Inertial-Sensor-Based Attitude

Estimation during Walking Using Velocity-Aided Observation,” Sensors, vol. 21, no. 10,

pp. 3428, 2021.

[2] Duc-Cong Dang and Young-Soo Suh, “Visual inertial odometry-based gait analysis using

waist-attached RGB-D camera and inertial sensors,” IEEE Sensors Journal, vol. 23, no. 3,

pp. 2539–2549, 2023.

65



References

[1] J. K. Aggarwal and Q. Cai. Human motion analysis: a review. In Proceedings IEEE

Nonrigid and Articulated Motion Workshop, pages 90–102, 1997.

[2] Duane V Knudson and D Knudson. Fundamentals of biomechanics, volume 183.

Springer, 2007.

[3] S. Frenkel-Toledo, N. Giladi, C. Peretz, T. Herman, L. Gruendlinger, and JM. Hausdorff.

Effect of gait speed on gait rhythmicity in parkinson’s disease: variability of stride time

and swing time respond differently. J Neuroeng Rehabil, 2(23), 2005.

[4] Farahiyah Jasni, Nur Azah Hamzaid, Tawfik Yahya Al-Nusairi, Nur Hidayah Mohd Yu-

sof, Hanie Nadia Shasmin, and Siew-Cheok Ng. Feasibility of a gait phase identification

tool for transfemoral amputees using piezoelectric- based in-socket sensory system. IEEE

Sensors Journal, 19(15):6437–6444, 2019.

[5] Ji Su Park, Chang Min Lee, Sang-Mo Koo, and Choong Hyun Kim. Gait phase detection

using force sensing resistors. IEEE Sensors Journal, 20(12):6516–6523, 2020.

[6] D. H. Sutherland. The evolution of clinical gait analysis: Part ii kinematics. Gait

Posture, 16(2):159–179, 2002.

[7] A. Mannini and AM. Sabatini. Machine learning methods for classifying human physical

activity from on-body accelerometers. Sensors (Basel), 10(2):1154–1175, 2010.

[8] Rafael Caldas, Marion Mundt, Wolfgang Potthast, Fernando Buarque de Lima Neto,

and Bernd Markert. A systematic review of gait analysis methods based on inertial

sensors and adaptive algorithms. Gait Posture, 57:204–210, 2017.

[9] Petraglia Federica, Scarcella Luca, Pedrazzi Giuseppe, Brancato Luigi, Puers Robert,

Costantino Cosimo, and Brancato Luigi. Inertial sensors versus standard systems in gait

66



REFERENCES

analysis: a systematic review and meta-analysis. European Journal Of Physical And

Rehabilitation Medicine, 55(2):268–280, 2019.

[10] MP Kadaba, HK Ramakrishnan, and ME Wootten. Measurement of lower extremity

kinematics during level walking. J Orthop Res., 8(3):383–392, 1990.

[11] Thomas B. Moeslund and Erik Granum. A survey of computer vision-based human

motion capture. Computer Vision and Image Understanding, 81(3):231–268, 2001.

[12] Jiwen Lu, Gang Wang, and Pierre Moulin. Human identity and gender recognition from

gait sequences with arbitrary walking directions. IEEE Transactions on Information

Forensics and Security, 9(1):51–61, 2014.

[13] X. Gu, F. Deligianni, B. Lo, W. Chen, and G.Z. Yang. Markerless gait analysis based

on a single rgb camera. In 2018 IEEE 15th International Conference on Wearable and

Implantable Body Sensor Networks (BSN), pages 42–45, Nevada, USA, 2018.

[14] AP Rocha, HMP Choupina, MDC Vilas-Boas, JM Fernandes, and JPS Cunha. System

for automatic gait analysis based on a single rgb-d camera. PLoS One, 13(8), 2018.

[15] A. Dubois and F. Charpillet. A gait analysis method based on a depth camera for fall

prevention. In Annu Int Conf IEEE Eng Med Biol Soc, pages 4515–4518, 2014.

[16] Edouard Auvinet, Jean Meunier, and Franck Multon. Multiple depth cameras calibration

and body volume reconstruction for gait analysis. In 2012 11th International Conference

on Information Science, Signal Processing and their Applications (ISSPA), pages 478–

483, 2012.

[17] Samantha Ng, Adel Fakih, Adam Fourney, Pascal Poupart, and John Zelek. Towards

a mobility diagnostic tool: Tracking rollator users’ leg pose with a monocular vision

system. In 2009 Annual International Conference of the IEEE Engineering in Medicine

and Biology Society, pages 1220–1225. IEEE, 2009.

[18] Solenne Page, Maria M Martins, Ludovic Saint-Bauzel, Cristina P Santos, and Viviane

Pasqui. Fast embedded feet pose estimation based on a depth camera for smart walker.

In 2015 IEEE International Conference on Robotics and Automation (ICRA), pages

4224–4229. IEEE, 2015.

67



REFERENCES

[19] Richard Zhi-Ling Hu, Adam Hartfiel, James Tung, Adel Fakih, Jesse Hoey, and Pascal

Poupart. 3d pose tracking of walker users’ lower limb with a structured-light camera on

a moving platform. In CVPR 2011 WORKSHOPS, pages 29–36. IEEE, 2011.

[20] Takaaki Shiratori, Hyun Soo Park, Leonid Sigal, Yaser Sheikh, and Jessica K Hodgins.

Motion capture from body-mounted cameras. In ACM SIGGRAPH 2011 papers, pages

1–10, 2011.

[21] Hao Jiang and Kristen Grauman. Seeing invisible poses: Estimating 3d body pose from

egocentric video. In 2017 IEEE Conference on Computer Vision and Pattern Recognition

(CVPR), pages 3501–3509. IEEE, 2017.

[22] Weipeng Xu, Avishek Chatterjee, Michael Zollhoefer, Helge Rhodin, Pascal Fua, Hans-

Peter Seidel, and Christian Theobalt. Mo 2 cap 2: Real-time mobile 3d motion capture

with a cap-mounted fisheye camera. IEEE transactions on visualization and computer

graphics, 25(5):2093–2101, 2019.

[23] Grégory Rogez, James S Supancic, and Deva Ramanan. First-person pose recognition

using egocentric workspaces. In Proceedings of the IEEE conference on computer vision

and pattern recognition, pages 4325–4333, 2015.

[24] Franziska Mueller, Dushyant Mehta, Oleksandr Sotnychenko, Srinath Sridhar, Dan

Casas, and Christian Theobalt. Real-time hand tracking under occlusion from an ego-

centric rgb-d sensor. In Proceedings of the IEEE International Conference on Computer

Vision, pages 1154–1163, 2017.

[25] Jack B Kuipers et al. Quaternions and rotation sequences, volume 66. Princeton uni-

versity press Princeton, 1999.

[26] David Titterton, John L Weston, and John Weston. Strapdown inertial navigation tech-

nology, volume 17. IET, 2004.

[27] Glenn Creamer. Spacecraft attitude determination using gyros and quaternion measure-

ments. The Journal of the Astronautical Sciences, 44(3):357–371, 1996.

[28] Young Soo Suh. Orientation estimation using a quaternion-based indirect kalman filter

with adaptive estimation of external acceleration. IEEE Transactions on Instrumenta-

tion and Measurement, 59(12):3296–3305, 2010.

68



REFERENCES

[29] Robertg Brown and Patrickyc Hwang. Introduction to random signals and applied

Kalman filtering. New York, John Wiley & Sons, Inc., 1992. 512, 1992.

[30] Young Soo Suh. Inertial sensor-based smoother for gait analysis. Sensors, 14(12):24338–

24357, 2014.

[31] Stephen Boyd, Stephen P Boyd, and Lieven Vandenberghe. Convex optimization. Cam-

bridge university press, 2004.

[32] Changdi Li, Lei Yu, and Shumin Fei. Real-time 3d motion tracking and reconstruction

system using camera and imu sensors. IEEE Sensors Journal, 19(15):6460–6466, 2019.

[33] D. Nister, O. Naroditsky, and J. Bergen. Visual odometry. In Proceedings of the 2004

IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2004.

CVPR 2004., volume 1, 2004.

[34] K. Yousif, A. Bab-Hadiashar, and R. Hoseinnezhad. An overview to visual odometry

and visual slam: Applications to mobile robotics. Intell Ind Syst, (1):289–311, 2015.

[35] F. Landis Markley and J. L. Crassidis. Fundamentals of Spacecraft Attitude Determina-

tion and Control. Springer, New York, 2014.

[36] Anastasios I. Mourikis and Stergios I. Roumeliotis. A multi-state constraint kalman filter

for vision-aided inertial navigation. In Proceedings 2007 IEEE International Conference

on Robotics and Automation, pages 3565–3572, 2007.

[37] Guoquan Huang. Visual-inertial navigation: A concise review. In 2019 International

Conference on Robotics and Automation (ICRA), pages 9572–9582, 2019.

[38] Christian Kerl, Jrgen Sturm, and Daniel Cremers. Robust odometry estimation for rgb-

d cameras. In 2013 IEEE International Conference on Robotics and Automation, pages

3748–3754, 2013.

[39] Lina Yang, Yuchen Li, Xichun Li, Zuqiang Meng, and Huiwu Luo. Efficient plane

extraction using normal estimation and ransac from 3d point cloud. Computer Standards

& Interfaces, 82:103608, 2022.

[40] I.W. Selesnick and C.S. Burrus. Generalized digital butterworth filter design. IEEE

Transactions on Signal Processing, 46(6):1688–1694, 1998.

69



REFERENCES

[41] Edwin Olson. Apriltag: A robust and flexible visual fiducial system. In 2011 IEEE

International Conference on Robotics and Automation, pages 3400–3407, 2011.

[42] Z. Zhang. A flexible new technique for camera calibration. IEEE Transactions on Pattern

Analysis and Machine Intelligence, 22(11):1330–1334, 2000.

[43] Joan Sola. Simultaneous localization and mapping with the extended kalman filter, 2014.

Last accessed 2021-10-29.

[44] Yu-I Yang, Chih-Kai Yang, Xin-Lan Liao, and Chih-Hsing Chu. Virtual try-on of

footwear in augmented reality using rgb-d cameras. In 2015 IEEE International Confer-

ence on Industrial Engineering and Engineering Management (IEEM), pages 1072–1076,

2015.

[45] P. Eisert, P. Fechteler, and J. Rurainsky. 3-d tracking of shoes for virtual mirror appli-

cations. In 2008 IEEE Conference on Computer Vision and Pattern Recognition, pages

1–6, 2008.

[46] David Murphy. Vyking launches ’magic mirror’ virtual footwear try-on solution, 2023.

[47] Cristina Manresa, Javier Varona, Ramon Mas, and Francisco J Perales. Hand tracking

and gesture recognition for human-computer interaction. ELCVIA Electronic Letters on

Computer Vision and Image Analysis, 5(3):96–104, 2005.

[48] Shangchen Han, Beibei Liu, Randi Cabezas, Christopher D Twigg, Peizhao Zhang, Jeff

Petkau, Tsz-Ho Yu, Chun-Jung Tai, Muzaffer Akbay, Zheng Wang, et al. Megatrack:

monochrome egocentric articulated hand-tracking for virtual reality. ACM Transactions

on Graphics (ToG), 39(4):87–1, 2020.

[49] Mina Nouredanesh, Aaron W Li, Alan Godfrey, Jesse Hoey, and James Tung. Chasing

feet in the wild: a proposed egocentric motion-aware gait assessment tool. In Proceedings

of the European Conference on Computer Vision (ECCV) Workshops, 2018.

[50] M. Everingham. he pascal visual object classes challenge 2010 (voc2010) results, 2010.

[51] Jonathan Long, Evan Shelhamer, and Trevor Darrell. Fully convolutional networks for

semantic segmentation, 2015.

70



REFERENCES

[52] Saurabh Gupta, Ross Girshick, Pablo Arbelez, and Jitendra Malik. Learning rich features

from rgb-d images for object detection and segmentation, 2014.

[53] Kentaro Wada. Image polygonal annotation with python, 2016.

[54] Tsung-Yi Lin, Priya Goyal, Ross Girshick, Kaiming He, and Piotr Dollr. Focal loss for

dense object detection, 2018.

[55] Julieta Martinez, Michael J. Black, and Javier Romero. On human motion prediction

using recurrent neural networks, 2017.

[56] Katerina Fragkiadaki, Sergey Levine, Panna Felsen, and Jitendra Malik. Recurrent

network models for human dynamics, 2015.

[57] Ashesh Jain, Amir R. Zamir, Silvio Savarese, and Ashutosh Saxena. Structural-rnn:

Deep learning on spatio-temporal graphs, 2016.

[58] Judith Butepage, Michael Black, Danica Kragic, and Hedvig Kjellstrom. Deep represen-

tation learning for human motion prediction and classification, 2017.

[59] Chen Li, Zhen Zhang, Wee Sun Lee, and Gim Hee Lee. Convolutional sequence to

sequence model for human dynamics, 2018.

[60] Wei Mao, Miaomiao Liu, Mathieu Salzmann, and Hongdong Li. Learning trajectory

dependencies for human motion prediction, 2020.

[61] Yi-Lian Chen, I-Ju Yang, Li-Chen Fu, Jin-Shin Lai, Huey-Wen Liang, and Lu Lu. Imu-

based estimation of lower limb motion trajectory with graph convolution network. IEEE

Sensors Journal, 21(21):24549–24557, 2021.

[62] Wei Mao, Miaomiao Liu, and Mathieu Salzmann. History repeats itself: Human motion

prediction via motion attention, 2020.

[63] Junfa Liu, Juan Rojas, Yihui Li, Zhijun Liang, Yisheng Guan, Ning Xi, and Haifei Zhu.

A graph attention spatio-temporal convolutional network for 3d human pose estimation

in video. In 2021 IEEE International Conference on Robotics and Automation (ICRA),

pages 3374–3380, 2021.

[64] Naureen Mahmood, Nima Ghorbani, Nikolaus F. Troje, Gerard Pons-Moll, and

Michael J. Black. Amass: Archive of motion capture as surface shapes, 2019.

71



REFERENCES

[65] Matthew Loper, Naureen Mahmood, Javier Romero, Gerard Pons-Moll, and Michael J

Black. Smpl: A skinned multi-person linear model. ACM transactions on graphics

(TOG), 34(6):1–16, 2015.

[66] Zichao Zhang and Davide Scaramuzza. A tutorial on quantitative trajectory evalua-

tion for visual (-inertial) odometry. In 2018 IEEE/RSJ International Conference on

Intelligent Robots and Systems (IROS), pages 7244–7251. IEEE, 2018.

[67] Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization, 2017.

[68] Dong C Liu and Jorge Nocedal. On the limited memory bfgs method for large scale

optimization. Mathematical programming, 45(1-3):503–528, 1989.

72


	1 Introduction
	1.1 Motivation                                        
	1.2 Thesis  Contribution                                    
	1.3 Thesis  Organization                                    
	2 Human Motion Estimation using Inertial Navigation Algorithms
	2.1 Standard  Inertial  Navigation  Algorithm  using  Indirect Kalman  Filter                                   
	2.2 Measurement  updates  for  Indirect  Kalman  Filter                      
	2.3 Optimization-based  Smoother  for  Inertial  Navigation Algorithm                  
	2.4 Chapter  Summary                                
	3 Visual Inertial Odometry for Gait analaysis Appication
	3.1 System  Overview                              
	3.1.1 Hardware  setup                         
	3.1.2 Notation                              
	3.2 Visual  inertial  odometry  ﬁltering                           
	3.2.1 System  equation  and  state  deﬁnition                      
	3.2.2 Visual  odometry  updating                          
	3.3 Floor  and  foot  detection                            
	3.3.1 Floor  plane  detection                              
	3.3.2 Foot  detection  and  ellipse  approximation                         
	3.4  Measurement  equations                                  
	3.4.1 Measurement  equation  for  markers  on  the  ﬂoor                     
	3.4.2 Measurement  equation  for  the  stance  foot                      
	3.5 Filtering  and  smoothing  algorithm                              
	3.6 Chapter  Summary                                 
	4 Deep Learning-based Human motion estimation
	4.1 Foot  detection  framework                                 
	4.1.1 FCN  for  Semantic  Segmentation                           
	4.1.2 Custom  Dataset                                  
	4.1.3 Foot  detection  model  training                          
	4.1.4 Foot  position  estimation                           
	4.2 Human  lower-body  motion  prediction  framework                        
	4.2.1 GCN  for  human  motion  prediction                        
	4.2.2 Dataset:   Lower  body  pose  in  walking  action                     
	4.2.3 Model  training                               
	4.2.4  Pose  prediction                               
	4.3 Chapter  Summary                                 
	5 Experiments and Results
	5.1 Experiments                                
	5.2 Results                                 
	5.2.1 Visual  Inertial  Odometry  results                            
	5.2.2 Deep  learning-based  foot  trajectory  estimation  results                   
	5.2.3 Human  lowerlimb  motion  estimation  results                      
	6 Conclusions and Future works
	6.1 Conclusions                                 
	6.2 Future  works                                     
	Publications


<startpage>12
1 Introduction 1
1.1 Motivation                                         2
1.2 Thesis  Contribution                                     4
1.3 Thesis  Organization                                     4
2 Human Motion Estimation using Inertial Navigation Algorithms 6
2.1 Standard  Inertial  Navigation  Algorithm  using  Indirect Kalman  Filter                                    9
2.2 Measurement  updates  for  Indirect  Kalman  Filter                       11
2.3 Optimization-based  Smoother  for  Inertial  Navigation Algorithm                   14
2.4 Chapter  Summary                                 15
3 Visual Inertial Odometry for Gait analaysis Appication 16
3.1 System  Overview                               18
3.1.1 Hardware  setup                          18
3.1.2 Notation                               18
3.2 Visual  inertial  odometry  ﬁltering                            19
3.2.1 System  equation  and  state  deﬁnition                       19
3.2.2 Visual  odometry  updating                           23
3.3 Floor  and  foot  detection                             26
3.3.1 Floor  plane  detection                               26
3.3.2 Foot  detection  and  ellipse  approximation                          27
3.4  Measurement  equations                                   28
3.4.1 Measurement  equation  for  markers  on  the  ﬂoor                      29
3.4.2 Measurement  equation  for  the  stance  foot                       31
3.5 Filtering  and  smoothing  algorithm                               34
3.6 Chapter  Summary                                  36
4 Deep Learning-based Human motion estimation 37
4.1 Foot  detection  framework                                  38
4.1.1 FCN  for  Semantic  Segmentation                            40
4.1.2 Custom  Dataset                                   41
4.1.3 Foot  detection  model  training                           42
4.1.4 Foot  position  estimation                            43
4.2 Human  lower-body  motion  prediction  framework                         44
4.2.1 GCN  for  human  motion  prediction                         45
4.2.2 Dataset:   Lower  body  pose  in  walking  action                      47
4.2.3 Model  training                                47
4.2.4  Pose  prediction                                48
4.3 Chapter  Summary                                  48
5 Experiments and Results 50
5.1 Experiments                                 51
5.2 Results                                  52
5.2.1 Visual  Inertial  Odometry  results                             52
5.2.2 Deep  learning-based  foot  trajectory  estimation  results                    55
5.2.3 Human  lowerlimb  motion  estimation  results                       59
6 Conclusions and Future works 61
6.1 Conclusions                                  62
6.2 Future  works                                      63
Publications 65
</body>

