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UNIVERSITY OF ULSAN

ABSTRACT
Graduate School of Electrical Engineering

Department of Electrical, Electronic and Computer Engineering

Doctor of Philosophy

Driver Eye Status Monitoring System Based on Lightweight Convolutional

Neural Network Architectures for Low-computing Devices

by Duy-Linh Nguyen

Traffic accidents are the leading death rate among accident categories. One of the

major causes of road traffic accidents is driver drowsiness. Many studies have paid

attention to this issue and developed driver assistance tools to reduce the risk. These

methods mainly analyze driver behavior, vehicle behavior, and driver physiology.

This research proposes a driver eye status monitoring system based on lightweight

convolutional neural network (CNN) architectures. The overall system consists of

three stages: face detection, eye detection, and eye classification. In the first stage,

the system utilizes a small real-time face detector based on the YOLOv5 network,

named YOLO5Face (YOLO5nFace). The second stage focuses on exploiting the com-

pact CNN network architecture combined with the inception network, and Convo-

lutional Triplet Attention mechanism. Finally, the system uses a simple classification

network architecture to classify open or closed eye status. Additionally, this work

also provides the datasets for the eye detection task comprised of 10,659 images and

21,318 labels.

As a result, the real-time testing reached the best result at 33.12 FPS (frames per

second) and 25.11 FPS on an Intel® CoreTM i7-4770 CPU @ 3.40GHz with 8 GB of

RAM (Personal Computer - PC) and a 128-core Nvidia Maxwell GPU with 4 GB

of RAM (Jetson Nano device), respectively. This speed is comparable with other

previous techniques and it ensures that the proposed method can be applied in real-

time systems for driver eye monitoring.
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Chapter 1

Introduction

1.1 Motivation and Background

Road traffic accidents claim more than one million people every year and 90% are

caused by driver distraction (Road traffic injuries n.d.). Driving distraction can oc-

cur at any time while the vehicle is operating due to many factors (Ansari, Naghdy,

and Du, 2022). Drowsiness is a common cause of distracted driving. Therefore, it

is necessary to build driver assistance systems to avoid accidents. A driver eye sta-

tus monitoring system is an application built to alert drivers who are falling asleep.

Drowsiness comes when the driver experiences a long journey, uses alcoholic drinks

such as alcohol, beer or has a medical condition. Based on those observations, the re-

searchers mainly focused on analyzing driver behavior, vehicle behavior, and driver

physiology (Ramzan et al., 2019).

• Driver behavior can be recognized by extracting features of the driver body,

like the features of eyes, mouth, hands, head posture, and body posture.

• Vehicle behavior is a method of surveillance for unusual vehicle movements

when going out of a lane, swerving on the road, or interacting with other ve-

hicles in the vicinity.

• Driver physiology is monitored through electrical pulses from the heart rate,

blood pressure, and changes in body temperature.

The development of devices to monitor vehicle behavior and driver physiology re-

quire complex, high-cost devices and synchronous infrastructure. Moreover, wear-

able devices can cause discomfort to the driver while operating and several natural
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factors in the driver body can interfere with the received electrical signal.

Realizing the importance of eye status in the early stage (Valenti and Gevers,

2011) of sleep and the above analysis, this research proposes a driver eye status

monitoring system. This system is based on lightweight convolutional neural net-

works (CNNs) with a new version of attention mechanisms, named the Convolu-

tional Triplet Attention module. The use of lightweight CNN architectures to op-

timize network parameters for low-computing devices while it is still ensuring the

extraction of useful facial and eye information for processing. On the other hand,

the attention mechanism helps the detector to focus on processing information in

the eye area and ignore useless or background information. The proposed system

aims to detect the status of the driver eye with three stages: face detection, eye de-

tection, and eye classification. The proposed system works as the mechanism of the

driver eye status monitoring system through the front-mounted camera. It does not

influence the operation or does not cause unpleasant effects on the driver’s body,

like the above-mentioned methods. Figure 1.1 shows the overview of the proposed

driver eye status monitoring system.

Face Detection Network

Eye Detection NetworkEye Classification Network

Closed Eye

Open Eye

Threshold

Face RoI

Eye RoI

Camera

Speaker

FIGURE 1.1: Overview of the proposed driver eye status monitoring
system.
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1.2 Problem Description and Objective

The research related to human eye monitoring systems is mainly based on two

approaches, including traditional-based image processing and machine learning-

based methods. In general, traditional methods apply computationally complex

techniques and are very sensitive to environmental lighting conditions and facial

occlusion, although they provide useful information.

Besides, machine learning methods focus on exploiting the features of the eyes

and facial organs related to the sleepy state such as the eyelids and mouth. Mean-

while, these organs are quite small in the image and lack specialized datasets for

detection tasks. It requires complex techniques, high computational costs to accu-

rately detect those locations, and high labor costs to annotate the datasets.

Therefore, in order to simplify eye position detection and reduce the computa-

tional cost of the system, this research proposes an effective method of eye location

detection and eye classification based on lightweight CNN architectures. Addition-

ally, this work has also provided the datasets for eye position detection which is

popularly used in the object detection field.

1.3 Contributions

This work evaluates and exploits the advantages of previous works to develop a

real-time driver eye monitoring system. The results are inspected based on the per-

formance of each proposed network on the respective datasets. Then the integrated

system is tested in real-time and the recorded video. The main contributions of this

research are shown as follows:

• This work proposes two lightweight CNNs for eye detection and eye classifica-

tion tasks. These networks aggregated with a real-time face detector for mobile

and edge devices to build a three-stage driver eye status monitoring system.

The CNNs in this paper are built for use in low-computing devices like a CPU

and an Nvidia Jetson Nano. With network parameter optimization of compact

architectural designs, the proposed networks solve the problem of computa-

tional and deployment costs. In addition, it is not invasive to the driver during
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use.

• It also provides the datasets for locating the eye area in images under differ-

ent situations and follows the PASCAL VOC dataset format. These are basic

datasets for machine learning developers who use features from the driver eye.

Along with the proposed eye detection and eye classification networks, they

can use in other fields such as eye-tracking, medical, and biomedical.

• On the application side: the proposed system is tested in real-time on a CPU-

based personal computer and a Jetson Nano device without high latency while

ensuring accuracy.

1.4 Disposition

This part presents the organization of the manuscript:

Chapter 2 is a general introduction to a computer vision system, convolutional

neural network (CNN), image classification, object detection, and attention mech-

anisms used in CNN. In addition, it discusses the traditional and current methods

related to eye classification, eye detection, and eye monitoring.

Chapter 3 describes the proposed eye detection network architecture and dataset.

The eye detection network is designed using a combination of shrinking, inception,

Convolutional Triplet Attention, and detection modules. The proposed dataset for

the eye detection task includes 10,659 images and 21,318 annotations for eye posi-

tions following the PASCAL VOC dataset format.

Chapter 4 explains the proposed eye classification network architecture. This

network is built on the basic layers of the common classification networks and im-

proves it by using the global average pooling layer replace to the fully connected

layers. This technique is intended to simplify the network architecture and save a

lot of network parameters.

Chapter 5 discusses and analyzes the proposed real-time driver eye status mon-

itoring system on low-computing devices. It includes the hardware configuration,

the speed test results, visualization results in the laboratory environment and vari-

ous driving scenarios videos.
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Chapter 6 concludes the issue and summarizes directions for future work.
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Chapter 2

Literature Review

This study focuses on three main issues, including eye detection, eye classification,

and attention mechanisms to build lightweight CNN networks for real-time systems.

This chapter will cover the research related to eye detection, eye classification, and

human eye status monitoring systems.

Chapter 2 is divided into three important parts. The first part introduces an

overview of computer vision and several tasks. The second and third sections present

the traditional methods and machine learning methods related to human eye classi-

fication, detection, and monitoring.

2.1 Computer Vision System

The core issue of artificial intelligence (AI) systems is to perceive the world around

them and perform actions automatically using the analysis of perceptions. Visual

perception is the science of perceiving and understanding the world through images

and videos by building a physical model on which an AI system can take appropri-

ate actions (Elgendy, 2020).

Human vision is a system that works based on the mechanisms of the human

body and other living organisms. It uses the senses or eyes to capture images and

then the brain processes this information to help it understand. A simple human

vision system is shown in Figure 2.1

Similarly, computer vision allows AI machines can train themselves to perform
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FIGURE 2.1: The simple human vision system (Elgendy, 2020).

the above processes. Such a machine system uses a combination of sensors (cam-

eras), algorithms, and data sets to perform specific tasks. Figure 2.2 depicts a com-

puter vision system for the image classification task.

FIGURE 2.2: The computer vision system for image classification (El-
gendy, 2020).

Computer vision consists of two key technologies, including machine learning

and convolutional neural networks. Machine learning (ML) uses algorithm-based

models to drive computers to understand context through visual data analysis. The

machine applies these algorithms to automatically learn and solve the issue in the

most suitable way. The convolutional neural network considers the image by subdi-

viding it into pixels. Each pixel is assigned a label or tag. These labels are then col-

lectively used to perform the convolution operation. Via this process, convolutional

neural networks can process visual inputs and extract feature maps for various tasks.

Figure 2.3 is a typical convolutional neural network.
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FIGURE 2.3: Typical CNN architecture
(Wikipedia contributors, 2023).

2.1.1 Image Classification

Image classification is an important task in the Computer Vision field, which is

used to classify images into different groups based on their content (Wang and Su,

2019). The goal of image classification is to help computers automatically recognize

and classify images accurately and quickly, making Computer Vision applications

smarter. Image classification has many practical applications such as facial recog-

nition, product classification, medical image analysis, etc. The basic steps in image

classification are:

(1) Preprocessing: noise reduction and normalizing image dataset for the training

model.

(2) Modeling: design a suitable machine learning model and train on the dataset to

find the special features of the images and classify them.

(3) Model evaluation: evaluate the accuracy of the model on the test set, fine-tune,

and improve the model.

Common methods for performing image classification include traditional-based

and CNN-based methods. Traditional-based methods are used for image classifi-

cation before deep learning models appeared such as K-Nearest Neighbor (KNN)

(Mucherino, Papajorgji, and Pardalos, 2009), Decision Tree (Fürnkranz, 2010), and

Support Vector Machine (SVM) (Cortes and Vapnik, 1995). KNN is a simple method

for image classification. It is operated on the distance between the classified image

and the images in the training set. The images in the training set are sorted by dis-

tance to the image to be classified and the results are the number of images belonging

to each nearest class. The Decision Tree is built by dividing the dataset into subsets
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with their attributes. When the image to be classified is passed through the Decision

Tree, it is classified according to the class corresponding to the leaf node. SVM finds

the best hyperplane to separate classes. When the image goes through the SVM, it is

classified by the layer located on the other side of the hyperplane.

Convolutional Neural Network is one of the most popular techniques in the im-

age classification task. CNN is a type of artificial neural network designed to extract

features from images and use them for image classification. CNNs are designed

based on convolution layers, pooling layers, and fully connected layers. Convolu-

tional layers are used to extract local features of an image, where filters are applied

to search for features such as edges, shapes, and colors. Pooling layers are used to

reduce the size of the image and help reduce the complexity of the model. After

extracting the features, the fully connected classes are used to classify the images.

These fully connected layers transform the extracted feature map into class predic-

tions of the image. To train a CNN, the labeled dataset is provided, consisting of

images and corresponding labels for each image. Then, the network applies the op-

timization algorithms to adjust the weights of the model that can properly classify

the images in the training set. AlexNet (Krizhevsky, Sutskever, and Hinton, 2017),

VGG (Simonyan and Zisserman, 2014), GoogleNet (Szegedy et al., 2015), ResNet (He

et al., 2016), DenseNet (Huang et al., 2017), EfficientNet (Tan and Le, 2019), and Mo-

bileNet (Howard et al., 2017) architectures achieve good performance in image clas-

sification on datasets like ImageNet, CIFAR-10, CIFAR-100, and MNIST. Figure 2.4

shows the representative architecture of the image classification network (VGG16).

FIGURE 2.4: The VGG16 architecture for image classification.
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To evaluate the performance of the classification network, many different metrics

can be used.

Accuracy: The most widely used metric is accuracy and it is defined as follows:

Accuracy =
TP + TN

TP + TN + FP + FN
, (2.1)

True positive (TP): A test result that correctly indicates the presence of a condition

or characteristic.

True negative (TN): A test result correctly indicates the absence of a condition or

characteristic.

False positive (FP): A test result wrongly indicates that a particular condition or

attribute is present.

False negative (FN): A test result wrongly indicates that a particular condition or

attribute is absent.

Confusion Matrix: Confusion matrix is a table that presents the number of predicted

and actual class labels of the classification algorithm. This table provides a detailed

analysis of the network performance of each class as shown in Figure 2.5.

True Class

Possitive Negative

P
o

ss
it
iv

e
N

e
g

a
tiv

e

TP FP

FN TNP
re

d
ic

te
d

 C
la

ss

FIGURE 2.5: Confusion matrix.

2.1.2 Object Detection

Object detection is an important and challenging task in Computer Vision research

on the recognition of objects in digital images or videos. The goal of object detection

is to find and draw a bounding box that determines the position and size of objects in

the image and assigns each bounding box a label corresponding to the type of object.
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Object detection is widely applied in various fields such as autonomous vehicles,

surveillance systems, facial detection, industrial automation, etc. Object detection

has generally gone through two historical periods corresponding to two techniques:

traditional-based object detection and CNN-based detection (Zou et al., 2023).

Traditional-based methods are usually based on identifying local features in im-

ages and then applying classifiers to classify objects following these features. Haar

Cascades (Viola and Jones, 2001) are commonly used in face detection, a method

of finding common features in images, such as edges and corners. Histogram of

Oriented Gradients (HOG) (Dalal and Triggs, 2005) is an object detection method

based on HOG features, which is a representation of directional features in an im-

age. Scale-Invariant Feature Transform (SIFT) (Lowe, 2004) uses a classifier to detect

local features in the image, then applies a SIFT algorithm to identify those features.

Then, the objects are classified by comparing these SIFT features with a training set.

CNN-based methods are divided into two main groups: single-stage detection

and two-stage detection. Single-stage detection is designed to detect and locate ob-

jects in an image with only one pass through the neural network, rather than go-

ing with multiple stages. This increases processing speed and reduces computation

costs, especially in real-time applications. Among the typical single-stage detectors

are You Only Look Once (YOLO) (Redmon et al., 2016) and its variants, Single Shot

Detector (SSD) (Liu et al., 2016), RetinaNet (Lin et al., 2017), and EfficientDet (Tan,

Pang, and Le, 2019). In contrast, two-stage object detectors are developed to search

for regions of interest (RoI) in images before object detection. Popular two-stage

object detectors are the Regions with Convolutional Neural Network (R-CNN) (Gir-

shick et al., 2013), Fast R-CNN (Girshick, 2015), Faster R-CNN (Ren et al., 2015), and

Mask R-CNN (He et al., 2017). Two-stage detectors generally offer high detection

accuracy but computational complexity and speed are lower than single-stage de-

tectors. Figure 2.6 shows the representative architecture of a single-stage detector

(SSD).

Each object detection network will use different measurement units depending

on each specific purpose. Several standard evaluation metrics used in object detec-

tion algorithms include:

Intersection over Union (IoU): IoU measures the overlap between the predicted

bounding boxes and the ground truth bounding boxes. It is calculated by dividing
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FIGURE 2.6: SSD architecture for object detection (Liu et al., 2016).

the intersection area between the two boxes by the area of their union. The Equation

of IoU is defined as:

IoU =
Bp ∩ Bgt

Bp ∪ Bgt
, (2.2)

where, Bp and Bgt are the predicted bounding box and ground-truth bounding box,

respectively. ∩ is the intersection operation. ∪ is the union operation. Figure 2.7

shows a visual representation of the IoU.

Area of Intersection

Area of Union

IoU = 

FIGURE 2.7: The visualization of IoU.

Recall: The recall is the fraction of true positive detections over the sum of true

positive and false negative samples. The Equation of recall is defined as:

Recall =
TP

TP + FN
. (2.3)

Precision: The precision is the fraction of true positive detections over the sum of

true positive and false positive samples. The Equation of precision is defined as:

Precision =
TP

TP + FP
. (2.4)
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Average Precision (AP): The average precision is a commonly used metric to eval-

uate object detection performance. It is calculated as the area under the precision-

recall curve. The precision-recall curve is generated by varying the detection thresh-

old and plotting precision against recall at each threshold value. The Equation of AP

is defined as:

AP@α =
∫ 1

0
p(r)dr, (2.5)

where AP@α means the AP is evaluated at IoU threshold α (e.g.: AP@50 at α = 0.5,

AP@75 at α = 0.75, AP@0.5:0.95 at ten α thresholds (α = 0.5 to 0.95 with step is

0.05)).

Mean Average Precision (mAP): The mean average precision is the mean of the AP

values across all different object classes in the dataset. This is a popular metric for

evaluating multi-class object detection algorithms. The Equation of mAP is defined

as:

mAP =
1
c

c

∑
i

APi, (2.6)

where c is the number of classes and APi is AP of class i-th.

F1 score: F1 score is the harmonic mean of precision and recall. It is a measure of the

balance between precision and recall. The Equation of F1 score is defined as:

F1 score = 2 · Precision · Recall
Precision + Recall

, (2.7)

2.1.3 Attention Mechanisms

The attention module is a necessary component in convolutional neural networks,

which are used to improve feature extraction and model efficiency. In traditional

CNN, each convolution layer applies a filter (kernel) to extract features from the in-

put. However, not all features are important and should be focused on. Therefore,

an attention mechanism is utilized to weighting the features and select only the most

important ones. The attention mechanism works by calculating the weights of each

feature. These weights are used to compute the weighted average of those features.
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This result is a new input for the next layer. In this manuscript, the attention mech-

anism is considered on two groups, spatial attention and channel attention. Spa-

tial attention is split into two subgroups, local attention and global attention. Some

representatives of these concentration mechanisms are Squeeze-and-Excitation Net-

work (SE) (Hu, Shen, and Sun, 2017), Bottleneck Attention Module (BAM) (Park et

al., 2018), Convolutional Block Attention Module (CBAM) (Woo et al., 2018), and

Convolutional Triple Attention (CTA) (Misra et al., 2020).

Squeeze-and-Excitation: SE uses a channel attention mechanism to focus on the in-

put channels, which helps the model select the important channels and discard the

unhelpful ones. SE is implemented through two stages: squeeze and excitation. Dur-

ing the squeeze phase, SE applies a global average pooling layer to reduce the size

of the feature map to a vector. Then, in the excitation phase, SE utilizes a multilayer

neural network to compute the weights for the input channels. These weights are

applied to the original input feature map by element-wise multiplication to get an

output feature map with attention weights. The SE attention module is composed of

three operations: squeeze (Fsq), excitation (Fex), and scaling (Fscale). The SE attention

mechanism is shown as follows:

X ∈ RH
′×W

′×C
′ Ftr→ U ∈ RH×W×C (2.8)

xc = Fsq(uc) =
1

H ×W

H

∑
i=1

W

∑
j=1

uc(i, j), (2.9)

yc = Fex(x, w) = σ(w2ReLU(w1x)), (2.10)

zc = Fscale(uc, yc) = uc ⊗ yc, (2.11)

where X is the input feature map. Ftr is transformation as a convolution operation. uc

is c-th channel of the feature map U. σ is the sigmoid activation function. ReLU is the

rectified linear activation function. w1 ∈ R
C
r ×C, w2 ∈ RC× C

r , and x = [x1, x2, ..., xc]. ⊗

denotes the channel-wise multiplication operation. Figure 2.8 shows the architecture

of SE.

Bottleneck Attention Module: The mechanism of BAM is implemented through
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FIGURE 2.8: The SE architecture (Hu, Shen, and Sun, 2017).

two stages: channel attention and spatial attention. During the channel attention

phase, the BAM handles a structure similar to SE to compute the weights for the

input channels. Then, in the spatial attention phase, BAM utilizes a convolutional

neural network to compute the weights for the locations on the input feature map.

These weights are used to perform element-wise multiplication and element-wise

addition to concentrate on the more important positions, minimizing the influence of

the unimportant positions on the prediction results. The BAM attention mechanism

is shown as follows:

F
′
= F + F⊗M(F), (2.12)

M(F) = σ(Mc(F) + Ms(F)), (2.13)

Mc(F) = BN(MLP(Avg(F))), (2.14)

Ms(F) = BN(ϕ1×1
3 (ϕ3×3

2 (ϕ3×3
1 (ϕ1×1

0 (F))))), (2.15)

where F
′ ∈ RH×W×C is the refined feature map. F ∈ RH×W×C is the input feature

map. M(F) ∈ RH×W×C is an inference feature map. Mc(F) ∈ RC is the channel

attention. Ms(F) ∈ RH×W is the spatial attention. σ is a sigmoid function. BN

is a batch normalization operation. MLP is a multi-layer perception. ϕ denotes a

convolution operation. Figure 2.9 shows the structure of BAM.

Convolutional Block Attention Module: CBAM also includes two main parts: chan-

nel attention and spatial attention. However, unlike SE and CBAM, this mechanism

uses a sequence of the above two components. The channel attention helps to at-

tend to the important characteristics of each input channel and provides a channel
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FIGURE 2.9: The BAM architecture (Park et al., 2018).

weight map. Spatial attention concerns the important locations of the image and

gives a spatial weight map. These two parts are combined to create a comprehen-

sive attention map for the entire input. The CBAM attention mechanism is shown as

follows:

F1 = Mc(F)⊗ F,

F2 = Ms(F1)⊗ F1,
(2.16)

in which, the symbol ⊗ represents the element-wise multiplication operation. F1

and F2 present the intermediate and output feature maps, respectively. Mc and Ms

are computed by the following equations:

Mc(F) = σ(MLP(Avg(F)) + MLP(Max(F))),

Ms(F) = σ(ϕ7×7([Avg(F),Max(F)])),
(2.17)

where σ describes the sigmoid function. [ · ] symbol denotes the concatenation op-

eration. MLP, Avg, Max, ϕ7×7 are the multilayer perception, the average pooling

layer, the max pooling layer, and 7× 7 standard convolution layer, respectively. Fig-

ure 2.10 shows the structure of CBAM.

Convolutional Triple Attention: CTA is designed to solve the problem of calcu-

lation independence on the channels and space of the input data. CTA combines

three different attention techniques, including channel attention, spatial attention,

and relational attention using rotation operations. Channel attention and spatial at-

tention help focus on important features of channels and locations over the entire

input image data, respectively. Relational attention helps find interactions between
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FIGURE 2.10: The CBAM architecture (Woo et al., 2018).

features of an image, creating a relationship map to improve the model’s represen-

tation. More details of Convolution Triple Attention with application case will be

explained in Chapter 3.

2.2 Traditional-based Methods

Traditional techniques rely heavily on the geometrical structure of the eye to detect

the center eye position in an image or video.

The work in (Valenti and Gevers, 2011) applied the Isophotes Curvature Estima-

tion technique to determine the center of the eye and then builds a voting system for

that point. This method was tested on the BioID and the color FERET datasets. it

achieved a significant improvement in accuracy and robustness over state-of-the-art

techniques for eye center location in standard low-resolution imagery.

The authors in (Markuš et al., 2014) introduced a method using an ensemble

of randomized regression trees to locate the pupil of the eye. The implementation

achieved quite good real-time performance on mobile devices. The proposed soft-

ware provided the solution for a low-cost replacement to complex, high-cost, and

commercial eye-tracking systems.

The method in (Timm and Barth, 2011) localized the center of the eye based on

the image gradient and applied a squared dot product between the center candidates

and the image gradient. The experiment was comprehensively evaluated on the
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BioID challenge dataset. The implementation method was quite simple but highly

effective in both accuracy and robustness.

The research in (Świrski, Bulling, and Dodgson, 2012) used the Haar-like feature

combined with a K-means cluster to locate the pupil and fit an ellipse to the pupil us-

ing the novel image-aware Random Sample Consensus (RANSAC) technique. This

work compared the proposed approach against the existing real-time pupil tracking

system using the manually labeled infrared dark-pupil eye dataset. This technique

had a higher pupil detection rate and greater pupil tracking accuracy than other

competitors.

The approach in (Araujo et al., 2014) proposed an Inner Product Detector (IPD)

based on correlation filters to detect pupil landmarks. The main contributions of the

method were the tolerance to small variances in the desired patterns, a low compu-

tational cost, and the generalization of other features. The experiment was evaluated

on the BioID dataset and compared to state-of-the-art techniques.

2.3 Machine learning-based Methods

The eye is an important organ of the human body and its status could reflect the first

stage of drowsiness. From that observation, many machine learning studies have

achieved high efficiency by focusing on exploiting and monitoring human eye loca-

tion. Several basic machine learning methods have been applied, such as the Haar

wavelet and Support Vector Machine (SVM) (Chen and Liu, 2015), Histogram of Ori-

ented Gradient-based Support Vector Machine (HOG-SVM) (Sharma and Savakis,

2015), self-similarity information combined with shape analysis (Leo et al., 2013),

and Viola-Jones (Chirra, Reddy, and KishoreKolli, 2019). These techniques could

overcome the disadvantages of traditional methods and achieve higher accuracy.

However, they also need to be used in conjunction with other modern methods for

implementation in real-time systems.

Nowadays, the impressive advances of machine learning have made the devel-

opment of computer vision applications based on CNNs more and more popular.

In this trend, eye and pupil detection also used depth and complicated CNNs for

improved extraction features and learning them. These CNNs were combined with
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multiple tasks to fully exploit the ability to learn important information from feature

maps.

The experiment in (Khan et al., 2019) used the eyelid curvature angle as the basis

for determining whether the eye is closed or open. The network was evaluated on

three datasets. In the first dataset with uniform background, the proposed method

achieved an accuracy of 95%. For another benchmark dataset with significant varia-

tions based on face deformations, it reached an accuracy of 70%. Finally, this method

got an accuracy of 95% on the real-time video dataset. From that, the proposed net-

work was feasible for use in real-time systems.

The research in (Shakeel et al., 2019) considered drowsiness detection as an ob-

ject detection task by identifying and detecting closed or open eyes. This work used

a combination of MobileNet with Single Shot Multibox Detector (SSD) as an ob-

ject detection task. A custom dataset was selected from 6,000 images labeled with

face, open eye, and closed eye. Of these, 350 images were randomly selected for the

testing phase. This experiment achieved 84% of mean average precision (mAP). In

addition, it could be applied to embedded and mobile devices in vehicles.

The approach in (Sathasivam et al., 2020) used the facial landmarks technique to

calculate the Eye Aspect Ratio (EAR) and Eye Closure Ratio (ECR) for drowsiness

detection. A real-time system was also developed with the Pi camera, Raspberry

Pi 4, and Global Positioning System (GPS) to detect and analyze continuously the

eye statuses. This system could recognize whether the driver is drowsy or not with

different sleeping levels. The experiment was conducted successfully and gave 90%

of accuracy.

The study in (Saurav et al., 2022) proposed a vision-based system for real-time

eye state recognition on an embedded platform. The system used an ensemble

of two lightweight convolutional neural networks, each being trained to extract

relevant information from the eye areas. The experiment was evaluated on three

datasets: ZJU, CEW, and MRL. It achieved the best accuracy of 97.99% on the ZJU

dataset and competitive accuracy to others on the remaining datasets. Besides, this

work reported the speed testing results on the Nvidia Xavier device and the Intel

NCS2 embedded platform with 62 FPS and 11 FPS, respectively.

Another work (Jahan et al., 2023) introduced a 4D model for eye categorization
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by improving the VGG architecture family. This network was trained and evaluated

on the MRL Eye dataset. As a result, the 4D network reached an accuracy of 97.53%

on the test set and outperformed other VGG network versions (VGG16, VGG19).

This work also provided a solution to implement a complete drowsiness detection

system.

In summary, machine learning methods exhibit outstanding advantages in fea-

ture extraction and eye location detection. In general, these methods focus on ex-

ploiting the features of the eyes and facial organs related to the sleepy state such as

the eyelids and mouth. Meanwhile, these organs are quite small in the image and

lack specialized datasets for detection tasks. It requires complex techniques, high

computational costs to accurately detect those locations, and high labor costs to an-

notate the datasets. Therefore, to simplify eye position detection and reduce the

computational cost of the system, this research proposes an effective method of eye

location detection and eye classification based on lightweight CNN architectures.

Besides, this work has also provided the datasets for eye position detection which is

popularly used in the object detection field.
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Chapter 3

Eye Detection Network

An eye detection network is used in the second stage of the eye status detection sys-

tem. The detailed architecture description of this network is shown in Figure 3.1. It

is built with four following modules, named the shrinking, inception, Convolutional

Triplet Attention, and detection modules.

Convolution layer

CReLU

Max Pooling layer

Inception layer

Convolutional Triple Attention Module

Shrinking module

Conv 3×3 (1×Regression)
Padding 1

Conv 3×3 (1×Class)
Padding 1

One anchor [48]

Conv 3×3 (4×Class)
Padding 1

Conv 3×3 (4×Regression)
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Four anchors [16, 24, 32, 40]
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FIGURE 3.1: The proposed eye detection network architecture.

3.1 Network Architecture

3.1.1 Shrinking Module

This module mainly uses convolution layers with a kernel size of 3× 3 and strides of

1, 2, 1, 2 in the convolution and max pooling layers, respectively. It helps to extract

the basic features of the eye and reduce the input image from 128× 128 to 32× 32.
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The convolution operation involves taking a small matrix called a kernel or fil-

ter, sliding it over an input image or feature map, and performing element-wise

multiplication between the kernel and the corresponding input image region. The

resulting values are then summed up to produce a single output value in the output

feature map. An example of convolution operation is shown in Figure 3.2.

Kernel
3 x 3

Input
5 x 5

Output
3 x 3

FIGURE 3.2: An illustration of convolution layer.

The max pooling layer is a down-sampling operation that reduces the dimen-

sionality of the feature maps and makes the network more computationally effi-

cient. This layer works by dividing the input image into a set of non-overlapping

rectangular regions (pooling windows) and outputs the maximum value within each

window. The operation of the max pooling layer can be illustrated in Figure 3.3.

Max pooling

2 × 2

12 3

5 4

4 6

8 2

21 24

14 25

12 24

6 10

12 8

24 25

FIGURE 3.3: The operation of the max pooling layer.

In addition, the Concatenated Rectified Linear Unit (CReLU) module (Shang et

al., 2016) is also used to increase the efficiency of feature extraction. The CReLU is

a variation of the Rectified Linear Unit (ReLU) activation function. For a traditional

ReLU function, the output is equal to the input if it is greater than zero, and zero

otherwise. The ReLU activation function is defined as:

ReLU = max {0, x} . (3.1)

On the other hand, CReLU doubles the number of feature maps by concatenating
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the ReLU activation with its negation along the channel dimension. The CReLU

activation function can be expressed as:

CReLU(x) = [ReLU(x), ReLU(−x)] , (3.2)

where [ · ] denotes concatenation along the channel dimension. The architecture of

CReLu is described as shown in Figure 3.4.
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FIGURE 3.4: The architecture of the CReLU block.

3.1.2 Inception Module

The inception module is made up of six inception layers (Szegedy et al., 2014). Each

inception layer contains four convolution branches. Figure 3.5 shows the structure

of the inception layer.

Conv 3×3×32

Conv 1×1×24 Conv 3×3×32

Conv 1×1×24 Conv 3×3×32

Conv 3×3×32Pool 3×3

Conv 1×1×32

Concate

FIGURE 3.5: The architecture of the inception layer.

Each branch uses one to three convolution layers with kernel sizes of 1× 1 or

3× 3. Following each convolution layer is the batch normalization and the ReLU

activation function. In addition, the second branch also uses the max pooling layer

to extract feature that is different from the remaining branches. With the idea of
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expanding the network width using multiple scales, this module increases the re-

ceptive field for the network. The feature map has dimensions of 32× 32 after being

processed by this module. That means it still maintains the scaling of the dimensions

in the input feature map and provides more rich information to the feature map.

3.1.3 Convolutional Triplet Attention Module

The Convolutional Triplet Attention module (CTA) (Misra et al., 2020) consists of

three branches that are shown in Figure 3.6.

H

C

W ZPool Conv
H

C

W

H

C

W
ZPool Conv

H

C

WSigmoid

ZPool Conv
Sigmoid

Identity

Avg

Triple
Attention

Input
Tensor

Sigmoid

FIGURE 3.6: The architecture of the CTA module.

It assumes that the input tensor is A ∈ RC×H×W (C: channel, H: height, W: width)

and passes it through each branch in this module. The first branch considers the in-

teraction between the width dimension and the channel dimension of the feature

map by applying a 90◦ anti-clockwise tensor rotation along the H-axis and the ro-

tated tensor annotated by A1
1 ∈ RW×H×C. After that, A1

1 go through the ZPool layer

(Z means the zeroth dimension of the tensor) and the dimension of A1
1 is reduced

to A2
1 ∈ R2×H×C. Then A2

1 is passed to a standard convolution layer of kernel size

1× 1 followed by the batch normalization layer, which generates the output tensor

of (1× H × C). This output goes through the sigmoid function σ to obtain the at-

tention weights and applies them to the original feature map A1
1 using the channel

element-wise multiplication operation. Then the attention feature map rotates 90◦

clockwise along the H-axis to get the output feature map, which is the same shape

as the input feature map A.
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Similarly, the second branch has exactly the same architecture as the first branch

except that it focuses on the relationship between the height dimension and the chan-

nel dimension. Hence, it applies a 90◦ tensor rotation to the W-axis.

The last branch also uses the architecture of the first two branches but does not

use tensor rotation. The results from the three branches were aggregated by simple

averaging. Therefore, the final output of this module is an attention feature map of

size (C× H×W). The process of the Convolutional Triple Attention module can be

presented as:

FCTA =
1
3
(ℜ(A1

1σ(ϕ1(A2
1)) +ℜ(A1

2σ(ϕ2(A2
2)) + Aσ(ϕ3(A2

3)), (3.3)

where σ is the sigmoid activation function. ϕ1, ϕ2, and ϕ3 are standard convolution

layers with 1 × 1 kernel size followed by the batch normalization layer. ℜ is 90◦

clockwise rotation to retain original input shape.

The ZPool layer is presented as follows:

ZPool(A) = [Max0d(A),Avg0d(A)], (3.4)

in which, 0d is 0-th dimension which the max pooling (Max) and average pooling

(Avg) layers apply in the concatenation operation [ · ]. The ZPool layer takes an

input tensor of shape (C × H ×W) and generates an output tensor of shape (2×

H ×W).

This module is embedded right after the inception module and it allows the

model to selectively focus on the most informative channels, spatial locations, and

feature maps. This can lead to better feature representations and serves for more

accurate predictions in the next module.

3.1.4 Detection Module

Firstly, this module uses four convolution layers, each with kernel sizes of 1× 1 and

3× 3, to further reduce the dimension of the feature maps and produce four feature

maps of 32× 32× 128, 16× 16× 256, 16× 16× 128, and 8× 8× 256. From these out-

put feature maps, the network only chooses two feature maps with dimensions of

16× 16× 256 and 8× 8× 256 as inputs for the detection module to detect eyes at two
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different levels. Detectors apply two sibling convolution layers for classification and

bounding box regression. To predict a bounding box, these detectors utilize different

predefined square anchors with sizes of 16, 24, and 32 for small eyes, 40 for medium

eyes, and 48 for large eyes. The regression head generates a four-dimensional vector

(x, y, w, h) as the offset of the bounding box location. The classification head gener-

ates a two-dimensional (eye or not-eye) vector as the label classification.

This bounding box regression process applies the parameterization of four coor-

dinates for the predicted bounding box, anchor bounding box, and ground-truth

bounding box (Ren et al., 2016). The equations of bounding box regression are

shown as follows:

tx = (x− xa)/wa, ty = (y− ya)/ha,

tw = log(w/wa), th = log(h/ha),

t∗x = (x∗ − xa)/wa, t∗y = (y∗ − ya)/ha,

t∗w = log(w∗/wa), t∗h = log(h∗/ha),

(3.5)

where (x, y) denotes the center coordinate, w denotes the width and h denotes the

height of the bounding box. The parameters x, xa, and x∗ are presented for the

predicted bounding box, anchor bounding box, and ground-truth bounding box re-

spectively (similar to the parameters in y, w, h). The geometry of the bounding box

regression process is shown in Figure 3.7.

wa
w

h

ha

(x, y)

(x y )a, a  

w*

h*
(x*, y*) 

Anchor

Ground-truth

Predicted
Box

FIGURE 3.7: The geometry of the predicted bounding box, anchor
bounding box, and ground-truth bounding box.

The requirement of the object detection task is selecting only the most suitable
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bounding box for an object. This can be solved by applying the NMS method. The

NMS is a post-processing algorithm commonly used in object detection and com-

puter vision applications. The main purpose is to remove redundant or overlapping

bounding boxes that are produced by object detection models. The algorithm works

by first sorting all the detected bounding boxes based on their confidence scores.

Then, it iteratively selects the bounding box with the highest confidence score and

removes all other bounding boxes that have a significant overlap with it. The overlap

is measured using the IoU metric, which computes the ratio of the intersection area

between two bounding boxes and the union area. The process continues until all

bounding boxes have been examined, and only the non-overlapping ones with the

highest confidence scores are retained. The pseudo-code is explained in Algorithm

1 and the NMS visualization in the eye detection is in Figure 3.8.

Algorithm 1 Non-Maximum Suppression

procedure NMS(B, c)
Bnms ← ∅
for bi ∈ B do

Discard← False
for bj ∈ B do

if same(bi, bj) > λnms then
if score(c, bj > score(c, bi) then

Discard← True
end if

end if
end for
if Not Discard then

Bnms ← Bnms ∪ bi
end if

end for
return Bnms

end procedure

3.2 Loss Function

The loss function consists of classification loss and regression loss. The entire loss

function is defined as follows:

Led(pi, ti) =
1

Ncls
∑

i
Lcls (pi, p∗i ) + λ

1
Nreg

∑
i

p∗i Lreg (ti, t∗i ) , (3.6)
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FIGURE 3.8: NMS visualization in the eye detection .

where Lcls (pi, p∗i ) is the classification loss using the softmax-loss defined in Equa-

tion 3.7. Lreg (ti, t∗i ) is the regression loss using the SmoothL1 loss defined in Equa-

tion 3.8. pi is the predicted probability and p∗i is the ground-truth label. ti is the

center coordinates (x, y) and dimension (height and width) of the predicted bound-

ing box. t∗i is the ground truth bounding box of the object i. The Ncls is the mini-batch

size, Nreg is the number of anchor locations and λ is the balancing parameter.

Lcls (Pi,P∗i ) = − ∑
i∈Pos

xp
i log (Pi)− ∑

i∈Neg
log

(
P0

i
)

, (3.7)

where xp
i = {0, 1} is the indicator for matching between the anchor box and ground-

truth box of the object i-th. Pi and P0
i are the probabilities for object and non-object

classification, respectively. The log is a natural logarithm function. The Pos is a set

of positive samples and Neg is a set of negative samples.

SmoothL1(x) =


0.5x2 i f |x| < 1

|x| − 0.5 otherwise
(3.8)
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3.3 Experiments

3.3.1 Proposed Datasets for Eye Detection

Along with the design of the eye detection network, this research also proposes

the eye datasets containing 10,659 images with 21,318 eye labels assigned accord-

ing to the PASCAL VOC dataset format (Everingham et al., 2015). The images in

this dataset were collected from the BioID Face (The BioID Face Database n.d.), CEW

(Song et al., 2014), GI4E (GI4E - Gaze Interaction for Everybody n.d.), FEI Face dataset

(Thomaz and Giraldi, 2010), and Yale Face Dataset B (YALEB) (Georghiades, Bel-

humeur, and Kriegman, 2001) dataset. The eye positions are annotated by Python

code and the LabelImg annotation tool.

BioID dataset: The procedure is to select 1,521 gray-scale images with 384 × 286

pixel resolution from the BioID Face dataset. Each image shows the front view of the

faces of 23 different people. From the center of the eye, the ground-truth bounding

box is generated with a square size of 36× 36.

CEW dataset: Similarly, the CEW dataset provides 2,423 images with 100× 100 pixel

resolution, including 1,192 images with both eyes closed and 1,231 images with both

eyes open. The ground-truth bounding box is also annotated from the center of the

eye with a size of 24× 24 pixels.

GI4E dataset: The GI4E contains 1,236 images from a standard camera with a res-

olution of 800 × 600 pixels in PNG format. Based on the position of the iris, the

ground-truth bounding box is generated with a size of 46× 46 pixels.

The three above datasets are produced by the Python code to generate ground-

truth bounding boxes following the below steps and the illustration of each step is

shown in Figure 3.9:

• Step 1: Determine the coordinate of the center position of the eyes from the

annotation file.

• Step 2: Generate the bounding boxes from the center coordinates.

• Step 3: Create an XML file and save the top-left and bottom-right of the bound-

ing boxes.
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Step 1 Step 2 Step 3

FIGURE 3.9: The annotation generation process by Python code.

FEI Face database: The FEI Face database is collected from Brazilians aged 19 to

40 with distinct appearances, hairstyles, and makeup. The images in this dataset

are taken on a homogenous background with up to 180 degrees of rotation and a

resolution of 640× 480 pixels. This work selects 2,800 images to annotate the eye

areas with the LabelImg annotation tool.

FIGURE 3.10: The interface of the LabelImg annotation tool on the
FEI dataset.

YALEB dataset: The YALEB is a quite large dataset for the face detection and recog-

nition field. It contains 16,128 images in 640 × 480 pixels resolution of 28 people

with 9 poses and 64 different illumination conditions. A set of 2,679 images in this

dataset were randomly selected and then the eye areas were also annotated using

the annotation tool. In this case, the LabelImg software is also chosen to be used.
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The LabelImg tool (Tzutalin, 2015) is written in the Python programming lan-

guage and presents a graphical interface in Qt. The bounding boxes of the eye posi-

tions are dynamically drawn based on the actual position of the eyes in the images.

The bounding box creation process is simply drawing a rectangle by dragging the

mouse from the top-left corner to the bottom-right corner of the eye areas. Figure

3.10 presents the eye annotation process by the LabelImg tool.

The location coordinates (top-left and bottom-right) and other attributes of eyes

in each image are generated and saved in an XML file that follows the PASCAL VOC

dataset format as shown in Figure 3.11. Users can use these proposed datasets for

different purposes to exploit the eye area in the computer vision field. The proposed

dataset distribution is shown in Figure 3.12.

Annotation XML File

FIGURE 3.11: The sample of annotation and XML file.

3.3.2 Experimental Setup

The eye detection network is implemented by the Python programming language

and the PyTorch framework. It is trained with 300 epochs and evaluated on a GeForce

GTX 1080Ti 11GB GPU, 32 GB of RAM. The training process applies several config-

urations, such as a batch size of 16, weight decay of 5× 10−4, momentum of 0.9, and

the learning rate is initialized by 10−3 and descends to 10−5 for training. Stochastic

Gradient Descent is also used to optimize the weight during back-propagation. The

balancing parameter λ is set to 10. The NMS algorithm applies a threshold of 0.5.
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FIGURE 3.12: The proposed dataset distrubution.

3.3.3 Experimental Results

This network plays an important role in determining the accuracy and efficiency of

the entire eye status monitoring system. The eye detection network is trained and

evaluated on proposed datasets based on BioID Face, CEW, GI4E, FEI Face, and the

YALEB datasets. Additionally, to make a fair comparison with other network archi-

tectures, this work refined and retrained the FaceBoxes architecture (Zhang et al.,

2017), five variants of SSD architecture (Liu et al., 2015), nine variants of YOLO ar-

chitecture (Glenn Jocher, 2020), and the proposed network architectures with the

change of attention modules (SE: Squeeze-and-Excitation, BAM: Bottleneck Atten-

tion Module, CBAM: Convolutional Block Attention Module). The results in Table

3.1 demonstrate that this network has superior detection capabilities compared to

FaceBoxes and SSD network architectures on the CEW and FEI datasets except for

all YOLO network architectures with a 96.50% and 97.14% AP, respectively. For

the GI4E dataset, the proposed network achieves 98.12% AP, and it surpasses Face-

Boxes and other network architectures except for SSD300, SDD512, and all YOLO

network architectures. But, the number of parameters of the original SSD, YOLOV3,
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TABLE 3.1: The comparison result of eye detection network on indi-
vidual proposed datasets.

Average Precision (%)
Model Input image Parameters GFLOPs

GI4E BioID CEW FEI YALEB
Mobile architectures

FaceBoxes 128×128 844,610 0.40115 96.58 98.23 95.95 96.56 99.70
MobileNetV3-SSD 300×300 2,141,372 0.52696 75.88 90.77 90.85 90.13 99.89
MobileNetV2-SSD 300×300 3,051,928 0.65919 82.38 90.82 90.87 89.67 99.90
MobileNetV1-SSD 300×300 3,990,680 1.24000 83.83 80.51 90.86 89.48 99.91
SSD300 300×300 23,745,908 62.82000 99.90 90.90 90.30 90.90 90.90
SSD512 512×512 23,745,908 180.61000 100 90.80 90.70 81.70 90.00
YOLOV3-Tiny 416×416 8,669,876 12.90000 99.98 98.97 97.62 98.46 99.54
YOLOV3-SPP 416×416 62,573,334 155.70000 100 99.00 97.97 98.32 99.93
YOLOV3 416×416 8,669,876 154.90000 100 97.90 99.73 99.40 99.96
YOLOV4-Tiny 320×320 3,061,636 6.40000 99.90 99.70 99.40 99.70 99.70
YOLOV4 320×320 60,426,006 131.10000 99.70 99.60 99.20 99.96 99.96
YOLOV5s 320×320 7,063,542 16.40000 99.70 99.60 99.60 99.60 99.60
YOLOV5m 320×320 21,056,406 50.40000 99.70 99.60 99.30 99.60 99.70
YOLOV5l 320×320 46,631,350 114.20000 99.70 99.60 99.30 99.60 99.60
YOLOV5x 320×320 69,117,998 170.50000 99.70 99.60 99.30 99.60 99.60

Our architectures
Proposed 128×128 965,186 0.4934 98.12 98.35 96.50 97.14 99.66
Our (SE) 128×128 967,070 0.4926 97.30 98.21 95.12 97.02 99.60
Our (BAM) 128×128 969,343 0.4948 98.05 99.05 95.04 97.01 99.80
Our (CBAM) 128×128 969,354 0.4926 90.84 97.31 94.78 97.10 99.68

YOLOV4, and YOLOV5m are 24.6, 8.98, 62.61, and 21.82 times larger than the pro-

posed network architecture, respectively. For the BioID dataset, this experiment

achieved an approximate AP when replacing the Convolutional Triplet Attention

module by BAM with an accuracy of 98.35% and 99.05% AP, respectively. Never-

theless, the BAM has more than 4,157 network parameters. It also outperformed the

other compared network architectures except for YOLO network architectures. In

the end, the proposed network reached a 99.66% AP on the YALEB dataset. This

result is comparable to the FaceBoxes network, outperforming both SSD300 and

SSD512, and it is better than several YOLO network architectures. However, it is

slightly weaker than the other proposed network architectures. The reason is the

YALEB dataset contains a large number of black and white images with many dif-

ferent lighting conditions levels. This makes it difficult for lightweight or shallow

architectures to distinguish small objects in the human eye regions. In terms of com-

putational complexity, the proposed network is only marginally larger than the Face-

Boxes network at 0.09 GFLOPs, greatly smaller than the SSD and YOLO network

families (from 13 times (YOLOV4-Tiny) to 336 times (SSD512)). The qualitative re-

sults of the eye detection network are shown in Figure 3.13.

Though, sometimes the proposed network confuses and detects wrong in other
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CEW dataset

BioID dataset

YALEB dataset

GI4E dataset

FIGURE 3.13: The qualitative results on five proposed datasets.
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FIGURE 3.14: The several mistakes in detection results on five pro-
posed datasets.

areas such as the objects in the background image or several parts of the face that

are similar in structure to the eye like the mouth, and forehead. It also may not

detect the eye area due to the light, color, contrast, and overlap conditions. Several

mistake-detection samples are shown in Figure 3.14.

3.4 Ablation Studies

To evaluate the effectiveness of different components in the eye detection network,

each module was omitted during training and evaluation, then the results with the

entire eye detection network were compared. The results in Table 3.2 demonstrate

that the use of the Convolution Triplet Attention module is necessary to increase the
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prediction ability (adding 1.71% to the AP) and maintain the parameters of the entire

network. The omission of the inception module reduces a lot of network parameters

(0.227 million parameters) but the precision is not significantly reduced (by only

0.2% of the AP). Therefore, the inception module may be omitted when designing

the network to optimize the number of parameters. The CReLU module increases

the efficiency of the feature extractor so when omitted it can reduce the AP by nearly

1%. Finally, using more than two detectors does not increase predictability, on the

other hand, it increases the number of network parameters.

TABLE 3.2: Ablation studies of eye detection network on CEW
dataset. The red color indicates the best result.

Modules Proposed network
Convolutional Triple Attention ✓ ✓ ✓ ✓

Inception ✓ ✓ ✓ ✓
CReLU ✓ ✓ ✓ ✓

Detectors 2 2 2 3 2
Parameters (Million) 0.965 0.738 0.949 1.072 0.965

AP (%) 94.79 96.30 95.54 95.95 96.50
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Chapter 4

Eye Classification Network

Eye classification is the final stage in the driver eye status monitoring system. The

network architecture is designed by taking advantage of the basic layers used in

CNN networks and improving several layers to optimize network parameters and

eye status discrimination ability. The eye classification network is described in detail

as shown in Figure 4.1.
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FIGURE 4.1: The proposed eye classification network architecture.

4.1 Network Architecture

This network is simply designed based on the basic usage of convolution, average

pooling layers, and the softmax function to classify eye status. The eye classification

network is divided into two main modules: backbone and classification.
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4.1.1 Backbone Module

The backbone module uses four convolution blocks and two separate convolution

layers. Each of these blocks contains two standard convolution layers and one av-

erage pooling layer followed by batch normalization (BN) and the ReLU activation

function.

Average pooling layer: The working principle of the average pooling layer is exactly

the same as the max pooling layer (which was explained in Chapter 3), but the only

difference is that it outputs by averaging the values in each window. The operation

of the average pooling layer is depicted as an example in Figure 4.2.

6 5

13 212 × 2

Average pooling

12 3

5 4

4 6

8 2

21 24

14 25

12 24

6 10

FIGURE 4.2: The operation of the average pooling layer.

Batch normalization (BN): The BN is a technique used in deep learning neural net-

works to improve the training process and performance of the model. The BN works

by normalizing the input values of a layer by subtracting the mean and dividing by

the standard deviation of the batch. This process is applied for each batch of data

during training, which helps to stabilize the distribution of inputs and the model

can easier to learn the correct weights. AssumeM is a minibatch and let x ∈ M be

an input to batch normalization. The batch normalization is defined as follows:

BN(x) = γ · x− µM
σM

, (4.1)

where µM is the mean and σM is standard deviation of the minibatchM.

ReLU activation function: From Equation 3.1 in Chapter 3 can see that the output

of the ReLU activation function is the maximum of 0 value and the input value. This

means that the output is 0 value for any negative input and the output is equal to the

input value for any positive input. This activation function is computationally effi-

cient, allows for faster training, and avoids the over-fitting problem of the network.
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The kernel sizes of the convolution layers used in this module are 7× 7, 5× 5,

and 3× 3 respectively according to the depth of the network. The backbone module

reduces the dimension of the input image from 100× 100 to 7× 7.

4.1.2 Classification Module

The classification module consists of two components: the global average pooling

(GAP) layer and the softmax function. In global average pooling, the spatial dimen-

sions of the feature maps are quickly reduced to a single value by taking the average

of all the values in each channel. This results in a one-dimensional vector with the

same number of channels as the input feature maps. Following that, the output

feature map from the backbone module is further reduced by the global average

pooling layer to 1× 1, with the two channels corresponding to the two classes in the

dataset. Figure 4.3 illustrates the operation of the global average pooling layer.

GAP

W =7 

H =7 

C =2 

C =2 

W = 1 

H =1 

FIGURE 4.3: The global average pooling layer.

Then, it applies the softmax function to calculate the probability of occurrence of

the classes. The equation for the softmax function is:

so f tmax(xi) =
exi

∑k
j=1 exj

, (4.2)

where xi is the i-th element of the input vector, and k is the total number of elements

in the vector. The exi and exj are standard exponential functions for the input and

output vector, respectively. The softmax function takes an input vector x and returns

a vector of the same length, where each element in the output vector is a probability

value between 0 and 1 that sums up to 1.
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The replacing of the fully connected layers in traditional classifiers with only one

GAP layer to optimize network parameters and further avoid overfitting issues. This

is an important improvement in the proposed eye classification network.

4.2 Loss Function

The classifier uses the Category cross-entropy loss function (Fawaz et al., 2018) to

compute the loss during training. This loss is shown as follows:

Lec = −
1

∑
i=0

ti · log(Pi), (4.3)

where i is the index of each class (i = 0 to 1), t is the target indicator (t = 0 or t = 1),

log is natural logarithm function, and P is the predicted probability of class i-th.

4.3 Experiments

4.3.1 Datasets

For the eye classification network, the Closed Eyes In The Wild (CEW) (Song et

al., 2014) and Media Research Lab (MRL) Eye (Fusek, 2018) datasets are used for

training and evaluation. The CEW dataset consists of 4,846 images of 24× 24 pix-

els resolution with 2,384 closed eye labels and 2,462 open eye labels. To enrich the

dataset, dataset augmentation methods are applied during training, such as vertical

flip, contrast, and brightness changes. MRL Eye dataset contains 84,898 images of

86× 86 pixels resolution collected from 37 different people (33 males and 4 females)

by three sensors (Intel RealSense RS 300, IDS Imaging sensor, and Aptina sensor).

Two datasets are separated into 80% for training and 20% for evaluation phases.

4.3.2 Experimental Setup

The eye classification network is built using the Python programming language and

the Keras framework. It is trained and evaluated with basic settings for the classi-

fication task on a GeForce GTX 1080Ti 11GB GPU, with 32 GB of RAM. Specifically,
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the network goes through 200 epochs with the Adam optimization method and a

batch size of 16. The learning rate is initialized to 10−4 and decreases after 10 epochs

with a factor of 0.75 if the accuracy does not improve.

4.3.3 Experimental Results

The eye classification network achieves accuracies of 97.53% and 98.52% on the CEW

and MRL Eye datasets, respectively. It outperforms all networks with just 632,978

network parameters and 0.0067 GFLOPs. The qualitative results are shown in Figure

4.4.

TABLE 4.1: The comparison result of the eye classification network
with popular classification networks on CEW and MRL Eye Datasets.

The red color indicates the best competitors.

Accuracy (%)
Network Parameters GFLOPs

CEW MRL Eye
SqueezeNet 256,818 0.0008 50.72 98.32
Proposed 632,978 0.0067 97.53 98.52

MobilleNetV2 3,571,778 0.0026 67.11 68.53
MobileNet 4,280,514 0.0021 82.27 81.80

VGG13 7,052,738 0.0011 96.29 98.33
DenseNet121 8,089,154 0.0021 79.59 87.50

VGG16 15,242,050 0.0011 94.33 97.47
LeNet 15,653,072 0.1869 96.70 98.08

VGG19 20,551,746 0.0011 94.12 97.18
Xception 22,961,706 0.0011 62.99 97.53
ResNet50 23,591,810 0.0042 94.85 97.50

InceptionV3 23,903,010 0.0042 76.60 79.38
AlexNet 67,375,938 1.3500 96.71 98.42

Specifically, when compared with the AlexNet architecture (the best accuracy

competitor), the network parameters and computational complexity of AlexNet are

106 and 201 times larger but it only achieves an accuracy of 96.71% and 98.42%,

which is lower than the proposed network 0.82% and 0.10% on the CEW and MRL

Eye datasets, respectively.

For the SqueezeNet architecture (the best network scale competitor), the network

parameters and computational complexity of the proposed network are nearly 2.5

and 0.84 times larger, but the accuracy of the proposed network is nearly twice as

large on the CEW dataset and 0.20% better on the MRL Eye dataset. Table 4.1 shows

a detailed comparison of results between the proposed eye classification approach
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MRL Eye dataset

CEW dataset

FIGURE 4.4: The qualitative results of proposed eye classification net-
work on CEW and MRL Eye datasets.

and popular classification networks. The confusion matrices in Figure 4.5 prove the

balance in closed and open eye classification on the CEW and MRL Eye datasets.
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FIGURE 4.5: The confusion matrices on CEW and MRL Eye datasets.

4.4 Ablation Studies

This work conducts ablation studies on the optimization method and the classifica-

tion module to evaluate the proposed eye classification network’s outstanding ad-

vantages.

For ablation study 1, when replacing the Adam optimizer with the AdamW op-

timizer, the accuracies achieved on the CEW and the MRL Eye datasets are 97.50%

and 98.44%, respectively. The experimental results show that Adam is better than

AdamW (0.03% ↑ of accuracy on the CEW dataset and 0.08% ↑ of accuracy on the

MRL Eye dataset) in optimizing the proposed eye classification network. The per-

formance comparison of Adam and AdamW optimizers is shown in Table 4.2.

TABLE 4.2: The comparison result of the eye classification network
with different optimizers on CEW and MRL Eye Datasets.

Accuracy (%)
Optimizers Parameters GFLOPs

CEW MRL Eye
AdamW 632,978 0.0067 97.50 98.44

Adam 632,978 0.0067 97.53 98.52

For ablation study 2, this work replaces the GAP with fully connected (FC) lay-

ers using only one hidden layer (1024 network nodes) for training and evaluation

in the same setting. With the use of FC in the classification module, the eye clas-

sification network has accuracies of 96.29% and 98.34%, respectively. This result is

worse than the eye classification network that uses GAP (1.24% ↓ of accuracy on

the CEW dataset and 0.18% ↓ of accuracy on the MRL Eye dataset). In addition,
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FC also increases a lot of network parameters (103426 parameters ↑) and computa-

tional complexity (0.6588 GFLOPs ↑). Therefore, the use of GAP in the proposed

eye classifier network contributes greatly to the optimization of network parameters

and computational complexity, aiming to apply on low computational devices. The

comparison result is shown in Table 4.3.

TABLE 4.3: The comparison result of eye classification networks with
the GAP and fully connected (FC) layers on CEW and MRL Eye

datasets.

Accuracy (%)
Methods Parameters GFLOPs

CEW MRL Eye
FC 736,404 0.6655 96.29 98.34

GAP 632,978 0.0067 97.53 98.52
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Chapter 5

Real-time Eye Status Monitoring

After training and evaluating each individual network on the respective datasets, the

networks are integrated with a nano version of the YOLO5Face detector (YOLO5nFace)

(Qi et al., 2021) into a complete eye status monitoring system. This system is tested

in real-time and driving simulation videos, as described by Figure 5.1 and the block

diagrams in Figure 5.4.

SPEAKER (L)

JETSON NANO

SPEAKER (R)

CAMERA

MONITOR

FRONTAL VIEW

FIGURE 5.1: The real-time testing setting with all devices.

5.1 YOLO5Face Detector

This face detector is developed based on the architecture of the YOLOv5 network

with many improvements for face detection, named YOLO5Face. The network is
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FIGURE 5.2: The YOLO5Face architecture and sub modules.

trained and evaluated on the WIDER FACE dataset and it achieves state-of-the-art

performance in almost all the easy, medium, and hard subsets. Especially, the au-

thors also design several tiny networks with lightweight backbones to implement in

embedding and mobile devices.
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5.1.1 Network Architecture

Following the original architecture of YOLOv5, this proposed network is divided

into three main parts: backbone, neck, and detection head modules as shown in

Figure 5.2. However, the authors have conducted many improvements to suit the

face detection task and increase the performance on low-computing devices. Such

modifications can be listed as follows:

• The landmark regression is added to the YOLOv5 network and used the Wing

loss (Feng et al., 2017) to calculate during the training. This is an extra super-

vision that helps increase face detection accuracy.

• The Focus layer in YOLOv5 is replaced with a Stem block structure (Wang et

al., 2018). It increases the generalization capability and reduces the computa-

tional complexity while still maintaining performance.

• The kernel size of max pooling layers in the SPP block (He et al., 2014) is re-

vised from 13 × 13, 9 × 9, and 5 × 5 to 7 × 7, 5 × 5, and 3 × 3, respectively.

These smaller kernels help to detect small faces easier and significantly reduce

the number of network parameters.

• This work leverages three detection heads from YOLOv5 and adds one more

head at the P6 output feature map with a stride of 64. It increases the ability to

detect large faces. This is easily ignored by other studies that only focus only

on detecting small faces.

• The implement removes several data augmentation methods that are not ap-

propriate for face detection, including up-down flipping and Mosaic. It recog-

nizes random cropping method is useful for performance improvement.

• This work designs nine model versions with different backbone networks as

shown in Table 5.1.

5.1.2 Dataset

All of the modified networks are trained and evaluated on the WIDER FACE dataset

(Yang et al., 2015). This is the largest dataset for face detection. This dataset con-

sists of 32,203 images and 393,703 annotated faces. The images in the WIDER FACE
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TABLE 5.1: The variants of YOLO5Face network (Qi et al., 2021).

Model Backbone (D, W) With P6
YOLO5sFace YOLOv5-CSPNet (0.33, 0.50) NO
YOLO5s6Face YOLOv5-CSPNet (0.33, 0.50) YES
YOLO5mFace YOLOv5-CSPNet (0.50, 0.75) NO
YOLO5m6Face YOLOv5-CSPNet (0.50, 0.75) YES

YOLO5lFace YOLOv5-CSPNet (1.0, 1.0) NO
YOLO5l6Face YOLOv5-CSPNet (1.0, 1.0) YES
YOLO5x6Face YOLOv5-CSPNet (1.33, 1.25) YES
YOLO5nFace ShuffleNetv2 - NO

YOLO5nFace-0.5 ShuffleNetv2-0.5 - NO

dataset are very close to real-life scenes and contain many challenges with various

scales, poses, expressions, lighting, and occlusions. The dataset is divided into 50%,

10%, and 40% for training, validation, and testing phases.

5.1.3 Experimental Results

The detection ability of the YOLO5Face network is evaluated through two groups of

comparison models: large and small models. In the first group, the YOLOv5x6Face

network achieves 96.67%, 95.08%, and 86.55% of mAP on easy, medium, and hard

subsets, respectively. These results outperform the existing comparative networks

on all three subsets. In the second group, the YOLOv5nFace network achieved

achieves 93.61%, 91.54%, and 80.53% on the three subsets, respectively. This result

is a little bit worse performance than the Sample and Computation Redistribution

for Efficient Face Detection (SCRFD) network on easy (0.17% ↓) and medium (0.62%

↓) subsets. But on the hard subset, YOLOv5nFace is 2.66% of mAP better than the

SCRFD network. Compare to others in this group, YOLOv5nFace still performs bet-

ter with only 1.73 million network parameters and 2.11 GFLPS. That’s why this study

uses YOLOv5nFace for the real-time eye status monitoring system. The comparison

results are presented in Table 5.2.

5.2 Integrated System

The overall proposed driver eye status monitoring system consists of a face detec-

tion network (the trained YOLO5nFace network on the WIDER FACE dataset), a

proposed eye detection network (the trained eye detection network on the CEW
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TABLE 5.2: Comparison of YOLO5Face networks and existing face
detectors on the WIDER FACE validation dataset (Qi et al., 2021).

Detector Backbone Easy Medium Hard Params (M) GFLOPs
DSFD ResNet152 94.29 91.47 91.47 91.47 91.47

RetinaFace ResNet50 94.92 91.90 64.17 29.50 37.59
HAMBox ResNet50 95.27 93.76 76.75 30.24 43.28
TinaFace ResNet50 95.61 94.25 81.43 37.98 172.95

SCRFD-34GF Bottleneck ResNet 96.06 94.92 85.29 9.80 34.13
SCRFD-10GF Basic ResNet 95.16 93.87 83.05 3.86 9.98
YOLOv5sFace YOLOv5-CSPNet 94.33 92.61 83.15 7.08 5.78

YOLOv5s6Face YOLOv5-CSPNet 95.48 93.66 82.80 12.39 6.28
YOLOv5mFace YOLOv5-CSPNet 95.30 93.76 85.28 21.06 18.15
YOLOv5m6Face YOLOv5-CSPNet 95.66 94.10 85.20 35.49 19.77

YOLOv5lFace YOLOv5-CSPNet 95.90 94.40 84.50 46.632 41.61
YOLOv5l6Face YOLOv5-CSPNet 96.38 94.90 85.88 76.67 45.28
YOLOv5x6Face YOLOv5-CSPNet 96.67 95.08 86.55 141.16 88.67
SCRFD-2.5GF Basic ResNet 93.78 92.16 77.87 0.67 2.53
SCRFD-0.5GF Depth-wise Conv 90.57 88.12 68.51 0.57 0.51

RetinaFace MobileNet0.25 87.78 81.16 47.32 0.44 0.80
FaceBoxes - 76.17 57.17 24.18 1.01 0.28
YOLOv5n ShuffleNetv2 93.61 91.54 80.53 1.73 2.11

YOLOv5n0.5 ShuffleNetv2-0.5 90.76 88.12 73.82 0.45 0.57

dataset), a proposed eye classification network (the trained eye classification net-

work on the CEW dataset), a camera (TGCAM-2000STAR), a set of the mini speaker

(INKEL speaker), and an Intel® CoreTM i7-4770 CPU @ 3.40GHz with 8 GB of RAM

or a 128-core Nvidia Maxwell GPU with 4 GB of RAM (Jetson Nano device). Figure

5.3 shows the hardware used in the real-time testing setting.

The operation of the real-time eye status monitoring system is described by the

block diagram in Figure 5.4. Firstly, the face detection network will detect the face

position in the videos, crop, and resize it to 128× 128 pixels as input to the eye de-

tection network. Next, the eye detection network will detect the eye position in the

previously cropped face areas, crop, and resize to 24× 24 pixels. Finally, based on

these cropped eye regions, the eye classification network will perform the classifica-

tion of eyes with two statuses that are closed or open. If the closed eye exceeds the

time threshold (in this case sets the time threshold to 2 seconds), the speaker will

sound a warning to the driver. The Non-Maximum Suppression (NMS) algorithm is

also used in the first two stages to minimize the generation of redundant bounding

boxes and ensure the generation of one bounding box for one face and two bounding

boxes for two eyes on that face.
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128-core Nvidia Maxwell GPU
Jetson Nano

® TMIntel  Core  i7-4770 CPU @ 3.40GHz

TGCAM-2000STAR camera

FIGURE 5.3: The hardware is used in the real-time eye status moni-
toring system.
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FIGURE 5.4: Block diagram of the proposed driver eye status moni-
toring system.

5.3 Real-time Analysis

The testing system uses the VGA and HD live-stream videos obtained from the cam-

era connected to a PC or Jetson Nano device, and the FHD videos captured from a

cellphone and downloaded from YouTube. The distance from the camera to the par-

ticipant’s face is less than 0.5 meters. The video resolutions used in this test are
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Video Graphics Array (VGA: 640 × 480 pixels), High Definition (HD: 1280 × 720

pixels), and Full High Definition (FHD: 1920× 1080 pixels). The report in the ex-

periment with three attendances, including two males and one female. As a result,

the real-time system correctly predicts the eye status with different head poses and

situations, like wearing glasses, facemask, hat, wearing both hat and facemask (Fig-

ure 5.5 and Figure 5.6), the changes of illumination, infrared video, and wearing

different kind of glasses (Figure 5.7).

FIGURE 5.5: The qualitative results of the real-time eye status mon-
itoring system with VGA video live-stream on Jetson Nano device

with three participants.

The face detection network reached up to 228.82 FPS on a CPU with VGA reso-

lution and this is reduced to a minimum of 76.73 FPS on a Jetson Nano device with

FHD resolution. Likewise, the eye detection network reached 39.59 FPS on a CPU

with VGA resolution and decreased to a minimum of 30.13 FPS on a Jetson Nano

with HD resolution. In contrast, the eye classification network maintained speeds

from 68.12 FPS on a CPU with HD resolution to 77.31 FPS on a Jetson Nano device

with FHD resolution. The classification ability of the eye classification network on

the Jetson Nano device is slightly better than that of the CPU. In total, the system

reached a minimum speed of 20.23 FPS on a Jetson Nano device with FHD resolu-

tion and a maximum speed of 33.12 FPS on a CPU with VGA resolution. The detailed
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FIGURE 5.6: The qualitative results of the real-time eye status mon-
itoring system with VGA video live-stream on CPU-based PC with

the single participant.

The illumination changes (1-3) The infrared video (4) 

The myopia glasses (5) The sunglasses (6) The night vision glasses (7)

FIGURE 5.7: The qualitative results of the real-time eye status moni-
toring system with VGA video recording in the car on CPU-based PC.

execution speeds on the CPU and Jetson Nano devices are shown in Table 5.3.

This research also compares the speed of the proposed system and other meth-

ods in real-time testing. The experiment in (Saurav et al., 2022) is conducted with

two types of devices: Nvidia Xavier (512-core Volta GPU and 64 GB of RAM) and
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TABLE 5.3: The speed performance of the system in real-time testing
on PC and Jetson Nano device. The red color indicates the best result.

(Unit of measurement: FPS).

Device Resolution
Face

detection
Eye

detection
Eye

classification
Entire
system

CPU VGA 228.82 39.59 69.34 33.12
HD 135.53 38.98 68.12 26.97

FHD video 98.06 37.67 70.91 25.75
Jetson Nano VGA 150.23 31.15 76.14 25.11

HD 110.56 30.13 75.89 23.15
FHD video 76.73 30.56 77.31 20.23

Raspberry Pi 3 (quad-core ARM Cortex-A53 CPU and 1 GB of RAM) with Intel Neu-

ral Compute Stick 2 (RPi3 + NCS2). This work achieves 62 FPS and 11 FPS, respec-

tively. The hardware specification in Table 5.4 and the results in Figure 5.8 prove that

the speed of the proposed system is fall between the two above experiments and it

works well in real-time with negligible delay to accurately predict the eye status in

VGA resolution.

TABLE 5.4: The hardware specification of system in (Saurav et al.,
2022) and proposed system.

System Device Hardware specification
Saurav et al., 2022 Nvidia Xavier 512-core Volta GPU, 64 GB of RAM
Saurav et al., 2022 Pi3+NCS2 Quad-core ARM Cortex-A53 CPU, 1 GB of RAM

Our Personal Computer Intel® CoreTM i7-4770 CPU @ 3.40GHz, 8 GB of RAM
Our Jetson Nano 128-core Nvidia Maxwell GPU, 4 GB of RAM

The proposed driver eye status monitoring system can be highly influenced by

lighting conditions, which can significantly reduce the system’s ability to detect eye

areas. On the other hand, the distance and angle from the camera to the driver face

is a factor that increases or decreases the size of the detected face and changes the

accuracy. Besides, when the driver uses sunglasses, it is not possible to identify the

eye areas because most of the eye area has been obscured. In this case, the system can

not recognize eye locations or predict the closed status. However, when using night

vision glasses for driving, the detection results are still very accurate even when

driving at night. Technically, because the system uses three stages, the execution

speed is affected and depends heavily on the face detection network. In addition, the

ability of the eye detection network also determines most of this speed. Therefore,

shortening the system down to only one or two stages for direct eye detection and

classification is necessary. This method will greatly enhance performance on real-

time testing phase.
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FIGURE 5.8: The speed comparison between the proposed method
and others in real-time testing on VGA (640× 480) resolution.
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Chapter 6

Conclusion

6.1 Conclusions

This research aims to develop and test a real-time driver eye monitoring system

based on the proposed lightweight CNN network architectures. The proposed sys-

tem provides robust monitoring of the human eye in laboratory environments and

on videos simulating complex driving situations. The overall system is implemented,

evaluated, and explained in detail through each proposed module.

Firstly, this work designs a lightweight eye detection network with a combina-

tion of shrinking, inception, Convolutional Triple Attention mechanism, and detec-

tion modules. The shrinking module is located at the beginning of the network to

extract basic eye features such as color, edge, and shape. Next, the inception mod-

ule performs intermediate feature extraction using convolution and pooling opera-

tions with different kernel sizes. In this step, feature maps are extracted with var-

ious receptive fields for merging and enriching the useful information. A Convo-

lutional Triple Attention mechanism is embedded right after the inception module

to help the network focus on salient features to capture the necessary features for

later detection. Ending the eye detection network are two detectors with appropri-

ate anchor designs for predicting eye position and eye objectness scores. Realizing

the limitation of datasets for human eye detection, this work also proposes new

datasets with annotations conforming to the PASCAL VOC dataset format. These

datasets can be used in other related fields of research. The proposed eye detec-

tion network achieves 98.12%, 98.35%, 96.50%, 97.14%, and 99.66% of AP on the

GI4E, BioID, CEW, FEI, and YALEB respectively. These results are comparable with
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existing detection networks and with only 965,186 network parameters and compu-

tational complexity of 0.4934 GFLOPS.

Secondly, this study continues to propose a simple and compact CNN network

for the eye classification task. The architecture of this network is built on the basic

components of a common classification network consisting of two main modules,

the backbone network and the classification. The backbone module is a combination

of alternating convolution and pooling layers followed by BN and activation func-

tions. This module plays an important role in feature extraction and also provides

high-level feature maps for the next stage. Unlike conventional classification CNNs,

the classification module replaces all fully connected layers with a single GAP layer.

This technique rapidly reduces the dimensionality of the feature map while preserv-

ing significant information in the feature map. It is followed by a softmax activation

function to calculate the probability of the classes will be classified (closed eye or

open eye). The proposed classification network is trained and evaluated on CEW

and MRL Eye datasets with an accuracy of 96.71% and 98.42%, respectively. When

compared with other classification CNNs, the proposed network is the outperform-

ing method with only 632,978 network parameters and a computational complexity

of 0.0067 GFLOPS.

Thirdly, a real-time eye monitoring system is integrated and tested with a novel

face detection network, named YOLO5nFace. This face detection network is im-

proved from the famous object detection network YOLOv5. The components inside

YOLOv5 are optimized and redesigned to accommodate face detection tasks in var-

ious face scales and poses. On the other hand, it also meets the implementation in

reality applications. The proposed system is evaluated with live stream videos and

simulated videos of real driving situations. As a result, this system reaches the high-

est speed at 3.12 FPS and 25.11 FPS on VGA resolution with PC and Jetson Nano

devices, respectively. This result proves that the proposed system can be applied

to real-time systems for eye-monitoring purposes with high accuracy and negligible

latency.

Finally, each experiment is carefully and objectively evaluated and analyzed for

comparison with existing methods. Besides, the integrated system is also deployed

on the available cheap hardware devices and considered based on the pros and cons.

From there, this work suggests solutions to improve the performance of the system
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in the future.

6.2 Future Works

During the research and experiment, this study recognized the limitation of eye de-

tection and eye status classification, because it deploys an eye status monitoring

system with multi-stages. In which, each stage corresponds to a separate CNN net-

work and dataset. This method can achieve a quite large accuracy, but the speed is

limited by the multi-task mechanism. This also is a major obstacle when deploying

in real-time systems that require high mobility, accuracy, and speed.

To overcome the above problem, future work aims to improve the proposed sys-

tem into a two-stage or single-stage system.

The two-stage system direction will focus on better designing the proposed eye

detection network and combining it with new techniques such as Vision Trans-

former, Dilated convolution, and Path Aggregation Network (PAN) architecture, etc

to directly detect eye regions (small regions). This is the basis for the classification

network to work efficiently and accurately.

The single-stage system approach is aimed at developing a network system that

performs both eye detection and eye status classification tasks at the same time. This

method will be based on modifying the proposed eye detection network architec-

ture with suitable solutions for human eye detection and classification as mentioned

above. Besides, it is also necessary to build an appropriate eye detection dataset for

training and evaluation. Even though, this work will spend more time and labor

than the multi-stage method.
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