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ABSTRACT 

 

Integrating   Human Abnormal Behavior Detection with Air Quality 

Constraints for Safety in Manufacturing Environments 

 

In an era of rapid technological advancement, the manufacturing sector is undergoing a 

transformative shift toward Industry 4.0, embracing cutting-edge technologies to boost 

productivity and operational efficiency. However, with progress, new challenges comes, 

the most important is ensuring the safety, security, and air quality in manufacturing 

environments. This thesis aims to address these issues by designing novel Artificial 

Intelligence (AI) solutions that use Long Short-Term Memory (LSTM) networks to detect 

suspicious behaviors based on skeletal data. 

The primary goal of this study is to design AI algorithms that improve safety and security 

by detecting suspicious behaviors based on skeletal data, with LSTM serving as a 

powerful tool for sequential data analysis. This algorithm is intended to detect behaviors 

such as excessive sneezing, frequent body scratching, or fainting, all of which may 

serve as early warning signs of health issues exacerbated by poor air quality. 

Concurrently, the thesis delves into air quality measurement, employing a mathematical 

model based on short path distance analysis. This model, in addition to the behavioral 

detection aspect, provides a quantifiable framework for monitoring and assessing 

environmental conditions within manufacturing facilities. The combination of skeletal 

data analysis and mathematical air quality modeling represents a game-changing step 

toward increased vigilance, worker well-being, and efficient manufacturing operations. 
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Finally, the research aims to improve safety, security, and air quality monitoring, 

fostering a safer and healthier working environment for manufacturing personnel and 

optimizing manufacturing processes. This endeavor represents a synthesis of AI, quality 

measurement, and human activities in manufacturing, with the goal of ushering in a new 

era in which technology and well-being merge for the benefit of the manufacturing 

sector. 

 

Keywords: Skeleton-data, artificial intelligence, LSTM, deep learning, safety 

management, mathematical model, short-path distance. 
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Chapter 1 

Introduction 

1.1 background  

In the midst of Industry 4.0, where cutting-edge technologies transform manufacturing, 

we confront a pair of pressing challenges: ensuring worker well-being and maintaining 

pristine air quality in the workplace. This thesis embarks on an extensive exploration of 

these interlinked challenges, driven by technology and an unwavering commitment to 

excellence. 

Our journey begins in a manufacturing environment, often susceptible to disease 

outbreaks and health risks. It is within this context, and especially during the times of 

disease outbreaks, that we find the urgency to prioritize worker safety and well-being, 

reinforced by the necessity to maintain high air quality standards (Figure 1). The 

foundation of our research is laid with a thorough review of established behavior 

detection algorithms, evaluated for their adaptability within the manufacturing landscape. 

 

Figure 1. Factory Environment 
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These algorithms are pivotal as they become the vanguard in recognizing a wide 

spectrum of behaviors that may serve as early indicators of health risks. In this context, 

consider the sudden increases in coughing, frequent body scratching, unexplained 

fainting each bearing the potential to signal health concerns, particularly when air quality 

falters. 

Our approach is underpinned by advanced AI, with a specific focus on Long Short-Term 

Memory (LSTM) networks renowned for their proficiency in sequential data analysis.  

LSTM empowers us to swiftly and accurately identify these behaviors, allowing for 

immediate responses and effective risk mitigation. 

Transitioning to the second phase of our exploration, our focus shifts to the dynamic 

realm of air quality, a global concern with profound implications for both the environment 

and human health. Here, the prediction of air pollution dispersion assumes paramount 

importance, given the inherent complexity and the unpredictability of meteorological 

conditions. 

Our research endeavors are concentrated on the development of an Air Diffusion Model, 

fueled by the potential of AI and data. Named the Short Path Distance based 

Lagrangian Trajectory Model (SPD-LTM), this model adopts a trajectory-based 

approach and wind-field distance optimization to enhance predictions of air dispersion, 

leveraging insights from pollutant sensing data. 

Within this framework, Particulate Matter (PM2.5) is our focal point. Our aim is to model 

its fluctuations and forecast its concentration, all while considering the subtleties of short 

path distance and time dependencies. Augmenting our understanding is the Hybrid 

Single-Particulate Lagrangian Integrated Trajectory algorithm (HYSPLIT), 

complemented by the Dijkstra algorithm for short path distance optimization. Results 

from this model underscore its superiority over conventional methods, enhancing 

predictive accuracy and deepening our comprehension of air quality dynamics. 
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In the fusion of these two phases, our thesis endeavors to chart a course toward 

manufacturing environments fortified by increased vigilance, worker well-being, and 

rapid responses to multifaceted challenges presented by compromised air quality and 

the emergence of abnormal behaviors. Our ultimate objective is a future defined by 

safety, health, and operational excellence, where technology and human welfare 

coalesce for the betterment of all. 

The core of our research lies in the recognition of suspicious behaviors, embedded in 

the context of a manufacturing environment prone to disease outbreaks. At the same 

time, we ground our pursuit in the development of AI algorithms for abnormal behavior 

detection based on air quality requirements, striving for an exhaustive comprehension of 

these algorithms to further enhance worker safety and well-being. 

 

1.2 Research Objectives  

This dissertation is dedicated to investigating Innovative AI solutions for skeleton-based 

safety in manufacturing, and structured around the following objectives:  

a) Develop Innovative AI Algorithms : Create advanced AI algorithms capable of 

detecting suspicious behavior based on skeleton data in manufacturing 

environments, with a specific focus on behaviors like excessive sneezing, 

frequent body scratching, and fainting. 

b) Enhance Safety and Security: Utilize the developed AI algorithms to enhance 

safety and security within manufacturing settings, promptly identifying behaviors 

that may indicate health risks, particularly in the presence of compromised air 

quality. 

c) Optimize Behavior Detection: Optimize the AI-based behavior detection 

algorithms to ensure their efficiency in recognizing ad categorizing unusual 

behaviors.  
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d) Air quality modelling: Develop an Air Diffusion Model that leverages AI and data 

to enhance the prediction accuracy of air pollution dispersion. Specifically, 

consider Particulate Matter (PM2.5) and it’s concentration as a case study. 

e) Safety and Health in Manufacturing: Ensure that technology and AI solutions 

contribute to safety, health and operational excellence within manufacturing 

environments, where the workplace is prone to diseases and health risks. 

 

1.3 Dissertation Outlines 

This dissertation is organized to investigate innovative AI solutions for improving 

manufacturing safety and security, particularly in the context of disease-prone 

environments and air quality concerns. The following is an outline of this research work: 

1) Chapter 1 discusses the research background and the research objective will be 

addressed with appropriate references at the beginning of the chapter. 

2) Chapter 2 discusses the implementation of skeleton data and LSTM to detect 

suspicious behaviors, indicating possible health concerns. 

3) Chapter 3 reviews the innovations in wireless sensor networks that have 

transformed air quality monitoring, delivering real-time data for informed policy 

decisions. 

4) Chapter 4 presents a new framework for atmospheric dispersion to forecast air 

quality. 

5) Chapter 5 discusses the developments of the AI framework based skeleton data 

and indoor air quality conditions to study the abnormal behavior of worker in a 

manufacturing workplace prone to disease dispersion. 

6) Chapter 6 discusses the summary of our work and directions to carry on this 

work in future.  
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Chapter 2 

LSTM-Enhanced Suspicious Behavior Detection based on Skeleton 

Data 

 

2.1 Introduction  

In the fast-paced world of modern manufacturing, where operational efficiency is king, 

the need to ensure worker safety and security is critical. Manufacturing environments, 

which are characterized by intense industrial activity, face a dual challenge: protecting 

employee well-being while also addressing potential health hazards attributed to air 

quality. In the midst of these multifaceted challenges, the pursuit of novel solutions 

becomes essential, with a particular emphasis on skeleton-based behavior detection[1-

4]. 

Safety and security are the central pillars of manufacturing operational excellence. 

Incidents, accidents, and health-related risks not only endanger workers' physical and 

psychological health, but they also have a significant impact on the overall operational 

efficiency and fiscal viability of manufacturing facilities. While significant progress has 

been made in strengthening safety protocols, critical gaps remain [5-9]. This chapter 

begins a thorough examination of AI-enhanced solutions designed to detect suspicious 

behavior in this context.  

The need for innovative solutions to improve safety and security takes center stage in 

this chapter, with a focus on skeleton-based behavior detection. While traditional 

solutions have paved the way for increased safety, they frequently fall short of 

addressing the complex interplay of safety, security, and health. The creation of 

innovative algorithms based on artificial intelligence (AI) and utilizing skeleton data 
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appears to be a promising avenue for addressing these multifaceted challenges. By 

meticulously analyzing workers' skeletal movements, this research aims to achieve a 

dual goal: preventing accidents while also monitoring air quality to mitigate health risks. 

This pursuit of innovation goes far beyond theoretical speculation. In the following 

sections, we will look at specific manufacturing environments that are prone to air 

quality-related diseases. The implementation of AI-enhanced suspicious behavior 

detection systems, as well as their seamless integration with air quality monitoring 

mechanisms, will be investigated as part of a comprehensive approach to ensuring the 

well-being and security of the workforce. 

This chapter marks the beginning of a transformative endeavor to improve 

manufacturing safety and security paradigms. As we progress through the chapters that 

follow, the implications of these efforts will become clear, potentially affecting not only 

the manufacturing sector but also occupational safety across industries. The imperative 

to ensure the safety and security of the workforce assumes paramount importance in 

the dynamic realm of modern manufacturing, where operational efficiency is a driving 

force. Manufacturing environments, which are characterized by intense industrial activity, 

face a dual challenge: protecting employee well-being while also addressing potential 

health hazards attributed to air quality. In the midst of these multifaceted challenges, the 

pursuit of innovative solutions becomes imperative, with a particular emphasis on 

skeleton-based behavior detection. 

 

2.2 Kinect Camera 

The Kinect camera, developed by Microsoft, represents a pioneering advancement in 

human-computer interaction and depth-sensing technology. Originally introduced as a 
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peripheral for the Xbox gaming console, the Kinect utilizes a combination of infrared 

sensors, RGB cameras, and a depth sensor to capture and interpret the user's 

movements in three dimensions. This sophisticated system enables the Kinect to track 

the skeletal movements of individuals in real-time, translating their actions into on-

screen interactions. Beyond gaming, the Kinect has found applications in a myriad of 

fields, including healthcare, education, robotics, and virtual reality. The depth-sensing 

capabilities of the Kinect create a detailed 3D point cloud of the surrounding 

environment, allowing for accurate spatial mapping and object recognition. Developers 

have harnessed the Kinect's potential for gesture-based controls, immersive augmented 

reality experiences, and even in rehabilitation therapies. While subsequent iterations of 

the Kinect have seen variations in design and capabilities, its impact on interactive 

technologies and its role in fostering innovation remain significant, making it a key 

subject of study and exploration in various research and application domains [10]. 

Figure 2 shown the standard parameters for Kinect V1 in outer space applications. 

 

Figure 2. Standard Parameters for Kinect in Outer Space Applications 
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Kinect v1 has a recommended depth range of approximately 1.2 to 3.5 meters (3.9 to 

11.5 feet). It is optimized for tracking users within this distance range. The horizontal 

field of view is around 57 degrees, and the vertical field of view is approximately 43 

degrees. This determines the spatial coverage of the Kinect camera. Kinect v1 captures 

depth frames at a frame rate of 30 frames per second (fps). The color camera captures 

frames at a resolution of 640x480 pixels with a frame rate of 30 fps. Kinect v1 employs 

skeletal tracking technology, allowing it to recognize and track the movements of 

multiple users simultaneously. It can identify key joints and provide a real-time skeletal 

model. 

 

Figure 3. The 3D coordinate system of Kinect camera. 

Figure 3 shows the 3D coordinate system of the Kinect V1 camera is a crucial aspect of 

its functionality, enabling precise spatial mapping and motion tracking. The system 

employs a Cartesian coordinate framework, where each point in the three-dimensional 

space is defined by its X, Y, and Z coordinates. The origin typically corresponds to the 

camera's position, with the X-axis extending horizontally, the Y-axis vertically, and the 

Z-axis capturing depth information. Kinect utilizes advanced depth-sensing technology, 
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such as time-of-flight or structured light, to measure distances accurately and generate 

a detailed 3D point cloud of the scene. This coordinate system facilitates the mapping of 

real-world objects and movements into a digital space, making Kinect a valuable tool in 

various applications, including gaming, augmented reality, and motion analysis. 

Understanding the intricacies of the 3D coordinate system is fundamental for 

developers and researchers harnessing the Kinect's capabilities for innovative and 

immersive experiences. 

 

Figure 4. Structure of the human skeleton with 17 key joints. 

2.3 Proposed methodology  

Figure 4 is an illustrative representation of the human skeleton, focusing on 17 critical 

joints. These identified key points are anticipated to encompass specific bone structures 

for the human skeleton.  Those 17 joints are head, neck, right shoulder, left shoulder, 

right elbow, left elbow, right wrist, left wrist, right hip, left hip, right knee, left knee, right 

foot, left foot, mid spine, right hand and left hand.  
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In this chapter we focused on 13 specific joints since not all joints are useful for our 

study. Those specific key joints are head, right shoulder, left shoulder, right elbow, left 

elbow, right hip, left hip, right knee, left knee, right foot, left foot, right hand and left hand.                                         

 

 

The depicted Figure 5 is a visual representation or diagram illustrating the structure of a 

Long Short-Term Memory (LSTM) neural network. It is anticipated to provide a visual 

breakdown of the LSTM architecture, highlighting its key components and connections. 

Such diagrams serve as invaluable educational tools within the field of deep learning 

and artificial intelligence, aiding in the comprehensive understanding of the LSTM 

network's design and functionality for academic and professional purposes. 

2.4  Experimental results 

The behaviors under consideration are categorized into "Fainting" and "Non Fainting 

(Table1). The dataset consists of 1200 samples used for training the system and 600 

samples for testing its accuracy. This partitioning of data is a common practice to 

assess how well the algorithm generalizes to unseen instances. The LSTM algorithm 

was employed to recognize and classify the behaviors. The system's recognition 

accuracy is presented in terms of both training and testing data. In 1200 training 

samples, the system correctly recognized 976 fall states and it is the 81.8% accuracy. 

Figure 5. Behavior recognition methodology  
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Worker Behavior Type Sample 
Recognized Results 

Accuracy % 

Fainting Non Fainting 

Fainting 

Training Data 1200 976 224 81.8% 

Testing Data 600 491 106 81.3% 

Non Fainting 

Training Data 1200 996 204 83.5% 

Testing Data 600 501 99 83% 

 

2.5 Conclusion  

In the manufacturing environment, our approach involves continuous monitoring of 

workers, focusing on the extraction of skeletal data features using a structured 

representation of the human skeleton with 13 key points. This detailed skeletal data 

serves as the foundation for our innovative solution. The Long Short-Term Memory 

(LSTM) network is employed as a pivotal component for the detection of suspicious 

behaviors exhibited by workers during their tasks. 

The term "suspicious behavior" is assigned to actions that deviate from established 

norms and expectations. The anomalies we are particularly interested in encompass 

instances where a worker exhibits behavior such as excessive body scratching, fainting, 

or frequent and prolonged bouts of coughing. These behaviors are labeled as 

"suspicious" because they fall outside the realm of what is considered ordinary during 

routine work activities. It is important to emphasize that while these behaviors are 

deemed suspicious, they do not, at this stage, indicate the presence of a specific 

disease. Rather, they are indicative of actions that require further investigation and 

Table 1: Recognition results for fainting and non-fainting behavior 
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attention. The ultimate aim of our system is to serve as an early warning mechanism, 

alerting to deviations that may signal underlying health concerns. This preventive 

approach allows for timely intervention and the safeguarding of worker well-being in 

manufacturing environments.       
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Chapter 3 

Real-time systems for air quality forecasting: A review of sensor 

networks, data fusion, and modeling approaches 

An important environmental concern that has an impact on people's health and quality 

of life is air quality. For early detection of possible air quality issues and the creation of 

efficient mitigation plans, accurate air quality forecasting is crucial. To offer timely 

updates on the state of the air and increase the precision of air quality forecasts, real-

time systems can be employed. These systems include sensor networks, data fusion, 

and modeling techniques. With an emphasis on these three strategies, this chapter 

examines the state of art of research on real-time systems for air quality forecasting. 

Sensor networks are groups of sensors placed all over an area to gather information on 

variables affecting air quality, such as temperature, humidity, and pollution 

concentrations. This work covers recent studies on the application of sensor networks 

for air quality forecasting going through the difficulties and advantages of this strategy. 

Data fusion consists of combining information from several sources, including as sensor 

networks and satellite data, to produce an accurate picture of the current state of the air. 

In this study, we cover recent research on data fusion methods for predicting air quality 

and highlight the advantages and drawbacks of this strategy. Using modeling 

techniques, it is possible to simulate how various environmental elements affect air 

quality and receive real-time updates on forecasts. This chapter presents a review on 

recent research on modeling methods for predicting air quality and outlines the 

difficulties and advantages of this method. Finally the main research gaps and areas of 

future research in real-time systems for air quality forecasting are emphasized in this 

chapter. 
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3.1 Introduction  

Millions of people around the world's health and well-being are impacted by air pollution, 

a serious environmental problem. For early detection of possible air quality issues and 

the creation of efficient mitigation plans, accurate air quality forecasting is crucial. To 

offer timely updates on the state of the air and increase the precision of air quality 

forecasts, real-time systems can be employed. These systems include sensor networks, 

data fusion, and modeling techniques. 

In order to gather information on air quality characteristics including temperature, 

humidity, and pollutant concentrations, sensor networks entail the deployment of 

several sensors throughout a region. These sensors can be linked to a central server or 

cloud computing platform, which can evaluate the data in real-time and offer air quality 

updates. Applications for sensor networks include tracking air quality in cities [11], 

tracking it inside buildings [12], and tracking it while moving [13]. 

Data fusion includes combining information from several sources, including sensor 

networks and satellite data, to produce an accurate picture of the current state of the air 

[14,15]. Data fusion can assist in addressing some of the drawbacks of separate data 

sources, such as sensor network data, which may have low temporal or spatial 

precision. Numerous applications, including monitoring of wildfire smoke [16] and urban 

air quality [17], have made use of data fusion approaches. Using modeling techniques, 

it is possible to simulate how various environmental elements affect air quality and 

receive real-time updates on forecasts [18,19,20]. These models can be used to mimic 

how changes in the weather, emission sources, and other environmental factors affect 

the quality of the air. Numerous applications have made use of modeling techniques, 

such as forecasting of wildfire smoke [21,22] and urban air quality [23]. The rest of this 

paper is conducted as follow: Section 2 discusses the advancements in wireless sensor 
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networks for air quality monitoring. Section 3 highlights data fusion techniques for air 

quality monitoring. Section 4 presents real-time modelling approaches for air quality 

management. Section 5 summarizes and concludes the study. 

 3.2. Sensor network: Advancements in Wireless Sensor Networks for Air 

Quality Monitoring 

Recent developments in wireless sensor networks have made it easier to employ them 

for a variety of purposes, such as environmental monitoring. In recent years, there has 

been a lot of interest in using wireless sensor networks to monitor air quality in particular. 

The ability of wireless sensor networks to deliver real-time information on air quality 

factors including temperature, humidity, and pollutant concentrations has been 

highlighted in a number of studies. A case study of a low-cost wireless sensor network 

for air quality monitoring in Northern Italy is shown in the paper by [24]. The study 

showed that using wireless sensor networks can produce trustworthy and accurate data 

on air quality, which can assist guide policies meant to improve air quality. A similar 

review of current advancements in wireless sensor networks for environmental 

monitoring, including air quality monitoring, is provided in [25]. The authors emphasize 

how wireless sensor networks can deliver real-time information on air quality that may 

be used to create efficient air quality management plans. Additionally, authors in [26] 

evaluate Internet of Things (IoT) and wireless sensor network-based air quality 

monitoring and early warning systems. The authors contend that combining wireless 

sensor networks and IoT can improve air quality management by increasing the 

precision and effectiveness of air quality monitoring systems. 

3.3  Data Fusion Techniques for Air Quality Monitoring 

The potential of data fusion techniques for enhancing air quality monitoring systems has 

been highlighted by recent studies. Data fusion is the process of merging information 
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from various sources to get a more precise and comprehensive picture of a certain 

phenomenon. Data fusion can assist in overcoming some of the drawbacks of individual 

sensors in the context of air quality monitoring, such as their restricted coverage or 

sensitivity to particular contaminants. In order to predict fine particulate matter (PM2.5) 

concentrations using data from various sensors, [27] suggests a data fusion strategy 

based on a deep neural network. The authors show that the proposed method performs 

better in terms of accuracy and resilience than individual sensors and conventional data 

fusion techniques. Likewise, [28] uses a data fusion strategy to estimate China's PM2.5 

concentrations by combining information from satellites and ground-based sensors. 

Comparing the suggested approach to individual sensors or satellite data alone, the 

authors demonstrate how it can deliver more accurate and thorough information on air 

quality. Furthermore, [29] suggests a data fusion method to predict and forecast air 

quality in Beijing, China, by combining data from many sources, such as sensors, 

meteorological data, and land use data. Authors present evidence that the suggested 

method can produce reliable and accurate air quality forecasts, which can be used to 

guide the development of policies aimed at lowering urban air pollution. 

 

Figure 6. Data Fusion Process for Real-Time Air Quality Monitoring using network 

sensors 
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The procedure of monitoring air quality in a city using a wireless sensor network is 

shown in Figure 6. The sensors are positioned in different places to track various 

aspects of air quality, and the information gathered from each sensor is relayed to a 

central hub for data fusion. The phases of the data fusion process, including data 

gathering, processing, and integration, are also depicted in Figure 6. Data fusion 

process is described as follows: 

1) Node Structure: In order to monitor various air quality metrics, the initial stage is 

establishing a wireless sensor network in the metropolitan area. Sensors are 

installed at various points across the network. 

2) Data collection: The sensors gather data on the air quality indicators such as 

particulate matter, ozone, nitrogen dioxide, etc. 

3) Data processing: The initial phase in the data processing process is pre-

processing, which focuses on normalizing, transforming, and filtering raw data to 

get it ready for integration. The second stage includes data analysis and quality 

control. In the last phase, fusion techniques such kalman filters, neural networks, 

and Bayesian networks are used. 

4) Data Integration: this step generates reports and alerts based on the integrated 

data and Combines data from different sources and creates a comprehensive 

picture of air quality. 

5) Decision-making: Afterward, choices on the management of air quality and public 

health are made using the combined data. 

3.4   Real-time modelling approaches for air quality management 

The application of modeling approaches for air quality control has been made easier by 

recent developments in real-time systems and machine learning techniques. The 

potential of machine learning-based modeling techniques for air quality forecasting and 

management has been examined in a number of researches [30,31,32]. These 
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modeling techniques produce precise estimates of air quality using real-time data from 

air quality monitoring stations, satellite data, and meteorological data. A deep learning-

based air quality prediction model, for instance, was put forth and combines traffic, 

weather, and air quality data to forecast PM2.5 concentrations in [30]. The suggested 

approach beats conventional machine learning models in terms of prediction accuracy, 

according to the authors' research. Similar to this, [31] developed a hybrid model to 

forecast air quality that combines a support vector machine (SVM) model and a long 

short-term memory (LSTM) neural network model. According to the study, the proposed 

hybrid model has higher prediction accuracy than conventional models. A few research 

have also looked at the application of sophisticated modeling techniques, such as the 

hybrid model of deep learning and artificial neural networks (ANN) for forecasting air 

quality [33,34]. In order to forecast PM2.5 concentrations, for instance, [33] suggested a 

hybrid model that combines a convolutional neural network (CNN) with a gated 

recurrent unit (GRU) model. According to the study, the proposed hybrid model 

performs better in terms of prediction accuracy than conventional machine learning 

models. [34] Introduced an ANN-based air quality prediction model that makes use of 

numerous meteorological variables in a different study. The research demonstrated that 

the suggested model does a good job of forecasting the amounts of several air 

pollutants, such as PM2.5, NO2, and SO2. Generally, machine learning, ensemble 

methods, and time series analysis are different approaches that can be used for air 

quality prediction modeling, as depicted in Figure 7. 
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Figure 7. Example of best modelling approaches for air quality prediction 

These modeling techniques, which include machine learning (Random Forest, Artificial 

Intelligence, and SVM), time series analysis (ARIMA and SARIMA), and ensemble 

methods (Boosting, Bagging, and Stacking) , help to increase the accuracy, timeliness, 

and reliability of air quality predictions. They make it possible to analyze sensor data in 

real-time, capture complicated correlations, and offer useful information for managing 

and making decisions about air quality. 

   In Machine learning, random Forest may be used to instantly examine huge amounts 

of data gathered from sensor networks. It is capable of accurately capturing intricate 

correlations between pollutant concentrations, meteorological information, and air 

quality metrics. Real-time air quality monitoring and forecasting can benefit from 

Random Forest's capacity to handle high-dimensional data and produce reliable 

forecasts [35]. 
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   Real-time air quality forecasting has showed potential for artificial intelligence 

approaches like neural networks and deep learning. They are able to make accurate 

forecasts on time, adapt to shifting trends, and learn from prior data. Real-time 

processing of sensor data by neural networks and deep learning models, enable 

proactive decision-making and prompt interventions, as well as their ability to recognize 

non-linear relationships and produce precise forecasts [36]. 

   By utilizing SVM's capacity for classification and regression tasks, real-time air quality 

predictions can be accomplished. SVM models have the ability to interpret real-time 

data from sensor networks and forecast air quality based on past trends. SVM is suited 

for real-time analysis and forecasting because to its capacity to recognize non-linear 

relationships and manage high-dimensional data [37]. 

  Furthermore, the utilization Auto-Regressive Integrated Moving Average (ARIMA) 

models of time series Analysis as shown in figure 2, is considered crucial for capturing 

temporal dependencies and trends in real-time air quality forecasting. ARIMA models 

can make short-term projections of air quality by examining historical data, including 

pollution concentrations and climatic variables. ARIMA is suitable for real-time 

monitoring and forecasting since it can take into account historical observations and 

recognize seasonality trends [38].  

   In addition to that, Seasonal Auto-Regressive Integrated Moving Average (SARIMA): 

It is frequently necessary to take seasonal changes and cyclic patterns into account 

when monitoring real-time air quality. SARIMA models are useful for real-time 

forecasting because they can efficiently capture these trends. SARIMA models enable 

precise forecasts in real-time by taking into account seasonal components in the data, 

allowing stakeholders to respond promptly to address air quality concerns [39]. 

  In ensemble methods, by merging the results of various models and adjusting to 

shifting trends, boosting algorithms can improve real-time air quality forecasting. 

Boosting algorithms target enhancing model accuracy on difficult data examples by 
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iteratively modifying the weights of training samples. Since of their versatility, boosting 

techniques are useful for real-time monitoring and forecasting since they allow for 

precise forecasts in circumstances with changing air quality [40].  

  Furthermore, by lowering variance and boosting stability, bagging techniques can 

enhance real-time air quality forecasts. Bagging reduces the danger of overfitting and 

produces reliable predictions by assembling a set of models trained on bootstrapped 

samples. In real-time systems, when precise and stable forecasts are essential for 

efficient decision-making, bagging techniques are very helpful [41]. 

  Another aspect to consider is stacking. To take advantage of each model's advantages 

and enhance real-time air quality forecasting, stacking mixes the forecasts of various 

models. Stacking can identify various patterns and relationships in the data by using a 

meta-learner to integrate the predictions. Real-time systems can profit from stacking by 

incorporating many modeling approaches and utilizing their combined strength to 

produce precise and trustworthy projections [42].  

 

3.5 Conclusion  

The forecasting and monitoring of air quality might be greatly enhanced by real-time 

technologies. Each approach sensor networks, data fusion, and modeling has its own 

advantages and disadvantages, and the success of each depends on the application for 

which it is used and the data sources available. The development of new real-time 

systems that incorporate many methodologies and data sources should be the main 

emphasis of future research in order to produce air quality forecasts that are more 

precise and thorough. Such systems can be employed to educate public health 

professionals, legislators, and the general public about potential air quality problems 

and to create efficient mitigation plans. 
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Chapter 4 

Short Path Wind-Field Distance based Lagrangian Trajectory 

Model for Enhancing Atmospheric Dispersion Prediction Accuracy 

 

Air pollution is a major global issue that not only threatens the safety of our planet but 

also poses risks to global health. Weather plays a crucial role in the rapid dispersion of 

air pollution. Various models have been used to predict air pollution; however, 

atmospheric pollution dispersion remains unpredictable, especially in relation to 

meteorological conditions. Our research scope in this chapter focuses on developing an 

Air Diffusion Model using Future Wind and Pollutant sensing data to enhance prediction 

accuracy. In this paper, we present a new approach based on a mathematical model 

named the Short Path Distance based Lagrangian Trajectory Model (SPD-LTM). This 

model utilizes a trajectory approach and short path wind-field distance optimization to 

predict future air dispersion using pollutant sensing data. The framework developed in 

this work aims to model changes in Particulate Matter (PM2.5) and predict its 

concentration based on short path distance and time dependencies. The Lagrangian 

trajectory and concentration calculations are performed using the Hybrid Single-

Particulate Lagrangian Integrated Trajectory algorithm (HYSPLIT). Then, we apply the 

short path distance algorithm using the Dijkstra algorithm. The obtained results 

demonstrate that the SPD-LTM outperforms the usual LTM and provides better 

accuracy to our predictive model. 

4.1 Introduction  

The evolutional wave of the fast industrialization has been leading us to face a serious 

climate changes and health issues. This global issue refers mainly to the toxic elements 

existing in the air we consume [43-44]. One of the most harmful contaminants in the air 
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is PM2.5, which is a type of a small particulate matter that has a diameter of less than 

2.5 micrometers [45-46]. PM2.5 particles are incredibly lightweight and small, which 

allows them to remain suspended in the atmosphere for a considerable amount of time 

[47]. They are produced by a variety of sources, including motor vehicles, power plants, 

factories, and wildfires, and can be dispersed over enormous area by wind and 

atmospheric conditions [48]. When breathed, these small particles may spread deep 

into the lungs and even in the bloodstream, causing many health diseases [49]. The 

concentrations of PM2.5 in the atmosphere are measured in micrograms per cubic 

meter (µg/m³) and are considered as a critical indicator of air quality. In many cities 

throughout the world, PM2.5 concentrations often surpass the Worth Health 

Organization’s recommended limit of 10g/m3, reaching levels that are toxic to human 

health [50]. Atmospheric dispersion is a fundamental phenomenon that impacts the 

movements and distribution of air pollutants, especially PM2.5, in the atmosphere. It 

refers to the transport of pollutants through the air, driven by wind field, temperature 

gradients, and other meteorological conditions. Atmospheric dispersion models are 

used to forecast the movement and behavior of pollutants in the atmosphere, to help 

develop effective strategies for lowering air pollution and improving air quality, 

especially in industrial areas [51-57]. One way to examine the movement of air 

pollutants, such as PM2.5, is through Lagrangian trajectory models. 

These models follow the movement of the air particles and can determine as well the 

source and path of air pollution. Indeed, lagrangian trajectory models use mathematical 

algorithms to simulate the transport of air pollutants over time and space. These models 

can take into consideration the impacts of wind, turbulence, and other meteorological 

conditions that affect the movement of air particles. By inputting data on the location 

and timing of air pollution emissions, as well as meteorological data such as wind speed 

and direction, these models may simulate the movement of air pollutants and provide 
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insights into their dispersion patterns [58-70]. One of the most extensively used 

lagrangian trajectory models is the HYSPLIT. It employs both Lagrangian and Eulerian 

techniques to mimic the movement of air contaminants over huge distances and 

timescales. It has been used in a wide range of applications, including tracking the 

movement of pollutants from industrial and transportation sources, studying the 

dispersion of pollutants from wildfires and volcanic eruptions, and assessing the impact 

of long-range transport of air pollutants on human health and the environment [71-74]. 

Additionally, air pollution dispersion can be enhanced through the use of Short Path 

Distance (SPD) models. Considering that SPD models take into account the distance 

that air particles move during a short period of time, often several hours, in order to 

anticipate more correctly their dispersion patterns [75-77]. The goal of this study is to 

implement the lagrangian trajectory approach and the short path distance approach, by 

presenting a new method. Comparisons are conducted between real time concentration 

data of the PM2.5, the LTM concentration results and the SPD-LTM concentration to 

observe the prediction improvement achieved. 

4.2 Related work  

Models of atmospheric dispersion are crucial tools for determining how air pollutants 

affect the environment and human health. These models are used to mimic the behavior 

of air pollutants in the atmosphere, including their transport, diffusion, and chemical 

changes, according to [78]. The use of these models to forecast the concentration and 

dispersion of fine PM2.5 in the atmosphere has attracted increasing interest in recent 

years. For instance, [79] predicted South Korean PM2.5 concentrations using the 

Community Multiscale Air Quality (CMAQ) model. Operational Multiscale Environment 

Model with Grid Adaptivity (OMEGA) is one sort of atmospheric dispersion model 

frequently used for PM2.5. OMEGA is a cutting-edge air quality model that combines a 
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variety of physical and chemical processes that affect the transport and fate of air 

pollutants in the atmosphere, according to [80-81]. It simulates air quality at numerous 

scales, from regional to local. The CMAQ model, a complete air quality modeling 

system created by the EPA and other research institutes, is another frequently used 

atmospheric dispersion model for PM2.5. The CMAQ model, which has been widely 

used for regulatory and research reasons, comprises accurate models of atmospheric 

chemistry, emissions, and meteorology according to [82-83]. The Weather Research 

and Forecasting model with Chemistry (WRF-Chem) [84], the Comprehensive Air 

Quality Model with Extensions (CAMx) [85], and the HYSPLIT model [85] are a few 

additional atmospheric dispersion models that have been used for PM2.5. A class of 

atmospheric transport models called lagrangian dispersion models simulates the flow of 

air contaminants by following the path of individual particles or air parcels. Lagrangian 

models, which can take into account the impacts of complicated meteorological 

circumstances such atmospheric turbulence and convection, are particularly well-suited 

for modelling long-range transport of pollutants, according to [86]. The HYSPLIT model, 

created by NOAA [87], is a typical Lagrangian dispersion model. HYSPLIT is a popular 

model for atmospheric transport and dispersion modeling, according to [88], and has 

been used for a range of environmental applications, such as air pollution, radioactive 

discharges, and volcanic ash dispersion. The Flexible Particle (FLEXPART) model, 

created by the Norwegian Institute for Air Research, is another Lagrangian model that 

has gained prominence recently [89]. FLEXPART has reportedly been used extensively 

in air quality and climate research, and has been applied to a wide range of atmospheric 

transport and dispersion investigations, according to [90]. Other Lagrangian dispersion 

models, such as the Particle and Dispersion Model (PDM) [91] and the Lagrangian 

Particle Dispersion Model (LPDM) [92], have been used in atmospheric transport and 

dispersion modeling in addition to HYSPLIT and FLEXPART. Overall, it has been found 
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that Lagrangian dispersion models are useful tools for modelling the transport and 

dispersion of air contaminants in the atmosphere. On the other hand, short path 

distance models, a subset of atmospheric dispersion models, mimic the movement and 

dispersion of air pollutants over short distances, often of the order of a few kilometers or 

less. They are helpful for forecasting the amount of air pollution in the vicinity of 

emission sources, including factories or traffic. The Atmospheric Dispersion Modeling 

System (AERMOD) [93] and the California Puff (CALPUFF) model [94] are examples of 

frequently used short path distance models. These models have been used in a variety 

of regulatory and research situations, including environmental impact assessment [95] 

and air pollution modeling [96-98]. In general, atmospheric dispersion models are now a 

crucial tool for determining how PM2.5 affects both air quality and human health. These 

models are being continuously improved and updated to increase their precision and 

application, and it is anticipated that they will play a crucial part in determining future air 

quality laws and regulations [99] 

4.3  MATERIALS AND METHODS 
 

4.3.1 PM2.5 STUDY AREA  
 

The Onsan industrial zone in Ulsan City is one potential study location that could 

concentrate on PM2.5 and weather factors. Ulsan city is renowned for having high 

levels of air pollution, notably PM2.5, which has been associated to harmful health 

impacts, according to prior studies [100]. About 21 monitoring stations were set up by 

researchers in Ulsan for the collection of both PM2.5 and meteorological data [101]. The 

Korea National Institute of Environmental Research (KNIER) station near the Onsan 

industrial complex is one of the areas where they placed air quality monitoring 

equipment for PM2.5 [102]. Basically Ulsan city has 5 districts: ulju-gun, buk-gu, jung-gu, 
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namgu, and dong-gu. Onsan is located in the neighboring area of ulju-gun district as 

shown in Figure 8. The station is able to measure 6 metrics: SO₂, CO, O₃, NO₂, 

PM10, and PM2.5. The measuring station has been installed in 1993 and operated by 

the Ulsan Institute of Health & Environment agency [103]. The monitoring station 

location is shown in Figure 9 [104]. As indicated in Table 2, The Onsan station had a 

Latitude of 35.5388o N and a longitude of 129.1269o E.  

 

 

Figure 8. The study area Ulsan city 
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TABLE 2 

station Specification 

Air Quality 

Station Area 

 

Onsan 

(Ulsan- South Korea) 

Station Name 
Deoksin-ro 

Data Capturing 

Date 

(Time span) 

01/01/2022-

12/31/2022 

(Hourly Data) 

Latitude 35.5388° N 

Longitude 129.1269° E 

 

4.3.2 DATA COLLECTION 
 

The observed hourly meteorological data of Ulsan city used in this study was obtained 

from the Korea Meteorological Administration (KMA) which is the responsible agency for 

the meteorological observations in South Korea. The detailed observed weather data 

was provided by the Automated Weather System (AWS) , which is an automatic 

weather station network operated by the KMA [105]. PM2.5 data was retrieved from 

AirKorea which is a real-time air quality information disclosure system 

(www.airkorea.or.kr). The collected hourly data was from 1 January 2022 to 31 

December 2022. As per the meteorological parameters, we retrieved wind speed, wind 
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direction, temperature and humidity. Table 3 shows the related variables of the retrieved 

data at the monitored location of our study area. However, those units are commonly 

used in environmental monitoring, meteorology, and various scientific and data 

collection contexts to describe and quantify different parameters and variables. Year 

units represent time in years, typically used to indicate the calendar year when the data 

was collected. Month unit represents time in months, often used to specify the month 

within a year when the data was recorded. The Time is measured in hours, indicating 

the specific hours within a day when the data was taken (this is typically on a 24-hour 

clock (0~23). The longitude is measured in degrees and represents the east-west 

positon of a location on the Earth’s surface (The ranges from -180° (West) ~ +180° 

(East)) with pri. Latitude is also measured in degrees and represents the north-south 

position of a location on the Earth's surface. It ranges from -90° (South) to +90° (North), 

with 0° at the Equator. Temperature is measured in degrees Celsius (°C), which is a 

common unit for indicating temperature in the metric system. It measures the warmth or 

coldness of the air or a substance. Humidity is expressed as a percentage (%), 

representing the relative humidity of the air. It measures the amount of moisture present 

in the atmosphere relative to the maximum amount it can hold at a given temperature. 

Wind speed is measured in meters per second (m/s) and represents the rate at which 

air is moving horizontally past a point. It's commonly used to describe the intensity of 

wind. Wind direction is measured in degrees and indicates the direction from which the 

wind is blowing. It's typically measured in degrees clockwise from north (0°). PM2.5 

concentration is measured in micrograms per cubic meter (µg/m³). It quantifies the 

concentration of fine particulate matter in the air with a diameter of 2.5 micrometers or 

smaller, which can have adverse effects on health when inhaled. 
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Figure 9. Monitoring station location of PM2.5 

 

TABLE 3 

Data Related variable 

Related Variable 
Unit 

 

Year 

Month 

Hour 

Longitude (o) 

Latitude(o) 

Temperature 

Humidity 

Windspeed 

Winddirection 

Pm2.5 

year 

month 

hour 

degree 

degree 

oC 

% 

m/s 

degree 

µg/m³ 
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4.3.3 DATA PREPROCESSING 
 

In order to analyze the PM2.5 data and meteorological data, a data preprocessing 

approach is necessary. Firstly, the two datasets need to be merged and mapped 

together to establish a comprehensive dataset for analysis. This can be achieved by 

aligning the timestamps or common identifiers present in both datasets. We used 

common timestamps during data integration to merge the PM2.5 data and 

meteorological data into a single dataset. Z-score standardization method has been 

applied to the related variables of the meteorological data and the pm2.5 data. However 

the geological data variables such as latitude and longitude didn’t require any 

standardization. Then, we ensured that both datasets have consistent and compatible 

formats. Interpolation techniques were used to fill in any missing values in the dataset. 

By estimating values based on the nearby accessible data points, interpolation aids in 

filling in the gaps in the data.  We used spine interpolation, which uses smooth curves to 

approximatively fill in missing data, for handling missing values. 

The equation for each cubic polynomial segment between two neighboring data points 

for the cubic spline interpolation is written as follows:  

Taking into account two neighboring data sets (xi, zi) and(xi+1, zi+1), where xi and  xi+1  

are x-coordinates, while zi and zi+1 are y-coordinates. The cubic spline equation for the 

segment between these two points is as follows: 

S(x) = a × (xi+1 − x)3 + b × (x − xi)
3

+ c × (xi+1 − x)3 + d
× (x − xi)

3 
(1) 

Where:  
 The cubic spline function is denoted by S(x). 

 
 The input value x is what we want to use to estimate the z-value. 
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The cubic spline must satisfy the following condition in order to compute the coefficients 

a, b, c, and d. These conditions include:  

1) Interpolation Condition: The spline passes through each data point, meaning 

S(xi)= zi and S(xi+1)= zi+1. 

 

2) Continuity Condition: The first and second derivatives of adjacent polynomials 

are equal at each data point to ensure a smooth transition. 

 

In order to meet the requirements of the integration of HYSPLIT algorithm, we made 

sure that our data comprised regular time intervals with constant temporal resolution, 

geographical coordinates (latitude, longitude), and relevant meteorological variables 

(wind speed, wind direction, and temperature). These aspects need to be considered in 

order to properly comprehend air transport and dispersion. To visually assess the data 

on wind direction, we used a wind rose in our preprocessing part. The wind rose shows 

the frequency and distribution of measured wind directions, providing information about 

the dominant winds and wind resources. By collecting and aggregating wind direction 

data into directional sectors, we create the wind rose in Figure 10, which offers a 

thorough picture of the wind condition in our study region. The observation of pm2.5 in 

correlation with the other features is shown in Figure 12. After the observation of each 

feature in Figures 11, 12, 13 and 14 in correlation with the measured pm2.5 retrieved 

from the measuring station of the study area, we conclude that temperature and 

humidity had no significant impact on the pm2.5 concentration as observed in the 

analyzed on Figure 15. In consequence, we are taking in consideration wind speed and 

wind direction features. The observation and analysis of these features are depicted in 

Figures 16. 
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Figure 10. Wind rose of the wind speed and direction 

 

 

Figure 11. Measured pm2.5 distribution in the dataset 

 

 

Figure 12. Winddirection distribution in the dataset 
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Figure 13. Windspeed distribution in the dataset 

 

Figure 14. Time distribution in the dataset 

 

Figure 15. Temperature and Humidity by measured pm2.5 
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Figure 16. Windspeed and winddirection by measured pm2.5 

 

Table 4 present the detailed data information statistics for five different variables: 

Temperature, Humidity, Windspeed, Winddirection, and Pm2.5 measured. Each row in 

the table represents a statistical measure for these variables, and the columns provide 

specific information for each measure. For instance, count shows the number of data 

points available for each variable (There are 8760 data points for each variable). Mean, 

represents the mean (average) value of each variable. Std represents the standard 

deviation of each variable (Bigger number means more spread). Min shows the 

minimum value observed for each variable. First Quartile (25%) shows the value at the 

25th percentile of the data. Max gives the maximum (largest) value observed for each 

variable. 
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Table 4. Data Information Statistics 

 

 

4.3.4 METHODOLOGY 

In this part, we are discussing the attempted methodology used in this study for the 

pm2.5 concentration prediction. The process of this study is shown in Figure 17.The 

trajectories and concentrations of the pm2.5 were calculated using Hysplit algorithm. 

Equation (2) and equation (4) are the basic particle trajectory and particle concentration 

equations respectively [65]:  

1. Particle trajectory: 

 

p′(t + ∆t) = p(t) + V(p, t). ∆t (2) 

 

The advection of the particle is calculated as the average of the three-dimensional 

velocity vectors V(p, t) at the initial point p(t) and the first-estimated position p′(t + ∆t) 

where t represents time. The final position is:  

 

   p(t + ∆t) = p(t) +
1

2
[V(p, t) + V(p′, t + ∆t)]∆t 

(3) 

 

To find the final position of the particle at timet +  ∆t (p(t + ∆t)), we update the initial 

position p(t) by adding an average of the velocities at both time points(t and t +  ∆t). 
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The velocity vector at the first-estimated position p′ (t + ∆t) is considered alongside the 

current velocity vector V(p, t) at time t. The averaging of velocities helps to account for 

the potential changes in the particle's speed or direction over the time interval  ∆t. 

The term 1/2 [V(p, t)  +  V(p′, t + ∆t)] represents the average velocity vector over the 

time interval ∆t, and when multiplied by ∆t, it gives the displacement of .the particle over 

that time step. Adding this displacement to the initial position p(t) gives the final position 

of the particle at time t +  ∆t. In both space and time, the velocity vectors are linearly 

interpolated. 

1. Particle concentration : 
 

∆C = m(2πσh
2∆z)

−1
exp (

−x2

2σ2h
) 

(4) 

Where ∆C represents the change in particle concentration at a specific point in the 

three-dimensional space and m representing the mass of the particles. It scales the 

overall concentration level. σh is the standard deviation of the Gaussian distribution in 

the horizontal plane. It controls the spread or dispersion of the particle concentration in 

the horizontal direction, ∆z is the variation or difference in height or altitude in the 

vertical (z) direction, x is the distance from the center point (where the concentration is 

at its peak). It is usually measured in the horizontal plane. σ is the standard deviation of 

the Gaussian distribution in the x-direction. It controls the spread of the concentration 

along the x-axis, and his a constant parameter, which can influence the vertical spread 

of the concentration. Therefore, the spread of the distribution in both the horizontal and 

vertical directions is controlled by σh and ∆z, respectively. 

The cost function is used to quantify how well the predicted PM2.5 concentration aligns 

with the observed values while also considering the influence of the short path distance. 

By minimizing the cost function, the model aims to improve its predictive accuracy and 

effectively account for the relationship between PM2.5 concentration and the distance 

traveled along the short path. The cost function equation is as follows: 

 

cost = W1 × (PMpredicted − PMobserved)2 +  W2 × SD 
(5) 



45 
 

 

The squared difference between the predicted and observed pm2.5 concentrations is 

combined in the cost function. By squaring the difference, the necessity of an accurate 

forecast is highlighted and greater errors are amplified. SD variable refers to the short 

path distance component, is a measurement of the length of the trajectory connected to 

the concentration of pm2.5. The distance of the trajectory has been calculated in this 

phase using the Dijkstra method. Our model carefully examines the effect of the 

trajectory distance on the prediction of pm2.5 concentration while implementing the 

short path distance in this cost function. W1 and W2 are weighting factors that determine 

the relative importance of the prediction error component and the short path distance 

component in the cost function. W1  controls the influence of the prediction error 

component, while W2 controls the influence of the short path distance component. The 

notations and explanations used in this cost function as well as the notations used in 

this study, are summarized in Table 5. 

 

Table 5. Notation and Explanations 

 

 

4.3.5 EVALUATION METRICS 
 

We compared the observed concentrations of pm2.5, the predicted concentrations 

without the short path distance, and the predicted concentrations with the short path 
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distance to assess the performance of our model and determine how much efficiency 

the short path distance would add to our prediction. The statistical evaluation metrics 

listed in Equations 6, 7 and 8 were employed for this evaluation. yi is the observed 

pm2.5 concentration, ŷi  is the predicted pm2.5 concentrations, y̅i  is the mean of 

observed values and n is the length of the test set. Measures of the difference between 

the observed value and the predicted value include Root Mean Square Eroor (RMSE), 

Mean Absolute Error (MAE) and Means squared error (MSE). The RMSE and MAE 

metrics show how sensitive and resistant the model is to greater errors, respectively. 

The prediction impact is better when the two values are lower. MSE evaluates how well 

the accuracy predicted results match the observed data. The lower MSE value, the 

better the effect can be predicted. 

 

We calculated the MAE by taking the absolute difference between each observed yi and 

predicted ŷi value and then averaging those absolute differences over all data points n. 

The formula is as follows: 

 

MAE =
1

n
∑ |yi − ŷi|

n

i−1
 (6) 

 

This equation (6) calculates the absolute difference between each observed value yi 

and its corresponding predicted value ŷi for all data points (i = 1 to n). Then, it takes the 

sum ∑ of all these absolute differences. Finally, it divides the sum by the total number of 

data points n to obtain the mean, which gives the average absolute difference between 

the observed and predicted values. 

We have calculated the MSE by taking the squared difference between each observed 

yi and predicted ŷi value and then averaging those squared differences over all data 

points n. The formula is as follows: 

MSE =
1

n
∑ (yi − ŷi)

2
n

i−1
 (7) 

Where the equation (7) calculates the squared difference between each observed value 

yi and its corresponding predicted value ŷi for all data points. Then, it takes the sum ∑ 
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of all these squared differences. Finally, it calculates the average squared difference 

between observed and predicted values by dividing the sum by the total number of data 

points n. 

We obtained the RMSE by taking the square root of the MSE. It provides a measure of 

the typical error magnitude between the observed and predicted values. The formula is 

as follows: 

 

RMSE = √
1

n
∑ (yi − ŷi)2

n

i−1
   (8) 

The equation (8) calculates the average difference between the observed and predicted 

values, squares it, takes the mean of all the squared differences, and then takes the 

square root of that mean. The resulting value represents the typical difference between 

the observed and predicted values, with lower values indicating better model 

performance. 

 

Figure 17.Overview of the study design 
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Table 6. Notations and explanations 
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4.4  RESULTS & DISCUSSION 

 

Our model's evaluation showed useful predictions of PM2.5 values. The MAE between 

the predicted and observed values for our SPD-LTM model was determined as 1.1400. 

Additionally, our model's MSE, which measures the typical squared difference between 

predicted and observed values, was 1.2400. Additionally, the RMSE, which measures 

the residuals' standard deviation, was discovered to be 1.4800. Compared to the short 

path distance model, the Lagrangian trajectory model had somewhat larger errors, as 

seen by the MAE of 1.2600, MSE of 1.3000, and RMSE of 1.6700. When short path 

distance is not taken into account, these measurements show a bigger average 

absolute difference, squared difference, and standard deviation of the residuals. The 

better model performance, as shown by the reduced MAE, MSE, and RMSE values, 

emphasizes the important role of the short path distance parameter in improving the 

precision of PM2.5 concentration forecasts. We were able to consider the particular 

transport pathways and fully comprehend the spatiotemporal distribution of PM2.5 

concentrations by including short path distance. Figure 18 shows the pm2.5 

concentration monthly results. We conclude that the average concentration varies from 

0 to 20(µg/m³) which is considered as good quality average. Contrary to the usual LTM 

results, the concentration of pm2.5 is not accurate as depicted in Figure 19. As a 

summary of our model performance, Figure 20 presents a comparison between the 

observed pm2.5 concentration, SPD-LTM predicted concentration and the LTM 

predicted concentration. The short path distance parameter's extra data enables more 

accurate calculations and depicts the intricate dynamics of pollution movement more 

clearly. These findings highlight the significance of coupling Lagrangian trajectory model 

with the short path distance, as well as the crucial impact of our proposed cost function 

in the short path distance has in improving PM2.5 concentration prediction. The 

importance of this parameter is shown by the enhanced performance of our model over 

the usual Lagrangian trajectory model. The results of this study have significant impact 

for managing air quality and making decisions on public health, and they offer insightful 
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information for comprehending and combating PM2.5 pollution. Table 6 and Figure 21 

show performance of SPD-LTM and a comparison with LTM.  

 

Figure 18. pm2.5 concentration monthly results for the SPD-LTM prediction 

 

Figure 19. pm2.5 concentration monthly results for the LTM prediction 
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Figure 20. Comparison between the predicted pm2.5 of SPD LTM and LTM and the 

measured pm2.5 

 

Figure 21. Model prediction performance comparison 

 

 

Table 7. Model prediction performance at the study location 
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4.5  CONCLUSION  
 

In this study, a new framework for pm2.5 propagation was presented. This study shows 

how a Lagrangian trajectory model with short path distance can be used to estimate 

PM2.5 concentrations by introducing a new mathematical method. The reduced values 

of MAE, MSE, and RMSE show that the model outperforms both the real-time data and 

the traditional Lagrangian trajectory model. The inclusion of short path lengths greatly 

increases the accuracy and precision of the predictions and provides a more accurate 

understanding of the dynamics of pollutant transport. The results highlight the 

importance of considering specific transport pathways and their effects on PM2.5 

concentrations. This method holds great promise for use in treatments related to public 

health, environmental planning, and air quality management. Exploring the full potential 

of this technology and incorporating it into decision support systems should be the focus 

of future studies. Future work should focus on several areas to further enhance the 

application of this methodology. Firstly, the model's performance can be assessed in 

different geographical regions and under varying meteorological conditions to evaluate 

its generalizability. Additionally, the integration of other relevant parameters such as 

land use patterns, emission sources, and meteorological factors could contribute to a 

more comprehensive predictive model. Furthermore, the incorporation of artificial 

intelligence, machine learning techniques and advanced data analytics methods may 

enhance the model's predictive capabilities.  
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Chapter 5 

 
LSTM & SPD-LTM based Abnormal Behavior Detection Model 

 
5.1 Introduction  

 

This thesis introduces a comprehensive framework designed for the continuous 

monitoring and assessment of human behavior and air quality within manufacturing 

environments in Figure 22. The framework employs advanced technologies, including 

real-time behavioral analysis and air quality sensing, to dynamically evaluate potential 

safety hazards. By integrating these assessments, the system aims to proactively 

identify abnormal conditions and trigger timely interventions, thereby enhancing overall 

safety in manufacturing settings. This generic framework is flexible, allowing adaptation 

to diverse manufacturing scenarios while providing a foundation for improved 

occupational safety practices. In the context of manufacturing safety, the proposed 

framework addresses the need for a dynamic and integrated approach to assess both 

human behavior and air quality. By utilizing cutting-edge technologies, the system aims 

to contribute to proactive safety measures, mitigating risks associated with diverse 

manufacturing processes. The framework begins with a robust system architecture that 

encompasses real-time monitoring of human behavior and air quality. Sensors and data 

acquisition devices are strategically deployed to capture relevant information, forming 

the basis for subsequent analyses. 

A key component involves the continuous monitoring of human behavior on the 

manufacturing floor. Utilizing technologies such as skeleton data extraction and 

machine learning algorithms, the system captures, analyzes, and interprets worker 

actions in real-time. This enables the identification of abnormal behaviors that may pose 

safety risks. A pivotal feature of the framework lies in the integration of human behavior 

and air quality assessments. By correlating these datasets, the system distinguishes 

between normal and abnormal behaviors in context with the prevailing air quality 
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conditions. This integrated assessment allows for nuanced responses tailored to 

specific safety concerns. 

Upon identifying abnormal conditions, the framework triggers an early warning system. 

Immediate alarms prompt timely interventions, ensuring that potential safety hazards 

are addressed promptly. This proactive approach aligns with the overarching goal of 

preventing accidents and injuries in manufacturing environments. Recognizing the 

diversity of manufacturing processes, the framework is designed to be adaptable and 

scalable. Its generic nature allows for customization based on the specific needs and 

nuances of different manufacturing settings, promoting widespread applicability. 

In this chapter, we introduce a dynamic system for LSTM-enhanced abnormal behavior 

detection based on air quality data. The system's operation is contingent on the 

interplay between air quality conditions and observed worker behavior. 

Figure 23 shows Flowchart of the proposed manufacturing safety system. When a 

worker displays a suspicious behavior, such as fainting, the system's initial response is 

to assess the concurrent air quality conditions. Specifically, the system evaluates 

factors like temperature, gas concentrations, and contaminants in the environment. The 

predefined standard conditions for air quality serve as a baseline for normalcy. If the air 

quality conditions align with this norm, the system issues an alarm, signifying the 

potential gravity of the worker's fainting incident. 

Conversely, when the suspicious behavior exhibited by the worker is characterized by 

behaviors such as coughing or body scratching, the system proceeds to the second tier 

of analysis. Again, it scrutinizes the air quality parameters. However, if the air quality 

remains within the normal range, the system refrains from issuing an alarm. This 

distinction underscores the differential treatment of worker behaviors, prioritizing those 

that may pose a more immediate health risk. 
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In essence, this chapter delves into the intricate workings of our AI-driven system, 

emphasizing its ability to dynamically assess and respond to both worker behavior and 

air quality conditions. This approach empowers the system to discriminate between 

behaviors that warrant immediate attention and those that, when aligned with favorable 

air quality conditions, may be benign. The system's capacity to issue alarms when 

necessary and withhold them when not required underscores its role in enhancing 

worker safety and well-being in manufacturing environments. 

 

 

 
 

 

Figure 22. Generic of the dynamic human behavior and air quality assessment for 

safety in manufacturing  
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Figure 23. Flowchart of the proposed manufacturing safety system 

  

5.2 Dynamic human behavior and air quality assessment for safety in 

manufacturing 

  

In Table 8, our algorithm outlines the decision-making process for assessing worker 

behavior and air quality conditions to determine when to issue alarms for immediate 

action. It distinguishes between different behaviors and considers the state of air quality 

to prioritize worker safety in manufacturing environments. 
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This algorithm will presents a robust system for real-time monitoring of worker behavior 

with a focus on identifying potential health and safety concerns in the occupational 

environment. Leveraging advanced techniques such as skeleton data extraction and 

LSTM model learning, the system continuously assesses worker actions and responds 

promptly to abnormal behaviors. This thesis elucidates the key steps involved in the 

algorithm, its application in assessing behaviors like coughing, body scratching, and 

fainting, as well as its integration with air quality conditions for a comprehensive safety 

evaluation. The algorithm begins with the initialization phase, where the monitoring 

system is configured for real-time assessment. This includes setting up data recording 

mechanisms for observed behaviors and implementing skeleton data extraction 

techniques to facilitate ongoing LSTM model learning.  

 

Table 8. Dynamic Worker Behavior Monitoring and Alarm System for Occupational 

Safety 
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A continuous monitoring loop is established to observe and record worker behavior. 

This iterative process ensures that the system adapts to dynamic changes in the work 

environment, providing a real-time assessment of worker actions. Concurrently, 

skeleton data extraction occurs to enhance the learning capabilities of the LSTM model. 

Each observed behavior is systematically analyzed. In the case of coughing or body 

scratching, the algorithm evaluates the current air quality conditions. If abnormalities are 

detected within predefined standards, the behavior is flagged as suspicious and 

abnormal, triggering an immediate alarm for intervention. Conversely, if air quality 

conditions are deemed normal, the behavior is marked as suspicious but normal. For 

fainting behaviors, an immediate alarm is issued. The monitoring loop concludes upon 

the completion of the behavior analysis. The algorithm ensures a thorough examination 

of recorded data, providing a comprehensive overview of worker actions and associated 

safety implications. 
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Chapter 6 

 

Conclusion and Future work 
 

6.1 Conclusion  

 

In this thesis, we have explored innovative approaches to enhance safety and security 

in manufacturing environments. We introduced a multi-faceted system that combines 

skeleton-based behavior detection and air quality monitoring to detect and respond to 

abnormal worker behaviors. Our research addressed the need for proactive measures 

to safeguard worker well-being and the potential risks associated with air quality 

concerns. 

The utilization of skeleton data and Long Short-Term Memory (LSTM) networks for 

behavior detection has proven to be a valuable asset in our safety-enhancing system. 

We demonstrated that by continuously monitoring workers and assessing their 

movements, we can identify suspicious behaviors such as excessive body scratching, 

fainting, and persistent coughing. This real-time detection allows for prompt responses 

to potential health issues, contributing to a safer working environment. 

Additionally, our dynamic system integrates air quality assessment into the decision-

making process. By evaluating air quality conditions and contrasting them with observed 

behaviors, the system can issue alarms when necessary, prioritizing the immediate 

response to fainting incidents or abnormal air quality conditions. 

This research underscores the significance of proactive safety measures, bridging the 

gap between behavior detection and air quality monitoring. By focusing on early 

detection and response, we aim to reduce the potential health risks faced by workers in 

manufacturing environments. 
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6.2 Future Work: 

As we move forward, there are several avenues for future research and improvements: 

1. Disease Detection and Prediction: Expand the system's capabilities to not only detect 

suspicious behaviors but also predict potential diseases based on behavioral patterns 

and air quality conditions. This proactive approach can contribute to early disease 

diagnosis. 

2. Integration of Environmental Data: Incorporate additional environmental data, such as 

particulate matter (PM) concentrations, into air quality assessments for more 

comprehensive monitoring. 

3. Real-Time Notifications: Develop a real-time notification system that can alert workers 

and supervisors to potential risks and abnormalities, ensuring immediate actions can be 

taken. 

4. Machine Learning Enhancements: Explore advanced machine learning techniques to 

improve the system's accuracy and predictive capabilities for both behavior detection 

and air quality assessment. 

5. Validation and Testing: Conduct extensive validation and testing in real manufacturing 

environments to fine-tune the system's performance and adapt it to different scenarios. 

6. Cost-Effective Sensor Integration: Investigate cost-effective sensor solutions that can be 

easily integrated into manufacturing facilities, making this technology accessible to a 

wider range of industries. 

In conclusion, the journey of enhancing safety and security in manufacturing 

environments is ongoing. Our work has laid the foundation for a more proactive and 

responsive approach, and future research and advancements will contribute to the well-

being of workers and the overall efficiency of industrial operations. 
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6.3 List of Papers 

 

 

International journals:  

 

1) R’bigui, S.; R’bigui, H.; and Chiwoon. “Short Path Wind-Field Distance based 

Lagrangian Trajectory Model for Enhancing Atmospheric Dispersion prediction 

Accuracy” IEEE Access, South Korea, published on 28 September 2023.  

 

International Conferences :  

 

2) R’bigui, S.; R’bigui, H.; and Chiwoon. “Real-time systems for air quality 

forecasting: A review of sensor networks, data fusion, and modeling approaches” 

International Conference on Smart Computing and Cyber Security, Lecture Notes 

in Networks and Systems, South Korea, Accepted and presented on the 29th of 

June, 2023, considered to be published in Springer proceeding of Lecture Notes 

in Networks and Systems by December 2023. 
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