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wwollAe 2 A3 FoA complement Clg binding protein (Clgbp)®} tumor protein,
translationally—controlled 1 (Tptl) @A ES JAF5H o2 AG5H Y (Figure 1).

p32, 79 Clq &4 (globular Clq receptor) =+ 3|&F&4F A v |
(hyaluronan binding protein 1) 2% <4#Z Clgbpe FT% HEZ=go} 7] A oA
DA A RE (25, 93], 3, &AXA, EAA D Azt 2 o Al ] oA E EE o]
Hauxlth [26-28]. Clgbp A3 w52 A7He mEZ=gol ol g ol &
et [29]. Clabp7h =k ¥ AZE FFA A = WAL AFsb4 14bstell A s
2802 A AEHAIL in vivool A FF o] staF 243 [30, 931

Clgbpe HE3HAIRE 9] 7] d &2 #H]d 5= qlv} [27, 28, 101]. &9 € Clgbpd] &
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B 7)d =8 1 (bradykinin receptor 1) 2& & A3k 2dste] Btz w7y g3
F48 FJAIF Y [32]. Clgbpe H8F HARIAF B, s|¢FE4H 84 29 A& Clg,
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lamin B =&, vitronectin, p53, &% 24 4] ARF, kininogen, factor XII % o] 2] ¢+ 2 3}

HA Ao} ok thald Tpt1S TCTP, fortilin, p23 ¥+ histamine releasing factor
(HRE)Z &4 Aotk BEARS FAMo| w2y, Tptld I3t A ZolA 71 wol
A= v FAAR BT [41] Tptl2 2 A FolA = i ghAy,
4% B AIE AES T OFT AZ S Alojsts 1k BEE vl @i deln
[42-44, 47]. WA B2 Aol A= FAA A5 2402 of 714 v} [45, 46]. Tptlo]
MTORC1 pathwayE &413}3la2 AMPK pathwayE B &4 3lste] 27 X415 A 5H7]

ool ebA s W A7k 24w Aol AHEE F A Ao HuH AT (47, £

ErEsEe "W AAA Tad 95 of= Ao R delA o, Tptlo] Aol A7}
A7 vt FF 3 7] SAIQ FEd Aol = B o] le Ao ® Wa Rl [48].
=429 Tptlell sl Rag g Aol A=, Tptlo]l 4F WA/ ATE Yehl=
BEIQl A < (hypokalemic myopathy) Ph-¢-22 REo A 324 s AS

B ol (49, 105].

o]zl Birel Tptlel ¥4} 7' 2% calcium-binding activity”} 1tk [110].
121} o] & non-canonical calcium-binding®= A% AT} [51]. T & B2} 7|5 =
A 7F 24548 (self-interaction) [52]3 MCL1 ©@¥d¥e] 23528 [53]¢] >3t
Tptle £ 94 (tumor reversion)oll A FR3F A= 3l E Qo [54], T4 24, E3
Fu] 719 Aol A EE HPHT} [42]. o] gk Tptl 9] FA= etoposid®} cisplatin@}
NA &4 24 e =2 4 Avkar e At [65]. 3k Tptle Al EANE 24

FRW 4B Prh p53e A AEAES FASHEE, Tptle p53e B
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AT AE
A3 v kol AFE¥ Dulbecco’s Modified Eagle’s Medium (DMEM)2 Welgene
(A2, hatel =)ol A )89l al, fetal bovine serum (FBS), Trypsin—-EDTA,
penicillin/streptomycin (P/S)< Gibco (Waltham, MA, USA)°l 4], horse serum (HS)<2
HyClone (Logan, UD)ol A 43t} o] Aol AL&¥ Clgbp &3+ Abcam (Abcam,
Cambridge, UK)olA F+33F%laL, Tptl A= Santacruz (Santa Cruz, CA, USA)e] A
A3t B-actin, a-Tubulin, MyHC I, MyHCI 3&A]¢} bovine serum albumin
(BSA)¥ Sigma Chemical Co. (St Louis, MO, USA)ollA T3ttt Horseradish
peroxidase (HRP)-conjugated anti-mouse H:+= anti-rabbit IgG &A= Cell signaling
(Beverly, MA, USA)olA 43} t). Alexa Fluor 555 goat anti—-mouse-IgG A+
Invitrogen (Carlsbad, CA, USA)ol A T3 3F3itt.

TE ZEEZS AeopmibEd ABASdT A sEAAE U 9
Q1S Wk}, F=A T A F A 9] IACUC (Institutional Animal Care and Use Committee)
HAMS= Al 2016-12-035 & (young/aged mouse), A 2021-12-178 =
(exercised/hindlimb-unloaded mouse), Al 2023-12-037 & (AAVS6 injected mouse)©] t}.
A G nhg-2= o b A kAo A W AA T gl 54 6 A8t es shal A&
AR 9 =& AT Rol AFH T o =S ST ekt A= ot At st A S E kY
A o] g ezl o] Aol wel A kAL Holl e nbg-2E Zoletil (50 mg/kg,
i.p.)¥} Xylazine (10 mg/kg, i.p.) & & v}3 3}aL H] &5 (gastrocnemius), 7FAH] < (soleus),
7174 & (tibialis anterior), FA| 21 (extensor digitorum longus)= A 331t}

- 2% 28 &5 AT AHYE AT w2 v AY: 7+ 57 C57BL/6
b2 (n = 4) (LejdExRte] e A, d=n)E 10° ZAHENA &9 16 m o £ &
30 &4 3 71 ARl &EetA Ak A E 28 g AFlA e T FEY A



C57BL/6 Wh2= (n = )& o= 35 &< slvhel7h Adel 94 &2 de= nes
agstnh S 10 Tl vhe-2~E sk

- 32 vl 29} w3 vl i Ay st (A, digklan)ol A 19 /g H ] A
B 71 C57BL/6 wh9-2= (n = 1005 &
o2 ALg At
- ofdl= HpolE A ZF Y FAF (AAV6 IM injection): S #erjedTFYd (ML,
3l =)o A AAV6-Ub6-scr-CMV-mCherry (3.02x10°12 GC/ml) 2 AAV6-U6-Tptl
shRNA-CMV-mCherry (1.3x10"12 GC/mDE 438ttt AEE nlo]g] 29} Tptl
shRNA Hlol#i A~ 747} 7 F3 ] =7 C57BL/6 vh$-2= (n = 4) (g dEH] )=
o= A7 F (tibialis anterior muscle, TA muscle)ol] = 2 3] &5 W FAMFS T}
mh9-2 9hQ) £ 7 ool 1 2k, 10 el 2 2} FAFE SHSAL, 2 2 FAF 5 A ke] 7h Aol g4

boith S Sl AF A 14 Qo] w19 2T S AT

o

RrE 14 47 nelE A

H] &2 (Gastrocnemius muscles)?] Tl ] 24

Az A o] AR el Wl 5% sodium dodecyl sulfate buffer o] &7 np9-2~ 8- %2
AMZS S220 Focused-ultrasonicator (Covaris, USA)ES Al-83le] 3513t} S8 &5S
37°C oA 12 Al3F &9t trypsin/LysC : protein =3%% (1 @ 25 H]&)& A8l S-trap-
based tryptic digestion & A3}t (Promega, Madison, WI, USA). A% Felo| ==

0.1% XE4xto =2 AFA3tal, NanoDrop One spectrophotometer (Thermo Fisher

Scientific, Wilmington, DE, USA)E A}&3le] 205 nm 3FoA FHEE 5435+

Webol = F =S AR 24 B AEOlS (40 u)E AEHT 35 AFT 17HA -

80°C Al Al B33}, &3l € FEfo] =+ Q Exactive mass spectrometer (Thermo Fisher

¥ Dionex UltiMate 3000 RSLCnano Al2=®¥l-& AR&ste] + ®
=43, o AzrtEaeY s @ dol oFd S- A% B4 vpase
olMel wxE WS wgrh [66, 57]. wI, FHE HAF A 2FEHL SwissProt
mouse proteome sequence database ©l] ™3l Sequest HT on Proteome Discoverer (W&
2.3, Thermo Fisher Scientific)E AF&3ste] FHASIAT. A wj7f¥4+= cysteine
carbamidomethylation & 1174 g o2 N-Zot ofAEd s} 2 g o 43t E F 79 At
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7Rk m stk AA o9 7] A% HAE
#Ax7F 20 ppm O & AAE AAE JWoR
Aefol=s A@aeith, WAL fAetolme] 4§ wi wi WAekolmst wlolA)
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A EZA g L myotube 2] £3}

C2C12 A ¥+ American type culture collection (ATCC, Rockville, MD,
USA)AA FY38F31aL, 10% FBS ¢ 1% penicillin/streptomycin (PS)< 333 DMEM
WA= 37°C (5% CO2) Q1itHl ol Bl A i Fak it Myotubes 29| #3125 #13] 2% HS ©]
E g DMEM 514 2 4 A3 s gstglom, w1 v wA) s,

shRNA stable cell line A3}

Tptl ] AAE 3l Tptl  mRNA =4 34 (5"~
GACTACATGAAATCACTCAAA-3)el  So]#<¢l  shRNA & ¢53}el=  DNA
AU E=E olddeta, dEutelgfx @ ¥WE pLKO.1 (Addgene)l

A Al Ft}, dEnbo] ) ~E VSV-G, NL-BH % Tptl shRNA & ¢ 53t Zean=s
HEK293T A0l & A8 A st C2C12 A EZ o] ulo] & o) 2FA A 7] 4L 24 A 7F
S Q=L DMEM (10% FBS, 1% PS)o.2 wA 3 2 F7F 2 pg/ml puromycin (Sigma
Chemical Co., St Louis, MO, USA)2. & A=}t

Clgbp Zrd 9¢H A=+

Clgbp € ¢1E93k= cDNA & PCR 5%3to] 5'-FLAG ¥ &vl=FE4d (HA) =9
Al A 2~E ¥33F= pIRES-neo (Clontech Laboratories, Inc., Mountain View, CA, USA) 2]
R

i

g del ZAdstty. C2C12 AEE Lipofectamine 2000 Al ¢F (Invitrogen)<

Fel 2 & &<t Clabp 23 #WE = FAAZ T

D
ofo
ol

]_

N EZAE%S (Cell viability) A



M EAEFTL AlF} T2 CCK-8 assay Kit (Dojindo lab, Kumamoto, JAPAN)E
AFg-EFATE 94 AEZE 2 X 10" 7 24-well plate ol 24 A7+ v o] 50 ul CCK-8
ALk} 450 pl WA S 4] o] 551 1 A1ZF 59 37°C (5% CO2) HE-g-A| ZAt}. o] % Infinite

M200 Pro (Tecan, San Jose, CA, USA)E o] £35}o] 450nm oA SHE=E 543

WY Z3 318 (immunohistochemistry) ¥ ®Y 94 (immunostaining)

AT ZREZF wet gy AHo s A x4 3 £48 A, A
E 2 7)3Fal anti-Clgbp (1 : 50), anti-Tptl (1 : 50), anti-Bax (1 : 50), 728} 3L anti-Krt14
(1:50)e.2 Aefate] 4°C ol A b7 wjFatiet. A=A 2] #| el w2} Dako Envision+

il

System-horseradish peroxidase-labeled polymer secondary antibody system (Dako,
Carpinteria, CA, USA)So. & vjslgc BE AP L guiEddor oJMsct MyHC
WY AL 9l MEE 4% PFA 2 15 23F 12783k PBS ol 0.5% Triton X-100 &%
10 &3t permeabilization 31 Th PBS ol %<1 2% BSA 2 MY & 5273}l anti-MyHC
A (10 100002 4°C Al A 35 vl sttt thad, Al3EE anti-mouse Alexa Fluor 555
Al (1: 100002 A4skaL DAPT 2 85 948k 3lt}, o] % Zeiss LSM 710 & %4 dv4

.

9

(Carl Zeiss, Germany)< A3l o] x& A

- FEFEAS T F 4% PFA o] uAE &322 S 30% sucrose &
A FH Y. 1 & Z2S optimal cutting temperature compound © ©@7F A A AR
F 439 CM1860 cryostat microtome (Leica Microsystems, Wetzlar, Germany)<
AREste] 10 ym A= AA 3} eit. Sghol=2 AA| Sl 517 ¥ - Harris's
alum hematoxylin o 10 ¥37F @7} &S G235} T} o] % Acid alcohol & %A svfE2 &
s AAR 5 Sl @7F AlA AT 0.5% ammonium water ol 3 3] wk=A] @2t}
wjo] ulEAdo] FEMNS WEF U THTE AHS & 70%, 80% &A=l 747t

ol

| oAl galog 1830 27FAEAS AR 7T0%HF-E 100%7HA]



RNA F&3 AA 43 TF 54 93 ¥8 (Quantitative real-time PCR)

A& (ME, a2 ZA)o] TRIzol (Invitrogen, Carlsbad, CA, USA)S *] 2|35}
A zZAe] e wEl RNA £ =31t SuperScript I First-Strain synthesis
system (Invitrogen, Carlsbad, CA, USA)S A}&3te] 2 pg RNA ZEHE cDNA
(complementary DNA)E 343} tl. o]F ¢DNA &= SYBR Green (Roche, Mannheim,
Germany)< AFg&3slo] &3 dd Tl A 59 mRNA 2d S &913513t} SYBR Green &
0]-8-3l Quantitative real-time PCR ol 4] AF-&3} primer & 7] ¥ A KB = Table 1
g2 sttt

Table 1. Primer sequences

Primers Forward (5'-3") Reverse (5'-3")

Clgbp ACA GCA TCC CTC CAA CATTT | GGG AGT TGA TGT CAG TTC TGG
Tptl GACTACATGAAATCACTCAAA TTTGAGTGATTTCATGTAGTC

Myh2 AGGCGGCTGAGGAGCACGTA GCGGCACAAGCAGCGTTGG

Myh4 CAATCAGGAACCTTCGGAACAC GTCCTGGCCTCTGAGAGCAT

Myh7 TGCCAAGGGCCTGAATGA GCTTCCACCTAAAGGGCTGTT

Mef2C GCAGGCAAAGATTGTGTGCT CGCCTGTGTTACCTGCACTT

Myogenin GCCATCCAGTACATTGAGCG GCTGTGGGAGTTGCATTCAC

18s CTCAACACGGGAAACCTCAC CGCTCCACCAACTAAGAACG

2%l EF (Western blot Analysis)

C2C12 Al¥+= "l Ra]a A A 34 (Sigma Chemical Co., St Louis, MO, USA)7}
3Z3hE RIPA buffer (Enzo Life Sciences, Farmingdale, NY, USA)Z &3] AT}t o] %
HAAE2 (13,000 rpm, 4C)E F3l 25N (total cell lysates)S 3t @bz o
BCA protein assay kit (Pierce, Rockford, IL, USA)E AF-g&35}o] =431t} A& total cell
lysates += sodium dodecyl sulfate—polyacrylamide gel electrophoresis (SDS-PAGE)&
T3 dulde] Z 7| mel F28 §, Nitrocellulose Membrane (NC) membrane (GE
Healthcare, Piscataway, NJ, USA) 2.2 &% Th. Membrane < 5% Skim milk—-TBST (20

8



mM Tris—-HCl, 150 mM NaCl, 0.1% Tween-20, pH7.5)% 1 A%} %2t blocking 3+ 3,
’F2e A TBST & 10 w3+ 3 3] Hojude}. 242t A &S 5% Skim milk & 3|4 g &
4ol A overnight incubation 3} t}. dA| 9] S A~ E o] wleE} anti-rabbit B2+ anti-mouse

HRP-conjugated &A% membrane & 1 A|ZF &<k ¥F-8-A]7]31, TBST & 10 3+ 3 3§

= AFS 5gdoz A HbE oS Sy 2RE AT 4
Yo ®E FAEY 1, F 15 7He] ¥]ul+= student’s t—test = ARSI Ut T1E 719
Hl 1= Kruskal-Wallis test & AF8-3l9 M AL$A 52 Duun’s test & AF&3FSI T E7]

T

BA g 73:O GraphPad Prism 8.0 software & AF&391 P < 0.05 ¢ A=
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(gastrocnemius), 7FAH - (soleus), A&
digitorum longus)< A3 el AH&3t3i .
AA, 3T A k-0 Slvke] & LA v TTEol A o] gk Ao
zol= AT (Figure 20). 28y A5 tiv] A4 5% ALteds o 4 7HA
5ol A FAasAT (Figure 2D). H[EZS] A5, &5 k-2 stke] 14 wpg-29

AU A 2S5 77F 0.6589 + 0.0177%, 0.5199 + 0.0163%=, RAyE A7

=

+

-0l 21.1% #AAsATh ZhAm e A%, Z27F 0.0368 + 0.0025%, 0.0217 +
0.002%= 40.9% #Hastdvh. A= 49, 242F 0.1947 £ 0.009%, 0.1704 + 0.0098%
2 12.5% 7Faskd ok Aol 49, 242 0.0433 + 0.0013%, 0.0348 + 0.002% = 19.5%
ZHaskgich R, 19 7] w3} mhg- 2o A= Aol 34.86 + 0.995g, 7 NEe] A
nl9-~o A= 30.053 + 0.75g o2 A|Fo] 16% =7}ttt (Figure 2E). FE3F A&
TEFE FostA ZAasttt (Figure 2F). vl &2 4% 318 w929} 13} v
AA 25 77 0.6228 £ 0.0127%, 0.5084 + 0.0059% % 18.4% Z+A&FActh.
A o] A9 2+ 0.0371 £+ 0.0012%, 0.0278 + 0.0009%= 25% Z+A38FdTh.
AA=2e 49, Z2zF 0.1901 + 0.0046%, 0.1616 + 0.0028%% 15% %FA3k3ict,

+
+

FA L] A5, 24 0.0435 £ 0.0013%, 0.036 + 0.001%= 17.2% 7+4319

S2AEY G A F4S F8l vl FA4A Y (Figure 1). vF9-229] 814 59+
B2 7R 2, A EE, FAAFZo] gtk o] F B EZ8 type I, typella, typellb =

10



(Figure 3C). o] @A = 9] gene ontology analysis o W2H 7] 3}sHE9] A3t =

ANHA Aak, AA Ak A B ol A B, Absk-2k9l 314 5-©] biological process ©l 4]

Aol Haw s e 5ol Atk (Figure 3D). BElatH thg st &4 o] diAL 24, Al 3}

s o8 AESHY Ao jlF EAskE Ao ® YT & Aol =42 4

S Alofshal A ek vl S 88kl A E st #ofsteE g Ao 23S sl

AZ 23 sheargel sjdete 17 78 @idE T slvke] g vhgsoh st w9
3

AEoA FEoz Afd &3 v 7] g A =2 Tptl, Bax, KRTI14,

¢t

AAZE FH T a4 A S (QRT-PCR)S AF&-3o] vhg-229] of 2] 220l A
Tptl, Bax, KRT14, Clgbp ] mRNA & 3+ S35tk Clgbp & A%

o] okl 11 thgo] S EZ otk (Figure 4A). Tptl & SHx2 oA ddo] 713
E=9kal, I ghgo] AFFF oAt} (Figure 4A). Z18lY Bax 9 KRT14 = T-532 oA 9
o] thE A ER T ST o] &= vl 24& WY 24 8t 4 (IHC staining) 3+

U
A FA Ao AR Yol A AEet7] Y&l &5 AIZ vk SogE s
np-e-2 0] L5 Z 2ol A Clgbp ¢ Tptl @2 ®&H S Western blot 2 8-S 53l ¥ u3} o}
)] A Aapel ddH A, RAoelE aAS vk E5F A4 Clgbp 9 Tptl

G by o] fof kAl =kth (Figures 5A-B).

U o2 C2C12 5 A 28 #Hgoll A Clabp ¢k Tptl o] 2 o] Wah= Fde
real-time PCR ¥ western blot A3 ol&sto] FAlsth. WA AL Aie
FHYSHA =9 AF (type 1)F} #E AF (type I)o2 EFH} [59]. & AL t]hA]
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typella, Ix, b 9] 319 FFO2 ot} [59]. o] &2 oflU#] Aikell Q1o & Afol &
Belth Typel 2 typella AFE T2 231 AL, typellx ¥ typelb A+ T2 G
thAbell o3t} [59]. Mef2C = mef-2 A U3 @] =42, HlA, ¥ TRAEe
7] 23} dAlel A Bl He Aor dHA dvk [60]. 2= o] APl typel,
typella, typellb & HEA S myosin &2 Z+ZF myh7, myh2, myh4d ¢ $7] H3} vl7

mef2CE 5 AL 3 nA R AFE-SFSI T

=
Clgbp ¢ mRNA (Figure 5C) ¥ @& (Figure 5D) & 52 518F 24 =t} v =2,
Tptl & 24 23} A ST A3 A mRNA (Figure 5C) 2 @94 (Figure 5D) &3

To] ek 24 At Clgbp &= <5A £ & 27]f], Tptl & 2d 7)o F2 483

rClgbp ©¥& L& C2C12 THAH X £3E A A
Clgbp ¢ mRNA ¢} ©ild g G=Fo]

&

o
o

FH oz 3E (Figure 6A)A A
FATH 1 A3, Clgbp 9 232 C2C12 A E A
o5 w3l G A A Skl (Figure 6B).

Clgbp & AlZ ¥to = #uldths ®Bark vk [26-28, 101]. C2C12 A9 &5
38} Sk v (CM)S 38k Clgbp &9 #& S western blot &2 2133t} 1
A3, 23 = 5 1 dA A CM ellA Clgbp o] &do] 7H Bol 7tk e o5 A
Aaehe S HAT (Figure 6C). wekA], Clgbp 7} C2C12 FHAZA Al Z}7F 1]
WA o2 A 3t 283 = rhE M-S ARt o] & AE3EHY] f18) C2C12 A 2o

I Clgbp (rClgbp) @M &S Aeslqith o1 23 rClgbp @A IHAHE 2315
&F o)EA o2 A PYA T (Figure 6D), FHAHE el = G- v XA & skt) (Figure
6E). PFR7FAIZ, rClgbp @A L 25 &3} w79 HdAS Foatr st =4deaivt

(Figure 6F-G). ¢] 2352 rClgbp WA o] 8 E31E AT & ASS A|AFSHT]

SHAL ot v AT JFS 24}

Ot

C2C12 A E A Tptl 2FHL ZTSA X 232 =373}
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C2C12 &4 A #3} A Tptl o] mRNA % e d "ha o] Z7}s}7] wj&i-of, C2C12

(Figure 7A). C2C12 A2 5 4 A3 wFste] MEAESS vwetS o, 3 A Tptl
shRNA % 2] gk Az A A 57F oFzk 2EA4sk3lt) (Figure 7B). th& S & Tptl A3 o]
TG A X 3o ) x] = o gkS AT, Tptl shRNA =] 2] 3F A 3o 4] myotube area 7}
2 A3} 3 dAo txtoll vl A F7HES BT (Figure 7C). sHARF 4 YA o & myotube
area ] zto]7} gloj Atk Tptl ¢ myoblast fusion H &3 F B A3 dolR 7] $lafA,
Tptl o] A% C2C12 MEE 4 47t FHAXEE 3471 42 myotube formation <
A3 (Figures 7D-F). SW| 5 A%, Tptl shRNA A 2] gk M| 3L of| A 315 myotube &
& AeE7E izl vls ol S7HE ERlekitt (Figures 7E). 3 myotube @
myotube A4 L2 E AFA 0= FA48 A3}, Tptl A Al EZo A WA o] 22 myotube ¢
T Aadta vz 2 WA o] myotube & F7FEAT (Figure 7F). o] Tptl 23 o]
myotube formation & Z7MA A t] B S 7172 myotube & WHEo] WS o) n| st}
=5 3 AR Tptl 23 AlZoAM e dds elshgitt b4 C2C12 THAIXE
=3} 1S 9 ARSRE 3 v myh2, myh4, myh7, mef2C ¢ §A 27] @A 3
A 2 4 myogenin [63]% ARESEIT. 919 SSAE 3t Aypet AA|SHA|, Tptl
A AzeA i3t et 25 B3 A FHaAE9 mRNA 2 o by o] gk
oEzH o7 Fou|stA =715t (Figures 8A-B). o] A5 AME 5o Tptl

A7 EHA L] BEE TS AR

o
2
=
=2
>
—
o)

=
iIn
biAc)
flo
rld
fo
N
»
ofX
)
]1)11

7} HolA] FYTt,
AA ezl M Tptl o &= 153871 f18 <50l Tptl shRNA & FU3F t

rl
Ho
N
»
E
oty
Ll
ry
b
o
@
au)
re
2
rUH
FU

of A}-8-3 AAV (Adeno-associated virus)9]
serotype & AA3}7] Hste] vl HA =T AAVE oF AAVI & FYsEATE 50l A
2+2-3= AAV serotype < AAV1, AAV6, AAVY &2 H ) [77]. o] = -8+ &5
Aol A T2 ALEE = AAVE 9F AAVY & Bl weSith 7Hd &S5 g11shr] $lste] 247k
AAV = GFP & 2 st=5 Al abstdlvh. 1 A3 5 59 Al AAV6 = AAVY o Blsf &3
ghlatl o, ol= AAVE o Y m&o] AAVI By 55 on 3t
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(Figure 9A). webA 2 Ao A& AAVE & AdA 3] AAV6-U6-Tptl shRNA-CMV-
mCherry & #2389t AAV6-U6-scr—-CMV-mCherry (3.02x10712 GC/ml) 2 AAV6-
U6-Tptl shRNA-CMV-mCherry (1.3x10"12 GC/mDE 7 5% ® 47 C57BL/6 7}$-2
(n=4)8 ARz 2 3] FASEATh vhol 8] 2~ FALGE T mE] & vido} slvte] o] &5
AA AT (Figure 9B). 2 5 - wp-g-29]

o] &3}o] Tptl @z WS 3kelslitt. AAV6-U6-Tptl shRNA-CMV-mCherry =
FARSE Aol A Tptl wdo] thzrel vl dAx3] Fagh 2S 183t} (Figure

SHZAES AFH 3 3 western blot <
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Figure 1. A schematic diagram of a proteomic analysis.
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Figure 2. Muscle loss due to hindlimb-unloading or aging.

(A-B) An experimental protocol for exercise vs unloaded mice and young vs aged mice. (A) To establish
the exercise model, male C57BL/6 mice aged 7 weeks were exercised on a treadmill for 30 min a day
for 3 weeks. To establish the hindlimb-unloaded model, the tail of male C57BL/6 mice aged 7 weeks
was suspended for 3 weeks. (B) To establish the young and aged models, 7-month-old male C57BL/6
mice and 19-month-old male C57BL/6 mice were used, respectively. (C) Body weights of the exercise
and unloaded mice. (D) The mice were sacrificed, and relevant muscles were harvested and weighed.
Relative muscle mass is expressed as a percentage of body weight. Data are represented as mean + SD
(n =5 mice). ¥*P < 0.01; ***P < 0.001, versus exercised group. (E) Body weights of the young and
aged mice. (F) The mice were sacrificed, and relevant muscles were harvested and weighed. Relative
muscle mass is expressed as a percentage of body weight. Data are represented as mean + SD (n = 5).
*¥*P<0.01; ***P <0.001 versus young group. (G) GAS muscles isolated from exercised and hindlimb-
unloaded mice were fixed, embedded, sectioned, and stained with hematoxylin and eosin (H&E) for
histological analysis. Representative images of H&E-stained sections are shown in the lower panels.
Scale bar, 50 um. Cross sectional areas were analyzed using the Image J program, and their
quantification result (H) is shown. Data are represented as mean = SD (n = 3). *P < 0.05 versus
exercised group. (I) GAS muscles were isolated from 7-month-old (young group) or 19-month-old
(aged group) male C57BL/6 mice. Representative images of H&E-stained sections are shown in the
lower panels. Scale bar, 50 um. Cross sectional areas were analyzed using the Image J program, and
their quantification result (J) is shown. Data are represented as mean + SD (n = 3). *P < 0.05 versus

young group. GAS, gastrocnemius; SOL, soleus; TA, tibialis anterior; EDL, extensor digitorum longus.
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Figure 3. Muscle proteome of mice with muscle loss.

(A) A scatter plot comparing fold change between hindlimb-unloaded and exercised mice is shown.
Compared with those in the exercised mice, the muscle expression levels of 82 proteins were
significantly upregulated in hindlimb-unloaded mice. (B) A scatter plot comparing fold change between
aged and young mice is shown. Compared with those in young mice, the muscle expression levels of
177 proteins were significantly upregulated in aged mice. (C) Venn diagrams represent 55 proteins that
were upregulated more than two-fold in both hindlimb-unloaded and aged mice compared to exercised
and young mice, respectively. (D) Gene ontology enrichment analysis of the 55 common target proteins
using the DAVID bioinformatics database (https://david.ncifcrf.gov). (E) A scatter plot comparing fold
change between aged/young groups and hindlimb-unloaded/exercised groups are shown. The graph
includes 17 cell differentiation-related proteins. Upregulated proteins in the hindlimb-unloaded, aged,
and both groups are marked in blue, green, and red, respectively. (F) Cell differentiation-related proteins
are ranked in the order of fold change in both hindlimb-unloaded vs. exercised and aged vs. young
groups. The top seven ranked proteins in both hindlimb-unloaded vs. exercised and aged vs. young are
shown. Upregulated proteins in hindlimb-unloaded, aged, and both groups are marked in blue, green,

and red, respectively.
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Figure 4. C1qbp and Tptl expressions in skeletal muscles.

(A) Total RNAs were isolated from various tissues of male C57BL/6 mice aged 8 weeks. The expression
levels of Clgbp, Tptl, Bax and Krt14 were quantified using qRT-PCR. Muscle indicates gastrocnemius.
(B) Gastrocnemius of male C57BL/6 mice aged 8 weeks were subjected to immunohistochemical
analysis with anti-Clgbp, anti-Tptl, anti-Bax, and anti-Krtl4 antibodies. Representative
immunohistochemical images are shown. Scale bar, 100 um. Arrows indicate the C1qbp/Tptl-positive

signal.
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Figure 5. Expression levels of Cl1qbp and Tptl in mice with muscle loss and in muscle cells.

(A and B) Gastrocnemius from exercised and hindlimb-unloaded male C57BL/6 mice were prepared.
The expression levels of Clgbp (A) and Tptl (B) were analyzed using western blotting (left). The
protein levels were quantified and normalized to tubulin (A) and GAPDH (B) levels (right). Tubulin
and GAPDH were used as a loading control. Data are represented as mean £ SEM (n = 5). **P < 0.01
versus exercise group. (C) C2C12 cells were differentiated using a culture medium containing 2% horse
serum for the indicated times. The expression levels of Clgbp, Tptl, Myh2, Myh4, Myh7, and Mef2c
were determined using qRT-PCR. Data are represented as mean = SD (n = 3). *P < 0.05; ***P < 0.001
versus 0 day. (D) Lysates were prepared from C2C12 cells after differentiation with 2% horse serum
for the indicated durations. The expression levels of Clgbp, Tptl, MyHC II, Mef2c, and Actin were

determined using western blotting. Actin was a loading control.
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Figure 6. Suppression of myogenic differentiation upon rC1lqbp treatment.

(A) C2C12 cells were transfected with mock (control) or hemagglutinin (HA)-tagged Clgbp (HA-
Clqgbp) plasmids for 48 h. The expression levels of HA-C1gbp were analyzed using western blotting.
Actin was used as a loading control. (B) C2C12 cells were transfected with the HA-C1gbp construct
for 48 h and differentiated into myotubes for 3 and 4 days. The cells were immunostained with anti-
MyHC (red) antibody, while the nuclei were stained with DAPI (blue). Representative immunostaining
images are shown. The myotube arecas were analyzed using the Image-Pro Plus program, and their
quantification results are shown in the right panel. Data are represented as mean = SD (n = 5). Scale
bar, 200 pm. (C) C2C12 cells were induced to differentiate with 2% horse serum for the indicated times.
The conditioned medium (CM) was harvested. The expression of C1gbp in the CM was analyzed using
western blotting. (D) C2C12 cells were treated with the indicated concentrations of recombinant C1qbp
(rClgbp) and differentiated into myotubes for 3 days. The cells were fixed and immunostained with
anti-MyHC (red) antibodies, while the nuclei were stained with DAPI (blue). Representative
immunostaining images are shown in the left panels. The myotube areas were analyzed using the Image-
Pro Plus program. Scale bar, 200 um. Data are represented as mean = SD (n =5). **P < 0.01; ***P <
0.001 versus control. (E) C2C12 cells were treated with rC1qbp for 3 days. Cell viability was measured
using the cell counting kit assay. Data are represented as mean = SD (n = 5). (F) C2C12 cells were
treated with vehicle (control) or 500 nM of rClqgbp and differentiated into myotubes for 3 days. The
expression levels of Myh7, Myh2, Myh4, and Mef2c were analyzed using qRT-PCR. Data are
represented as mean + SD (n = 3). **P < 0.01; ***P < 0.001 versus control. (G) C2C12 cells treated
with vehicle (control) or rClgbp (500 nM) were induced to differentiate for 3 days. The expression
levels of MyHC I, MyHC 11, and Mef2¢ were analyzed using western blotting. Tubulin was used as a

loading control.
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Figure 7. Enhancement of myogenic differentiation upon Tptl knockdown.

(A) C2C12 cells were infected with Tptl shRNA, and the expression levels of Tptl were analyzed using
gRT-PCR and western blotting. Actin was used as a loading control. Data are represented as mean + SD
(n=13). (B) C2C12 cells were transfected with Tptl shRNA. Cell viability was measured using the cell
counting kit assay. Data are represented as mean £+ SD (n = 5). (C) C2C12 cells were infected with the
Tptl shRNA and differentiated into myotubes for 4 days. The cells were immunostained with anti-
MyHC (red) antibody, while the nuclei were stained with DAPI (blue). (D-F) differentiated
independently from (C) for 4 days. The relative myotube area (C), number of nuclei per myotube (E),
and frequency distribution of myotubes (F) were analyzed and quantified using the Image J program.

Scale bar, 200 um. Data are represented as mean = SD (n = 5). *P < 0.05; **P < 0.01; versus control.
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Figure 8. Upregulation of myogenic differentiation-related genes upon Tptl knockdown.

(A) C2C12 cells were infected with the Tptl shRNA and differentiated into myotubes for 4 days. The
expression levels of Myh2, Myh4, Myh7, Mef2c and myogenin were determined using qRT-PCR. Data
are represented as mean = SD (n = 3). *P <0.05; **P <0.01 versus untreated control. (B) Lysates were
prepared from C2C12 cells after differentiation with 2% horse serum for the indicated durations. The
expression levels of MyHC I and myogenin were determined using western blotting. Actin was used as

a loading control.
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Figure 9. Muscle mass after Tptl knockdown in hindlimb-unloaded mice.

(A) To confirm the efficacy of AAV, AAV6 and AAV9 were injected into the TA muscles of mice. After
4 weeks, mice were sacrificed to obtain TA muscles. The TA muscles were sectioned and stained with
DAPI (Blue). Fluorescence images were obtained using an Axio Imager microscope (Carl Zeiss,
Oberkochen, Germany) at 100 magnifications. Green areas represent AAV-infected areas. Scale bar,
200 pum. (B) To establish the in vivo model, male C57BL/6 mice aged 7 weeks were separated into two
groups based on body weight. They were injected twice on the 0 and 3 days into the Tibialis anterior
(TA) muscles. AAV6-control and AAV6-Tptl shRNAs were injected. Their tails were immobilized for
the next two weeks to restrict hindlimb movement. IM, Intramuscular injection. (C) Lysates were
collected from TA muscles of sacrificed mice. Tptl knockdown efficiency was examined by western
blotting. GAPDH was used as the loading control. *P < 0.05 versus control. (D and E) Body weight (D)
and muscle weight (E) of the AAV6-control and AAV6-Tptl shRNAs were measured. Relative muscle
mass is expressed as a percentage of body weight. (F and G) TA muscles were fixed, embedded,
sectioned, and stained with H&E. Representative immunostaining images (F) are shown. Scale bar, 50
um. Cross sectional areas were analyzed using the Image J program, and their quantification result (G)

is shown. Data are represented as mean = SD (n = 4). TA, tibialis anterior.
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Abstract

Background

A condition in which exercise ability is reduced due to a decrease in muscle mass and strength
is called sarcopenia. Sarcopenia is caused by various factors such as aging, hormonal imbalances, poor
nutrition, and lack of activity. The prevalence of age-related sarcopenia is expected to increase

significantly as the global population ages, but there is no approved treatment for sarcopenia.

Methods

We aimed to discover factors that cause a decrease in skeletal muscle mass using proteomic
analysis methods in animal muscle samples, establish their actions and mechanisms, and verify the
mechanisms at the biological level to present target factors for the treatment of sarcopenia. Skeletal
muscle tissues were extracted from exercised mice, exercise-restricted mice with hindlimb suspension,
young and aged mice, and proteomic analysis identified Clgbp and Tptl with increased expression.
Then, the expression of Clgbp or Tptl was regulated in C2C12 muscle cells, and then muscle cell
differentiation and growth were investigated. In addition, the expression of differentiation-related genes
during differentiation in myoblasts with regulated expression of Clgbp or Tptl was examined using
real-time PCR and western blot assays. To confirm the effect in vivo, we injected Tptl shRNA into
mouse muscle tissues and then the skeletal muscle mass of the mice was observed through histological

analysis.

Results

In skeletal muscle samples from mice with induced muscle loss (hindlimb unloaded and aged
mice), we identified Clgbp and Tptl for increased protein expression by proteomic analysis. Clgbp
expression decreased during C2C12 cell differentiation, and recombinant Clqgbp protein treatment

significantly inhibited muscle cell differentiation. In contrast, Tpt1l expression increased during muscle
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cell differentiation, and Tptl depletion promoted muscle cell differentiation. Finally, we injected Tptl
shRNA into mouse hindlimb muscle tissue to observe muscle mass and found no significant difference

from the control group.

Conclusions
Through proteomic analysis in mouse muscle samples, Clgbp and Tptl factors that
play a significant role in muscle cell differentiation were discovered. Verification of the in vivo

actions of these factors is needed in the future.

Keywords : Clgbp, Tptl, Sarcopenia, Differentiation
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