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Abstract 

One of the primary responsibilities of radiologists in routine clinical settings is to diagnose 

chest radiographs (CXR) to determine the presence or absence of disease in patients. In 

scenarios where a large volume of chest radiographs are taken daily, the majority of patients 

presenting are diagnosed as normal. In such cases, the time and effort required for specialists 

to interpret every image are substantial, and the use of artificial intelligence models to classify 

definitively normal groups can significantly reduce the workload of doctors. However, the risk 

of missing significant diseases in patients is a critical issue. Therefore, an algorithm that 

accurately classifies normal and diseased states is necessary, especially one that avoids 

misdiagnosing diseased groups as normal. To address this, we propose the Strictly Chest X-

ray Normal Network (SCXNN), a model that emulates the interpretation of radiologists and is 

more robust to diseases. The SCXNN model is a multi-task learning model that simultaneously 

performs reconstruction and classification for 13 different diseases. The first decoder in this 

model aims to learn the location and characteristics of lesions, enabling the encoder to learn 

the patterns of the disease. The second classifier, a Support Vector Machine (SVM), uses the 

logits from each disease model to classify groups into definite normal and abnormal. For data, 

we used 24,714 chest X-ray images collected from Asan Medical Center (AMC) in Seoul from 

2011 to 2018, of which 5,400 were images with masks (Hard Label) and 19,314 were images 

without masks (Weak Label). The Hard Label data was split into training, validation, and test 

sets in an 8:1:1 ratio, and all Weak Label images were used for training. These images included 

or were classified as 'Normal' if they did not contain any of the 13 diseases such as 

Cardiomegaly, Advanced Tuberculosis, etc. Additionally, 355 chest X-ray images collected 

from January to March 2021 at AMC were used as external data for temporal validation 

datasets, and all mask and class labeling was performed by radiologists. Recognizing the 

problem of not sufficiently learning the characteristics of normal lung tissue when targeting 

only the diseased areas in the disease reconstruction process, we applied dilation, a type of 
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morphological operation, in the mask processing step. This approach allowed for learning not 

only the diseased areas in the image but also the patterns of surrounding normal tissues affected 

by the disease, contributing to improved accuracy in disease reconstruction. The SCXNN 

model showed consistent performance in both internal and temporal validation datasets as well 

as external public datasets. This demonstrates the robustness of SCXNN, providing stable 

results regardless of the dataset type, which is crucial for ensuring patient health and safety in 

real clinical settings. Furthermore, the use of SCXNN as a diagnostic support tool for 

radiologists can contribute to reducing the workload of medical staff. This will enhance the 

speed and accuracy of the diagnostic process, improving the quality of medical services and 

allowing medical staff to focus more time on patient care, thereby enhancing the overall 

efficiency of medical services. The characteristics of SCXNN are expected to contribute to the 

further expansion of the use of AI tools in the clinical decision-making process. 

  



iii 

차  례 

 

영문요약 ···························································································· i 

그림목차 ···························································································· v 

1. Introduction ······················································································· 1 

2. Background ······················································································· 3 

2.1. CNN ······················································································· 3 

2.2. DenseNet ················································································· 3 

2.3. U-Net ······················································································ 4 

2.4. Loss function ············································································· 5 

2.5. SVM ······················································································· 6 

2.6. Image dilation ············································································ 7 

2.7. CLAHE ··················································································· 7 

3. Materials and Methods ·········································································· 8 

3.1. Data acquisition ·········································································· 8 

3.2. Pre-processing ··········································································· 11 

3.3. Methods ··················································································· 11 

3.3.1 Backbone network ·································································· 13 

3.3.2 Reconstruction decoder  ··························································· 13 

3.3.3 Second classification ······························································· 14 

3.3.4 Training and test ···································································· 14 

4. Results ····························································································· 16 

4.1. Result on datasets  ······································································· 16 

4.2. Results on risk based screening  ······················································· 17 

4.3. Ablation study ············································································ 18 

4.3.1. Backbone selection ····························································· 18 

4.3.2. Hyperparameter λ selection ···················································· 19 

4.3.3. Data pre-processing selection ················································· 20 

4.3.4. Performance of 2 class and 3 class ··········································· 21 

4.3.5. Novel data results ······························································· 21 



iv 

4.3.6. Model Grad-CAM ······························································ 26 

5. Discussion ························································································ 27 

6. Conclusion ························································································ 28 

Reference ···························································································· 29 

국문요약 ···························································································· 33 

 

  

 

 

 

 

 

  

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



v 

 

표 및 그림 목차 

 

Figure 1 ······························································································ 4 

Figure 2 ······························································································ 5 

Figure 3 ······························································································ 12 

Figure 4 ······························································································ 12 

Figure 5 ······························································································ 26 

 

Table 1 ······························································································· 10 

Table 2 ······························································································· 16 

Table 3 ······························································································· 17 

Table 4 ······························································································· 19 

Table 5 ······························································································· 20 

Table 6 ······························································································· 21 

Table 7 ······························································································· 23 

Table 8 ······························································································· 23 

Table 9 ······························································································· 24 

  



1 

1. Introduction 

Deep learning is a field of machine learning based on artificial neural networks and has 

achieved significant success in the computer vision domain. The convolutional neural network 

(CNN)1, which won the large-scale ImageNet visual recognition competition in 2012 by 

significantly reducing error rates, is well-known as a prominent algorithm in deep learning. 

CNNs have demonstrated excellent performance not only in image classification but also in 

various tasks such as object recognition, semantic segmentation, image restoration, depth 

prediction, and visual question-answering. 

In the medical field, CNNs can be utilized for various research purposes using tasks similar to 

those in computer vision2. Particularly, the interpretation of chest radiographs (CXR) is 

suitable for conducting such research3. Every day, a substantial number of CXRs are captured, 

and radiologists in the field of radiology interpret them. They determine whether the patient 

who underwent the CXR belongs to the normal group or the abnormal group with a disease4,5. 

Ensuring that diseases are not misclassified as normal is a critical issue, as it directly relates 

to patient well-being and health. 

CXR is a commonly used diagnostic tool in the medical field. However, interpreting 

radiographic images requires deep domain expertise and can be time-consuming, leading to 

the risk of errors. In clinical practice, radiologists use CXRs to assess the presence of diseases 

and their progression. Deep learning technology has been introduced to support the 

interpretation of radiographic images, greatly assisting in tasks such as disease classification, 

detection, and region delineation. These deep learning approaches help alleviate the burden on 

radiologists and enhance the accuracy of CXR interpretation6. 

In the process of classifying normal and abnormal groups using CXR and identifying diseases, 

radiologists consider various factors. They first identify if there are any abnormal areas in the 

CXR. If there are areas different from normal lungs, they examine the characteristics and 

patterns of these areas (such as size, shape, location, texture, etc.) to determine the nature of 

the disease and its extent. Expertise and experience of radiologists are crucial for such 

interpretations. Radiologists must maintain high concentration levels, and the number of CXRs 

to be interpreted daily can be substantial. However, the majority of CXRs captured daily 

belong to the normal group. If artificial intelligence can first classify definite normal cases, it 
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can reduce the workload of radiologists. 

To address the challenge of identifying definite normal cases in chest radiographs (CXRs), we 

have developed an artificial intelligence algorithm. The disease reconstruction decoder of this 

algorithm helps the encoder learn various features and patterns of diseases by reconstructing 

only the specific disease when present in the CXR. The disease classification decoder then 

determines the presence or absence of disease in the input chest radiograph. We chose image 

reconstruction as it allows artificial intelligence to learn the features and patterns of abnormal 

areas that radiologists observe when interpreting diseases. By jointly learning these features 

and patterns, our artificial intelligence algorithm can demonstrate robust performance in 

disease classification. 

Using this disease classification algorithm, we perform our ultimate goal of classifying definite 

normal cases. By classifying normal cases using the disease classification algorithm, we can 

create a more robust algorithm than simply binary classification as normal or abnormal. This 

unique approach can effectively mitigate instances where individuals with diseases are 

mistakenly predicted as normal. 

The key contributions of our research are as follows: 

• Learning various features and patterns used by radiologists in disease classification. 

• Training on a high-resolution CXR dataset and validating on an internal dataset, a 

temporal validation dataset, and an external dataset. 

Employing a deep learning algorithm that classifies diseases first to classify definite normal 

cases. 
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2. Background 

2.1. CNN 

In deep learning utilizing image processing and artificial intelligence (AI), CNN 

(Convolutional Neural Network) plays a pivotal role. CNN is a specialized design for 

processing pixel data and was developed for image analysis. It is used in tasks such as image 

recognition, video recognition, image classification, medical image analysis, and also 

performs recommendation systems and natural language processing. 

CNN can be viewed as a specific subset of neural networks. It consists of multiple layers, 

with each layer performing various operations (e.g., convolution, pooling, loss computation). 

The initial layer, known as the input layer, includes neurons directly connected to the pixels 

of the input image7. Subsequent layers are convolutional layers that apply convolution to the 

input data using filters, also known as kernels, whose sizes can vary based on the designer's 

choice. Each neuron responds only to a small region, known as a receptive field, rather than 

the entire layer. The output in the convolutional layer is referred to as an activation map, 

representing the results of applying specific filters to the input. Convolutional layers are 

typically followed by activation layers that apply non-linear effects. The next layer may be a 

pooling layer, which can reduce dimensions and often employs strategies like max pooling or 

average pooling. Finally, high-dimensional abstraction is achieved through fully connected 

layers. The weights and kernels of this neural network are continuously adjusted during the 

training process using the backpropagation method. 

 

2.2. DenseNet 

DenseNet8 is a model composed of Dense Blocks. A Dense Block is structured in a way where 

every layer is connected to all previous layers. In other words, each layer receives input from 

all the previous layers and its output is passed on to all the subsequent layers. This 

interconnectedness of all layers allows for the direct propagation of lower-level features, 

enabling their reuse and mitigating the gradient vanishing problem. Additionally, DenseNet 
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differs from ResNet9 in the way connections are merged. While ResNet adds the outputs of 

two paths (sum), DenseNet preserves information by concatenating the outputs of previous 

layers along the channel dimension. The model is constructed by stacking Dense Blocks, and 

between these blocks, convolution and pooling operations are applied to reduce the image size 

 

 
Figure 1.  Densenet 

 

2.3. U-Net 

U-Net10, which was presented at the prestigious MICCAI conference in the field of medical 

image processing, was developed for the purpose of medical image segmentation. It also 

won the ISBI cell tracking competition in the same year. The structure of U-Net is similar to 

conventional convolutional neural networks, where feature maps pass through convolutional 

layers and pooling layers, reducing spatial resolution and increasing depth. This process is 

repeated four times, resulting in a 32x32x512 feature map at the bottom. Now, transpose 

convolutions are used to restore the original image size. U-Net refers to the downsampling 

and upsampling processes as the contracting path and expanding path. 

What sets U-Net apart is the use of skip connections. The top skip connection cuts out a 

portion from the center of the 568x568x64 feature map and passes it to the expanding path. 

On the right, the data received through skip connections is combined with the data coming 

from below to create a tensor. This tensor passes through convolutional layers to output the 

final segmentation map. This segmentation map includes object class probability and 

background class probability. 
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In the original U-Net, the convolutional layers use 3x3 filters with a stride of 1 and no 

padding. The pooling layers use 2x2 filters to reduce the size of the feature maps. Since U-

Net was developed for medical image segmentation, the input images are typically grayscale, 

and the final output consists of two-channel maps representing objects and backgrounds. In 

actual implementations, various modifications can be applied to accept multi-channel input 

images or segment multiple classes of objects. 

 

 

Figure 2.  U-Net 

 

2.4. Loss Function 

Cross-Entropy Loss11 is a widely used fundamental loss function in classification problems. 

This function measures how closely the model's predicted probabilities align with the actual 

labels. It has the characteristic of assigning high loss values to incorrect predictions, so when 

the model makes significant errors, it incurs a large penalty. Because of this characteristic, 

the model focuses more on making accurate predictions. Cross-Entropy loss is particularly 

useful for quantifying the difference between probability distributions. As a result, it trains 

the model to generate predictions that are closer to the actual distribution. However, it's 
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important to exercise caution when dealing with severe class imbalances. 

 

The Mean Squared Error (MSE) Loss11 calculates the average of the squared differences 

between predicted values and actual values. This is suitable not only for regression tasks but 

also for tasks like image reconstruction. In reconstruction tasks, the goal is to minimize the 

pixel differences between the original image and the reconstructed image. To achieve this, 

MSE Loss calculates the squared differences at each pixel location and then computes the 

average of these differences. One advantage of MSE Loss is that it makes it easy to interpret 

how close the model's predictions are to the actual values. Additionally, because it uses the 

square of errors, it has the property of penalizing larger errors more, encouraging the model 

to reduce significant errors.  

 

2.5. SVM 

A Support Vector Machine (SVM)11 is a supervised learning model used for classification and 

regression analysis. The core principle of SVM is to find the 'decision boundary' that best 

separates the data, aiming to maximize the margin between two classes. The margin represents 

the distance between the decision boundary and the closest training data points, which are 

referred to as 'support vectors.' Mathematically, SVM attempts to solve the following 

optimization problem with the following constraints: 

𝑚𝑖𝑛!,#
1
2
‖𝑤‖$, 𝑦%(𝑤 ∙ 𝑥% + 𝑏) ≥ 1, ∀𝑖 

Here, w represents the normal vector to the decision boundary, b is the bias, 𝑥% represents data 

points, and 𝑦%is the label of the corresponding data point (-1 or +1).The linear decision function 

is as follows: 

𝑓(𝑥) = 𝑤 ∙ 𝑥 + 𝑏 

If 𝑓(𝑥) > 0, the data point x belongs to class +1; otherwise, it belongs to class -1. 
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Linear SVM separates data linearly, but many datasets cannot be linearly separated. To address 

this, SVM uses the "kernel trick" to map the data to a higher-dimensional space where linear 

separation is possible. The kernel function 𝐾(𝑥, 𝑥′) measures the similarity between two data 

points. Common kernels include polynomial kernels, RBF kernels, sigmoid kernels, among 

others. SVM performs well in various fields, particularly on small datasets or high-

dimensional datasets. It is not limited to classification and can also be used for regression or 

anomaly detection tasks. Kernel selection and parameter tuning are crucial, and training time 

can be long for large datasets 

 

2.6. Image Dilation 

Image morphology12 is a technique in the field of image processing that analyzes and processes 

the morphological structure of images using structural elements. Fundamentally, it is based on 

the theory of mathematical morphology and is useful for simplifying, removing, or enhancing 

objects within an image. Morphological operations are primarily applied to binary or grayscale 

images and are used to analyze or modify characteristics such as the size, shape, connectivity, 

and holes of objects. 

These operations all involve the use of structural elements, also known as kernels or masks, 

which are applied to the image to define the relationships between each pixel and its 

neighboring pixels. The size and shape of the structural element have a significant impact on 

the processing results. 

One of the types of morphological operations, dilation, expands the boundaries of an image. 

This is achieved by adding pixels at all positions that overlap with the structural element, the

reby increasing the size of objects and filling in small gaps or spaces. 

 

2.7. Contrast Limited Adaptive Histogram Equalization(CLAHE) 

Contrast Limited Adaptive Histogram Equalization (CLAHE)13 is a widely used technique for 
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enhancing the contrast of images, particularly in fields such as medical imaging and satellite 

imagery. CLAHE is a variation of traditional Histogram Equalization (HE) that is effective in 

improving contrast in localized regions of an image. The fundamental principle of CLAHE 

involves dividing the image into small "tiles" or "blocks" and independently applying 

histogram equalization to each block. This enhances contrast in localized areas of the image. 

Additionally, CLAHE includes a "contrast limiting" feature that restricts areas with 

excessively high contrast during the histogram equalization process. This prevents certain 

parts of the image from becoming overly bright or dark, suppresses noise amplification, and 

helps maintain a natural contrast in the image. 

CLAHE achieves optimal contrast in various parts of the image by independently processing 

each block. This is particularly useful for images with uneven lighting or diverse textures. In 

medical imaging, CLAHE is used to make fine structures more clearly visible in images such 

as X-rays and MRI scans. CLAHE was developed with the goal of improving image contrast 

while preserving natural image quality, and its effectiveness has been demonstrated in various 

fields. 

 

3. materials and Methods 

3.1. Data acquisition 

From 2011 to 2018, we utilized 34,851 chest X-ray images from Asan Medical Center (AMC). 

Among the entire dataset, 6,628 images were labeled with hard labels, while the remaining 

18,086 images were labeled with weak labels. The dataset with hard labels was split into 

training, validation, and test sets in an 8:1:1 ratio, and all images with weak labels were used 

for training. The images we used contain one or more of the following diseases: Cardiomegaly, 

Advanced Tuberculosis, Interstitial Opacity, Pneumothorax, Pleural Effusion, Active 

Tuberculosis, Nodule, Consolidation, Atelectasis, Mediastinal Widening, Support Device, 

Pleural Calcification, and Pneumoperitoneum. Images without diseases were classified as 
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"Normal." For external data, we used chest X-ray data from Asan Medical Center (AMC) taken 

from January 2021 to March 2021, totaling 355 images. This external dataset serves as an 

internal dataset, captured at different times for temporal validation. The masking and class 

labeling of each dataset were performed by radiologists. You can inspect the data distribution 

in the images for training and validation. 
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 Table 1 : This table provides information about the dataset and categorizes 13 diseases into Critical, Urgent, Non-urgent, and Cardiomegaly 

based on their risk levels. The classification of risk levels for each disease is a key aspect of the study and summarizes the dataset's 

characteristics.

 Class Hard 
Label 

Weak 
Label Total  Class Hard 

Label 
Weak 
Label Total 

Critical 

Pneumothorax 331 1669 2000 Urgent Advanced 
Tuberculosis 

324 0 324 

Pneumoperitoneum 100 3959 4059 

Non-urgent 

Atelectasis 98 4175 4273 

Mediastinal Widening 98 223 321 Support Device 585 0 585 

Urgent 

Pleural Effusion 1364 636 2000 
Pleural 

Calcification 100 4146 4246 

Nodule 914 1546 2460 Interstitial 
Opacity 280 1732 2012 

Consolidation 1540 0 1540 Cardiomegaly Cardiomegaly 312 0 312 

Active Tuberculosis 582 0 582  Normal   10137 
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3.2. Pre-Processing 

We apply the following preprocessing steps to the DICOM data we used: (1) Adjust image 

intensity, setting the 0.5 percentile intensity to the minimum value and the 99.5 percentile 

intensity to the maximum value. (2) Perform min-max normalization to scale values between 

0 and 255. (3) Pad empty image areas with zeros, considering aspect ratio. (4) Apply the 

CLAHE (Contrast Limited Adaptive Histogram Equalization) algorithm to ensure uniform 

contrast distribution. (5) Resize all images to 1024 x 1024 pixels and save them in PNG format. 

Augmentation14 for training includes image shift, rotation, gamma correction, sharpening, 

blurring, and random Gaussian noise. 

 

3.3. Methods 

The proposed Strictly Chest X-ray Normal Network (SCXNN) is a multi-task learning model15 

that is trained for the reconstruction16,17 and classification of 13 different diseases. It employs 

a second classifier, the Support Vector Machine (SVM), to classify a certain subset of normal 

cases among the 13 diseases. The first decoder aims to learn (1) the location of the lesions and 

(2) specific patterns of the lesions, with the goal of enabling the encoder to learn the patterns 

of the diseases. The second decoder is responsible for determining the presence or absence of 

diseases, and the SVM is used to identify definite normal cases among the patient group. You 

can see the model's diagram in the figure below 
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Figure 3.  represents a model used in training, which predicts three classes: normal, target, and 

others, while also performing reconstruction. This figure highlights the model's capability to 

classify instances into these three classes and its concurrent reconstruction process. 

 

 

Figure 4.  illustrates an ensemble of 13 models, which are combined using SVM to create a 2-

class model for distinguishing between normal and abnormal cases. This ensemble approach 
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showcases how multiple models can be integrated to enhance binary classification 

performance. 

 

3.3.1 Backbone network 

Our proposed model uses DenseNet-121 as the backbone network. We chose DenseNet-121 

for its ability to learn patterns of various diseases in chest X-ray images. DenseNet, like 

VGGNet18, ResNet, EfficientNet19, etc., is a widely used computer vision model with the 

capacity suitable for learning various disease patterns. 

DenseNet focuses on the concept of shorter connections that allow direct connections between 

the input layer and output layer. This efficient training format helps prevent the vanishing 

gradient problem20 that occurs during the backpropagation process. It also enhances feature 

propagation by passing features from shallow layers to deep layers and allows feature reuse, 

reducing the number of parameters. 

DenseNet-121 consists of 1x1, 3x3, and 7x7 convolution layers, as well as 2x2, 3x3, and 7x7 

pooling layers. It includes a 1000-dimensional fully connected layer (FC layer)21 at the end. In 

our research, we created a model for each of the 13 diseases. These 13 models are then 

ensembled. Each model is designed as a 3-class problem, distinguishing between normal, the 

target disease, and other diseases. Therefore, in our proposed model, all layers except for the 

FC layer remain the same as the original DenseNet-121. The FC layer, on the other hand, is 

replaced with a 3-dimensional FC layer to align with the objectives of our research. The initial 

weights of the model are pretrained on the ImageNet dataset22. We first train the model with 

hard labels and then proceed with the final training using weak labels23. 

 

3.3.2. Reconstruction decoder 

The reconstruction decoder assists the encoder, which is the backbone network, in learning the 

location of the target lesions that each model aims to find in chest X-rays, as well as the 

features such as texture and brightness, darkness around the disease. The lesions in our dataset 
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can occur at specific locations or randomly in the X-ray images. To learn both the lesion's 

location and the context, such as whether the disease brightens or darkens over time, 

segmentation alone may not be sufficient. Therefore, we chose to perform a reconstruction 

task24-27 instead of segmentation28-31. By using reconstruction, the encoder can not only learn 

the lesion's location but also gain insights into the surrounding context and textures of the 

lesion. This approach allows us to consider various factors when making judgments about 

diseases, including their contextual information. 

 

3.3.3. Second classifier 

We used a second classifier to improve classification performance in order to identify a clearly 

normal group32-34. The second classifier utilizes Support Vector Machine (SVM), a machine 

learning model commonly used in pattern recognition and data analysis. SVM is primarily 

employed for classification and regression analysis, especially for distinguishing one category 

of data from another. It works by maximizing the margin, which is the distance between the 

support vectors (input data) and the decision boundary, to classify the data. When the margin 

is maximized, the robustness of classification performance is also maximized. 

 

3.3.4. Training and testing 

The training of our proposed model follows the following steps: (1) Fine-tuning the weights 

pretrained on ImageNet to train the backbone network. (2) Training the reconstruction and 

classification simultaneously using hard-label data. During this step, the backbone learns 

features such as the location of abnormalities and texture patterns. (3) Training with weak 

labels, where the decoder responsible for reconstruction is frozen, and only the FC layer for 

classification is trained. (4) Training SVM using the logits from each of the 13 models. During 

SVM training, the labels are transformed into binary classification: normal and abnormal, 

where abnormal includes both target and other disease classes. 

Chest X-ray images with diseases may have one or more diseases, making it a multi-class 

classification problem. Therefore, we use three classes for classification in each of the 13 

models: target disease, other disease (others), and normal. The goal is to improve the model's 
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ability to classify a clear normal group. Finally, using the three logits obtained from each of 

the 13 models, SVM classifies normal and abnormal. The ultimate objective of our model is 

to identify a clear normal group without any of the specified 13 diseases. 

During training, two loss functions are used: cross-entropy loss and Mean Squared Error (MSE) 

loss. The final loss function combines these two losses by multiplying the MSE loss, which is 

used for reconstruction, by a hyperparameter λ (λ = 0.8 in our experiments) and adding it to 

the cross-entropy loss. The expressions for each loss function are as follows: 

 

𝑐𝑟𝑜𝑠𝑠	𝑒𝑛𝑡𝑟𝑜𝑝𝑦	𝑙𝑜𝑠𝑠 = 𝑙&(𝑥, 𝑦) = {𝑙&, 𝑙$, . . . , 𝑙'}( ,	

𝑙' = −𝑤'𝑙𝑜𝑔
𝑒𝑥𝑝(𝑥', 𝑦')

∑ 𝑒𝑥𝑝(𝑥',))*
)+&

⋅ 1	{𝑦' ≠ 𝑖𝑔𝑛𝑜𝑟𝑒	𝑖𝑛𝑑𝑒𝑥}	 

𝑀𝑆𝐸	𝑙𝑜𝑠𝑠 = 	 𝑙$(𝑥, 𝑦) = 𝑚𝑒𝑎𝑛(𝑙&, 𝑙$, . . . , 𝑙,)( , 𝑙' = (𝑥' − 𝑦')$, 𝑁 = 𝑏𝑎𝑡𝑐ℎ	𝑠𝑖𝑧𝑒 

𝑇𝑜𝑡𝑎𝑙	𝑙𝑜𝑠𝑠	 = 	 𝑙& + 𝜆 × 𝑙$ 

 

The optimizer used is Adaptive Moment Estimation (Adam)35, with an initial learning rate of 

0.001. If there is no weight update for 50 epochs, the learning rate is halved, and training 

continues. The momentum is set to 0.9, and weight decay is set to 0.0005. A batch size of 4 is 

used, and the maximum number of epochs is set to 300. If the learning rate becomes lower 

than 0.0001 and there is no weight update for 50 epochs, the training process is halted.  

During the model's testing phase, each image is down-sampled to 1024×1024, similar to the 

training phase. The 13 models produce logits, which are then passed through an SVM to obtain 

the final classification result of normal and abnormal. 

 

4. Results 

4.1. Result on datasets 

In this study, the performance of the AI model was evaluated using four different datasets: 

internal, temporal validation, external 136, and external 237. The results in Table 2 demonstrate 
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the robustness of the model, showing consistent performance metrics across all datasets. In the 

internal dataset, the model exhibited high sensitivity and specificity, correctly identifying 1325 

out of 1326 abnormal cases and accurately classifying 109 out of 162 normal cases (sensitivity 

0.99, specificity 0.67). This indicates that the model excels at detecting abnormal cases and 

does not misclassify normal cases as abnormal. The model also maintained high performance 

in the temporal validation dataset, correctly identifying 299 out of 300 abnormal cases and 121 

out of 225 normal cases (sensitivity 0.99, specificity 0.54). This highlights the model's 

robustness and reliability across different time settings and variations in medical devices. In 

external dataset 1, the AI correctly classified 127 out of 128 abnormal cases and 66 out of 106 

normal cases (sensitivity 0.99, specificity 0.63), demonstrating the model's adaptability and 

accuracy. Finally, in external dataset 2, the model exhibited high accuracy, accurately 

identifying 628 out of 645 abnormal cases and 47 out of 71 normal cases (sensitivity 0.97, 

specificity 0.66). Despite a slight increase in false positives compared to other datasets, the 

overall performance of the model remained robust and reliable 

 

 Reference standard 
normal abnormal 

AI Internal dataset 
 

normal 109 4 
abnormal 53 1325 

Temporal 
Validation dataset 

normal 121 1 
abnormal 104 299 

External dataset 1 normal 66 1 
abnormal 40 127 

External dataset 2 normal 47 17 
abnormal 24 628 

Table 2. This table presents the model's normal/abnormal results for internal, temporal valid, 

external1, and external2 data partitions. The values within the table represent the number of 

observations in each data partition, serving to compare the model's performance across 

different data splits. 
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4.2. Results on risk based screening 

In this study, disease groups were classified based on the severity of the diseases into 'critical,' 

'urgent,' 'non-urgent,' and 'cardiomegaly'38, and the diseases were evaluated according to their 

respective severity levels. The most significant finding was that there were no mispredictions 

of normal cases in the 'critical' disease group. This indicates that the model exhibited very high 

accuracy in identifying 'critical' diseases. Furthermore, the model performed quite well for the 

'urgent' and 'non-urgent' disease groups as well, demonstrating its ability to effectively 

distinguish disease states with varying levels of severity. Particularly, the model showed high 

prediction accuracy for the 'urgent' disease group and maintained stable performance for the 

'non-urgent' disease group. While the prediction accuracy for the 'cardiomegaly' disease group 

was relatively lower, it may reflect the more complex patterns associated with this disease 

group. These results can serve as important foundational data for future model improvements. 

Overall, the model used in this study demonstrated high performance in effectively 

distinguishing disease states with varying levels of severity, and the outstanding predictive 

ability in the 'critical' disease group holds significant clinical relevance. 

 

 
Reference standard 

critical urgent Non-urgent cardiomegaly 

AI 

Internal 
dataset 

Normal 0 3 1 0 

Target 82 564 186 60 

Others 25 379 26 3 

Temporal 
Validation 
dataset 

Normal 0 1 0 0 

Target 22 28 47 6 

Others 12 59 44 11 

Table 3. This table displays the results of the model's predictions for risk levels on internal and 
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temporal valid data. The values within the table indicate the number of observations in each 

data partition, demonstrating how the model predicts risk levels. 

 

4.3. Ablation study 

4.3.1 Backbone selection 

In the ablation study of this study, various deep learning architectures were compared and 

analyzed to select the optimal model. This comparative analysis included architectures such 

as 'VGG 16', 'Resnet 50', 'GoogLeNet'39, 'Densenet 121', 'Densenet 169', 'Efficientnet B2', 

among others. The performance of each model was evaluated using metrics such as Accuracy, 

AUC40, Specificity and Sensitivity. Specificity is a metric that represents the proportion of true 

negatives that the model accurately classified as negatives. It measures how accurately the 

model classifies the negative class, specifically how well it identifies normal cases as normal. 

Sensitivity, on the other hand, is a metric that represents the proportion of true positives that 

the model accurately classified as positives. It measures how accurately the model classifies 

the positive class, specifically how well it identifies abnormal cases as abnormal. The analysis 

results showed that the 'Densenet 121' model performed the best in accurately predicting 

normal cases as normal and disease cases as disease cases. This model particularly achieved a 

high score of 0.971 in the Sensitivity metric, and it also demonstrated excellent performance 

in Accuracy and AUC with scores of 0.865 and 0.904, respectively. These results indicate that 

'Densenet 121' is highly effective in accurately identifying diseases. Therefore, in this study, 

the 'Densenet 121' model was selected as the final model. The high prediction accuracy and 

reliability of this model are expected to play a crucial role in disease diagnosis and 

classification. Additionally, these results can serve as a criterion for model selection in future 

similar studies. 

 

 Accuracy AUC Specificity Sensitivity 
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VGG 16 0.7655 0.726 0.709 0.822 

Resnet 50 0.828 0.780 0.723 0.933 

GoogLeNet 0.786 0.757 0.692 0.880 

Densenet 121 0.865 0.904 0.758 0.971 

Densenet 169 0.841 0.881 0.730 0.952 

Efficientnet B2 0.821 0.878 0.729 0.913 

Table 4. This table showcases the experimental results for selecting the Backbone network. 

Specificity represents the ratio of correctly predicting normal cases as normal, while 

Sensitivity represents the ratio of correctly predicting abnormal cases as abnormal. This table 

evaluates the accuracy and reliability of the model. 

 

4.3.2. Hyperparameter 𝝀 selection 

In this study, experiments were conducted by adding the classification loss, which is the cross-entropy 

loss, and the reconstruction loss, which is the MSE (Mean Squared Error) loss, to the final loss of the 

model. In these experiments, the two losses were combined by multiplying the MSE loss by a weight 

parameter λ. The value of λ was set to 0.8, and this choice was made for the following reasons. 

Experimental results showed that the setting of λ=0.8 produced the best results. This configuration 

allowed the model to perform accurate classification using the cross-entropy loss while also improving 

the reconstruction of input data through the MSE loss. Specifically, the model using λ=0.8 demonstrated 

excellent performance in various performance metrics, including Accuracy, AUC, Specificity, and 

Sensitivity. This indicates that the λ value is a crucial hyperparameter that enables better model 

performance, and it explains why λ is included in the final loss of the model. Therefore, the model using 

λ=0.8 effectively demonstrated the ability to simultaneously handle classification and reconstruction 

tasks by combining cross-entropy loss and MSE loss. 

 
 Accuracy AUC Specificity Sensitivity 
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λ = 1.0 0.786 0.745 0.629 0.944 

𝛌 = 𝟎. 𝟖 0.865 0.904 0.758 0.971 

λ = 0.6 0.762 0.777 0.652 0.872 

λ = 0.5 0.759 0.789 0.624 0.895 

λ = 0.4 0.716 0.752 0.581 0.852 

λ = 0.2 0.668 0.802 0.533 0.803 

Table 5. This table presents experimental results for selecting the hyperparameter lambda when 

combining classification loss and reconstruction loss. Specificity and Sensitivity indicate how 

well the model predicts normal and abnormal cases. This table provides insights into 

hyperparameter tuning for improving model performance. 

 

4.3.3. Data pre-processing selection 

In this study, three different methods were compared and analyzed during the image 

preprocessing stage. These three methods are Reconstruction, CLAHE (Contrast Limited 

Adaptive Histogram Equalization), and With-Dilation. Each of these methods was used in the 

image preprocessing process, and their results were evaluated using performance metrics such 

as Accuracy, AUC, Specificity, and Sensitivity. The experimental results showed that the last 

row, which used all three methods Reconstruction, CLAHE and With-Dilation, exhibited the 

best performance. This row recorded higher Accuracy, AUC, Specificity and Sensitivity scores 

compared to the other methods, indicating that simultaneously using these three methods 

during image preprocessing is crucial for improving model performance. Therefore, it was 

concluded that using Reconstruction, CLAHE and With-Dilation together in the image 

preprocessing stage is the optimal strategy, and these preprocessing methods can help the 

model achieve better performance 

 

 Accuracy AUC Specificity Sensitivity 

hist-
equalization 
+ 
Without 

only 
classification 0.608 0.748 0.608 0.766 

Segmentation 0.621 0.784 0.621 0.785 
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Dilation 
Reconstruction 0.651 0.801 0.651 0.806 

Reconstruction 
+ 
Without 
Dilation 

CLAHE 0.720 0.874 0.720 0.857 

Reconstruction 
+ 
CLAHE 

With Dilation 0.865 0.904 0.758 0.971 

Table 6. This table displays experimental results for selecting data preprocessing methods. 

Specificity and Sensitivity represent how well the model predicts normal and abnormal cases. 

This table illustrates the impact of data preprocessing on model performance. 

 

4.3.4. Performance of 2 class and 3 class 

The proposed artificial intelligence model primarily deals with a multi-class classification 

problem involving three classes: 'normal', 'target'(specific disease), and 'others'. This approach 

aims to classify medical images into these three classes, rather than a classic binary 

classification problem of 'normal' and a specific disease. This approach allows the model to 

predict medical images that do not belong to the target disease class as 'others', capturing 

valuable information about different diseases that are not the primary target. 

Experimental results have shown that this multi-class approach outperforms binary 

classification (refer to Table 6). Extending the model to multi-class classification can be more 

effective in various disease discrimination and identification tasks, indicating its potential 

benefits over binary classification in medical image analysis. 

 

4.3.5. Novel data results 

In this study, we considered three diseases, 'pneumonia', 'edema' and 'fracture', which were 

not present in the internal dataset used for training when evaluating the external 1 and 

external 2 datasets. These diseases represented conditions that the model encountered for the 

first time, and experiments were conducted to investigate how the model would handle these 

new diseases. The experimental results showed that the majority of the 13 models tended to 

predict these new diseases as 'Other disease'. However, the models rarely predicted them as 



22 

'Normal'. This highlights that changing the problem from a 2-class model ('Normal' and 

'Target') to a 3-class model ('Normal', 'Target' and 'Other disease') effectively addressed the 

issue that arose when the model initially encountered these new diseases. 

Therefore, the experimental results emphasize the importance of considering various 

diseases during the initial model design and demonstrate that using a 3-class classification 

model can enhance the model's performance when dealing with previously unseen 

conditions. This approach is expected to be useful in real-world medical image classification 

scenarios.  
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Table 7. This table provides results for selecting 13 models with 3 classes instead of 2 classes, demonstrating the reasons behind this choice. It 

shows results for normal, abnormal, and intermediate risk levels, with data counts to assess the model's classification capabilities. 

 

Internal dataset 

Reference standard 

2 Class 3 Class 

critical urgent Non-urgent cardiomegaly critical urgent Non-urgent cardiomegaly 

AI 

Normal 43 218 98 22 0 3 1 0 

Target 64 728 115 41 82 564 186 60 

Others - - - - 25 379 26 3 

Table 8. This table presents results for selecting 13 models with 3 classes instead of 2 classes, focusing on risk levels. It displays results for 

various risk levels, with data counts to evaluate the model's risk level classification capabilities. 

 

Internal dataset 

Reference standard 

2 Class 3 Class 

normal abnormal normal abnormal 

AI 
normal 78 381 109 4 

abnormal 84 978 53 1325 
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Critical Urgent 

Pneumothorax Model Pneumoperitoneum Model Mediastinal Widening Model Pleural Effusion Model 

Normal Target Others Normal Target Others Normal Target Others Normal Target Others 

pneumonia 0.103 0.103 0.793 0.000 0.100 0.900 0.000 0.100 0.900 0.100 0.233 0.667 

edema 0.000 0.143 0.857 0.000 0.143 0.857 0.000 0.429 0.571 0.143 0.000 0.857 

fracture 0.000 0.279 0.721 0.140 0.140 0.721 0.140 0.140 0.721 0.140 0.140 0.721 

 

Urgent 

Nodule Model Consolidation Model Active Tuberculosis Model Advanced Tuberculosis Model 

Normal Target Others Normal Target Others Normal Target Others Normal Target Others 

pneumonia 0.233 0.100 0.667 0.000 0.100 0.355 0.233 0.000 0.767 0.000 0.333 0.667 

edema 0.143 0.429 0.429 0.143 0.000 0.122 0.143 0.429 0.429 0.000 0.143 0.857 

fracture 0.000 0.279 0.721 0.000 0.000 1.000 0.250 0.250 0.500 0.000 0.140 0.860 

 

Non-urgent 

Atelectasis Model Support Device Model Pleural Calcification Model Interstitial Opacity Model 

Normal Target Others Normal Target Others Normal Target Others Normal Target Others 

pneumonia 0.000 0.300 0.700 0.100 0.333 0.567 0.100 0.233 0.667 0.000 0.100 0.900 

edema 0.143 0.429 0.429 0.429 0.143 0.429 0.000 0.429 0.571 0.000 0.000 1.000 

fracture 0.279 0.140 0.581 0.286 0.286 0.429 0.000 0.279 0.721 0.000 0.140 0.860 

 
Cardiomegaly 

 
Cardiomegaly Model 
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Table 9. This table displays experimental results for evaluating the performance of 13 models on disease groups not covered during training. The 

prediction distribution is used to assess the model's predictive abilities on disease groups that were not included in the training data.

Normal Target Others 

pneumonia 0.000 0.100 0.900 

edema 0.000 0.143 0.857 

fracture 0.000 0.140 0.860 
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4.3.6. Model Grad-CAM 

Grad-CAM (Gradient-weighted Class Activation Mapping)41 is a visualization technique 

used to generate class activation maps for deep learning models. It helps in visually 

understanding which regions of an image the model considers important for making 

predictions. Grad-CAM is particularly useful for visualizing which image regions influence 

the model's decision during image classification.  

In the results visualized using Grad-CAM, all the models were found to focus on and 

emphasize the image regions related to the target disease. This indicates that all the models 

effectively understood and utilized important features related to the target disease for 

accurate prediction. Therefore, the fact that all the models pay attention to and predict the 

target disease results suggests that our model is effectively using crucial information for 

detecting and classifying the target disease. This underscores the potential of our model to 

provide reliable diagnoses. 

 

Figure 5. showcases the visualization of Grad-CAM (Gradient-weighted Class 

Activation Mapping) for the 13 models. Grad-CAM highlights the regions in images 

that are most relevant to the model's predictions. This figure provides insights into 

where and how the models focus their attention when making predictions. 
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5. Discussion 

In this study, we developed a specialized deep learning algorithm and AI model based on deep 

learning to enhance the efficiency of radiology evaluations by identifying normal cases in chest 

radiographs (CXR). Our algorithm, utilizing advanced techniques such as DenseNet121 and 

U-Net, demonstrated high efficiency in distinguishing normal cases from pathological ones 

effectively. This differentiation is crucial, given the high volume of daily chest radiographs, a 

significant portion of which are normal. 

The use of DenseNet121 leveraged its depth and feature reuse capability, enabling subtle 

feature extraction necessary for accurate screening. This was complemented by the U-Net 

architecture, which reinforced the localization of important relevant features for precise 

selection. 

Our approach included rigorous data augmentation techniques like adding Gaussian noise, 

CLAHE, and mask expansion to adapt to various imaging conditions, enhancing the model's 

robustness and adaptability. 

However, this study has limitations as it relies on data from a single institution, potentially 

impacting the generalizability of research findings. Future research should focus on validating 

the algorithm in diverse datasets and clinical settings. Additionally, it's essential to note that 

our model is designed not to replace but complement human experts, reducing the workload 

of radiologists while maintaining high standards of patient care. 

These results and conclusions emphasize the model's robustness and reliability, consistent 

performance across diverse datasets, and high predictive accuracy in disease classification 

based on risk. This bodes well for the advancement and utilization of AI technology in the 

field of healthcare, contributing to improved patient diagnosis and disease management. 
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6. Conclusion 

The developed deep learning algorithm represents a significant advancement, particularly in 

the efficient screening of normal chest radiographs in the field of radiology. By accurately 

identifying normal cases, this algorithm has the potential to significantly reduce the workload 

of radiologists and healthcare professionals. Such a transformation can lead to faster diagnosis, 

reduced medical costs, and improved patient outcomes. 

The results across internal, temporal validation, external 1, and external 2 datasets have 

demonstrated the robustness and reliability of the model, with high predictive accuracy in 

disease classification based on risk. 

Future research should focus on further refining the algorithm, ensuring its applicability and 

reliability across diverse populations and imaging technologies. The direction of evolution for 

the model will involve improving its performance and expanding its classification capabilities 

for various disease categories. The integration of these AI tools into clinical practice will 

contribute to enhancing the efficiency and accuracy of medical diagnosis, ultimately leading 

to the delivery of better healthcare services.  
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국문 요약 

일상적인임상환경에서 방사선전문의의 주요책임중 하나는 환자의 질병 유무를 판단

하기 위해 흉부 방사선 사진(CXR)을 진단하는 것이다. 이렇게 하루동안 많은 양의 흉

부 방사선 영상이 촬영되는 상황에서, 내원하는 환자들의 대다수가 정상환자로 판독된

다. 이러한 상황에서 모든 영상을 전문의가 판독하는 데에는 상당한 시간과 노력이 필

요하며, 특히 확실한 정상군을 분류하는데 인공지능 모델의 도움은 의사의 업무 부담

을 줄여줄 수 있는 매우 유용한 방법이다. 하지만, 이때 환자의 중요한 질병을 놓치는 위

험은 매우 중요한 문제이다. 따라서 정상과 질병을 정확하게 분류하는 알고리즘이 필

요한데, 특히 영상을 판독할 때 질병군을 정상군으로 오진 하지 않게 하는 것이 필요하

다. 우리는 정상과 비정상을 분류하기 위한 모델을 만들기위해 기존 알고리즘같은 이

진분류 인고지능 알고리즘을 사용하는것이 아닌 방사선의사의 판독을 모방하며, 질병

에 더욱 강건한 모델을 만들기위해 Strictly Chest X-ray Normal Network(SCXNN)을 제안

한다.  SCXNN 모델은 13가지 다른 질병에 대해 재구성과 분류를 동시에 수행하는 멀

티태스크 학습 모델이다. 이 모델은 첫번째 디코더는 병변이 발생하는 위치와 병변의 

특징을 학습하여 인코더가 병변의 패턴을 학습하는것을 목표로 한다. 두 번째 분류기

인 서포트 벡터 머신(SVM)은 각 질병에 대한 모델의 로짓을 이용하여 확실한 정상,비

정상 그룹을 분류합니다. 데이터의 경우 2011년부터 2018년까지 서울아산병원에서 수

집한 총 24,714건의 흉부 X-ray 데이터 중 5,400건은 마스크가 적용된 이미지(하드 레

이블), 19,314건은 마스크가 없는 이미지(위크 레이블)였습니다. 하드 레이블 데이터는 

훈련, 검증, 테스트 세트로 8:1:1 비율로 나뉘어졌고, 위크 레이블 이미지는 모두 학습에 

사용되었습니다. 이 이미지들은 Cardiomegaly, Advanced Tuberculosis 등 13가지 질병을 

포함하거나 질병이 없는 'Normal'로 분류되었습니다. 또한, 2021년 1월부터 3월까지 수

집된 355건의 서울아산병원 흉부 X-ray 데이터를 외부 데이터로 사용하여 시간적 검증 

데이터셋으로 활용했으며, 모든 마스크 및 클래스 레이블링은 영상의학과 의사가 수행

하였습니다. 질병의 재건 과정에서 질병 부위만을 대상으로 할 경우 정상 폐 조직의 특

성을 충분히 학습하지 못하는 문제를 인식하였습니다. 이를 해결하기 위해, 마스크 처
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리 과정에 모폴로지 연산의 일종인 팽창(dilation) 연산을 적용하였습니다. 이러한 접근

은 영상에서 질병이 있는 부위뿐만 아니라 질병이 영향을 미치는 주변 정상 조직 패턴

까지 함께 학습할 수 있도록 하여, 질병 재건의 정확도를 향상시키는 데 기여하였습니

다. SCXNN 모델은 내부 및 시간적 검증 데이터셋과 외부 공개 데이터셋 모두에서 일관

된 성능을 보여주었습니다. 이는 데이터셋의 종류에 관계없이 SCXNN이 안정적인 결

과를 제공하는 강건한 모델임을 입증하는 것입니다. 이러한 강건성은 실제 임상 환경

에서 환자의 건강과 안전을 보장하는 데 중요한 역할을 할 것으로 기대됩니다. 더불어, 

영상의학과 의사의 진단 지원 도구로서 SCXNN의 활용은 의료진의 워크로드를 줄이

는 데 기여할 수 있습니다. 이는 진단 과정의 신속성과 정확성을 높여 의료 서비스의 질

을 향상시키며, 의료진이 보다 많은 시간을 환자 치료에 집중할 수 있게 함으로써 전반

적인 의료 서비스의 효율성을 증진시킬 것입니다. SCXNN의 이러한 특성은 임상 의사

결정 과정에서 인공지능 도구의 활용을 더욱 확대하는 데 기여할 것으로 사료됩니다. 
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