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Abstract 

Backgrounds: Accurate patient identification is important for patient safety and accurate 

diagnosis and treatment. Although reports of patient identification errors are rare in clinical 

settings, even a single error in patient identification can lead to fatal consequences such as 

incorrect treatment and surgery on the wrong patient. Therefore, the goal of this study is to 

propose a deep learning model that automatically detects patient identification errors in paired 

chest radiographs (CXRs), evaluate it, and compare and analyze it with experts. 

Methods: We developed deep learning models for patient identification using a dataset of 

240,004 CXRs. These models were validated using multiple datasets, including internal, 

CheXpert, and Chest ImaGenome datasets, which include different populations. We assessed 

the model’s performance in terms of its ability to discern changes in disease status. To evaluate 

the model, we compared its performance to that of three junior radiology residents (Group I), 

two senior radiology residents (Group II), and two board-certified expert radiologists (Group 

III) in identifying patients from paired CXRs. Additionally, we conducted a one-sided non-

inferiority test with a margin of 0.05 to further assess the model’s performance.  

Results: Our similarity-based deep learning model, SimChest, showed the most impressive 

patient identification performance across various datasets, regardless of changes in disease 

status (internal validation [area under the receiver operating characteristic curve (AUC) range 

0.992–0.999], CheXpert [0.933–0.948], and Chest ImaGenome [0.949–0.951]). In comparison, 

radiologists demonstrated an average accuracy of 0.900 (with a 95% confidence interval 

ranging from 0.852-0.948) in identifying patients from paired CXRs, with performance levels 

increasing in accordance with experience (mean accuracy: Group I [0.874], Group II [0.904], 

Group III [0.935] and SimChest [0.904]). SimChest’s performance was found to be non-

inferior to the average performance of radiologists, with a P-value for non-inferiority of 0.015. 

Conclusion: The results of this diagnostic study suggest that deep learning models can 

effectively identify misidentification using a pair of CXRs and perform at a level that is not 

significantly inferior to that of human experts.  
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Introduction 

Accurate patient verification is essential for patient safety and to ensure accurate diagnosis 

and treatment. Although patient misidentification is reported to occur infrequently in real-

world practice [1, 2], a single incident of misidentification can lead to catastrophic 

consequences, including misdiagnosis, incorrect treatment, wrong-site surgery, and wrong-

patient surgery [3]. To prevent patient misidentification errors, all team members involved in 

the procedure and the patient confirm the identity of the patient and the procedure during the 

common “time-out” process [4]. Despite these efforts, Henneman [5] reported that only 61% 

of healthcare workers detected the misidentification error in simulation settings once it had 

occurred. Therefore, the use of additional patient verification methods, other than human-

involved procedures, may be beneficial in reducing the risk of medical errors.  

Several studies have shown that computerized algorithms can be used to recognize and 

identify patients. Jeon et al. found that a facial recognition algorithm could improve patient 

verification [6]. In addition, Silverstein et al. used a commercial facial recognition algorithm 

to identify individual patients [7], while Ampamya et al. presented decent unique patient 

matching performance with an open-source facial recognition system [8]. However, using 

facial recognition to screen for misidentification errors has several drawbacks. It may violate 

patient privacy, because facial photographs are not typically collected as part of routine 

practice. In addition, the integrity of facial images in medical settings can be easily 

compromised by factors such as painful expressions or facial trauma. Chest radiographs 

(CXRs), one of the most commonly taken medical images, can be used to screen for 

misidentification errors [9]. Morishita et al. used histogram correlation values of CXR [10], 

while Koa et al. used anatomical features to identify individual patients [11]. However, these 

methods using CXRs can also often fail to identify patients because variations in the CXRs, 

such as pose, breath-hold level, and gross abnormalities can confuse the models. 

Recent evidence has shown that deep learning (DL) models can accurately predict 

demographic factors from medical images, such as age [12], sex [13], and race [14], which 
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were long believed to be nearly impossible for physicians. These findings suggest that DL 

models can directly recognize individual patient identities. Packhäuser et al. showed that a DL 

algorithm has a potential to verify and re-identify patients more accurately than existing 

computerized algorithms [15]. As the famous phrase “To err is human [16]” suggests, 

catastrophic misidentification errors do occur, although they are rare. Given that human 

systems sometimes fail to detect identification errors [5] and human performance may 

deteriorate due to fatigue, DL-based human identification can play an important role in 

screening for misidentification errors.  

In this study, we aimed to investigate the ability of DL models to precisely screen 

misidentified patients. Therefore, we developed a similarity-based DL algorithm for patient 

identification using CXR, and validated it with various datasets from different centers, races, 

and clinical conditions. We also compared the algorithm’s performance with that of human 

experts and applied this model to another task such as image-based patient retrieval [17]. 

 

Materials and Methods 

Definition of change/no-change status of disease in a CXR pair 

The disease change-status expressed in a pair of CXRs can affect the performance of a 

patient identification model. Therefore, the change/no-change status of each pair of CXRs was 

labelled to evaluate the model’s performance according to this status. The pairs were labelled 

as follows: change was labelled using (increas*, decreas*, new*, improve*, aggravate*, 

progress*, resolv*, disappear*, heal*, and enlarge*) and the no-change was labelled using (no 

interval, no significant, and no remarkable) keywords in the radiologic reports. Through the 

visual validation by an expert thoracic radiologist, the change/no-change labelling accuracy 

obtained from radiology report was approximately 80% in the randomly sampled data from 

training dataset. 
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Data collection  

The institutional review board (IRB) approved the study design and the requirement for 

written informed consent was waived due to the retrospective nature of the study. CXRs 

collected at the radiology department of a tertiary hospital in South Korea between 2011 and 

2018 were included. Considering the model size and resources, 240K pairs of CXRs from 

54,556 subjects were randomly sampled, including 120K each for change/no-change pairs. 

We randomly sampled 240 pairs of CXRs from the internal dataset to assess the clinical 

comparability of our deep learning model with human experts. The dataset used for the reader 

study included 180 same (correctly identified) subjects (11 and 169 pairs respectively for each 

change/no-change) and 60 different (misidentified) subjects, the prevalence of which was 

determined by an expert radiologist with 20 years’ experience, considering that patient 

mismatches are less likely to occur in real-world settings. Change/no-change labels and 

position of subjects (PA, posterior-anterior and AP, anterior-posterior) labels were determined 

by a radiology resident with two years’ experience, who was not involved in the performance 

assessment. 

One internal validation and two external validation datasets were used to evaluate the 

model’s performance and robustness in screening for misidentified patients. The internal 

validation dataset consisted of 290 pairs of the same subjects (157 and 133 pairs for each 

change/no-change), and 290 different subjects, all of which were not seen in the training. 

CheXpert [18] and the gold standard Chest-ImaGenome [19] (CIG) dataset were used for the 

external validation. A total of 200 pairs of CXR of the same subjects (100 pairs for each 

change/no-change) and 200 pairs of different subjects were randomly sampled from the 

CheXpert. Finally, 290 pairs of same subjects (174 and 116 pairs for each change/no-change) 

of all gold standard dataset of CIG were used and 290 different subjects were randomly 

sampled. For each dataset for retrieval, 200 same pairs were randomly sampled from the 

internal validation dataset, CheXpert dataset, and CIG dataset of patient identification dataset. 

Because the identification dataset of CheXpert consisted of 200 same pairs and 200 different 
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pairs, all same pairs of CheXpert were used for retrieval. All change/no-change labels for the 

internal validation and CheXpert were completely reviewed by a board-certified thoracic 

radiologist with 6 years’ experience. Labels for CIG were reviewed by radiology and internal 

medicine clinicians [19]. All change dataset was consisted of the same pairs with change labels 

and the no-change dataset with no-change labels. The different pairs were common to each 

dataset. Flow diagram of data collection is depicted in Figure 1. 

 

Figure 1. Flow diagram of data collection for model development, clinical validation, and external validation. 

 

Patient identification model development 

We developed a similarity-based DL network, SimChest for patient identification. During 

training, SimChest optimizes the supervised contrastive loss [20] to allocate short distances to 

CXRs from the same subject and large distances to CXRs from different subjects in the latent 

space. After training, SimChest was used to obtain feature vectors from the reference and 

comparison CXRs. Finally, the cosine similarity between the two vectors was calculated. This 

similarity index was used for the screening for misidentification errors. The training strategy 

of SimChest is depicted in Figure 2. 
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To obtain a radiologic fingerprint and measure the similarity between two different CXRs, 

SimChest optimizes supervised contrastive loss. The supervised contrastive loss is described 

as follows: 

𝑺𝒖𝒑𝒆𝒓𝒗𝒊𝒔𝒆𝒅 𝑪𝒐𝒏𝒕𝒓𝒂𝒔𝒕𝒊𝒗𝒆 𝑳𝒐𝒔𝒔 =   ∑
−𝟏

|𝑷(𝒊)|
∑ 𝒍𝒐𝒈

𝒆𝒙𝒑 (𝒛𝒊⋅𝒛𝒑/𝝉)

∑ 𝒆𝒙𝒑 (𝒛𝒊⋅𝒛𝒂/𝝉)𝒂∈𝑨(𝒊)
𝒑∈𝑷(𝒊)𝒊∈𝑰   (1) 

Here, 𝑖 denotes each image from the entire dataset 𝐼, which also contains augmented images. 

𝐴(𝑖) means the dataset 𝐼 excluding 𝑖. 𝑧𝑖 denotes the feature vector from 𝑖 and the 𝑧𝑝 from the 

positive key of the query. 𝑧𝑎 denotes the feature vector from the negative key of the query, and 

𝜏  means temperature, which was set to 0.07. 𝑃(𝑖) ≡ {𝑝 ∈ 𝐴(𝑖) ∶  𝑦̃𝑝 = 𝑦̃𝑖}  is the set of 

augmented images but affiliated same class with 𝑖 and |𝑃(𝑖)| is the cardinality of 𝑖. 

 

Comparison of model performance with human expert 

To confirm the validity of screening for patient misidentification errors using a pair of CXRs 

and to compare the model performance with human experts, a reader study was conducted. 

Seven radiologists participated in reader study, including three junior radiology residents 

(Group I), two senior radiology residents (Group II), and two board-certified radiologists, each 

Figure 2. Training strategy and similarity measurement method of SimChest. 
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with 18 years and 14 years of experiences (Group III). Each radiologist independently 

evaluated the same or different status of each pair of CXRs, with sufficient amount of time to 

read the CXRs. Additional performance analyses were performed according to disease change-

status and position of subject to determine if the screening performance of human readers and 

the DL model varied according to these statuses. 

 

Patient retrieval  

One internal validation dataset and two external validation datasets were also used to 

evaluate the models’ performance for image-based patient retrieval. For each dataset, 200 same 

pairs were randomly sampled. DL-based algorithms were also used for patient retrieval. First, 

each algorithm extracted the feature vector of each CXR from the given dataset. Second, once 

a base CXR was selected, its feature vector could be used as a query. Finally, the cosine 

distance between the query and the feature vectors from the rest of the given dataset was 

calculated. Subsequently, the top-1 and top-5 ACCs were calculated for patient retrieval, 

indicating whether the same patient was included in the top N similar logits calculated from 

each patient of the given dataset. We did not present a null hypothesis test for patient retrieval 

because it was not meaningful given the large size of the contingency table (i.e., all p values 

were <0.001). 

 

External validation and implementation details 

We used one internal and two external validation datasets to determine whether the results 

were generalizable to patients from different hospitals and to patients of different races. In 

addition, we compared our method with existing DL methods to evaluate the performance of 

our proposed method. We selected two DL methods for comparison: contrastive learning 

(MoCo v2) and supervised learning methods (Siamese neural network, SNN [15]). Because 

SimChest optimizes supervised contrastive loss, commonly used contrastive learning method 

and supervised learning method were compared. 
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MoCo v2 was selected for the contrastive learning-based algorithm, and it was trained using 

contrastive loss. The loss is described as follows: 

𝑪𝒐𝒏𝒕𝒓𝒂𝒔𝒕𝒊𝒗𝒆 𝑳𝒐𝒔𝒔 =  −𝒍𝒐𝒈
𝒆𝒙𝒑 (𝒒⋅𝒌+/𝝉)

∑ 𝒆𝒙𝒑 (𝒒⋅𝒌𝒊/𝝉)𝑲
𝒊=𝟎

  (2) 

where the 𝑞 denotes the feature vector from the query image and the 𝑘+ denotes the feature 

vector from the positive key. The 𝑘𝑖 except 𝑘+ denotes the feature vector from the negative 

key of the query, and τ means temperature, which was set to 0.07. This loss makes 𝑞 and 

positive key similar but 𝑞 and negative key different, which helps the model cluster the same 

CXR in the embedding space to be nearby and the different CXRs to be far. After contrastive 

learning, MoCo v2 was fine-tuned with a fully connected layer for patient identification. 

A Siamese neural network of Resnet-50 was selected for the supervised learning-based 

algorithm. Because a pair of CXRs was used as an input of Siamese Resnet-50, the L1 distance 

between two feature output vectors from the Siamese Resnet-50 was calculated. The sigmoid 

activation function was applied to the L1 distance, and finally, cross-entropy was calculated 

as a loss function. This loss is described as follows: 

𝑫 =  ∑|𝒔𝒊𝒈𝒎𝒐𝒊𝒅(𝒐𝒖𝒕𝒑𝒖𝒕𝟏) − 𝒔𝒊𝒈𝒎𝒐𝒊𝒅(𝒐𝒖𝒕𝒑𝒖𝒕𝟐)|  (3) 

𝑳𝒐𝒔𝒔 =  −[𝒈𝒕 × 𝒍𝒐𝒈(𝒔𝒊𝒈𝒎𝒐𝒊𝒅(𝑫)) + (𝟏 − 𝒈𝒕) × 𝒍𝒐𝒈 (𝟏 − 𝒔𝒊𝒈𝒎𝒐𝒊𝒅(𝑫))] (4) 

Here, 𝑜𝑢𝑡𝑝𝑢𝑡  denotes the feature output vector of Siamese Resnet-50 and 𝐷  is the L1 

distance value between 𝑜𝑢𝑡𝑝𝑢𝑡1 and 𝑜𝑢𝑡𝑝𝑢𝑡2. In equation (4), 𝑔𝑡 denotes the ground-truth 

value whether the given pair CXR is the same or different. 

One of the most widely used convolutional neural network architecture, ResNet-50 was 

used for SimChest and other deep learning-based methods, considering the size of the dataset 

and training time. The models were implemented in Python version 3.6.9 using PyTorch 

version 1.6.0. The models were trained using a stochastic gradient descent optimizer with a 

learning rate of 5e-2 and a warmup of three epochs with a weight decay of 1e-4. Data 

augmentations, such as shifting (±6.2%), zooming (±2%), rotation (±10°), sharpening (±5), 

motion blur, median blur, optical distortion, Gaussian noise, and contrast limited adaptive 

histogram equalization, were used. All images were resized to 512 × 512 pixels. The batch 
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size of the overall experiment was set to the maximum for the GPU (Quadro RTX 8000) 

memory. 

 

Statistical analysis 

Sensitivity, specificity, negative predictive value (NPV), positive predictive value (PPV), 

accuracy (ACC), and area under the receiver operating characteristics curve (AUC) were 

calculated for the quantitative results of screening for misidentified patient. Means ± standard 

deviations (SDs) for ACC were calculated for the reader groups.  

Two-sample proportion tests were performed between the total sample and each 

conditioned subgroup to compare the performance in each condition. Additional non-

inferiority tests were performed to compare the performance of average human readers and 

the model. The null hypothesis was that the difference between the accuracy of average human 

readers was 5% or more (non-inferiority margin). DeLong’s test for two correlated receiver 

operating characteristics (ROC) curves was performed to compare the misidentified patient 

screening results between our method and other existing DL methods. A two-sided P<0.05 

was considered statistically significant except for non-inferiority test. All statistical analyses 

were performed using R version of 4.2.1. 

 

Results 

Subject characteristics 

The training, internal validation, and reader study datasets all consisted of only Asian 

participants. The 213 participants in the CheXpert dataset consisted of 15 Asian, 14 Black, 133 

White, and 51 other or unknown race. The CIG dataset did not provide with the race 

information. Vendor information used for CXR acquisition was only provided for the training 

dataset. The internal validation, CheXpert, CIG, and reader study dataset were all anonymized 

for the vendor information. The 240,004 CXRs in the training dataset consisted of 166,260 

CXRs acquired with GE Healthcare equipment, 35,203 with Fujifilm Healthcare, 28,970 with 
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Canon Inc., 3,763 with Samsung Electronics, 173 with DK Medical Systems, one with 

Siemens Healthineers, and 5,634 with unknown equipment. Data profiles are summarized in 

Table 1. 

 

Table 1. Summary of datasets used for misidentified patient screening experiments. 

 
Training 

dataset 
Reader study 

Internal 

validation 
CheXpert CIG 

CXR 

(Patient) 

240,004 

(54,556) 
480 (240) 1,160 (580) 800 (213) 

1,160 

(580) 

Pairs      

  Same pair NA 160 290 200 290 

  Different 

pair 
NA 80 290 200 290 

Age, year 
62.230 ± 

13.647 

56.617 ± 

13.690 
59.760 ± 14.151 

59.366 ± 

17.861 
NA 

Sex      

  Female 17,043 (31.2) 113 (47.1) 196 (33.6) 79 (37.1) NA 

  Male 21,638 (39.7) 119 (49.6) 212 (36.6) 134 (62.9) NA 

  

Anonymized 
15,875 (29.1) 8 (3.3) 173 (29.8) 0 (0) 580 (100) 

Change 

status 
     

  Change 119,875 (49.9) 11 (6.9) 157 (54.1) 100 (50) 174 (60) 

  No-change 120,129 (50.1) 149 (93.1) 133 (45.0) 100 (50) 116 (40) 

Note: CIG=Chest ImaGenome dataset. NA=Not applicable. 

a Data are presented as number (percentage) of participants unless otherwise indicated. 

 

Performance of the deep learning model compared to radiologists 

We found that radiologists can screen if a pair of CXRs has been misidentified or not. Given 

sufficient time, all radiologists performed well in screening misidentified patients (mean ACC 

0.900, 95% CI 0.852 – 0.948). In addition, the results reveals that the longer the radiologists 
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had practiced, the better they were at screening misidentified patients. Board-certified 

radiologists performed best (Group III 0.935), followed by senior radiology residents (Group 

II 0.904) and junior radiology residents (Group I 0.874). SimChest demonstrated similar 

accuracy to that of senior radiology residents (SimChest 0.904). In addition, SimChest 

achieved non-inferior performance compared to average radiologists (one-sided P for non-

inferiority 0.015). The performance of radiology readers and SimChest is compared in Table 

2, Figure 3. 

 

Table 2. Performance of SimChest and human readers to screen for misidentified patient from paired 

CXRs 

 SimChest Group I Group II Group III All readers 

Sensitivity 0.917 0.794 0.750 0.858 0.800 ± 0.111 

Specificity 0.900 0.900 0.956 0.961 0.933 ± 0.0385 

PPV 0.753 0.722 0.857 0.881 0.806 ± 0.106 

NPV 0.970 0.930 0.920 0.953 0.934 ± 0.036 

Accuracy 0.904 0.874 0.904 0.935 0.900 ± 0.048 

Note: CXR=Chest radiograph. PPV=Positive predictive value. NPV=Negative predictive value. Group 

I=Junior radiology residents. Group II=Senior radiology residents. Group III=Board-certified expert 

radiologists. 

a Mean of all reader group is shown with 95% confidence interval.  
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Figure 3. Receiver operating characteristics curve of SimChest and comparison with human readers. 

Note: AUC=Area under receiver operating characteristics curve. Group I=junior radiology residents. 

Group II=Senior radiology residents. Group III=Board-certified expert radiologists. 

 

Performance analyses according to disease change status and subject position 

In the additional performance analyses by disease change-status, DeLong’s test for two ROCs 

showed that there was no statistical difference between the performance of the total dataset 

(AUC 0.971, 95% CI 0.951 – 0.990) and the change dataset (AUC 0.942, 95% CI 0.885 – 

1.000; P-value 0.369), and the no-change dataset (AUC 0.972, 95% CI 0.954 – 0.991; P-value 

0.892). SimChest demonstrated non-inferior performance compared to average human readers 
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on both the change (one-sided P for non-inferiority 0.003) and no-change datasets (one-sided 

P for non-inferiority 0.016). In the performance analyses by position of subjects, the DeLong’s 

test for two ROCs showed that there was no statistical difference between the performance of 

the total dataset (AUC 0.971, 95% CI 0.951 – 0.990) and the PA only dataset (AUC 0.989, 95% 

CI 0.978 – 1.000; P-value 0.098), and the AP involved dataset (AUC 0.902, 95% CI 0.818 – 

0.987; P-value 0.126). SimChest showed non-inferior performance compared to average 

human readers in the PA only dataset (one-sided P for non-inferiority 0.002), but not in the AP 

involved dataset (one-sided P for non-inferiority 0.468). The analyses are summarized in Table 

3. 

 

Table 3. Accuracies of SimChest and human readers to screen for misidentified patient from paired 

CXRs according to disease changes status and subject position (PA/AP) 

 Disease change status Subject position Total 

 Change 

(N=71) 

No-change 

(N=229) 

PA only 

(N=164) 

AP involved  

(N=76) 

Group I 0.775 0.884 0.917 0.781 0.874 

Group II 0.761 0.908 0.930 0.849 0.904 

Group III 0.880 0.932 0.963 0.875 0.935 

All readers 0.801 ± 0.113 0.905 ± 0.042 0.934 ± 0.051 0.827 ± 0.061 0.900 ± 0.048 

SimChest 0.901 0.908 0.957 0.789* 0.904 

Note: CXR=Chest radiograph. PA=Posterior-Anterior projection. AP=Anterior-Posterior projection. 

PPV=Positive predictive value. NPV=Negative predictive value. Group I=Junior radiology residents. 

Group II=Senior radiology residents. Group III=Board-certified expert radiologists.  

a (*), P-value<0.05; (**), P-value<0.01; (***), P-value<0.001.  

b Two-sample proportion test was conducted between total sample and each condition to compare the 

performance in each condition.  

c Mean of all reader group is shown with 95% confidence interval.  

 

Performance and generalizability of deep learning models 

SimChest and the other DL models were evaluated on internal, CheXpert, and CIG datasets. 

The performances are summarized in Table 4. In internal validation dataset, SimChest 
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outperformed the other deep learning models with the AUC of 0.996 (SNN 0.961, P-

value<0.001; MoCo v2 0.966, P-value<0.001). SimChest showed robust performance on 

CheXpert with the AUC of 0.941, outperforming MoCo v2 (AUC 0.906, P-value=0.011) and 

SNN (AUC 0.830, P-value <0.001). SimChest also showed robust performance on CIG dataset 

with the AUC of 0.950, outperforming MoCo v2 (AUC 0.924, P-value=0.037) and SNN (AUC 

0.853, P-value<0.001). 

 

Table 4. AUCs of deep learning models to screen for misidentified patient from paired CXRs 

 SNN MoCo v2 SimChest 

Internal validation    

  Change 0.958 ± 0.018*** 0.963 ± 0.016*** 0.992 ± 0.007 

  No-change 0.964 ± 0.016*** 0.968 ± 0.015*** 0.999 ± 0.001 

  Total 0.961 ± 0.015*** 0.966 ± 0.014*** 0.996 ± 0.003 

CheXpert    

  Change 0.801 ± 0.051*** 0.897 ± 0.036* 0.933 ± 0.030 

  No-change 0.860 ± 0.041*** 0.915 ± 0.030* 0.948 ± 0.028 

  Total 0.830 ± 0.040*** 0.906 ± 0.029* 0.941 ± 0.021 

CIG    

  Change 0.849 ± 0.034*** 0.923 ± 0.024* 0.941 ± 0.021 

  No-change 0.860 ± 0.036*** 0.925 ± 0.025 0.951 ± 0.024 

  Total 0.853 ± 0.029*** 0.924 ± 0.022* 0.950 ± 0.016 

Note: AUC=Area under receiver operating characteristic curve. CIG=Chest ImaGenome dataset. 

SNN=Siamese Neural Network. 

a (*), P-value<0.05; (**), P-value<0.01; (***), P-value<0.001.  

b DeLong’s test for paired receiver operating characteristics curves was performed to compare the 

performance of SimChest with the other models.  

 

Table 5. Performance of deep learning models to retrieve a patient from the set of CXRs 

 SNN MoCo v2 SimChest 

Internal validation    

  Top 1 ACC 0.315 0.185 0.885 

  Top 5 ACC 0.560 0.420 0.965 

CheXpert    

  Top 1 ACC 0.125 0.100 0.505 

  Top 5 ACC 0.230 0.230 0.820 

CIG    
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  Top 1 ACC 0.080 0.105 0.400 

  Top 5 ACC 0.240 0.240 0.595 

Note: CIG=Chest ImaGenome dataset. ACC=Accuracy. SNN=Siamese Neural Network. 

a Top N ACC indicates whether the same patient was included in the top N similar logits calculated 

from each patient of the given dataset 

 

 

Figure 4. Sample images of the base CXR and the top 5 result CXRs for each dataset in the retrieval 

task.  

Note: (a) represents the internal dataset, (b) is the CheXpert dataset, and (c) is the CIG dataset. In each 

row, the red boxes represent the base CXR and the CXR of the same patient as the base patient. 

 

In addition, the ability to retrieve the most similar CXR from the given dataset was also 

evaluated in this study. SimChest showed the best and most robust performance across all 

datasets. Other DL models were unable to retrieve the patient in the external validation datasets, 

and the results are summarized in Table 5. The sample images of the base CXR for each dataset 

ant the top 5 result CXRs are depicted in Figure 4. 

The saliency maps acquired using gradient weighted class activation map (Grad-CAM) [21] 

of SimChest are shown in Figure 5. Figure 6 shows the class activation maps of Siamese 

Resnet-50 and MoCo v2. The saliency map of SimChest focused mainly on the ribs and 
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thoracic cage, and this trend is similar to the results of the reader test compared to Siamese 

Resnet-50 and MoCo v2. 

 

Figure 5. Grad-CAM of SimChest on the following: same image, same patient with change/no-

change of disease, and different patient.
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Figure 6. Grad-CAM of Siamese Neural Network (a) and MoCo v2 (b) on the following: same image, 

same patient with change/no-change of disease, and different patient. 

 

Discussion 

In this study, we showed that both the DL models and the radiologists can screen for 

misidentified patients from paired CXRs and compared the performance with that of DL model. 

This finding is noteworthy because human experts typically do not perform this task, and as a 

result, clinical feasibility have not been proved previously. Furthermore, the results of our 

model were comparable to those of senior radiology residents. In addition, we provided 

additional insight into the performance of model and human readers through subgroup 

analyses by disease change-status and positions of subjects. 
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We also showed that the generalizability of the DL model across various clinical settings, 

medical imaging vendors, and subject populations by utilizing multiple private and public 

datasets. In addition, our model showed the consistent performance regardless of the disease 

change/no-change status of the CXR pairs. Finally, SimChest showed the most robust results 

across all external validation datasets. Furthermore, considering that the DL models were 

trained on the CXRs of Asian race, SimChest showed generalizable performance on the 

CheXpert and CIG datasets, which consisted of Black, White, Hispanic and other races. This 

can be interpreted as it being a race-agnostic model. 

We also demonstrated that our similarity-based DL model, SimChest, can retrieve the most 

similar CXR from a given set of CXRs on the internal validation, CheXpert, and CIG datasets. 

Accurate patient identification and retrieval through this similarity-based method bear 

significance not only within the task itself but also in the clinical context. Two clinical 

scenarios for utilizing SimChest are proposed, as illustrated in Figure 7. 

 

Figure 7. Possible scenario for using the patient identification algorithm in clinical practice. 
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In the preoperative or interventional setting, SimChest can serve as an additional tool to 

verify the patient’s identity during the “time-out” process as depicted in scenario (a). 

Physicians can proceed with the procedure if SimChest confirms that the two CXRs belong to 

the same patient. However, if SimChest indicates that the two CXRs belong to different 

patients, physicians should re-evaluate the similarity logit and repeat the “time-out” process 

with the medical team. This process can help prevent misidentification errors.  

SimChest also has potential applications in emergency situations, as depicted in scenario 

(b), where rapid patient identification can be of benefit to unconscious patients. If we establish 

a national database that stores latent vectors of CXRs representing each individual, SimChest 

can be utilized to promptly identify unconscious and unidentified patients in the emergency 

department. By identifying individual patient and matching patient information, physicians 

can promptly order diagnostic tests to determine the underlying cause of the loss of 

consciousness and provide personalized treatment. 

Our study demonstrated promising results of SimChest using paired CXRs. Patient 

misidentification can occur in all medical departments. Although it did not reach the level of 

board-certified radiologists, SimChest achieved a comparable performance to radiology 

residents. In addition, the non-inferiority test demonstrated that SimChest showed non-inferior 

performance to average radiologists regardless of disease change-status. However, It was not 

determined whether the model performed non-inferiorly to average radiologists regardless of 

patient position.  

Given the widespread use of CXR as a prevalent imaging modality among physicians and 

radiologists, our findings present a promising approach to improving patient safety by 

mitigating misidentification errors. Considering the infrequent incidence of misidentification 

errors in the real-world [1], false alarm in well-matched cases triggered by SimChest may 

potentially lead to clinician and radiologist fatigue. However, as it is difficult to screen 

misidentification errors once they have occurred [5], the implementation of this autonomous 

safety device may help to reduce such errors independently of human intervention. Further 
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studies will be conducted to address false positives and enhance generalizability, aiming to 

alleviate this fatigue. 

This study has some limitations. First, due to the retrospective nature of this study, the study 

results may not be generalizable to real-world practice. Further prospective analysis in clinical 

practice is needed to confirm the study results. Second, although SimChest showed robust 

performance regardless of disease change-status, whether the model can perform non-

inferiorly compared to average radiologists regardless of patient position remained 

undetermined in this study. Further research is needed to develop models that can perform at 

the level of radiologists regardless of patient position. Finally, the patient retrieval 

performance of SimChest in the external validation datasets was not good enough to be used 

as it is. This may be due to the differences in the acquisition settings of the CXRs or differences 

in race. Figure 4 illustrates the sample images of the base CXR for each dataset and the top 5 

result CXRs, and these belong to the top 5 but the top 1 case. When examining the external 

datasets (b) and (c), CXRs corresponding to the top 5 are more similar to the base CXR 

compared to the internal dataset. However, distinguishing whether the CXRs from the base 

patient and the reference patient are the same is challenging due to variations in posture, 

breathing level, and other factors. Additionally, in the case of CheXpert dataset, difference in 

trends may arise due to preprocessing, while in the case of CIG, the dataset is predominantly 

obtained in AP in ICU settings, resulting in distinct characteristics from the internal dataset. 

However, patient retrieval can be used in real-world settings as content-based image retrieval 

[17] to find similar cases or to find patients in a defined database as shown in scenario (b) of 

Figure 7. Therefore, the decent performance shown in the internal validation dataset may show 

its usability for fine-tuning in the hospital-based cohorts, community-based cohorts, or 

national cohorts. 
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Conclusion 

Our study showed that the DL model can precisely screen for misidentified patients using 

paired CXRs. Our results were robust across disease change-status, patient position, multiple 

datasets, multiple races, and multiple clinical settings. In addition, radiologists can also screen 

for misidentified patients from paired CXRs and SimChest performed non-inferiorly to human 

radiologists. Furthermore, the performance of SimChest in patient retrieval had shown 

potential to be applied in content-based image retrieval or identification of unidentified patient 

from a given cohort database. 
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국문요약 

배경: 환자의 정확한 식별은 환자 안전과 정확한 진단 및 치료를 위해 중요하다. 비록 실

제 임상 현장에서 환자 식별 오류에 대한 보고가 드물긴 하지만, 한 번이라도 환자 식별

의 오류가 발생하면 부정확한 치료와 잘못된 환자를 수술하는 등의 치명적인 결과를 초

래할 수 있다. 따라서 본 연구의 목표는 쌍으로 된 흉부 방사선 사진에서 환자 식별 오

류를 자동으로 검출하는 딥러닝 모델을 제안하여 이를 평가하고 전문가와 비교 분석하

는 것이다. 

방법: 우리는 240,004개의 흉부 방사선 사진을 활용하여 환자 식별을 위한 딥러닝 모델

을 개발하였다. 딥러닝 모델은 지도 대조 학습을 통해 잠재 공간에서 같은 환자의 흉부 

방사선 사진의 경우 거리를 가깝게, 다른 환자의 흉부 방사선 사진의 경우 거리를 멀게 

하는 방향으로 학습을 하였다. 이렇게 학습한 모델은 내부 검증 데이터셋, CheXpert 및 

Chest ImaGenome 데이터셋을 비롯한 여러 데이터셋을 사용하여 검증되었으며, 각 데

이터셋은 여러 인종을 포함한다. 모델의 성능은 질병의 상태 변화에 따라서도 분석되

었으며, 모델의 성능을 평가하기 위해 세 명의 주니어 방사선 전문의 그룹(그룹 I), 두 명

의 시니어 방사선 전문의 그룹(그룹 II) 및 두 명의 인증된 전문 방사선 전문의 그룹(그

룹 III)의 쌍으로 된 흉부 방사선 사진에서 환자를 식별하는 성능과 비교하였다. 또한, 

비열등성 검정을 통해 비교 분석하였다. 

결과: 유사성 기반 딥러닝 모델인 SimChest는 질병의 상태 변화 여부와 관계없이 다양
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한 데이터셋에서 가장 뛰어난 환자 식별 성능을 보였다(내부 검증 데이터셋 [수신자 작

동 특성 곡선 아래의 영역 (AUC) 범위 0.992-0.999], CheXpert [0.933-0.948], 및 Chest 

ImaGenome [0.949-0.951]). 방사선 전문의들은 쌍으로 된 흉부 방사선 사진에서 평균 정

확도 0.900(95% 신뢰 구간 0.852-0.948)로 환자를 식별할 수 있으며, 이는 전문의들의 수

련 경험의 증가와 함께 향상되었다. 그룹 I의 평균 정확도는 0.874, 그룹 II는 0.904, 그

룹 III는 0.935였으며, SimChest의 평균 정확도는 0.904였다. SimChest의 성능은 방사

선 전문의들의 평균 성능과 유사성을 가지며, 비열등성 검정에서 P-값은 0.015로 나타

났다. 이는 SimChest가 방사선 전문의들의 성능을 크게 못지않은 수준으로 달성했음을 

의미한다. 

결론: 이 진단 연구는 딥러닝 모델이 쌍으로 된 흉부 방사선 사진을 사용하여 환자 식별 

오류를 자동으로 검출하며, 이는 방사선 전문의의 수준에 비열등함이 입증되었다. 이 

연구는 실제 임상 현장에서 환자 식별을 통해 환자 안전을 향상시키는 데 활용될 수 있

다. 
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