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Abstract 

This study explores the deep learning technologies for medical video analysis. Applying these 

technologies in the medical field poses challenges, including difficulties in data collection and 

the unique nature of medical video. This paper addresses these challenges by applying 

advanced deep learning techniques such as Knowledge Distillation, Implicit Neural 

Representation, and Deep Metric Learning to the analysis of medical video data. We 

particularly focus on Surgical Phase Recognition and Video Inpainting techniques for 

tympanomastoidectomy (TM), and methods for quantifying colonoscopy video data. 

In this research, three experiments were conducted to analyze medical videos. The first study 

proposed a TM surgical phase recognition learning method using Teacher-Student learning, 

showing improved performance in situations of class imbalance and data scarcity. The second 

study introduced a method using implicit neural representation for high-resolution video 

inpainting without the need for large-scale video data collection, demonstrating enhanced 

visual performance compared to state-of-the-art model. The third study proposed a method 

integrating quality-aware metric learning with a noise-robust phase recognition model, 

considering the characteristics of the colon, leading to more accurate quantification in 

colonoscopy.  

We believe that the methodologies developed in this study have the potential to be applied not 

only to TM surgery and colonoscopy videos but also to a broader range of medical video 

analysis areas. 
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Introduction 

Background 

In recent years, the rapid advancement of deep learning-based video analysis technology has 

made a significant impact across various industries. A multitude of studies in the field of 

natural video analysis have showcased remarkable improvements in performance through the 

application of deep learning techniques [1, 2]. However, applying these advancements to the 

medical domain presents some challenges. The first major challenge is data collection. Deep 

learning relies heavily on data to learn and extract necessary information; hence, achieving 

high performance necessitates a substantial amount of data. Nevertheless, the collection of 

medical data poses considerable challenges, particularly due to patient privacy concerns. 

Moreover, medical data typically requires the input and knowledge of experts, making it a 

high-cost endeavor. A second challenge arises from the fundamental differences between 

natural and medical images. The information contained within medical videos is vastly 

different from that in natural videos, often rendering methods effective in natural video 

analysis less suitable for medical applications. This discrepancy necessitates a more delicate 

and tailored approach for medical video analysis. 

This paper seeks to address these challenges by employing advanced deep learning 

technologies such as Knowledge Distillation, Implicit Neural Representation, and Deep Metric 

Learning in the analysis of medical video data. In particularly, we focus on the application of 

Surgical Phase Recognition and Video Inpainting techniques for tympanomastoidectomy [3], 

an otologic surgery. Additionally, we discuss methods for quantifying colonoscopy video data.  

 

Surgical Phase Recognition  

In the realm of medical video analysis, surgical phase recognition has emerged as a highly 

specialized and effective application of video recognition technique. Early studies on surgical 

phase recognition primarily relied on features such as pixel intensity and gradient changes [4], 

and spatial-temporal characteristics [5], in addition to color, texture, and shape elements [6]. 

Recently, with the development of deep learning technology, research on surgical phase 

recognition using neural networks has been active. Numerous studies have adopted a structure 

where Convolutional Neural Networks (CNN) [7, 8] are utilized for the extraction of spatial 
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information, complemented by the use of temporal relation models like Long Short-Term 

Memory (LSTM) [9], Temporal Convolutional Network (TCN) [10], Multi-Stage Temporal 

Convolutional Network (MS-TCN) [11], Transformer [12] for effectively integrating both 

spatial and temporal data, thereby enhancing the accuracy of surgical phase recognition. Jin et 

al. proposed SV-RCNet, a unified framework combining ResNet and LSTM modules for 

effective spatial-temporal features learning [13]. Czempiel et al. introduced MS-TCN, a novel 

Multi-Stage Temporal Convolutional Network, marking its first application in surgical phase 

recognition [14].  Jin et al. developed TMRNet, designed to link long-range and multi-scale 

temporal patterns by utilizing memory bank and LSTM [15]. Yi et al. proposed a novel 

approach in surgical phase recognition by exploring different multi-stage architectures with 

MS-TCN [16]. Ding et al. introduced SAHC, a segment-attentive hierarchical consistency 

network, focused on learning segment-level semantics by integrating MS-TCN and 

Transformer [17].  

 

Knowledge Distillation  

Knowledge distillation (KD) is a method developed for model lightweighting, aimed at 

creating smaller models that mimic larger ones [18]. In this approach, the larger model is 

referred to as the teacher, and the smaller model as the student. The process involves initially 

pre-training the teacher network, and then training the student using the final prediction values 

of the trained teacher network as targets. This teacher-student architecture is not only 

beneficial for the propose of model lightweighting but has also shown impressive performance 

in various fields including self-supervised [19, 20, 21] and semi-supervised learning [22, 23, 

24]. Recently, this structure has been adopted in the field of surgical video, indicating its broad 

applicability and effectiveness. Yu et al. propose a teacher/student approach for enhancing 

surgical phase recognition with limited annotated data [25]. Teevno et al. introduced a semi-

supervised learning framework for surgical tool detection, utilizing a teacher-student model to 

effectively manage data scarcity and imbalance [26]. Yamlahi et al. proposed the use of self-

distillation in surgical scene understanding, introducing a heterogeneous ensemble of three 

models [27]. 

 



3 

 

Video Inpainting 

Video inpainting is a video processing technique that fills in missing or damaged areas in each 

frame of a video with plausible visual content. It is a technique that can be used in various 

ways, such as removing unnecessary moving objects, subtitles, or watermarks from videos. 

Recent advancements in deep learning technologies have led to the release of high-

performance video inpainting models. Chang et al. introduced a deep learning-based free-form 

video inpainting model, incorporating 3D gated convolutions and a Temporal PatchGAN loss 

[28]. Zeng et al. proposed Spatial-Temporal Transformer Network (STTN) for video 

inpainting, addressing spatial and temporal inconsistencies [29]. Li et al. introduced E2FGVI, 

an end-to-end flow-guided video inpainting framework that unifies flow completion, feature 

propagation, and content hallucination into a single, efficient process [30]. 

 

Implicit Neural Representation 

Implicit neural representation (INR) is a method of parameterizing various signals using a 

neural network. INR, with its continuous and memory-efficient properties, has applications in 

a wide range of fields such as video analysis and 3D rendering [31]. Chen et al. introduced a 

novel Video Implicit Neural Representation (VideoINR) for Space-Time Video Super-

Resolution (STVSR), which enables video decoding at arbitrary spatial resolutions and frame 

rates, thus providing enhanced flexibility over fixed up-sampling scales [32].  Kim et al. 

developed a novel neural video representation (NVP) with learnable positional features, 

significantly enhancing video encoding efficiency and quality while reducing training time 

and parameter count [33]. Attal et al. introduced HyperReel, an advanced 6-DoF video 

representation enabling high-quality, real-time rendering at high resolutions with improved 

visual fidelity and memory efficiency, without relying on specialized CUDA code [34]. Park 

et al. proposed DeepSDF, a groundbreaking approach for 3D shape representation using a 

learned Signed Distance Function, enabling enhanced shape reconstruction and interpolation 

with a notably smaller model size [35]. Mildenhall et al. introduces a novel method for creating 

photorealistic views of complex scenes from limited input, utilizing a deep network-based 

volumetric scene function and differentiable volume rendering [36]. 
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Deep Metric Learning 

Deep metric learning, a methodology that employs deep learning models to learn embedding 

functions, effectively quantifies data similarity. Recently, it has shown significant advances 

and superior performance in face recognition. ArcFace, a key method in this area, uses an 

angular margin loss to enhance face differentiation [37]. However, its approach of applying a 

uniform margin doesn’t account for varying image qualities within the same class, which can 

lead to unstable distributions and impact practical recognition tasks. Consequently, recent 

research in metric learning is increasingly focused on integrating image quality considerations 

to improve the models’ stability and accuracy. Meng et al. proposed MagFace, a methodology 

that uses the magnitude of feature embeddings as an indicator of image quality, enhancing face 

recognition accuracy by adapting to the difficulty of samples [38]. Kim et al. introduced 

AdaFace, a loss function that adapts to image quality by varying its focus on sample difficulty, 

using feature norms to improve face recognition [39]. 

 

Objectives 

In this study, we aim to investigate the application of advanced deep learning methods to 

medical video analysis, evaluating their efficacy and practicality within a clinical environment. 

Our objectives are threefold: 

A. Surgical phase recognition using Teacher-Student Learning 

B. Surgical video inpainting using Implicit Neural Representation 

C. Colonoscopy video quantification using Deep Metric Learning and Phase 

Recognition 

 

Surgical phase recognition using Teacher-Student Learning 

1. Background and Objective 

Tympanomastoidectomy (TM) is the otologic surgical management of chronic otitis media 

with or without cholesteatoma and is a procedure on the temporal bone performed using a 

microscope, a high-speed drill with appropriately sized cutting and diamond burrs, and 

otologic instruments [3]. The curriculum for learning these surgeries is to watch recorded 

videos, but for beginners and trainees, simply watching recorded surgery videos can be 
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difficult to understand due to the complexity of the surgery. This situation highlights the need 

for improved educational tools in surgical training that clearly show the details of each surgical 

phase.  

Advances in deep learning can significantly improve surgical phase recognition, providing 

advanced tools for both educational and clinical purposes. Surgical phase recognition 

primarily depends on fully annotated videos, requiring experienced surgeons to meticulously 

label each phase [13, 14, 15, 16, 17]. However, due to the complexity of TM and the ambiguity 

of surgical phases, labeling for surgical phase is very limited, and these problems cause some 

challenges such as class imbalance and data scarcity. 

In this study, to solve these challenges, we propose a surgical phase recognition learning 

method using Teacher-Student learning, an approach based on Knowledge Distillation (KD) 

[18]. Our method utilizes a ‘Teacher’ network to generate pseudo-labels for unlabeled 

segments of surgical videos, thereby expanding the usable dataset for training. This approach 

could alleviate class imbalance and data scarcity problems. And by using pseudo-labels in the 

form of soft labels, we expressed the ambiguity of the original TM phase classification, 

allowing the model to learn the characteristics of the actual TM procedure. We explore the 

efficacy of our proposed learning method through experiments using various state-of-the-arts 

surgical phase recognition model. 

 

2. Material and Method 

Dataset. In this study, we utilized a total a 65 TM surgical procedure videos featuring 38 

patients, recorded at either 25 or 30 FPS. Each video frame has a resolution of 1920 × 1080. 

The videos encompass 6 distinct phases: “Cortical drilling”, “Drilling of the mastoid”, 

“Drilling the antrum”, “Drilling near the facial nerve”, “Posterior tympanotomy”, and “No 

drilling”. Labels were assigned only to segments of the surgical videos that could be clearly 

identified for the five drilling-related classes. For the “No drilling” phase, we utilized a binary 

classification model to determine the presence or absence of drilling in each segment and then 

verified the accuracy of these predictions before using them in our study [40]. For training, we 

used 42 videos from 26 patients, 7 videos from 4 patients for validation, and 16 videos from 8 

patients for testing. 
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Figure 1. Distribution of surgical phases in TM procedure videos.  

 

Surgical phase recognition. In our study, we employ the commonly used structure in surgical 

phase recognition: the feature extraction and temporal relation modeling method. This 

approach first learns a model through frame-wise classification and then trained model is used 

to extract spatial information features from surgical video. Subsequently, features extracted 

from the trained feature extractor network are utilized in the temporal relation model to 

simultaneously leverage spatial and temporal information for more accurate phase prediction 

[13, 14, 15, 16, 17]. The effectiveness of these approach largely depends on how well the 

feature extractor model trains the spatial information, making the initial frame-wise 

classification process crucial [41]. However, in the case of TM surgery, the number of usable 

frames in the entire video is limited, and class imbalance is a significant issue, leading to a 

high risk of overfitting [42, 43]. Figure 1 shows the phase distribution in TM procedure videos, 

illustrating class imbalance and a considerable “Unknown” segment, indicating unlabeled data, 

which could complicate model training. To address these challenges, we propose a learning 

method to further strengthen the feature extractor model by using Teacher-Student learning to 

make “Unknown” segments available in the training process. 

 

 



7 

 

Teacher-Student learning for tympanomastoidectomy phase recognition.  In our Teacher-

Student learning, the feature extraction model undergoes a two-stage training process. The first 

step involves training the teacher network using labeled data segments with Cross-Entropy 

loss. Once the teacher network is sufficiently trained, it generates soft labels for both the 

labeled and unlabeled data. And then, we leverage these soft labels to train a student network 

by applying a modified Knowledge Distillation loss function. Typically, Knowledge 

Distillation loss involves computing the KL divergence Loss for the soft labels and the Cross-

Entropy Loss for the hard labels, with the sum of these losses forming the final loss [18]. Our 

modified loss function reflects the ambiguity of surgical phase, a characteristic of TM video. 

For unlabeled segments where hard labeling is not possible due to ambiguity, the loss is 

calculated using only the KL divergence with soft labels as the target. For labeled segments, 

Cross-Entropy loss and KL Divergence loss were calculated and added in the same way as 

Knowledge Distillation. By calculating and adding cross entropy loss using existing hard 

labels, the model could learn that labeled segments are clearly distinguishable surgical phases 

from unlabeled segments. The loss function 𝐿 is defined as follows: 

𝐿 =  ∑ 𝐿𝐾𝐿(𝑆(𝑥, 𝜃𝑆,τ),  𝑇(𝑥, 𝜃𝑇 ,τ)) + 𝐼(𝑙)𝐿𝐶𝐸(𝑆(𝑥, 𝜃𝑆), 𝑦)

(𝑥,𝑦,𝑙)∈𝔻

 

where 𝐿𝐾𝐿  denotes the KL divergence loss which measures the discrepancy between the 

predictions of the student network 𝑆  and the teacher network 𝑇 , with τ  representing the 

temperature parameter that softens the outputs for a more effective knowledge transfer. The 

indicator function 𝐼(𝑙) determines whether a data is labeled and accordingly applies the Cross-

Entropy loss 𝐿𝐶𝐸, which computes the loss for the labeled data only. The student model, trained 

with this loss function, is utilized as the feature extractor network. An overview of this 

methodological approach is depicted in Figure 2. 
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Figure 2. Overview of the Teacher-Student learning for surgical phase recognition. (a) Teacher 

Network Learning: Trains with labeled frames using a CNN, yielding predictions assessed by 

Cross-Entropy loss. (b) Student Network Learning: Combines labeled and unlabeled frames, 

using predictions from the teacher network to train the student network via modified 

Knowledge Distillation loss. (c) Surgical Phase Recognition: Processes video through a CNN 

to extract spatial features, then uses a temporal relation model to generate final phase 

predictions. 

 

3. Experiments and Results 

Metrics. Evaluation of phase prediction in TM videos was restricted to labeled segments, 

utilizing conventional phase recognition metrics such as F1 Score, Accuracy, Precision, Recall, 

and Jaccard Index. Accuracy is indicative of a video-level assessment, reflecting the 

percentage of correctly identified frames across the full duration of the video. Considering the 

imbalanced distribution of phases, F1 Score, Precision, Recall, and Jaccard Index metrics were 

adopted for video-level evaluation. We appraised the performance of our proposed method by 

applying it to well-known or state-of-the-art surgical phase recognition models, comparing the 
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efficacy of training the feature extractor model solely with labeled data against training it 

through teacher-student learning with both labeled and unlabeled data. Additionally, to 

examine the influence of soft labels, we compared results between pseudo-labels transformed 

into hard labels and those constituted as soft labels. 

 

Implementation details. Our experiments were executed utilizing the PyTorch framework on 

4 NVIDIA GeForce RTX 3090 GPUs. For the feature extractor models, both the teacher and 

student networks were initialized with ImageNet pre-trained ResNeSt50 [8] architectures. We 

employed the AdamW [44] optimizer with parameters set to betas (0.9, 0.999), 1e-08 eps, and 

0.05 weight decay. The learning rate was scheduled using the CosineAnnealingWarmRestarts 

method [45]. Owing to GPU memory limitations, images were resized to a resolution of 256 

× 256 pixels. To prevent overfitting and to enhance the dataset's variety, we applied eight types 

of image augmentations provided by the Albumentations library [46], including 

ShiftScaleRotate, ColorJitter, RandomBrightnessContrast, GaussNoise, ISONoise, 

MedianBlur, MotionBlur, and HorizontalFlip. 

 

Table 1. Comparison of video-level surgical phase recognition performance. 

Method F1 score (%) Accuracy (%) Precision (%) Recall (%) Jaccard (%) 

MS-TCN [5] 

Labeled 69.4 ± 16.2 87.5 ± 6.1 77.0 ± 15.0 74.9 ± 14.5 60.9 ± 16.7 

+Pseudo (Hard label) 75.1 ± 15.6 89.0 ± 7.1 82.1 ± 13.0 80.1 ± 13.0 67.7 ± 17.8 

+Pseudo (Soft label) 77.6 ± 12.6 89.8 ± 4.7 85.0 ± 9.2 81.8 ± 10.8 69.9 ± 14.3 

Not-End [10] 

Labeled 70.9 ± 14.2 87.6 ± 4.7 76.8 ± 14.6 78.6 ± 15.2 63.3 ± 13.7 

+Pseudo (Hard label) 75.2 ± 18.4 90.3 ± 7.1 81.9 ± 13.9 80.0 ± 16.1 68.6 ± 20.3 

+Pseudo (Soft label) 79.8 ± 10.9 90.8 ± 4.0 84.6 ± 9.6 83.5 ± 9.7 71.5 ± 13.1 

SAHC [11] 

Labeled 75.4 ± 13.8 88.9 ± 5.7 79.4 ± 13.5 80.7 ± 12.2 67.4 ± 15.5 

+Pseudo (Hard label) 73.2 ± 9.6 90.6 ± 3.6 78.2 ± 11.3 76.2 ± 8.6 65.2 ± 11.3 

+Pseudo (Soft label) 80.2 ± 13.8 91.0 ± 4.5 81.7 ± 14.0 86.2 ± 11.1 73.5 ± 15.9 

 

Table 2. Comparative analysis of phase-level evaluation metrics for surgical videos. 

Method 
Cortical 

drilling 

Drilling of 

the mastoid 

Drilling the 

antrum 

Drilling the 

facial nerve 

Posterior 

tympanotomy 

No drilling 

Precision (%) 

Labeled 83.5 ± 27.7 92.4 ± 5.7 91.5 ± 19.8 42.7 ± 30.4 77.5 ± 35.0 97.9 ± 2.0 

+Pseudo (Hard label) 85.2 ± 25.5 87.5 ± 5.0 66.1 ± 43.7 56.4 ± 39.0 85.2 ± 16.0 97.0 ± 2.8 

+Pseudo (Soft label) 79.2 ± 28.1 95.4 ± 5.8 91.8 ± 20.2 48.5 ± 34.3 89.3 ± 19.4 96.5 ± 2.6 

Recall (%) 

Labeled 89.7 ± 12.4 95.3 ± 4.8 72.9 ± 23.9 87.5 ± 30.5 58.3 ± 33.2 91.5 ± 6.3 

+Pseudo (Hard label) 84.9 ± 13.0 96.2 ± 3.4 38.4 ± 36.1 75.8 ± 33.2 74.0 ± 26.9 92.7 ± 8.6 

+Pseudo (Soft label) 98.3 ± 3.5 93.0 ± 5.2 92.1 ± 11.8 85.2 ± 34.8 67.4 ± 27.5 94.2 ± 4.8 

Jaccard (%) 

Labeled 73.7 ± 25.3 88.2± 6.2 64.5 ± 22.7 42.3 ± 30.9 53.1 ± 32.8 89.9 ± 7.0 

+Pseudo (Hard label) 71.8 ± 23.2 84.5 ± 4.3 33.1 ± 28.6 48.4 ± 32.2 67.1 ± 27.9 90.5 ± 9.6 

+Pseudo (Soft label) 77.7 ± 27.4 88.9 ± 6.4 83.9 ± 20.4 48.2 ± 34.0 61.0 ± 26.9 91.1 ± 5.2 
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Surgical phase recognition results. Table 1 displays the video-level quantitative results, with 

mean and standard deviation metrics, for evaluating TM phase recognition. The performance 

of three surgical phase recognition models is shown when trained exclusively on labeled data, 

when incorporating hard pseudo-labels for unlabeled data, and when utilizing soft pseudo-

labels. Training with soft pseudo-labels consistently outperformed the other methods in terms 

of F1 score, accuracy, precision, recall, and Jaccard index across all models. The SAHC model, 

in particularly, achieved the highest metrics when enhanced with soft pseudo-labels, with an 

F1 score of 80.2 ± 13.8, accuracy of 91.6 ± 4.5, recall of 86.2 ± 11.1 and Jaccard index of 73.5 

± 15.9. Table 2 provides phase-level precision, recall, and Jaccard index evaluations within 

TM surgical videos. Similarly, the application of soft pseudo-labels during training exhibited 

superior overall performance compared to the other two approaches.  For qualitative analysis, 

Figure 3 illustrates the results on TM surgical videos using color-coded ribbons to represent 

three learning methods: labeled data, hard pseudo-labels and soft pseudo-labels. It is 

observable that the application of soft pseudo-labels generally yields results that more closely 

align with the ground truth, particularly for the class represented by the red color segment, 

“Drilling the antrum”, which is more accurately predicted with this method compared to the 

others. However, as evident in the results for videos (c) and (d), there is confusion between 

the brown color segment, “Drilling the facial nerve”, and the pink color segment, “Posterior 

tympanotomy”. We will discuss this confusion in discussion section. These results can also be 

confirmed through confusion matrices (Figure 4). 

 

 

Figure 3. Visualization of four TM phase recognition results using color-coded ribbons for 

labeled, hard pseudo-label, soft pseudo-label learning methods and the ground truth (a-d). 
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Figure 4. Confusion matrices for surgical phase recognition using different learning methods: (a) Labeled, (b) Hard-pseudo label, and (c) Soft-

pseudo label. Each matrix compares the predicted phases to the true phases. 
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4. Discussion 

In this study, we introduced a Teacher-Student learning framework for surgical phase 

recognition in TM video, aimed at alleviating the challenges associated with class imbalance 

and data scarcity. In Tympanomastoidectomy (TM) surgical videos, the location of the 

“Drilling of the antrum” and the “Drilling of the facial nerve” can be confusing because the 

locations are interchanged depending on whether the right or left ear surgery. Moreover, 

"Drilling the antrum" has the least amount of data in the class imbalance situation, so there is 

a risk of overfitting with "Drilling the facial nerve", which has a relatively large amount of 

data (Figure 1) [47]. In this situation, utilizing teacher-student learning structure that can 

create pseudo-labels for unlabeled data and a soft label that can reflect the ambiguity of 

surgical phases characteristic of unlabeled TM video segments can be effective for TM surgical 

phase recognition (Table 1 and 2). Training exclusively on labeled data has been observed to 

lead to misclassifications, confusing “Drilling the antrum” with “Drilling the facial nerve”. 

Training with hard pseudo-labels appears to mitigate the confusion between “Drilling the 

antrum” and “Drilling the facial nerve”, yet it also introduces a new misclassification trend of 

mistaking “Drilling the antrum” for “Drilling of the mastoid”. The reasons for this trend can 

be class bias due to class imbalance and scarcity of data. The main reason for the unlabeled 

segments of TM surgery is the blurred boundary between “Drilling of the mastoid” and other 

surgical procedures, and Figure 1 shows that 'Drilling of the mastoid' occupies the most area. 

In this situation, there is a possibility of class bias in the process of hard labelling the prediction 

of the model trained with labeled data. On the other hand, training with soft pseudo-label 

approach shows the robustness, particularly for “Drilling the antrum” phase (Figure 3 and 4).  

Soft pseudo-labels are thought to reduce the problem of overfitting and misclassification due 

to the nature of TM video, which can exhibit phase ambiguity. Misclassifications of the 

“Posterior tympanotomy” phase as “Drilling the facial nerve” were also noted, which is 

reasonable considering these phases occur in succession during TM surgery.  

We believe this Teacher-Student learning method for surgical phase recognition extends 

beyond TM video and can be applied to any surgical video with similar characteristics.  
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Surgical video inpainting using Implicit Neural Representation 

1. Background and Objective 

Video inpainting, the process of filling spatiotemporal gaps in videos, has seen significant 

advancements with the advent of deep learning. This technique holds potential for various 

applications, such as removing unwanted objects, restoring damaged footage, and retargeting 

videos. However, applying these inpainting models to specific domains like medical videos, 

especially surgical videos, poses some challenges.  

Dataset Collection: Various deep learning-based video inpainting models, trained on 

extensive video datasets, outperform their predecessors [28, 29, 20]. Yet, the process of 

collection these large datasets is labor-intensive and time-consuming. More critically, the 

performance of these models may degrade when applied to videos from domains different 

from their training datasets [48]. This issue is even more difficult to collect large amounts of 

video data in the medical field due to patient privacy concerns. 

High-Resolution Video Inpainting: Video inpainting inherently necessitates the 

consideration of both spatial and temporal consistency. To leverage this property, many video 

inpainting methods refer to multiple adjacent frames simultaneously for a more coherent 

inpainting result. However, referencing multiple frames simultaneously consumes substantial 

memory, prompting most methods to downscale the original video, which inevitably 

compromises its quality. However, low-resolution videos can obscure surgical landmarks and 

hinder understanding of surgical procedures, a video inpainting technology that can maintain 

the original resolution is needed for application to surgical videos. 

Although some recent papers have introduced “internal learning” for video inpainting: a 

method that enables training directly on the test video without the need for a large dataset, 

these methods still struggle with handling high-quality videos in one go. They typically 

involve complex and resource-intensive multi-stage training processes for high-resolution 

video inpainting [48, 49]. 

In response to these challenges, our approach leverages Implicit Neural Representation (INR). 

INR, a form of internal learning, allows training without vast datasets. This technology has the 

characteristics of being resolution-agnostic and representing continuous signals well [31].  

Using the capabilities of INR, we present a method that enables high-resolution inpainting in 
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a single training step and at the same time does not require massive video datasets. In this 

study, we experiment with inpainting surgical tools on surgical videos and compare the visual 

results with state-of-the-art video inpainting methods. Additionally, through surveys with 

trainee surgeons, we evaluate the impact of our technology on surgical education.  

 

2. Material and Method 

Dataset. In this study, we used five distinct tympanomastoidectomy (TM) surgical procedure 

video clips, each with a duration of approximately 10 seconds and a resolution of 1920×1080. 

These video clips encompassed various surgical procedures including “Drilling of the mastoid 

cortex”, “Drilling of the mastoid air cells around the antrum and tegmen mastoideum 

(superficial mastoidectomy)”, “Drilling into the auditus ad antrum”, “Drilling over the tegmen 

mastoideum”, and “Drilling over the sigmoid sinus”. The masks used for inpainting the 

surgical tools were created manually. 

 

 

Figure 5. Illustration of mask-guided ray casting in a surgical setting. The image shows the 

application of the tool mask, where 'Sampling' indicates the regions being used and 'No 

sampling' denotes the masked areas being not used in training procedure. 

 

Video inpainting using Implicit Neural Representation. In this study, we utilize the 

HyperReel [34] model, an advancement over the Neural Radiance Field (NeRF) [36] approach 

for the task of novel view synthesis. While the traditional NeRF method is designed solely for 

rendering static objects, HyperReel model is distinct in its capability to process sparse view 
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video inputs concurrently. This incorporation of a temporal dimension in HyperReel enables 

the effective synthesis of video content. The method utilizes a function 𝐹𝜃 : (𝑥, 𝑑, 𝑡) → (𝑐, 𝜎), 

where position 𝑥 , direction 𝑑  along a ray, and time 𝑡  are mapped to RGB radiance 𝑐  and 

opacity 𝜎. HyperReel uses rendering techniques to render the radiance field for a given query 

view in both space and time. The rendered color of a pixel corresponding to a ray, defined as 

𝑟(𝑠) = 𝑜 + 𝑠𝑑, with the origin 𝑜 and direction 𝑑 defined by the camera pose and intrinsic, can 

be calculated by integrating the radiance multiplied by the accumulated opacity: 

𝐶(𝑡)(𝑟) = ∫ 𝑇(𝑠)𝜎(𝑟(𝑠), 𝑡)𝑐(𝑟(𝑠), 𝑑, 𝑡))𝑑𝑠 
𝑠𝑓

𝑠𝑛

 

where 𝑠𝑛 and 𝑠𝑓 denote the bounds of the volume depth range, and the accumulated 

opacity 𝑇(𝑠) = 𝑒𝑥𝑝(− ∫ 𝜎(𝑟(𝑝), 𝑡))𝑑𝑝
𝑠

𝑠𝑛
). In our research, we focused on single-view videos 

captured from a fixed camera positioned above the surgical field. To facilitate the training 

process, we fixed the camera parameters to arbitrary constants, allowing us to conduct the 

experiments in a single-view setting. 

 

 Mask-guided ray casting. To exclude surgical tools from surgical videos and exclusively 

reconstruct tissue, we employed mask-guided ray casting, a technique introduced in 

EndoNeRF [50]. This method involves using a tool mask to selectively sample only the 

unmasked regions of the video (as illustrated in Figure 5). By focusing on these specific areas, 

the technique enables the model to train on relevant information while omitting extraneous 

details. Subsequently, the areas obscured by the mask are naturally inpainted by the model, 

which has learned from the unmasked regions. The overview of our approach is illustrated in 

Figure 6. 
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Figure 6.  Overview of the video inpainting pipeline using INR. (a) Sampling the unmasked 

region using a tool mask, (b) using the sampled location and temporal information to predict 

the corresponding RGB and density values through the INR model, and (c) the actual 

inpainting process where the predicted information is used to reconstruct the occluded regions. 

 

3. Experiments and Results 

Evaluation of the video inpainting. We conducted a qualitative comparison between our 

outcomes and those produced by E2FGVI [24], a state-of-the-art video inpainting model. 

Furthermore, to assess the educational impact of the inpainted videos with surgical tools 

removed, we conducted a survey-based evaluation. We enrolled 21 trainees of Asan Medical 

Center (AMC) (6 medical students, 12 residents in Otorhinolaryngology-Head and Neck 

Surgery, and 3 fellows in the Otology Neurotology program) and asked them to watch 

processed TM videos and complete questionnaires. We divided subjects into 4 subgroups: 

student, low-grade resident (R1, R2), high-grade resident (R3, R4), and fellow. We analyzed 

the results of the questionnaires comprehensively according to the subgroups.  

 

Questionnaire. The questionnaire comprised 6 questions: Did the processed surgical video 

help in (1) visual comfort, (2) identifying bleeding focus, (3) identifying the sigmoid sinus, (4) 

identifying the tegmen mastoideum, (5) understanding the surgical process, and (6) performing 

the surgical procedure when compared to the original unprocessed video. Each question was 

scored on a 5-point discrete scale from +2 to -3; +2 (helpful), +1 (slightly helpful), 0 
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(indifferent), -1 (slightly bothersome), and -2 (bothersome). Questionnaire scores were 

presented as mean ± standard deviation. The statistical analysis was performed using SPSS 

software version 24.0 (IBM Corp., Armonk, NY, USA). A p-value of less than 0.05 was 

considered statistically significant.  

 

 

Figure 7. Qualitative result of 5 TM surgical video inpainting. (a) Results on the case “Drilling 

the mastoid cortex” within 4s, and (b) results on other 4 surgical procedure. 

 

Qualitative Results. For qualitative evaluation, Figure 7 displays the qualitative results of 

our video inpainting technique in comparison to a state-of-the-art (SOTA) method. In Figure 

7 (a), “Drilling the mastoid cortex”, the sequence displays consecutive frames within a 4 

second. Our approach benefits from a continuous representation of the scene, which can be 
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observed through its ability to seamlessly reconstruct the flow of bleeding over time. In 

contrast, the frames processed by the current SOTA method show noticeable blurring where 

tools were previously positioned, and a less continuous portrayal of bleeding, indicating a 

deficiency in maintaining the temporal consistency of the video. In Figure 7 (b), our method’s 

inpainting capabilities are validated through its application to a frame from videos of various 

surgical procedures: “Superficial mastoidectomy”, “Antrostomy”, “Tegmen mastoideum”, and 

“Sigmoid sinus”. As in Figure 7 (a), the results of the comparison method confirm that the 

texture of the area previously obscured by the surgical tool has become blurred. On the other 

hand, the results of our method can be seen that the texture is reconstructed in more detail. 

 

Table 3. Questionnaire scores for the video inpainting. 

 Visual comfort 
Bleeding 

focus 

Sigmoid 

sinus 

Tegmen 

mastoideum 

Understandi

ng 
Performing Average 

Student 

(n=6) 
0.97±0.96 0.80±0.42 0.63±0.56 0.70±0.45 0.83±0.70 0.80±0.95 0.79±0.58 

Low-grade 
resident (n=6) 

0.43±0.61 0.63±0.27 0.30±0.28 0.20±0.25 0.43±0.37 0.70±0.37 0.45±0.26 

High-grade 

resident (n=6) 
0.00±0.55 0.87±0.24 0.47±0.27 0.27±0.21 0.50±0.30 0.73±0.39 0.47±0.21 

Fellow (n=3) -0.20±0.60 0.67±0.58 -0.47±0.12 -0.07±0.61 0.13±0.31 0.20±0.60 0.04±0.33 

Average 0.37±0.80 0.75±0.35 0.33±0.50 0.32±0.43 0.52±0.49 0.67±0.61 0.50±0.43 

 

Questionnaire Results. For evaluating video inpainting technique, 5 videos processed with 

our method were evaluated. According to the average score over the 5 videos, medical students 

valued the videos as the most helpful (0.79 ± 0.58), followed by high-grade residents (0.47 ± 

0.21), low-grade residents (0.45 ± 0.26), and fellows (0.04 ± 0.33) (Table 3). The fellow group 

evaluated videos as less helpful than the other subgroups. However, there was no significant 

difference among the four subgroups (p = 0.185, Figure 8). When 5 different procedures were 

analyzed in each of 5 videos that showed different procedures, every video had a score of more 

than 0.50, and a video that mainly showed drilling over the sigmoid sinus had the highest score 

(0.60 ± 0.45) (Table 4). 
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Figure 8. Bar graph showing the average results of a survey on video inpainting effectiveness 

across different groups: Students, Low-grade Residents (Low grade R), High-grade Residents 

(High grade R), and Fellows. 

 

Table 4. Average questionnaire scores of the video inpainting for five different surgical 

procedures. 

Video drilling Mastoid cortex 
Superficial 

mastoidectomy 
Antrum 

Tegmen 

mastoideum 

Sigmoid 

sinus 
Average 

Student 

(n=6) 
0.94±0.54 0.67±0.82 0.64±0.81 0.81±0.69 0.89±0.48 0.79±0.58 

Low-grade 

resident (n=6) 
0.44±0.33 0.53±0.27 0.44±0.25 0.33±0.41 0.50±0.24 0.45±0.26 

High-grade 

resident (n=6) 
0.36±0.29 0.39±0.25 0.47±0.32 0.42±0.27 0.72±0.31 0.47±0.21 

Fellow (n=3) 0.00±0.44 0.11±0.35 0.06±0.38 0.06±0.51 0.00±0.44 0.04±0.33 

Average 0.50±0.49 0.47±0.50 0.45±0.51 0.45±0.52 0.60±0.45 0.50±0.43 

 

4. Discussion 

In this study, we introduce a method for inpainting high-resolution surgical videos that does 

not require extensive data collection. The qualitative results suggest that our approach offers 

significant improvements over existing state-of-the-art methods, particularly in reconstructing 
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continuous and temporally consistent scenes, such as the flow of bleeding during surgery 

(Figure 7). By improving the visual clarity and fidelity of video inpainting results, we could 

provide better quality training materials to trainees. 

The results of the survey among trainee surgeons at Asan Medical Center (AMC) suggest a 

significant divergence in the perceived educational value of AI enhanced videos among 

trainees with varying levels of experience in otologic surgery. Notably, trainees at earlier stages 

of their medical education: medical students and low-grade residents reported a benefit from 

the use of video inpainting techniques. The AI processed videos particularly excelled in aiding 

the identification of bleeding focus, a critical aspect of surgical procedures. This benefit is 

likely attributed to the novice trainees’ lesser familiarity with ear anatomy and procedural 

nuances, which necessitates a clearer visual field to bolster their comprehension.  

Conversely, the otology fellows, who boast several years of hands-on experience, voiced a 

markedly different perspective. The inpainting process was perceived as having a negligible 

or non-beneficial impact on their understanding of the surgical techniques. The incomplete 

removal of surgical tools occasionally led to a distraction, as it interfered with the fellows’ 

ability to accurately discern anatomical landmarks. Additionally, fellows reported that image 

distortions resulting from the inpainting process caused visual discomfort, further detracting 

from the utility of the AI-modified videos for their advanced training needs.  

This discrepancy highlights the need to tailor training tools according to the level of experience 

and expertise of the trainee. For those at the initial stages of learning otologic surgery, AI 

powered video inpainting may serve as a valuable educational tool, enhancing their visual 

experience and potentially accelerating their understanding of complex surgical procedures. 

Meanwhile, for seasoned surgeons, traditional videos with unaltered views of the surgical field 

might continue to be preferred for their realism and fidelity to the actual operative environment. 

If these points are reflected in the optimization of the surgical education system and AI 

technology is developed, the quality of education is expected to be further improved. 
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Colonoscopy quantification using Deep Metric Learning and Phase Recognition 

1. Background and Objective 

Colonoscopy withdrawal time, one of the evaluation items for colonoscopy, has recently been 

attracting attention as a key quality marker through studies showing a correlation between 

withdrawal time and polyp detection rates [51, 52, 53, 54]. However, there are several 

problems with measuring withdrawal time in clinical practice. First, colonoscopy is a very 

delicate procedure that requires a high level of physician concentration, and measuring 

withdrawal time during the procedure can be a distraction. Second, the measurement of 

withdrawal time is different for each doctor. Therefore, it is essential to automate the 

quantification of withdrawal time through video analysis to allow objective assessment and 

allow physicians to focus solely on the clinical aspects of colonoscopy. 

The advancement of artificial intelligence (AI), particularly in deep learning, has led to the 

development of various technologies for video analysis, with numerous attempts to apply these 

to medical videos [55, 56, 57]. A notable example is surgical phase recognition [13, 14, 15, 16, 

17]. This method employs sophisticated computational algorithms to precisely detect and 

categorize various phases of surgical operations. However, applying such technologies to 

colonoscopy videos presents challenges due to factors like peristaltic motion, light reflection, 

foreign substances, and variations in illumination and color. These elements may pose 

challenges for deep learning models in accurately learning the anatomical structure of the 

colon. To overcome these issues, we proposed a method for measuring withdrawal time more 

accurately through phase recognition utilizing quality-aware metric learning [38, 39]. We 

evaluated our method by comparing it with withdrawal times calculated by physicians. 

 

2. Materials and Methods 

Dataset. This study utilized a collection of colonoscopy videos acquired from Asan Medical 

Center over the period from October to November 2020. A total of 79 colonoscopy procedures 

were included in this dataset. The videos were annotated with the start and end points of a 

specific section in colonoscopy. The labeled sections are follows:  

- Cecum Identification Segment (Cecum): This segment covers the timeframe in which 

the cecum, the beginning of the large intestine, is detected in the video. 
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- Instrument Withdrawal Segment (Exit): This segment refers to the section where the 

endoscope is removed from the patient’s body. 

- Procedure Segment (Surgery): During this segment, various sections were labeled 

and include “Forcep”, “Clip”, “Endoscopic Submucosal Dissection (ESD)”, 

“Injection”, “Polyp Removal”, “Coagulation (Coag)”, Precutting”, “Tattooing”, 

“Snaring”, and “Endoscopic Mucosal Resection (EMR)”. 

- Observation Segment (Observation): This segment includes all video footage not 

encompassed by the previously defined categories. It primarily consists of standard 

inspection phases where the endoscope is navigated through the colon without 

performing any specific sections.  

The annotations were made by qualified endoscopist to ensure accuracy and reliability of the 

labeled data. 

 

 

Figure 9. Schematics of the model architecture. (a) Frame-by-frame analysis using MagFace 

to evaluate image quality. (b) Utilization of a temporal relation model to refine intermediate 

ambiguous frames for improved final prediction accuracy. 

 

Training strategy. In our study, there are two key points to perform colonoscopy withdrawal 

time evaluation: quality-aware metric learning, and video phase recognition. The overview of 

our approach is illustrated in Figure 9. 
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Figure 10. Sequence of cecum phase images captured over a 30 second interval. 

 

Overcoming image quality variability. In the acquisition of colonoscopic imagery, factors 

such as the inherent peristaltic movement of the colon and various image quality degradations 

including washing effects and light reflection present some challenges. As can be seen in 

Figure 10, even within the same cecum phase, images of various quality appear, ranging from 

images in which the cecum is easily recognized to images in which the cecum is difficult to 

recognize. The presence of low-quality images poses a risk of the model overfitting to incorrect 

information during deep learning training procedure [38, 39]. To address these issues, we 

utilize MagFace [38], one of the quality-aware metric learning methods, in the model learning 

process. MagFace is known for its capability to adjust the feature scale adaptively based on 

the quality of the input image, which aligns with our objective of mitigating the influence of 

low-quality images on the learning process. We used this method for frame-level classification 

training so that the model can learn discriminative features while recognizing image quality. 

Upon completion of the training phase, the trained backbone network is used as a feature 

extractor to extract spatial information from the colonoscopy video. These extracted features 

are then employed for time-series analysis to further process and interpret the colonoscopic 

video data. By implementing this strategy, we aimed to enhance the robustness of our model 

against the variability of image quality and ensure the learning is focused on features indicative 

of the colon’s structure, rather than artifacts and noise. 

 

Video phase recognition for temporal consistency. Colonoscopy often produces images that 

make it difficult to determine which section of the colon corresponds to factors such as 

peristaltic motion, light reflection, foreign substances, and variations mentioned above. Due 

to these characteristics, the method of predicting colonoscopy video frame-wise may generate 
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numerous errors and may not be appropriate for calculating accurate withdrawal time. To avoid 

errors that may occur when making frame-wise predictions, we use a video phase recognition 

method of predicting sections by considering temporal information. Video phase recognition 

is increasingly used in medical applications, particularly for segmenting surgical phases in 

operation videos, and it aims to partition a temporally untrimmed video by time, labeling each 

segmented part with predefined action labels [13, 14, 15, 16, 17]. In our study, we utilize a 

surgical phase recognition method known as SAHC [17]. SAHC employs Transformer to 

understand the relationship between segments at different temporal resolutions. It is 

particularly tailored for refining ambiguous frames that may disrupt accurate predictions mid-

segment, thus enhancing the precision of segment identification and temporal localization. The 

characteristic of this model allows us to maintain the integrity of segment recognition despite 

intermittent low-quality or obstructive frames, contributing to a more reliable and accurate 

assessment of withdrawal times in colonoscopic procedures.  

 

 

Figure 11. Overview of the automatic evaluation of colonoscopy withdrawal time. The system 

identifies key phases such as Cecum, Observation, Surgery, and Exit within the colonoscopy 

video. The first frame recognized as Cecum is designated as the starting point of the 

withdrawal time, and the final withdrawal time is calculated by subtracting the recognized 

Surgery and Exit phase within the section from the starting point until the end of the video. 

 

Withdrawal times evaluation. To facilitate the assessment of colonoscopy, our study focuses 

on the automated calculation of withdrawal times from video segments identified. In our 

approach, withdrawal time is calculated from the moment the cecum is first identified, 

indicating the start of the withdrawal phase, to when the colonoscope is fully removed from 

the patient’s body. It is important to note that the section representing the surgery and the 
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section where the endoscope leaves the body is not included in the withdrawal time calculation. 

This segment does not reflect the mucosal inspection phase and is therefore excluded from the 

overall withdrawal time calculation (Figure 11). 

 

3. Experiments and Results 

Metrics. Our evaluation of video phase recognition performance on colonoscopy videos used 

established metrics such as Accuracy, Precision, Recall, and the Jaccard index. To examine 

whether MagFace truly learns by considering image quality, we sampled images from the 

cecum section and evaluated the correlation between the magnitude of image features and 

image quality. Also, to validate the discriminative capability imparted by metric learning, we 

visualized class separability using t-SNE [58]. To assess the accuracy of withdrawal time, we 

calculated the Mean Absolute Error (MAE) in seconds, which accounts for the identified start 

of withdrawal, intervals of surgical procedures, the endoscope exit period, and the total 

computed withdrawal time. Based on the results, we analyzed withdrawal time errors and 

experimented with applying post-processing to measure withdrawal time more accurately. 

Lastly, a Bland-Altman plot was used for comparison before and after post-processing. 

 

Comparison methods. In the feature extraction learning process, to check the effectiveness 

of MagFace, a quality recognition metric learning that considers image quality for 

colonoscopy images, it was compared with Softmax and ArcFace [37] classifiers that do not 

consider image quality, both of which were ImageNet pre-trained ResNeSt50 [8] was used. To 

confirm the effect of applying a method that considers temporal information to colonoscopy 

images, a comparison was made between frame-wise prediction and applying a temporal 

relation network. To examine the effectiveness of the SAHC model, which has robust 

characteristics against errors from ambiguous images that appear in the middle of the video, 

in temporal relation network learning, a comparative experiment was conducted with MS-

TCN [11], a popular phase recognition model. 
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Implementation details. For implementation, our experiments were conducted on PyTorch, 

leveraging 4 NVIDIA GeForce RTX 3090 GPUs. The dataset comprised 79 videos, each 

recorded at 30 FPS with a resolution of 1920×1080. Preprocessing involved cropping to the 

colon-visible regions and resizing to 256× 256. For video action segmentation tasks, we 

reduced the frame rate from 30fps to 6fps. Hyperparameters were set in accordance with those 

specified in the original method papers. 

 

Table 5. Quantitative result of video phase recognition. 

Method Accuracy (%) Precision (%) Recall (%) Jaccard (%) 

Softmax 92.8 ± 3.2 79.5 ± 9.5 70.6 ± 10.5 63.7 ± 9.0 

Softmax + MS-TCN 93.7 ± 3.1 87.0 ± 6.5 79.7 ± 9.2 71.9 ± 8.2 

Softmax + SAHC 94.0 ± 3.2 88.4 ± 6.4 80.8 ± 8.4 73.3 ± 8.6 

ArcFace 92.7 ± 3.4 81.4 ± 8.8 68.8 ± 9.2 63.3 ± 8.1 

ArcFace + MS-TCN 94.0 ± 3.3 86.4 ± 6.9 81.3 ± 6.9 73.8 ± 6.7 

ArcFace + SAHC 94.5 ± 3.4 89.1 ± 7.4 83.2 ± 7.1 76.0 ± 6.8 

MagFace 93.4 ± 3.0 80.4 ± 8.9 71.4 ± 9.0 65.3 ± 8.8 

MagFace + MS-TCN 95.2 ± 2.6 90.0 ± 6.9 82.0 ± 8.9 76.7 ± 8.9 

MagFace + SAHC 96.0 ± 2.3 90.1 ± 6.4 87.9 ± 6.9 81.0 ± 7.9 

 

Video phase recognition results. Table 5 presents the phase recognition performance on a 

dataset comprising 39 colonoscopy videos, evaluating different learning methods. Training the 

feature extractor model with MagFace outperformed the use of Softmax and ArcFace across 

all metrics. In comparisons among frame-wise, MS-TCN, and SAHC, the performance ranking 

was observed to be in the order of SAHC, MS-TCN, and then frame-wise for the Softmax, 

ArcFace, and MagFace methods, respectively. These findings are further confirmed by the 

color-coded ribbon diagrams in Figure 12, which visualizes the phase recognition outcomes 

for two videos. Figure 12 shows that errors in frame-wise predictions are gradually corrected 

when applying the temporal-relation model, and the SAHC method exhibits the most 

significant error refinement in both (a) and (b). The combined use of MagFace and SAHC for 

phase recognition yielded the best results, with an accuracy of 96.0 ± 2.3, precision of 90.1 ± 

6.4, recall of 87.9 ± 6.9, and a Jaccard index of 81.0 ± 7.9. 
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Figure 12. Color-coded ribbon visualizing phase recognition results, with different colors 

representing distinct phases of the colonoscopy procedure: Cecum (blue), Exit (pink), Surgery 

(cyan), and Observation (red). 

 

Correlation between image magnitude and image quality. MagFace utilizes the magnitude 

of image features as an indicator of quality, with higher magnitudes signifying higher-quality 

images. Figure 13 (a) shows a low-quality image with sizes between 10 and 20, which can be 

seen to have issues such as blurring and non-optimal lighting conditions. Conversely, Figure 

13 (b) displays images of higher quality, with magnitudes between 40 and 50, offering clearer 

and more detailed visual information. 

 

 

Figure 13. Display of cecum images from colonoscopy videos with MagFace’s quality scores. 

(a) Exhibits images within a lower quality range, scored between 10 and 20 in magnitude, (b) 

presents images within a higher quality range, scored between 40 and 50 in magnitude. 
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Figure 14. The t-SNE visualization of the feature spaces for four distinct phases in colonoscopy images, using a dataset of 1,000 images per phase 

to demonstrate the clustering capability of each method. 
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Visualization of feature clustering. Figure 14 presents t-SNE visualizations of high-

dimensional feature spaces reduced to a 2D projection for ‘Cecum’, ‘Exit’, ‘Surgery’, and 

‘Observation’ classes. Each figure corresponds to features extracted after learning using each 

learning method: (a) Softmax, (b) ArcFace, and (c) MagFace, with 1000 images per sampled 

class. (c) is (a) and (b) shows superior class separation, indicating a more distinct clustering of 

features.  

 

Table 6. Quantitative result of withdrawal time evaluation. 

Method 
MAE 

Start of Withdrawal Surgery Duration Endoscope Exit Withdrawal Time 

Softmax 163.98 ± 185.13 36.56 ± 39.75 4.05 ± 6.24 199.58 ± 181.27 
Softmax + MS-TCN 53.5 ± 102.05 34.68 ± 40.07 4.9 ± 8.59 90.84 ± 105.12 

Softmax + SAHC 33.69 ± 95.92 41.19 ± 44.83 2.36 ± 3.7 70.41 ± 102.95 

ArcFace 147.62 ± 207.92 39.48 ± 44.25 3.15 ± 4.21 188.29 ± 201.44 
ArcFace + MS-TCN 85.84 ± 195.38 24.76 ± 30.2 2.29 ± 3.24 111.08 ± 195.95 

ArcFace + SAHC 42.06 ± 91.9 27.52 ± 36.5 2.01 ± 2.9 67.87 ± 104.86 

MagFace 247.03 ± 182.39 30.58 ± 37.99 3.23 ± 4.74 278.4 ± 179.39 

MagFace + MS-TCN 55.3 ± 114.93 24.73 ± 33.33 2.9 ± 4.42 80.52 ± 120.01 
MagFace + SAHC 22.36 ± 61.07 22.65 ± 30.62 2.25 ± 3.52 42.84 ± 66.47 

 

 

Figure 15. Stack bar graph showing the absolute errors in withdrawal time measurements 

across all 39 test videos. The errors are compared between the times predicted by the model 

that integrates MagFace with SAHC and the times measured by physicians. This visual 

representation highlights the 'Start of Withdrawal', 'Surgery Duration', and 'Endoscope Exit' 

for each video. 

 

Withdrawal time results. Table 6 displays the results for the evaluation of withdrawal time. 

The table shows the differences between the withdrawal times measured by physicians and 

those predicted by the models. Similar to the video phase recognition results, it can be seen 

that errors are reduced when MagFace is used with a temporal relationship model. The 
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combination of MagFace and SAHC shows the smallest error margin, with the start of 

withdrawal (Start of Withdrawal) showing an error of 22.36 ± 61.07, the surgery duration 

(Surgery Duration) an error of 22.65 ± 30.62, and the total withdrawal time (Withdrawal Time) 

an error of 42.84 ± 66.47, indicating the closest correlation to the withdrawal times calculated 

by physicians. Figure 15 illustrates a stack bar graph representing the absolute error between 

the withdrawal time measurements of all 39 test videos by the model combining MagFace with 

SAHC and the measurements by physicians. This graph visually exhibits the errors for each 

test video concerning 'Start of Withdrawal', 'Surgery Duration', and 'Endoscope Exit'. 

Consistent with the results from Table 6, the overall errors are under one minute; however, 

some cases exhibit relatively large errors. Figure 16 displays a color-coded ribbon 

visualization of phase recognition result for the video with the largest withdrawal time error, 

accompanied by a confidence score chart. A segment of misclassification is highlighted with 

a yellow circle, where corresponding confidence scores near 0.5 suggest uncertainty. These 

issues are addressed in the post-processing section that follows. 

 

 

Figure 16. Color-coded ribbon visualization of the phase recognition for the video with the 

largest withdrawal time error, including confidence score chart. The yellow circle highlights a 

segment of misclassification, with corresponding confidence scores nearing 0.5, indicating 

uncertainty. 
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Figure 17. Mean Absolute Error (MAE) plot for 'Start of Withdrawal', 'Surgery Duration', and 

'Endoscope Exit' across varying threshold levels in both training and test videos. 

 

Post-processing. To address the errors identified in Figures 15 and 16, we conducted post-

processing on the 'Start of Withdrawal', 'Surgery Duration', and 'Endoscope Exit' phases by 

applying a Gaussian filter to the confidence scores of each phase. Threshold values were 

determined using k-fold cross-validation on the training data to avoid overfitting when 

applied to the test data. Figure 17 illustrates the effect of incremental threshold adjustments, 

ranging from 0 to 0.9, on the Mean Absolute Error (MAE) for both training and test datasets. 

For the 'Start of Withdrawal' phase, incrementally higher thresholds correlated with a 

consistent decrease in error across both sets of videos. The 'Surgery Duration' phase 

observed a decrease in error up to a threshold of 0.2, beyond which the error began to rise. 

The 'Endoscope Exit' phase experienced negligible changes in error across various 

thresholds. These optimal thresholds, identified through the training data analysis, were then 

applied to the test videos. 

 

Evaluation of post-processing. Table 7 displays the MAE results for each phase post-

processing: 'Start of Withdrawal' at 19.67 ± 43.47, 'Surgery Duration' at 13.29 ± 19.46, 

'Endoscope Exit' at 2.07 ± 3.13, and overall 'Withdrawal Time' at 28.29 ± 49.07. All phases 

showed a reduction in error after post-processing. Figure 18 illustrates the Bland-Altman 

plots comparing the predicted withdrawal times by the model to the ground truth, before and 

after post-processing. The mean difference between the predictions and actual times reduced 
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from 0.65 minutes pre-post-processing to 0.06 minutes post-post-processing, indicating a 

improvement in prediction accuracy. Furthermore, the standard deviation decreased, which 

suggests a more consistent performance of the model. The majority of data points lie within 

the ±1.96 SD limit in both plots, with fewer outliers observed post-post-processing. 

 

Table 7. Post-processing result using confidence score. 

 MAE 

Start of Withdrawal Surgery Duration Endoscope Exit Withdrawal Time 

w/o post-processing 22.36 ± 61.07 22.65 ± 30.62 2.25 ± 3.52 42.84 ± 66.47 

w post-processing 19.67 ± 43.47 13.29 ± 19.46 2.07 ± 3.13 28.29 ± 49.07 

 

 

Figure 18. Bland-Altman plots comparing predicted and actual withdrawal times before and 

after post-processing. 

 

4. Discussion  

In this study, we introduced a method to quantify withdrawal time on colonoscopy video. By 

considering colonoscopy characteristics such as peristaltic movement of the large intestine 

and light reflection, we utilized quality-aware metric learning and phase recognition method 

that is robust to noise. Through Figure 13, we demonstrate that when applying MagFace to 

colonoscopy images, the feature magnitude indeed serves as a reliable indicator of image 

quality, enabling the model to learn differentially based on image quality. Furthermore, 

Figure 12 reveals that the robust features of SAHC enable more precise phase prediction, 

even in the presence of ambiguous frames within colonoscopy video segments. It can be 

confirmed that the introduction of this method is effective in measuring phase recognition 
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and withdrawal time for colonoscopy video (Table 5 and 6). These results suggest that 

considering disruptive elements (such as low-quality and ambiguous images) when training 

models is an effective strategy for analyzing colonoscopy videos. However, in Figure 15, 

you can see that large errors still appear in some cases. Although we have greatly improved 

the error problem by applying post-processing to the confidence scores of each phase (Table 

7 and Figure 18), we believe that more analysis and performance improvement are needed 

for actual clinical use. We anticipate that further refining these technologies for practical 

clinical application could enable more objective quality evaluations and ultimately enhance 

the quality of patient care. 

 

Conclusion 

In this study, three experiments were performed to analyze medical videos, especially 

tympanomastectomy (TM) surgical video and colonoscopy video. In the first study, we 

proposed a TM surgical phase recognition learning method utilizing Teacher-Student 

learning and confirmed that performance was improved in situations of class imbalance and 

scarcity of data In the second study, we proposed a method using implicit neural 

representation that does not require large-scale video data collection and enables high-

resolution video inpainting without memory constraints, and showed improved performance 

in visual comparison with the state-of-the-art model. In the third study, we proposed a 

method that integrates quality-aware metric learning and a noise-robust phase recognition 

model by considering the characteristics of the colon, enabling more accurate quantification 

in colonoscopy. We believe that this methodology has the potential to be applied not only to 

TM surgery videos and colonoscopy videos, but also to a broader range of areas within 

medical video analysis. 
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Abstract (with Korean) 

이 연구는 의료 비디오 분석을 위한 딥 러닝 기술을 탐구합니다. 현재 딥러닝 기술들을 

의료 분야에 적용하는 것에는 데이터 수집의 어려움과 자연 비디오와는 다른 의료 비

디오만의 독특한 특성으로 인해 몇 가지 도전과제를 안고 있습니다. 본 논문은 지식 증

류(Knowledge Distillation), 암시적 신경 표현(Implicit Neural Representation), 그리고 딥 

거리 학습(Deep Metric Learning)과 같은 고급 딥 러닝 기술을 의료 비디오 데이터 분석

에 적용하여 이러한 도전과제들을 해결합니다. 특히, 이 연구는 유양돌기 절제 수술 단

계 인식 및 비디오 인페인팅 기법과 대장내시경 비디오 데이터의 정량화 방법에 중점

을 둡니다. 

이 연구에서는 의료 비디오를 분석하기 위해 세 가지 실험이 수행되었습니다. 첫 번째 

연구는 교사-학생 학습을 사용하여 유양돌기 절제 수술 단계 인식 학습 방법을 제안했

으며, 클래스 불균형 및 데이터 부족 상황에서 성능이 향상된 것을 보여주었습니다. 두 

번째 연구는 암묵적 신경 표현 방법을 활용하여 대규모 비디오 데이터 수집이 없이 고

해상도 비디오 인페인팅을 하는 방법을 소개했으며, 기존 최신 모델과 비교하여 시각

적으로 성능이 향상된 것을 확인합니다. 세 번째 연구는 품질 인식 거리 학습과 노이즈

에 강한 단계 인식 모델을 결합한 비디오 인식 방법을 제안하여 대장의 특성을 고려함

으로써 대장내시경에서 보다 정확한 정량화를 가능하게 했습니다. 

우리는 이 연구에서 개발된 방법론들이 유양돌기 절제 수술 및 대장내시경 비디오뿐만 

아니라 더 넓은 범위의 의료 비디오 분석 분야에도 적용될 수 있을 것이라고 믿습니다. 
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