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Abstract 

 

Background and objective: As the global healthcare market expands and medical standards improve, healthcare 

costs are increasing. At the same time, the financial burden of healthcare costs on both nations with limited budgets 

and individuals is growing. To address this issue, various approaches to reducing and controlling healthcare costs 

have been proposed. Among these approaches, hospital process improvement is considered a significant method 

for providing important benefits to patients and treatment services. In particular, process optimization is regarded 

as an effective way to reduce inefficiencies for both hospitals and patients. Recent research has been actively 

applying artificial intelligence (AI) to the field of medicine, and efforts to overcome the constraints of medical 

resources are increasing. Among various methods, there is particular attention to predicting emergency department 

(ED) overcrowding and hospital bed occupancy rates (BORs). ED overcrowding can lead to issues such as 

increased mortality rates, longer wait times, treatment errors, diagnostic and procedural delays, and more. High 

BORs can also negatively affect the health of healthcare staff and increase the risk of infections. In this study, we 

developed AI models that utilize electronic medical records (EMR) to improve hospital processes.  

Method: In the first chapter, we focus on creating models to predict the likelihood of admission within 24 hours 

for patients passing through the ED and forecasting expected wait times. This model was developed to support 

quick decision-making by ED physicians and has shown outstanding performance in predicting the likelihood of 

admission within 24 hours and wait times. Furthermore, by leveraging unstructured text data, we enhanced the 

model's performance and proved the importance of unstructured text in ED notes using explainable artificial 

intelligence (XAI) to confirm variable influences. 

In the second chapter, we conducted research on predicting the BORs of individual wards and rooms. We 

combined time-series data related to bed occupancy recorded at hourly intervals with static room data to create 

various datasets. Using these datasets, we developed two models for predicting ward BORs and four models for 

predicting room BORs. These models demonstrated high performance, with the model that combined dynamic 

and static data and predicted BORs at weekly intervals performing the best. This emphasized the importance of 

static data. 

Results: In chapter 1, among several evaluated models, the extreme gradient boosting model (XGB) that 

incorporated text data yielded the best performance. This model achieved an area under the receiver operating 

characteristic curve (AUROC) score of 0.922 and an area under the precision-recall curve (AUPRC) score of 

0.687. The mean absolute error (MAE) revealed a difference of approximately 3 hours. Through XAI, we 

identified important variables affecting this classification and found that unstructured text data variables mainly 

had a large impact. 

In chapter 2, the ward-level prediction model with an MAE of 0.057, a mean squared error (MSE) of 0.007, 

a root mean squared error (RMSE) of 0.082, and an R2 score of 0.582. Among the room-level prediction models, 

the model that combined static data exhibited superior performance with an MAE of 0.123, an MSE of 0.051, an 

RMSE of 0.226, and an R2 score of 0.320. Model results can be displayed on an electronic dashboard for easy 

access via the web. 

Conclusions: Research aimed at improving hospital processes must produce practical results that can be used in 

healthcare institutions. Therefore, we have proposed a virtual web application that is practically applicable to 

significantly enhance the economic efficiency of hospital and ED operations. Applying AI models to hospital 

processes can simplify procedures and efficiently utilize limited medical resources. This not only enhances 

medical services but also offers the potential for cost savings. 

 

Key words: EMR, Emergency department, Artificial intelligence, Natural language processing, Time series 

forecasting, Combining static and dynamic variables 
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Abbreviation 

  

AI artificial intelligence 

AMC Asan Medical Center  

AUC area under the curve  

AUPRC area under the precision-recall curve  

AUROC area under the receiver operating characteristic 

BiLSTM bidirectional long short-term memory  

BORs bed occupancy rates  

DF document frequency  

DL deep learning  

DNN deep neural network  

DTM document-term matrix  

ED  emergency department 

EHR electronic health record  

EMR electronic medical record  

FPR false positive rate  

GBM gradient boosting machine 

IRB institutional review board  

IUC intensive care unit  

KTAS Korea Triage and Acuity Scale  

LR logistic regression  

LSTM long short-term memory  

MAE mean absolute error  

MAPE mean absolute percentage error  

ML machine learning  

MLP multi-layer perceptron  

MSE mean squared error  

NARX nonlinear autoregressive exogenous  

NB naïve bayes  

NEDIS National Emergency Department Information System  

NLP natural language processing  

OECD Organisation for Economic Co-operation and Development  

PCR polymerase chain reaction  

R3D room 3 days  

R7D room 7 days  

RBORs room bed occupancy rates 

RF random forest  
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RMSE root mean squared error  

RNN recurrent neural network  

ROC receiver operating characteristic 

RS3D room static 3 days  

RS7D room static 7 days  

SHAP SHapley Additive exPlanations  

TF-IDF term frequency-inverse document frequency 

TPR true positive rate  

W30D ward 30 days  

W7D ward 7 days 

WBORs ward bed occupancy rates  

XAI eXplainable Artificial Intelligence 

XGB extreme gradient boosting  
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Introduction 

 

The global healthcare market has been expanding, leading to improvements in medical standards. However, 

this progress has also resulted in an increase in healthcare costs. Simultaneously, both governments and individuals 

have limited budgets for these expenses, leading to a growing burden of healthcare costs. To address this issue, 

various approaches have been proposed to reduce and control healthcare cost wastage [1, 2]. Among these 

approaches, the improvement of hospital processes stands out as one of the key methods that provide significant 

benefits to patients by delivering essential services and treatments. Simplifying processes, in particular, is 

considered an effective way to reduce inefficiencies and waste for both hospitals and patients [3]. 

Recent research has seen a surge in the application of artificial intelligence (AI) in the field of healthcare, 

with a growing effort to overcome the limitations of medical resources. Among various approaches, methods for 

alleviating emergency department (ED) overcrowding and predicting hospital bed occupancy rates (BORs) have 

garnered particular attention [4-20]. ED overcrowding can lead to issues such as increased mortality rates, longer 

wait times, treatment errors, diagnostic delays, and more [21-23]. Additionally, high BORs can have adverse 

effects on the health of medical staff and increase the risk of infections [24-25]. The application of AI models to 

hospital processes can streamline these processes, enabling medical professionals and hospital administrators to 

efficiently utilize limited medical resources. This, in turn, holds the promise of improving healthcare services and 

reducing costs.  

Studies aimed at improving hospital processes should yield practical, real-world applications within the 

healthcare setting. Therefore, this research proposes the following approach: First, the development of a model 

for predicting the likelihood of hospitalization within 24 hours and waiting times for patients visiting the ED. This 

model aims to enable ED physicians to rapidly and accurately assess a patient's likelihood of hospitalization, 

contributing to the alleviation of ED overcrowding. Furthermore, by utilizing bed occupancy data recorded at 

hourly intervals, predictions for the occupancy rates of individual wards and rooms can be made. This enables the 

establishment of medium and long-term bed resource management plans. 

In the first chapter, we predict the likelihood of hospitalization within 24 hours and estimate waiting times 

for patients who pass through the ED. We refine electronic medical record (EMR) data derived from admission 

decision forms prescribed to patients passing through the ED, and build two versions of a Gradient Boosting 

Machine (GBM). The first model serves as a classification model for predicting hospitalization likelihood, while 

the second model offers a regression prediction model for estimated waiting times. Subsequently, we assess the 

influence of relevant variables through unstructured text data in the ED bed notes. By employing Natural 

Language Processing (NLP) to process unstructured text data recorded in the bed notes, we conduct additional 

training to compare its performance with the existing models. Furthermore, we utilize eXplainable Artificial 

Intelligence (XAI) to determine the impact of unstructured text data on the models. 

In the second chapter, we predict the BORs of individual wards and rooms. We refine the bed occupancy 

time-series data recorded at one-hour intervals and group them into separate datasets corresponding to each ward 

and room. To predict the BORs of each ward and room, we build Deep Learning (DL) models. These DL-based 

models are trained on one-week and one-month BORs for each ward to predict the expected BORs. We employ 

various techniques, such as predicting short-term occupancy rates for individual rooms and combining them with 

the static features of the rooms. We compare the performance of six DL-based models and select the final model 

based on their performance. 

The first study was published as " Prediction of hospitalization and waiting time within 24 hours of 

emergency department patients with unstructured text data" in Health Care Management Science on Nov, 2023. 
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Chapter 1. 

Prediction of hospitalization and waiting time within 24 hours of emergency department patients with 

unstructured text data 

1. Introduction 

In addition to the ED serving as a key central access point for cases of critical emergencies, it functions as a 

primary health care system for patients who present with non-critical, concerning symptoms without an alternative 

option for outpatient care [26]. The overcrowding of EDs occurs as a result of the lack of hospital beds, distorted 

nurse-to-patient ratios, diagnostic errors, and ambulance diversions to the EDs, as well as delays in diagnostic and 

procedural practices [27-29]. ED overcrowding has negative consequences, including increased mortality rates, 

longer ED lengths of stay, treatment errors, lower rates of patient satisfaction, and challenges related to ambulance 

availability [21-23]. Moreover, as the medical industry is service-oriented, patient dissatisfaction is correlated 

with a decline in ED consultations and an unfavorable perception of hospitals. Consequently, the operation of EDs 

may be additionally adversely affected, thus impacting the hospital’s financial management [4].  

Under the governance of the Ministry of Health and Welfare of South Korea, there are numerous operational 

medical institutions and health systems. Furthermore, the emergency medical system in Korea functions through 

the collaboration of emergency medical technicians, centers, institutions, and rooms. The emergency medical 

response system comprises accident scene management, transportation, stages, and communication systems. 

Among these stages, the hospital care stage occurs at the level of the emergency medical center [30]. 

The healthcare system in South Korea aims to qualitatively improve and expand emergency medical services 

through the “Comprehensive Plan for Emergency Medical System Improvement” policy initiative. The 

government has provided policy support to achieve this goal, and the decisions arising from this initiative have 

considerably influenced EDs nationally. In South Korea, the “24-hour Emergency Department Restriction Act” 

was enacted in December 2017 for upper-level general hospitals to address the need for the quick examination 

and diagnosis of critically ill emergency department patients, as well as the resolution of overcrowding in the ED. 

According to this law, the percentage of patients with an ED length of stay exceeding 24 hours should be 

maintained within 5% annually.  

Additionally, in 2004, South Korea introduced the National Emergency Department Information System 

(NEDIS) to computerize and manage the medical records of patients presenting at emergency medical facilities. 

This system enables real-time tracking and sharing of the emergency conditions and treatment details of patients. 

In 2017, by utilizing the medical records collected by NEDIS, treatment delays for critically ill patients, 

overcrowding in EDs, and lack of diagnostic reliability were nationally addressed by assessing this data using the 

Korea Triage and Acuity Scale (KTAS). KTAS is a comprehensive patient classification system that spans from 

the pre-hospitalization to in-hospital stages, determining patient priorities and urgency levels. These efforts have 

led to the emergence of specialized hospitals that evaluate various medical facilities, healthcare systems, and 

medical data. These hospitals serve as the foundation for research and technological development to enhance 

South Korea’s emergency medical system [31]. 

In this study, our motivations included contributing to the emergency medical system and alleviating 

overcrowding in the ED, thus improving the ED environment. To act on these motivations, we implemented the 

following steps: First, we developed models that could hypothetically predict the likelihood of whether ED 

patients would require hospital admission and estimate the waiting time [32]. This was theorized to enable support 

for the decision-making process of ED physicians, allowing for the minimization of the proportion of patients 

with an ED length of stay exceeding 24 hours. Second, we compared the performance of a training model with 

NLP generated variables, from unstructured text data to models without it. The free handwritten text notes of ED 

doctors and nurses are a mixture of Korean, English, numerals, and symbols, conveying a substantial amount of 

information [33]. Consequently, the rapid reproducibility and easy maintenance of hospitalization prediction 

models emphasized the importance of text processing and comparing the performance of models. Finally, we 

utilized XAI to distinguish ineligibility factors, explaining why the patient could not be admitted. Thus, this 
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allowed for identifying departments with waiting time delays and minimizing these waiting times by improving 

patient flow. 

Therefore, to recapitulate, we aimed to develop a practical and cost-effective tool to assist ED physicians in 

making clinical decisions using EMR. Recently, Johns Hopkins Hospital introduced a command center that 

utilizes an electronic dashboard to facilitate systematic communication with hospital staff [34]. Figure 1  

represents a visualization of a virtual dashboard to potentially be applied in a hospital, integrating the results of 

this study. This visualization dashboard is designed to be practical for ED physicians. Displaying real-time 

information to medical staff and informing patients about the estimated waiting time on the screen reduces the 

number of ED consultations and lessens waiting time in the operating room. Furthermore, forbearance is improved, 

and anxiety is reduced in patients. Providing patients with delayed information diminishes hospital revenue losses 

by preventing them from leaving the hospital abruptly [35-36]. 

In the Related Works section below, an overview of the existing literature addressing overcrowding in EDs 

has been performed. The Methods section covers the datasets used, pre-processing steps, training and evaluation 

methods, explanations of AI model algorithms, and XAI techniques. In the Results section, the findings and 

performance metrics of this study have been presented. The Discussion section provides an interpretation of the 

results of this study, highlights its limitations, and suggests scope for improvement. Finally, the Conclusion section 

provides an overall summary of this study, in addition to a detailed explanation of its clinical implications. 

 

 

 

Figure 1. A synthesis of the findings of this study: A virtual visualization dashboard depicting the 

prediction of the likelihood of hospitalization and estimated waiting times for patients admitted to the 

ED. A patient’s likelihood of hospitalization is indicated by blue (High), yellow (Medium), and red 

(Low) in order of probability. Displayed in the table on the right, in order of importance from the top, 

are the causes of patients not hospitalized within 24 hours of presenting to the ED (Please note that the 

names of the patients provided are hypothetical, as only de-identified data were extracted) 
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2. Related works 

Patients often perceive the waiting time for admission to be longer than the actual elapsed time, and reducing 

this perceived waiting time has been shown to increase patient satisfaction. Various studies have suggested several 

methods to reduce the perceived waiting time of patients. These potential strategies include improving 

interpersonal interactions, providing patients with information and guidance on appropriate waiting times, and 

considering changes in staffing levels [36-38]. Physicians need to counsel patients regarding lengthy waiting times 

until admission or when hospital admission is not possible. Large data and predictive analytics from EDs improve 

the efficiency of emergency medical services and enhance the treatment of patients. This results in personalizing 

patient care, improved efficiency, and limited wasteful spending by providing practical guidance without investing 

in extra resources [40]. To do this, we require efficient and cost-effective decision-making tools to help ED 

physicians [41]. 

One technique to alleviate overcrowding is to admit the appropriate ED patients to the hospital promptly. 

Numerous studies have been conducted on the admission prediction for mitigating ED overcrowding. A high-

performance logistic regression (LR) admission prediction model incorporating demographics, management, and 

clinical data can be routinely obtained in a hospital, informing patients about the likelihood of their admission [5]. 

One model uses patient information commonly acquired during ambulance transportation [6]. Based on the 

baseline characteristics provided on presenting at an ED, yet another predictive model divides a patient’s 

electronic health record (EHR) dataset regarding statistics on prior medical use, past medical histories, insurance 

companies, and employment agencies into three categories (triage, history, full) [7]. The optimal waiting time for 

patients with low acuity grades using historical patient data, such as a machine learning (ML) tree-based predictive 

model, has been predicted [4]. Moreover, a model exists for predicting the expected waiting time from 

classification to consultation; therefore, predictive models of the median and 95th percentile waiting times of 

patients based on queuing theory have been studied [8]. 

The findings of some studies have revealed better performance of hospital admission prediction models by 

including text data. A study was conducted to train a deep neural network (DNN) using unstructured text data 

from EHR datasets of pediatric emergency patients. The model from this study showed that the DNN achieved a 

high-performance score of 0.892, which was 2% higher in the area under the curve (AUC) than that of the model 

not including text data [9]. Additionally, LR trained by NLP on the reason for a patient’s visit demonstrated a 2% 

higher performance score at 0.846 compared to when text data was not included [10]. 

While acknowledging the considerable value of previous studies on mitigating overcrowding in EDs, 

limitations remain in the practical implementation of these studies. This is primarily due to a lack of intuitiveness 

in supporting ED physicians and effectively applying these models in real ED scenarios for patient communication 

[4-10]. Therefore, we have improved on the existing literature by developing our approach based on these previous 

studies. 

 

3. Methods 

3.1 Materials 

3.1.1 Study design and setting 

This retrospective, single-center, cohort study included a total of 271,143 patients who consulted at the 

hospital’s ED between June 2018 and May 2022. Data was collected from 192,240 patients ≥ 19-years-old. Of 

these, 49,266 patients required hospitalization. The exclusion of 142,974 patients from the dataset was due to the 

difficulty in distinguishing between patients with prolonged waiting times and those who were transferred back 

to the ED based on the discretion of the physician. Patients who were transferred back to the ED had to wait for 

hospitalization and frequently experienced a total waiting time exceeding 24 hours, which made them ineligible 

for our study. Although this exclusion could have introduced bias to our results, the decision was made because it 

was challenging to distinguish the reasons for transfer in the dataset. This is depicted in Figure 2. 
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This study used ethically pre-approved data and underwent Asan Medical Center (AMC) Institutional Review 

Board (IRB) review (IRB 2021-0321), which was conducted by the Declaration of Helsinki (2008). De-identified 

data were extracted from the “data” and “clinical research data” warehouses. 

 

3.1.2 The process from ED registration to inpatient hospitalization 

As per the government guidelines, the ED length of stay should be ≤24 hours after arrival at our hospital in 

Seoul, South Korea. Upon arrival at the ED, patients first undergo registration and then proceed to the hospital 

office to obtain the ED treatment application form. Thereafter, they move to the triage area to undergo a 

preliminary medical examination and are subsequently assigned to a treatment room based on the severity of their 

condition. After the patients have submitted their medical receipts to the ED nurses in the treatment area, the ED 

physicians will review the recommended treatment. Depending on the severity of the condition or the 

appropriateness of hospitalization, patients are discharged from the ED. If the patient requires hospitalization for 

treatment, a hospitalization decision form is prepared. Subsequently, the patients are admitted on the designated 

admission date stated on the hospitalization decision form. The input variables we use for prediction are based on 

this setup, allowing immediate predictions afterward. The waiting time in the ED refers to the period from ED 

registration until receipt of the hospitalization decision form, with a discharge from the ED. The models we have 

developed predict the likelihood of hospitalization and estimate the waiting time, with a borderline within 24 

hours of the patients presenting at the ED. Depending on the likelihood of admission, if the expected waiting time 

exceeds 24 hours, the patient may be advised to be transferred or discharged. This process is shown in Figure 3. 

 

Figure 2. The number of patients who consulted at the ED between 

June 2018 and May 2022, requiring hospitalization for further 

care, is depicted. Patients < 19 years old and those who did not 

require hospitalization were excluded from the final data analyses 
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Figure 3. This model of prediction flow is based on the process from ED registration to hospitalization. 

The red line represents patients who have been discharged from the ED, while the blue line represents 

hospitalized patients. Depending on the discretion of the ED physicians, decisions regarding discharge 

can be made in “Triage” and “Treatment.” The ED length of stay is defined as the waiting time from 

the arrival of the patients at the ED to when they are discharged from the ED. According to the 

prediction of the ML model, a patient who has received a hospitalization decision form will be classified 

as “discharged” if the total waiting time exceeds 24 hours or classified as “hospitalized” if it does not 

 

3.1.3 Description of independent variables 

Demographic, administrative, and clinical variables were collected from the information provided during the 

process of the ED visit registration to the hospitalization decision form. A detailed presentation of the variables 

generated for each category of data in Table 1 is depicted. 

 

Table 1. Independent variables description 

Category Data source Description 

Administrative 

Non-Hospitalized patients A patient transferred to another hospital after visiting the ED 

When ED registration Year, Month, Date, Day, Time, Hour, and Minute 

Hospitalization decision form Admission order date, Expected date of admission, Scheduled 

surgery date, Diagnosis code in hospital,  

Reason for exceeded schedule,  

Tuberculosis ward admission possible, Organ transplant,  

CP application, Isolation, Single room availability,  

Withholding the hospitalization decision form,  

Suspension of patient treatment,  

Single room availability at the time of admission reservation, 

Exceeded schedule, 

The time from the moment patients visit the ED to a decision for 

admission 

In emergency department Pregnant, Severe emergency disease,  

Admission decision check, Delay in treatment,  
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Delay in treatment decision, Waiting for admission, Inspection, 

Reading, Follow-up, Cross-consultation, Hospitalization decision, 

Check-out,  

Cardio-pulmonary resuscitation (CPR),  

Do not resuscitate (DNR), Intensive care unit (ICU),  

Multiple traumas, Emergency surgery, Helicopter transport; Code 

of ED area,  

National emergency department information system (NEDIS), 

Classification for admission through ED, 

Purpose of treatment;  

Patient number and type, Doctor's number,  

Admission officer's doctor number;  

ED sickbed information note Information that can be obtained in the ED sickbed being a brief 

note in Korean. The word was made into a variable according to 

the frequency, and the description of each variable is as follows:  

Unknown meaning missing value; Acute care unit (ACU); Acute 

stroke unit (ASU); Critical care unit (CCU); Neurological 

intensive care unit (NRICU);  

General ward meaning the rest of the wards except for special 

departments such as ICU/ED;  

Respiratory syncytial (RS); Emergency; Level; Possible; Multi-

person rooms; Assignment; Preemptive; Person room; Waiting for 

hospitalization outside; Admission postpone; Severe; Confirm; 

Demographic Patient information Hospital registration number, Gender, Birth, and Age 

Clinical 

Medical department data Department code when making a reservation for admission 

(dept0), Department (dept1), Main department code in ED 

(dept2), Department code of admission (dept3), Department code 

in ED (dept4), Department code (dept5), Admission department 

code on the hospitalization decision form (dept6)  

Hospitalization decision form Isolation type: Unknown, Air, Protect, Droplet, Contact, and 

Blood 

 

3.2 Data pre-processing 

3.2.1 Pre-processing of structured data 

Table 2 describes and lists the main structured variables of this study. Duplicate or “Admission” tagged 

features were removed because they were classified as future variables and were unnecessary for this study. To 

calculate the waiting time, we created a variable that subtracted the ED visit time from the admission reservation 

time and converted it into hourly units. Text-type features were converted into integers. For example, ‘4.0’ 

indicated the ED location code was converted to the number “4.” Missing value transformations were determined 

based on the data type. Variables were populated with “Unknown,” “U,” or “0.” The target value, which is the 

time spent in the ED, was expressed as a decimal by converting minutes into hours. 

 

Table 2. Description of the major variables that affect the outcome among all the variables 

 Type Variable Name Description 

Patient Information  

Patient Number Number num Randomly 

Age Number age 19, 20, …103, 109 

Gender 2 categories gender Male, Female 

Kinds of  

Department code 
7 categories 

dept0, dept1, dept2,  

dept3, dept4, dept5, 

dept6 

GIa, ONCb, OBYc, 

CVd, NRe … 
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Information in ED  

ED Location Code 17 categories ed_loc_code 

1, 2, 3, 4(Severe level), 

5, 7(Waiting for  

hospitalization level), 

6(Mild level), C(Cancer),  

D(Delivery), R(CPR) … 

ED NEDIS  

Location Code 
7 categories ed_nedis_code 1.0, 2.0, … 6.0, 8.0 

Severe Emergency  

Disease 
2 categories severe No(N), Yes(Y) 

Hospitalization  

Decision Check 
2 categories adm_check No(0), Yes(1) 

Waiting for Admission 2 categories waiting No(0), Yes(1) 

Via ED Classification 15 categories via_ed_code 
11.0 (Via general ward), 

28.0 (Via intensive care unit) … 

Hospitalization  

Decision Form 
 

Admission  

Physician Number 
577 categories adm_dr_num 

D990010, D130578,  

D070498 … 

Admission Order Date 883 categories adm_day 20180614, … 20201101 

Diagnosis Code in  

Hospital 
2811 categories dx_code 

U(Unknown),  

D003017, D012602 …  

Organ Transplant Check 3 categories organ No(0), Yes(1), Unknown(U) 

Isolation Check 3 categories iso No(0), Yes(1), Unknown(U) 

ED Admission Time  

ED Admission Year 3 categories ed_y 2018, 2019, 2020 

ED Admission Month 12 categories ed_m 01, 02, 03, … 10, 11, 12 

ED Admission Date 

ED Admission Time 

31 categories 

1440 categories 

ed_d 

ed_time 

01, 02, 03, … 29, 30, 31 

0000, 0001, … 2358, 2359 

ED Admission Hour 24 categories ed_hour 00, 01, 02, … 21, 22, 23 

ED Admission Day 7 categories ed_days Mon, Tue, Wed, … Sat, Sun 

Admission  

Reservation Time 
72 categories adm_reserv_t 

1.0, 2.0, …  

98.0 ,118.0 (hour) 
a
GI: gastroenterology division  

b
ONC: oncology-hematology division

 

c
OBY: obstetrics and gynecology 

d
CV: cardiology division 

e
NR: neurology 

 

3.2.2 Pre-processing of unstructured text data 

Variables with unstructured text included “Isolation types” and “ED Sickbed Information Notes.” Each text 

variable was pre-processed through normalization, tokenization, word frequency counting, term frequency-

inverse document frequency (TF-IDF), and missing value filling. 

First, after filling in the missing values with “Unknown,” unnecessary words, such as special characters and 

numbers, were removed. Additionally, after consolidation, all letters were changed to lowercase [42]. 

Second, for tokenization, the length was cropped to 2–5 words for word extraction. Korean words that were 

not automatically tokenized were manually spaced [42]. Table 3 shows the original and modified text through 

normalization and tokenization.  
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Table 3. Pre-processing results of unstructured text data. In case Korean and English are mixed in the text, 

the Korean meaning is written in parentheses for clarity 

Raw data Normalization Tokenization 

Isolation type  

접촉주의(contact precaution) 

비말주의(droplet precaution) 

접촉주의+, 비말주의 

공기(air), 비말(droplet), 접촉주의 

접촉주의,  

비말주의 

접촉주의+, 비말주의 

공기, 비말, 접촉주의 

접촉주의  

비말주의 

접촉주의 비말주의 

공기 비말 접촉주의 

ED sickbed information note  

GW)다인실가능(shared room 

available) 

gw,Lv4(다인실(shared room)),rS(N) 

CSICU/전(pre) PS prof 

GW) VRE 

GW 1O-> 타(other)FA 

gw, 다인실가능 

gw, lv, 다인실, rs 

csicu, ps, prof 

gw, vre 

gw, 타 fa 

gw 다인실가능 

gw lv 다인실 rs 

csicu ps prof 

gw vre 

gw 타 fa 

 

Third, the tokenized words were converted into bag-of-words-encoded vectors. In the “Isolation type” 

column, only words with a document frequency (DF) of ≥ 10 and “Sickbed Information Notes” of ≥ 500 were 

extracted. The df number criterion was set based on the interval in which the frequency of tokens generated for 

each column sharply differed. 

Fourth, we applied TF-IDF, which calculates the importance of words in a document-term matrix (DTM) 

[42]. This technique assigns weights to specific words in a DTM by applying a specific formula to the word and 

document frequency. It is simple to use and characteristically performs better in ML models.  

The TF-IDF score created a DTM. Thereafter, the value was obtained by multiplying TF, which represented 

the relative frequency of term t in document d, and IDF measured the importance of the term t in the corpus. This 

can be expressed in the equation as follows: 

 

TF(t, d) = 
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑜𝑐𝑐𝑢𝑟𝑟𝑒𝑛𝑐𝑒𝑠 𝑜𝑓 𝑡𝑒𝑟𝑚 𝑡 𝑖𝑛 𝑑𝑜𝑐𝑢𝑚𝑒𝑛𝑡 𝑑

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑒𝑟𝑚𝑠 𝑖𝑛 𝑡ℎ𝑒 𝑑𝑜𝑐𝑢𝑚𝑒𝑛𝑡 𝑑
 

IDF(t, D) = 
𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑑𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑠 𝑖𝑛 𝑡ℎ𝑒 𝑐𝑜𝑟𝑝𝑢𝑠

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑑𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑠 𝑤𝑖𝑡ℎ 𝑡𝑒𝑟𝑚 𝑡 𝑖𝑛 𝑡ℎ𝑒𝑚
 

TF – IDF = TF(t, d) ⅹ IDF(t, D) 

 

Finally, the TF-IDF scores for each selected word were transformed into a two-dimensional array. Rows 

processed as missing values at this time because they did not contain words were replaced with 0.0. The variables 

generated through this process were assigned new names, as indicated in Table 4. 
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Table 4. Description of variables created by TF-IDF 

 Type Variable Name Description 

Isolation type 6 categories 
i0, i1, i2 

i3, i4, i5 

Unknown, Air, Protect, 

Droplet, Contact, Blood 

Bed Information 15 categories 

ACU, 

ASU, 

CCU, 

EM, GW, 

NRICU, 

RS, 

POSSIBLE, 

SHARED ROOM, 

ASSIG, FIRST, 

ADD BEFORE, 

ADD WAIT, 

SEVERE, CON 

Acute care unit, 

Acute stroke unit, 

Critical care unit, 

Emergency, General ward, 

National emergency 

department information system, 

Respiratory syncytial, 

Possible, 

Multiple rooms, 

Assignable, Preemptive, 

Admission postpone, 

Waiting for hospitalization, 

Severe, Confirm 

 

3.2.3 Target variable 

The “target value” of the waiting time prediction model is a numerical value denoting the waiting time. For 

the classification model regarding the likelihood of hospitalization in ED, the target value was standardized as 24 

when it exceeded 24 hours for training. If the actual waiting time was < 24 hours, it was converted to the number 

“0”. If it was ≥ 24 hours, it was converted to the number “1”. The result value was set in binary format. 

Finally, a total of 82 variables were used, including 61 structured data variables and 21 variables generated 

by NLP from unstructured text data. 

Figure 4 depicts the overall flow of the prediction method and usage of XAI in this study.  

 

 

 

 

 

 

 

 

 

 

Figure 4. The overall flow of the prediction method and XAI usage in this study are depicted 
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3.3 Admission prediction ML-based models 

In this study, two ML approaches were applied based on the research objectives. First, the ML classification 

model was used to predict the likelihood of hospitalization for patients waiting in the ED. Second, an ML 

regression model was used to predict the waiting time until hospitalization. 

We evaluated five different ML models to predict the likelihood of hospitalization. These included the 

Gradient Boosting Machine (GBM) [43] and Extreme Gradient Boosting (XGB) [44] models. Typically, XGB 

aims to improve models by sequentially and iteratively training multiple decision trees on training data. It 

minimizes prediction errors and avoids overfitting through regularization techniques, ultimately improving 

generalization performance. Random Forest (RF) [45] is an ensemble learning algorithm based on decision trees, 

where multiple decision trees are combined to create a single model. During the construction of decision trees, 

features and data are randomly selected. Additionally, the prediction results are aggregated to prevent overfitting 

and achieve stable predictions. Multi-layer perceptron (MLP) [46] is a neural network architecture consisting of 

multiple hidden layers. MLP is capable of modeling non-linear correlations, making it suitable for addressing 

complex problems. The weight updates using backpropagation enable learning from diverse inputs and outputs. 

LR is a statistical technique [47] that models the correlation between inputs and outputs. It involves taking a linear 

combination of input features and weights, passing it through a logistic function to generate probability values 

between 0 and 1, and using a threshold to predict classes. LR is simple and interpretable; however, it is limited in 

modeling non-linear correlations among input features. Naïve Bayes (NB) is a supervised learning algorithm 

based on the principles of Bayes’ theorem. This model assumes that input variables are independent and directly 

impact only one output variable, making it computationally efficient and quick to train [48]. Nonetheless, in many 

real-world scenarios, it may be unrealistic to assume such independence among input variables. This limitation 

can restrict the practical applicability of the model. 

We used XGB, RF, MLP, and LR [49] among the ensemble techniques to determine the waiting time until 

hospitalization. Moreover, among the five classification models described earlier, XGB, RF, and MLP can be used 

for regression tasks. Thus, the same models were used to streamline the training process. Additionally, LR is a 

method used to model correlations between two or more variables, assuming the correlations between the variables 

are linear. Therefore, changes in one variable are proportionally related to changes in other variables. LR creates 

a prediction line based on these suppositions, making it simple and easy to interpret. However, with real-world 

data, complex non-linear correlations often exist, making it difficult to model. 

The performance of these models was compared by training them on both structured and unstructured text 

data. Finally, we used XGB which resulted in it being the model with the best performance. For the 

hyperparameters, a grid search was used for fine-tuning. 

 

3.4 Cross-validation 

Between June 2018 and May 2022, a total of 49,266 patients who consulted at the hospital’s ED in Seoul, 

South Korea, required hospitalization. Of these, 44,753 patients (90.8%) were admitted within 24 hours, while the 

remaining 4,513 patients (9.2%) were not admitted within 24 hours. Despite the imbalance in the data classes, our 

goal was to use 5-fold cross-validation without shuffling the data to assess the predictive performance of the 

admission prediction model on new patient data in the future. Data bias is conventionally reduced by 5-fold cross-

validation in ML model evaluation, thus improving accuracy [50]. Five cross-validations were performed by 

dividing 44,753 patient data into five equal parts, with 80% of the data used for training and 20% used for 

validation. 

 

3.4.1 Data transformation 

We transformed the data at every fold validation for model training. The data were divided into categorical 

and numeric types based on variables. For the categorical type, the target encoder had to be applied. This encoding 
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method is characterized by expressing the correlations between similar categories. However, this correlation is 

limited to only categories and targets. The advantage of this method is that it facilitates fast learning without 

compromising on the quantity of data; consequently, we implemented it in our model. To achieve balance, the 

mean was considered by setting the smoothing to 1.0 and minimum samples to 1. Furthermore, any columns with 

zero variance had to be dropped. For numeric types, a MinMaxScaler was used. This ensured that the value of 

each variable adhered to a specific range or rule; here, the data was converted to a range between 0 and 1. 

 

3.4.2 Performance 

The predictive performance of the ED hospitalization model was evaluated using the area under the receiver 

operating characteristic (AUROC) and the area under the precision-recall curve (AUPRC). The receiver operating 

characteristic (ROC) curve was used to indicate the performance of a classification model when determining a 

patient’s hospitalization status that was represented in binary form as positive or negative. The X-axis represented 

the false positive rate (FPR), and the Y-axis represented the true positive rate (TPR) with a proportional correlation 

between the two. Measuring the AUROC was used to evaluate performance. The closer this value was to 1, the 

better the model and the higher the likelihood of hospitalization. The AUPRC was indicated by setting the X-axis 

to recall and the Y-axis to precision. These two values are inversely proportional to each other and form a 

downward curve towards the right. Both precision and recall are ideal models when close to 1; therefore, the closer 

the value of AUPRC is to 1, the better the model. 

The performance of the predictive waiting time model for patients consulting at the ED was evaluated using 

the mean absolute error (MAE). MAE is the average of the absolute sum of the differences between the predicted 

waiting time by the regression model and the actual time. The error size was accordingly reflected. Because MAE 

is a highly sensitive indicator, the difference between the predicted ED waiting times by the model can be 

recognized immediately. In the given formula, ei represented the difference between the actual value, yi, and the 

predicted value, ypredi. MAE was calculated as the average of the absolute differences divided by the total number 

of data points: 

 

MAE = 
1

𝑛
 ∑ |𝑒𝑡 |

𝑛
𝑡=1  (1) 

* 𝑒𝑖 = 𝑦𝑖 − 𝑦𝑝𝑟𝑒𝑑𝑖
 

 

3.5 Calibration curve and SHapley Additive exPlanations 

We utilized a calibration curve to identify the factors that impacted the determination of discharged patients 

in general ED scenarios. Additionally, we employed SHapley Additive exPlanations (SHAP) for XAI. 

The calibration curve revealed the realistic predictive correlation between the predicted and actual probability 

of admission likelihood. Thus, if the patient’s admission probability was 80%, it indicated that the actual admission 

probability was also 80%. We used the calibration curve of XGB with text data that had the highest performance 

among the models for predicting hospitalization. The X-axis of the calibration plot of this model was divided by 

0.1 units. After calculating each section’s event rate, the predicted and actual probabilities were displayed as a bar 

plot. Moreover, the proportion of non-hospitalized patients was similarly calculated and divided into three 

categories: Low (0–0.5), Medium (0.6–0.8), and High (0.9–1.0). The criteria for dividing the levels were based 

on the proportion of patients who were not admitted within 24 hours at each interval. The classes Low, Middle, 

and High comprised 1017, 173, and 245 patients, respectively. 

SHAP is a technique that transparently reveals the internal functioning of a complex AI model. A Shapley 

value is calculated by measuring the average change in the presence or absence of a feature when combining 
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multiple features, assisting in distinguishing the importance of each individual feature. Additionally, the 

importance of each feature can be calculated using the feature importance function in tree-based or boosting 

algorithms. However, this technique, used to identify variables, affects the prediction through permutation. Due 

to the estimation limit imposed by the degree of error, the importance of variables may vary each time the 

algorithm is executed, potentially leading to the oversight of dependencies between features. Therefore, models 

with correlations between features should avoid using the feature importance function. The Shapley value utilizes 

the concept of independence between variables as a key idea. It is used to calculate the impact of variables by 

comparing the results obtained when all combinations of variables related to a specific variable are input. The 

selection is made based on the effect on the target variable. Moreover, it can explain the negative and positive 

correlations between the value of the result and the variable. The technique should be selected based on the 

viewpoint. In our study, we chose to use SHAP because there was a high likelihood of a dependency between the 

features [51]. 

Each level was applied to the SHAP summary plot and plots bar. The SHAP summary plot can determine the 

magnitude of a feature based on its Shapley value. The plots bar calculates the global importance by averaging 

the absolute values of each Shapley value. Consequently, it is possible to grasp the detailed influence of the 

variable on the model. Among the Shapley values that were generated using the plots bar, the top eight values 

were depicted using radar plots. 

 

4. Results 

4.1 Performance of the ML-based predictive models 

Table 5 and Table 6 show the AUROC and AUPRC metrics for each fold of a 5-fold cross-validation of ML 

models that have been trained to predict the likelihood of hospitalization within 24 hours after arrival at the ED. 

Comparing the two models, the models trained with unstructured text data outperformed those without 

unstructured text data by 6–10% and 20–28% on AUROC and AUPRC, respectively. The average values of 

AUROC and AUPRC for XGB, including text data, were the highest compared to other classification models. The 

AUROC and AUPRC were 0.922 (SD 0.030) and 0.687 (SD 0.085), respectively. By presenting the mean AUROC 

and AUPRC of each classification model using text data in Figure 5 and Figure 6, XGB evidently exhibited the 

best performance. 

 

Table 5. Evaluation of 5-fold cross-validation for each ML model using AUROC and AUPRC 

 RF MLP LR NB XGB 

AUROC AUPRC AUROC AUPRC AUROC AUPRC AUROC AUPRC AUROC AUPRC 

Fold 1 0.845 0.323 0.864 0.286 0.846 0.225 0.722 0.241 0.228 0.412 

Fold 2 0.875 0.395 0.789 0.259 0.785 0.228 0.740 0.201 0.227 0.437 

Fold 3 0.862 0.587 0.812 0.482 0.824 0.447 0.779 0.383 0.875 0.604 

Fold 4 0.824 0.371 0.792 0.335 0.752 0.206 0.717 0.188 0.837 0.400 

Fold 5 0.756 0.472 0.684 0.335 0.755 0.363 0.720 0.362 0.822 0.542 

Mean 

(SD) 

0.832 

(0.042) 

0.430 

(0.092) 

0.788 

(0.058) 

0.339 

(0.077) 

0.788 

(0.035) 

0.294 

(0.095) 

0.736 

(0.023) 

0.275 

(0.082) 

0.800 

(0.025) 

0.480 

(0.080) 
 

Table 6. Evaluation of 5-fold cross-validation for each ML-model with NLP using AUROC and AUPRC 

 RF with NLP MLP with NLP LR with NLP NB with NLP XGB with NLP 

AUROC AUPRC AUROC AUPRC AUROC AUPRC AUROC AUPRC AUROC AUPRC 

Fold 1 0.891 0.525 0.896 0.474 0.890 0.436 0.759 0.360 0.922 0.577 

Fold 2 0.948 0.703 0.936 0.701 0.920 0.609 0.892 0.630 0.953 0.735 

Fold 3 0.946 0.780 0.930 0.726 0.932 0.723 0..913 0.759 0.955 0.822 

Fold 4 0.897 0.601 0.893 0.575 0.856 0.512 0.799 0.411 0.908 0.634 

Fold 5 0.833 0.612 0.835 0.585 0.826 0.558 0.783 0.511 0.875 0.667 

Mean 

(SD) 

0.902 

(0.042) 

0.644 

(0.088) 

0.898 

(0.036) 

0.612 

(0.092) 

0.885 

(0.039) 

0.568 

(0.096) 

0.829 

(0.061) 

0.534 

(0.145) 

0.922 

(0.030) 

0.687 

(0.085) 



14 

 

 

 

Table 7 and Table 8 show the MAE and average values for each fold of the regression ML model that predicts 

the waiting time from arrival at the ED to hospitalization. The MAE of the XGB model that included text data 

revealed the smallest difference when compared to that of the other models. The MAE of XGB with NLP revealed 

a difference of approximately 3.02 from the actual value and equated to 3 hours when converted into time. The 

difference was 30 minutes less than that of a normal XGB model, equating to 3 hours 30 minutes with a time 

conversion of 3.53. 

 

Table 7. Evaluation by MAE of 5-fold cross-validation for each ML-model 

 MAE 

RF MLP LR XGB 

Fold 1 3.67 3.43 3.80 3.53 

Fold 2 3.55 3.51 3.99 3.55 

Fold 3 3.66 3.98 4.25 3.52 

Fold 4 3.40 3.35 3.73 3.38 

Fold 5 3.87 3.95 4.21 3.66 

Mean 

(SD) 

3.63 

(0.154) 

3.64 

(0.267) 

3.99 

(0.209) 

3.53 

(0.090) 

 

Table 8. Evaluation by MAE of 5-fold cross-validation for each ML-model with NLP 

 MAE 

RF with NLP MLP with NLP LR with NLP XGB with NLP 

Fold 1 3.35 3.00 3.55 3.38 

Fold 2 2.66 2.90 3.48 2.77 

Fold 3 2.69 2.71 3.45 2.61 

Fold 4 3.03 3.00 3.51 2.96 

Fold 5 3.54 3.67 4.02 3.35 

Mean 

(SD) 

3.05 

(0.349) 

3.05 

(0.325) 

3.60 

(0.213) 

3.02 

(0.310) 

 

Figure 5, 6. AUROC and AUPRC curves of hospital admission prediction models with NLP 
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We selected the XGB with text data as the final model. XGB has fast learning and classification speed due 

to parallel processing and strong durability with its overfitting regulation function. Furthermore, it demonstrates 

excellent predictive performance in both classification and regression tasks; therefore, it was hypothesized to 

predict the likelihood of hospitalization accurately and expected waiting time as a single model, making the 

process uncomplicated. 

 

4.2 Variable importance through SHAP 

The summary_plot of SHAP means that the performance contributing to the model's prediction increases as 

it moves up from the bottom of the y-axis. The x-axis represents the magnitude of each variable's impact on the 

outcome value. In our study, we found that the color red was associated with a delay in admission within 24 hours, 

while the color blue was found to have an impact on the admission process. For example, in the case of ‘Bed 

information - Confirm’, it most likely indicates a low likelihood of hospitalization. Conversely, in the case of ‘ED 

admission day’, where the blue color appears longer, it can be considered a variable that increases the likelihood 

of hospitalization within 24 hours. The SHAP results of XGB with the highest performing text data are shown in 

Figure 7. Table 2 and Table 4 were referred to for a description of the variables in Figure 7. 

The SHAP summary plot demonstrates that the performance contributing to the model’s prediction increases 

as it moves up from the bottom of the Y-axis. The X-axis represents the magnitude of each variable’s impact on 

the outcome value.  

In our study, we found that the color red was correlated with a delay in admission within 24 hours, while the 

color blue was found to have an impact on the admission process. For example, in the case of the variable “Bed 

information - Confirm,” a low likelihood of hospitalization was indicated. Conversely, in the case of the variable 

“ED admission day,” where the blue color appeared longer, the likelihood of hospitalization within 24 hours 

increased. The SHAP results of XGB with the highest-performing text data are shown in Figure 7. Table 2 and 

Table 4 are referred to for a description of the variables in Figure 7. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 7. Shapley effect values for variables in the XGB model 

with text data 
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We analyzed the calibration curve to determine the statistical significance of the variables affecting patients 

who either had a low or high probability of being admitted within 24 hours of their arrival at the ED. In addition, 

the XGB model with the best performance was used to analyze the target value, set to “1,” of patients who were 

not hospitalized within 24 hours. The X-axis of the calibration curve was delineated as the average value, 

established as the predict_proba of the predicted value. The Y-axis delineated the average of the actual values (the 

fraction of positives correctly classified). By creating a histogram of the X- and Y-axes of the calibration curve, 

the ratio between the predicted value and the actual value was plotted, as presented in Figure 8. 

As revealed in the histogram, the likelihood of events for observed discharged patients was higher than that 

of predicted discharged patients. 

 

 

 

 

 

 

The number of patients corresponding to each level was 10 186, 221, and 255 for the Low, Middle, and High 

level classes, respectively. Each level was confirmed by SHAP. We replaced the top eight quantifiable variables 

in the bar plots with radar plots, as depicted in Figure 9. 

For the Low level class, “Admission reservation time” was the highest with a value of 0.47, followed by 

values for the “ED admission time” (0.35), “ED location code” (0.33), “ED admission day” (0.32), “EM” (0.3), 

“dept5” (0.28), “GW” (0.19), and “Date of admission” (0.15).  

For the Middle level class, “ADD_WAIT” was the highest with a value of 1.18, followed by “EM” (1.11), 

“Admission reservation time” (0.94), “CON” (0.42), “ED admission time” (0.34), “GW” (0.31), “ED location 

code” (0.26), and “ED admission day” (0.23).  

For the High level class, “Admission reservation time” was the highest with a value of 3.95, followed by 

values for the “EM” (1.06), “CON” (0.4), “ED location code” (0.38), “ED admission time” (0.3), “ADD_WAIT” 

Figure 8 The X-axis is divided into deciles based on increments of 0.1 for 

the predicted discharge probability of the patients, while the Y-axis 

represents the actual discharge rate. The orange bar represents the rate of 

observed discharged patients, while the blue bar represents the rate of 

predicted discharged patients 
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(0.28), “GW” (0.24), and “ED admission day” (0.22). Descriptions of the variables are mentioned in Table 2 and 

Table S4. 

With these results, it is possible to demonstrate to the patient the likelihood of being admitted and inform 

them about their expected waiting time. If admission is not possible, the patient can be informed of the reason. As 

a result, EDs and hospitals will exhibit high operational efficiencies by implementing these methods. 

 

 

Figure 9. Radar plots of the influence of Shapley values of the top eight variables  

by Low, Middle, and High are shown. Green is Low, Blue is Middle, and Red is High 
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5. Discussions 

The full dataset for our study utilized patient information obtained between June 2018 and May 2022 from a 

hospital in Seoul, South Korea, where patients were admitted through the ED. Moreover, this dataset included a 

specific subset of patients who were hospitalized in a designated COVID-19 environment. In addition to the 

economy and society, the recent global pandemic, COVID-19, has impacted the ED. After the outbreak of COVID-

19, the waiting time in the ED has become irregular, as patients are only allowed to visit the hospital once their 

polymerase chain reaction (PCR) test results are confirmed in order to prevent the spread of infectious diseases. 

Furthermore, hospitals have experienced shortages of wards, as they have had to allocate infected and non-infected 

patients to separate wards [52]. Nationally, South Korea has established a centralized funding system [53], and 

this system offers patients considerable autonomy. Patients can consult at primary and secondary hospitals, as 

well as the ED, without requiring a referral. Additionally, if patients receive an initial diagnosis from a physician, 

they can consult at tertiary hospitals with a referral form issued by the diagnosing physician. Moreover, the 

government supports cost-sharing programs that assist in reducing the financial burden on patients during hospital 

consultations [53-54]. In contrast, the healthcare workforce regarding medical personnel remains below the 

average, as advised by the Organisation for Economic Co-operation and Development (OECD) [55]. This shortage 

of medical staff leads to inadequate patient care that is further exacerbated by the challenge of managing a large 

number of patients.  

We compared ML-based models trained on data during this period. XGB revealed a high performance with 

an AUROC of 0.860 and an MAE of 3 hours 30 minutes. Additionally, we trained unstructured text data on XGB 

to predict the likelihood of hospitalization. Our model achieved an AUROC score of 0.922 and an MAE of 3 hours, 

demonstrating strong performance. Our model had an AUROC that was 6% higher and a MAE that was 30 minutes 

less than the existing XGB. Regarding text manually entered by doctors and nurses in the ED, such as ED sickbed 

information notes, this contains information that can be immediately updated based on new environmental 

changes, including COVID-19. This differed from simple computer-entered demographic, administrative, and 

clinical variables.   

The text data contained important information regarding the patient’s condition or hospitalization [33]. We 

applied TF-IDF to this data and further trained it on the existing XGB to exhibit improved performance in 

predicting hospitalization and estimated waiting time. By applying SHAP to the XGB model with added text data, 

we revealed the contribution of features based on the probability level of discharged patients. Informing the patient 

about the reason for not being hospitalized involves clearly counseling the patient about the condition. This 

practice enables the efficiency and accuracy of emergency physicians, ultimately reducing overcrowding in the 

ED.  

The common variable that showed the greatest effect across the Low-, Middle-, and High-level classes was 

the “Admission reservation time”. In the High level class, with the least likelihood of hospitalization, the effects 

of the parameters gradually decreased in the order of “EM”, “CON”, and “ED location code”. By utilizing this 

information to enhance the process in the healthcare system, hospitals can appropriately elevate patient admission 

rates and decrease waiting times. 

The study’s findings revealed that the variables had a statistically significant influence on the results, as 

demonstrated by SHAP. These findings can improve the efficiency of the operation of the ED by enhancing the 

processes related to variables in unpredictable situations, such as COVID-19. High-performance models and the 

identification of adjustable variables can facilitate the maintenance of ML models and augment existing models. 

Our model is a useful and inexpensive tool that provides decisive clinical support to ED physicians constructed 

on readily available patient medical data. 

Despite this considerable performance, the estimated waiting time provided by the ED to the patient and the 

time perceived by the patient may be different. These differences should be resolved through effective 

communication with patients in the hospital. Additionally, the ED should create a comfortable waiting room 

environment and provide feedback on estimated waiting times, notifying the patient of any updates in progress. 
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Furthermore, it is important to regularly check the waiting room area and apply a personalized approach to patient 

care. If these series of improvements are integrated, the overcrowding of the ED will be reduced [56-58]. 

Several limitations should be considered in this study. First is the limitation regarding the objective evaluation 

of the clinical usability and acceptability. It may be challenging to empirically appraise the actual value of the 

application of results of this independent single-center study for other hospitals and clinicians. However, this study 

was initiated in response to a request from physicians working in the ED to address overcrowding issues. To make 

the algorithms more user-friendly for practical use in the ED, we developed ML models that provided predictive 

results and worked on software development. Furthermore, a systematic evaluation of the effectiveness of the 

EMR system is planned. 

The second limitation is the lack of validation for external generalizability. Our models can be applied to 

predict the likelihood of hospitalization and waiting time in the ED of tertiary hospitals in Korea. However, since 

each hospital has different systems, users of models may experience the inconvenience of having to learn new 

functionalities. Additionally, the EMR systems utilized by each hospital have varying interfaces and terminologies 

for input variables. This discrepancy may lead to reduced accuracy when comparing the models of our study to 

other models if they are implemented without modifications. Although validation is possible for commonly used 

variables, differences in variable definitions could impact accuracy. Nevertheless, this research was initiated in 

response to clinical requests from hospitals, indicating a high probability of its relevance in other hospitals. 

The third limitation of developing prediction models for hospital admissions in the ED of Korean hospitals 

is the data imbalance caused by including mixed data from before and after the outbreak of COVID-19. This 

limitation may restrict the performance of the models of this study. However, according to the policies of the 

Korean government and hospitals, the ED needs to be sufficiently flexible to accommodate various diseases that 

are unrelated to COVID-19. Thus, a system has been implemented that requires COVID-19-suspected patients to 

be admitted after PCR testing. Moreover, numerous changes have been made to the ED system in response to the 

COVID-19 outbreak. In this context, we believe it is appropriate to use mixed data, including data related to 

COVID-19, for predicting sudden changes in the system that we aim to address. Therefore, we value the high 

performance of our study results. This study proposed prediction models for situational changes that may occur 

in the healthcare system due to various disease occurrences, including COVID-19. 

The fourth limitation is regarding the sole use of XAI which does not suffice when counseling patients on 

non-admission. While XAI offers interpretable features, it only contributes individual variables to specific 

predictions, making it challenging to fully comprehend the overall behavior of the model. Consequently, 

particularly if a specific variable has a substantial impact on non-admission, the explanation given to the patient 

would still be inadequate. Moreover, XAI relies on the trained model and specific data distributions, thus making 

it arduous when generalizing SHAP values once new data is introduced. Exclusively relying on SHAP values to 

drive changes in specific areas of the ED is limiting. However, ED physicians can still provide patients with 

appropriate explanations regarding non-admission using this functionality, supporting the counseling of patients. 

Despite these limitations, we have developed a high-performance predictive model. This is the first time that 

we identified the contribution of variables by dividing patients who were not hospitalized by levels. 

 

6. Conclusion 

We created models that included unstructured text data that can be easily overlooked to predict the likelihood 

of hospitalization within 24 hours and estimated waiting times for admission for patients using the ED. The data 

consisted of demographic, administrative, and clinical information that was easily obtained from registration at 

the ED until admission to the hospital. The XGB with text data model predicts the likelihood of admission and 

the expected waiting time within 24 hours of an ED length of stay. Moreover, via SHAP it includes a function that 

identifies the variables that have the greatest impact on difficult admissions. It has been confirmed that applying 

NLP to unstructured text data has a considerable effect on the target. 
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This model will contribute to improving the accuracy and speed of decision-making for ED physicians. The 

influence of variables on the number of patients who are not admitted within 24 hours, as identified through XAI, 

provides crucial information for ED physicians to explain to patients who cannot be admitted under the “24-hour 

Emergency Department Restriction Act”. 

By utilizing this information, the estimated average length of stay for all patients can be determined by 

considering the estimated waiting times. This lets doctors promptly notify patients about non-admission and 

transfer options, thus optimizing hospital operational costs and reducing waiting times. Furthermore, hospital 

managers can obtain information to optimize waiting times, improve hospital processes, and minimize operational 

costs. Such information greatly improves hospital operations and economic efficiency and can be particularly 

useful in mitigating ED overcrowding.  

After implementing this model in a real ED, it is crucial to collect feedback from healthcare professionals 

and consistently update and optimize the model’s performance by incorporating new data and receiving 

continuous feedback. The model should incorporate real-time patient monitoring to instantaneously integrate the 

patient’s status into the model. Furthermore, utilizing a customized model that considers individual circumstances 

and medical conditions can improve the accuracy of admission predictions. These suggestions should be followed 

to further advance the future scope of research. In the future, if this model is applied and utilized within a 

monitoring system, such as a command center [34], it is postulated that hospital processes will be greatly improved. 
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Chapter 2. 

Forecasting hospital room and ward occupancy using static and dynamic information concurrently  

1. Introduction 

The global healthcare market continues to grow, but the burden of healthcare costs on governments and 

individuals is reaching its limits. Consequently, there is increasing interest in the efficient utilization of limited 

resources in healthcare systems, and hospitals must develop approaches to maximize medical effectiveness within 

budgetary constraints [59-60]. One approach to this is optimizing the utilization of medical resources. Medical 

resources can be broadly categorized into three categories: human resources, physical capital, and consumables. 

The appropriate and optimized utilization of these resources is critical for improving healthcare quality and 

providing care to a larger number of patients [61-62].  

Among the three medical resources, hospital beds are considered one of the physical capitals provided by 

hospitals to patients. These beds are allocated for various purposes such as rest, hospitalization, postsurgical 

recovery, and more. They constitute one of the factors that can directly influence the patient’s internal satisfaction 

within the hospital. However, due to limited space, hospitals often have a restricted number of beds. Moreover, 

the number and functionality of beds are often fixed due to budgetary or environmental constraints, making it 

difficult to make changes. Nonetheless, if hospital administrators can evaluate BORs according to different time 

periods, they can predict the need for healthcare professionals and resources. On the basis of this information, 

hospitals can plan resources efficiently, reduce operational costs, and achieve economic objectives [63]. In 

addition, excessive BORs can exert a negative effect on the health of staff members and increase the possibility 

of exposure to infection risks. Hence, emphasizing only maintaining a high BORs may not necessarily lead to 

favorable outcomes for the hospital [24-25]. Considering these reasons, BOR prediction plays a vital role in 

hospitals and is recognized as a broadly understood necessity for resource optimization in the competitive medical 

field. 

 

1.1 Prior Works 

Hospital bed occupancy prediction has been investigated using various approaches recently. From studies 

predicting bed demand using mathematical statistics or regression equation models based on given data [11-14], 

the focus has shifted towards modeling approaches using time-series analysis. This approach observes recorded 

data over time to predict future values. 

There is research that took an innovative approach using time-series analysis alongside the commonly used 

regression analysis for bed demand prediction. In this study, it demonstrates that using time-series prediction for 

bed occupancy yielded higher performance results than using a simple trend fitting approach [15]. In previous 

research, they used the ARIMA model for univariate data and a time-series model for multivariate data to predict 

BOR [16]. With the advancement of deep learning (DL) models that possess strong long-term memory capabilities, 

such as the recurrent neural network (RNN) and long short-term memory (LSTM), there has been an increase in 

studies applying these models to time-series data for prediction purposes. For instance, in a study by Kutafina 

[17], hospital BORs were predicted based on dates and public holiday data from government agencies and schools, 

without involving patients’ personal information. That study used a nonlinear autoregressive exogenous (NARX) 

model to predict a short-term period of 60 days, with an aim to contribute to the planning of hospital staff. The 

model demonstrated good performance with an average mean absolute percentage error (MAPE) of 6.24%. In 

emergency situations such as the recent global COVID-19 pandemic, the sudden influx of infected patients can 

disrupt the hospitalization plans for patients with preexisting conditions [64]. Studies have been conducted using 

DL architectures to design models for predicting the BOR of patients with COVID-19 on a country-by-country 

basis. Some studies incorporated additional inputs such as vaccination rates and median ages to train the models 

[18]. Studies have also been conducted to focus on the short-term prediction of BOR during the COVID-19 period 

[19-20]. 
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Table 1. Summary table of prior works 

Citation 

Number 

Year Data Set Method Prediction Target 

Mackay M, and 

Lee MD 

[11] 

2007 De-identified data the date 

and time of patient 

admission and discharge 

between 1998 to 2000 

Comparison of two 

compartment models 

through cross-validation 

Entire hospital 

bed occupancy (annual 

average) 

Littig, SJ,  

and Isken MW 

[12] 

2007 Historical and real-time data 

warehouse. 

hospital information systems  

(the emergency department, 

financial, surgical 

scheduling, and inpatient 

tracking systems) 

Computerized model of 

MLRa and LRb 

Entire hospital short-

term occupancy (24h or 

72h) based on LOSc 

Kumar A,  

and Mo J 

[13] 

2010 The Bed Management 

between June 1, 2006 to 

June 1, 2007 

1) In each class based on 

length of stay and 

admissions data 

2) Historical previous year’s 

same week admissions data 

3) Relationship between 

identified  

variables to aid bed 

managers 

The three methods are: 

1) Poisson bed occupancy 

model 

2) Simulation model 

3) Regression model  

The three prediction 

targets are: 

1) Estimation of bed 

occupancy and  

optimal bed 

requirements in each 

class  

2) Bed occupancy 

levels for every class 

for the following week  

3) Weekly average 

number of occupied 

beds 

Seematter-

Bagnoud, L,  

et al 

[14] 

2015 Inpatient stays data in 2010  

(acute somatic care 

inpatients & outpatients) 

Three models of hypothesis-

based statistical forecasting 

of future trends 

1) The number of 

hospital stays  

2) Hospital inpatient 

days 

3) Beds for medical 

stays 

Farmer RD, and 

Emami J 

[15] 

1990 Inpatient stays data for 

general surgery in the age 

group 15-44 years between 

1969 to 1982 

The two methods are:  

1) Forecasting from a 

structural model 

2) The time series or Box-

Jenkins' method. 

Entire hospital short-

term daily bed 

requirements 

Kim K, et al 

[16] 

2014 Data warehouse between 

January, 2009 to June, 2012 

The two methods are:  

1) The ARIMA model for 

univariate data  

2) The time-series model for 

multivariate data 

Entire hospital 

bed occupancy (1 day 

and 1 week) 

Kutafina E,  

et al 

[17] 

2019 Inpatient stays data between 

October 14. 2002 to 

December 31. 2015  

(patient identifier, time of 

admission, discharge, the 

name of the clinic the patient 

was admitted to. No personal 

information on the patients 

or staff was provided)  

NARX model, a type of 

RNN 

 

Entire hospital  

mid- term bed 

occupancy (60 days, 

bed pool in units of 30 

beds 

) 

Bouhamed H, 

Hamdi M,  

and Gargouri R 

[18] 

2022 COVID-19 hospital 

occupancy data in 15 

countries between 

December. 2021 to early 

January. 2022 

 

The three models are: 

LSTM, GRU, and SRNN. 

Incorporate vaccination 

percentages and median ages 

of populations data to 

improve performance 

Entire hospital  

bed occupancy  

 

Bekker R, uit 

het Broek M, 

and Koole G 

2021 Historical data publicly 

available until mid-October 

The two methods are:  

1) Using linear programming 

to predict admissions 

1)Patients admission 
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[19] 2020 

 

2) Fit remaining LOS and 

use results from queuing 

theory to predict occupancy 

2) Entire hospital short-

term bed occupancy 

from new and current  

Farcomeni A, et 

al 

[20] 

2021 

 

Patients admitted to ICU 

between January to June 

2020 

The two methods are:  

1) Generalized linear mixed 

regression model 

2) Area-specific 

nonstationary integer 

autoregressive methodology 

Entire hospital short-

term intensive care bed 

occupancy 

aMLR: multinomial logistic regression  

bLR: linear regression 

cLOS: length of stay 

 

Although previous research has contributed to BOR prediction and operational planning at the hospital level, 

more detailed and systematic predictions are necessary for practical application in real-world operations. To 

address this issue, there have been studies that develop their own computer simulation hospital systems to not 

only predict bed occupancy but also execute scheduling for admissions and surgeries to enhance resource 

utilization [65-67]. Nevertheless, the existing studies have limitations of focusing solely on the overall BOR of 

the hospital. As an advancement to those studies, we aim to propose a strategy for predicting BOR at the level of 

each ward and room using various variables in a time-series manner. Interestingly, to our knowledge, this is the 

first study to apply DL to predict ward- and room-specific occupancy rates using time-series analysis. 

 

1.2 Goal of this study 

The aim of this study was to predict the BOR of hospital wards and rooms using time-series data from 

individual beds. Although overall bed occupancy prediction is useful for macro-level resource management in 

hospitals, resource allocation based on the prediction of occupancy rates for each ward and room is required for 

specific hospital scheduling and practicality. Through this approach, we aim to contribute to the efficient 

operational cost optimization of the hospital and ensure the availability of resources required for patient care. 

We have developed DNN based time-series prediction models, among which one model combines data 

representing room-specific features (static data) with dynamic data to enhance prediction performance for room 

bed occupancy rates (RBORs). This model outperforms other RBOR prediction models, demonstrating a lower 

MAE of 0.003, a mean squared error (MSE) of 0.002, a root mean squared error (RMSE) of 0.005, and a higher 

R2 score of 0.074, indicating the highest performance among all RBOR models. 

We developed six time-series prediction models, of which two were used for predicting ward bed occupancy 

rates (WBORs), and the other four focused on predicting RBORs. These models utilize LSTM architectures with 

strong long-term memory capabilities as their base structures. The WBOR models were used for predicting weekly 

and monthly occupancy rates, serving long-term hospital administrative planning purposes. Conversely, the 

RBOR models were designed for immediate and rapid occupancy planning and were trained with 3- and 7-day 

intervals. Each RBOR model was enhanced by combining static data, which represents room-specific features, to 

generate more sophisticated prediction models. 

Figure 1 shows the potential application of our model as a form of web software in a hospital setting. Through 

an online dashboard, it can provide timely information regarding bed availability, enabling intelligent management 

of patient movements due to admissions and discharges. It facilitates shared responsibilities within the hospital 

and simplifies future resource planning [68]. 
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In the Introduction section, we explored the importance of this research and investigated relevant previous 

studies, providing a general overview of the direction of our research. In the Methods section, we will provide 

descriptions of the dataset used and the structure of the DNN algorithm used and explain the model architecture 

and performance. In the Results section, we will present the performance and outcomes of this study, and finally, 

we will discuss the contribution, limitations, and potential avenues for improvement of the research. 

 

 

Figure 1. A virtual dashboard of the status and forecast of WBOR and RBOR. (1) On the first screen, 

the overall BOR of the hospital is shown, along with the number of beds in use and available. Moreover, 

a predictive graph displays the anticipated WBOR for selected dates. (2) The second screen presents 

the WBOR for individual beds, indicating their statuses such as “in use,” “reserved,” “empty,” and 

“cleaning.” Detailed information about each room is also displayed 
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2. Methods 

We intended to predict the occupancy rates of individual hospital wards and rooms based on the information 

accumulated in individual bed-level data on an hourly basis, aggregated on a daily basis. For this purpose, we 

developed six time-series models. As the base model, we applied LSTM, which is suitable for sequence data. This 

model addresses the limitation of long-term memory loss in traditional RNNs and was chosen because of its 

suitability for training bed data represented as sequence data. 

There were two WBOR prediction models, which were trained at 7- and 30-day intervals to predict the 

occupancy rate for the next day. Moreover, there were four RBOR prediction models, similar to the ward models, 

using LSTM as the base model and were trained at 3- and 7-day intervals. Furthermore, as another approach, each 

RBOR prediction model was augmented with static data, and four DL algorithms were proposed for the final 

comparison of their performances in predicting RBOR. 

  

2.1 Materials 

2.1.1 Study setting 

This was a retrospective, single-center cohort study. Data were collected from AMC, with information on the 

occupancy status of each bed recorded at hourly intervals between May 27, 2020, and November 21, 2022. The 

dataset comprised a total of 54,632,684 records. This study used ethically preapproved data and underwent AMC 

IRB review (IRB 2021-0321), which was conducted according to the 2008 Declaration of Helsinki. De-identified 

data used in the study were extracted from ABLE, the AMC clinical research data warehouse. 

A total of 57 wards, encompassing specialized wards, 1411 rooms, including private and shared rooms, and 

4990 beds, were included in this study. Wards and rooms with specific characteristics such as the intensive care 

unit (ICU), new-born, and nuclear medicine treatment room were excluded from the analysis as their occupancy 

prediction using simple and general variables did not align with the direction of this study. 

 

2.1.2 Supporting data 

Supporting data for public holidays were added in our dataset. We considered that holidays have both a 

recurring pattern with specific dates each year and a distinctive characteristic of being nonworking days, which 

could affect occupancy rates. Based on Korean public holidays, which include “Chuseok, Hangeul Proclamation 

Day, Children’s Day, National Liberation Day, Memorial Day, Buddha’s Birthday, Independence Movement Day, 

and Constitution Day,” there were 27 days that corresponded to public holidays during the period covered by the 

dataset. We denoted these dates with a value of “1” if they were public holidays and “0” if they were not, based 

on the reference date.  

 

2.1.3 Preprocessing and description of variables 

Among the variables representing individual beds, the reference date, ward and room information, patient’s 

occupancy status, bed cleanliness status, and detailed room information were available. Based on the recorded 

date of bed status, we derived additional variables such as the reference year, reference month, reference week 

(week of the year), reference day, and reference day of the week. 

Room data were derived from the input information representing the cleanliness status of beds. This variable 

has two possible states, viz., “admittable” or “discharge.” If neither of these states was indicated, it implied that a 

patient was currently hospitalized in the bed. As the status of hospitalized patients was indicated by missing values, 
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we replaced them with the number “1” to indicate the presence of a patient in the bed, and “0” otherwise. The sum 

of all “1” values represents the current number of hospitalized patients. The count of beds in each room indicates 

the capacity of each room. The target variable BOR was calculated by dividing the number of patients in the room 

by the room capacity, resulting in a room-specific patient occupancy rate variable. The ward data were subjected 

to a similar process as that of the room data, with the difference being that we generated ward-specific variables 

such as ward capacity and WBOR using the same approach. The static room data consisted of 14 variables, 

including the title of the room and the detailed information specific to each room. 

For the variables in the ward and room data, we disregarded the units of the features and converted them into 

numerical values for easy comparison, after which we performed normalization. Regarding the variables 

representing detailed room information, we converted them to numerical values where “Yes” was represented as 

“1,” and “No” was represented as “0.” 

The final set of variables used in this study was categorized into date, ward, room, and detailed room 

information. Table 2 shows the detailed descriptions of the variables used in our training, including all the 

administrative data related to beds that are readily available in the hospital. 

 

Table 2. Description of variables by category 

 Variable Type Description 

Date  

 year 3 categories The reference year for bed status 

 month 12 categories The reference month for bed status 

 week 53 categories The reference week for bed status 

 day 31 categories The reference date for bed status 

 weekday 7 categories The reference day of the week for bed status 

 holiday 2 categories Holiday status 

Ward  

 ward abbreviation 57 categories Abbreviations for entire ward names 

 ward capacity numeric Number of available ward beds 

 ward bed capacity numeric Number of patients currently admitted to the 

ward 

 ward occupancy rate numeric Ward bed capacity divided by ward capacity  

Room  

 room abbreviation 1411 categories Abbreviations for entire room names 

 room capacity numeric Number of available room beds 

 room bed capacity numeric Number of patients currently admitted to the 

room 

 room occupancy rate numeric Room bed capacity divided by room capacity  

Room  

static feature 

 

 room code 34 categories Room grade code 

 nuclear 2 categories (N/Y) Nuclear medicine room availability 

 sterile 2 categories (N/Y) Sterile room availability 

 isolation 2 categories (N/Y) Isolation room availability 

 EEG testing 2 categories (N/Y) EEG testing room availability 

 observation 2 categories (N/Y) Observation room availability 

 kidney 2 categories (N/Y) Kidney transplant room availability 

 liver 2 categories (N/Y) Liver transplant room availability 

 sub-ICU 2 categories (N/Y) Sub-ICU room availability 

 special 2 categories (N/Y) Special room availability 

 small single 2 categories (N/Y) Small single room availability 

 short-term 2 categories (N/Y) Short-term room availability 

 psy-double 2 categories (N/Y) Psychiatry department double room availability 

 psy-open 2 categories (N/Y) Psychiatry department open room availability 



27 

 

 

The explanation of the classification for generating the datasets for training each model is provided in Table 

3. The static features of the detailed room information were combined with the room dataset, which has sequence 

characteristics, to generate a separate dataset termed Room+Static. 

 

Table 3. Dataset classification and included variables 

Dataset Name Variables 

Ward dataset ward abbreviation, year, month, week, day, weekday, holiday, ward capacity, ward bed capacity, 

ward occupancy rate 

Room dataset room abbreviation, year, month, week, day, weekday, holiday, room capacity, room bed capacity, 

room occupancy rate 

Static dataset 14 static variables related to detailed room information 

Room+Static 

dataset 

room abbreviation, year, month, week, day, weekday, holiday, room capacity, room bed capacity, 

14 static variables related to detailed room information, room occupancy rate 

 

2.1.4 Separation 

Each dataset was split into training, validation, and test sets for training and evaluation of the model. The 

training set consisted of 32,153 rows (67.8%) with data from May 27, 2020, to December 2021. The validation 

set, used for parameter tuning, included 7085 rows (15.0%) with data from January to June 2022. Finally, the test 

set comprised 8208 rows (17.2%) with data from July 2022 to November 21, 2022. 

 

2.2 DL algorithms 

We used various DL algorithms for in-depth learning. In the following subsections, we shall provide 

explanations for each model algorithm used in our research. 

2.2.1 LSTM network   

The RNN [69] is a simple algorithm that passes information from previous steps to the current step, allowing 

it to iterate and process sequential data. However, it encounters difficulties in handling long-term dependencies, 

such as those found in time-series data, due to the vanishing gradient problem. To address this issue, LSTM [70] 

was developed. LSTM excels in handling sequence data and is commonly used in natural language processing, 

machine translation, and time-series data analysis. LSTM consists of input gate, output gate, and forget gate. And 

the 'cell state,' is carefully controlled by each gate to determine whether the memory should be retained or forgotten 

for the next time step. 

 

2.2.2 Bidirectional LSTM network   

Although RNN and LSTM possess the ability to remember previous data, they have a limitation in that their 

results are primarily based on the immediate past patterns because the input is processed in a sequential order. 

This limitation can be overcome through a network architecture known as bidirectional long short-term memory 

(BiLSTM) [71]. BiLSTM allows end-to-end learning, minimizing the loss on the output and simultaneously 

training all parameters. It also has the advantage of performing well even with long data sequences. Because of 

its suitability for models that require knowledge of dependencies from both the past and future, such as LSTM-

based time-series prediction, we selected BiLSTM as the base model. 
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2.2.3 Attention mechanism   

The attention mechanism [72-73] refers to the process of incorporating the encoder’s outputs into the decoder 

at each time step of predicting the output sequence. Rather than considering the entire input sequence, it focuses 

more on the relevant components that are related to the predicted output, allowing the model to focus on important 

areas. This mechanism helps minimize information loss in datasets with long sequences, enabling better learning 

and improving the model’s performance. It has been widely utilized in areas such as text translation and speech 

recognition. Nevertheless, as it is still based on RNN models, it has the drawbacks of slower speed and not being 

completely free from information loss issues. 

 

2.2.4 Combining static and dynamic features   

Data can exhibit different characteristics even at the same time. For instance, in data collected at 1-h intervals 

for each hospital bed, we can distinguish between “dynamic data,” which include features that change over time 

such as the bed condition, date, and patient occupancy, and “static data,” which consists of information that 

remains constant, such as the ward and room number. 

DL allows us to utilize all the available information for prediction. Therefore, for predicting RBOR, we 

investigated an approach that combines dynamic and static data using an LSTM-based method [74]. This approach 

demonstrated better performance than LSTM alone [75]. Our approach involves adding a layer that incorporates 

static data as an input to the existing room occupancy prediction model. 

 

2.3 Model architecture 

2.3.1 Base model   

Our objective was to predict the intermediate-term occupancy rates of wards and rooms within the hospital 

to contribute to hospital operations planning. Among the six DL models we developed, four used a base model 

that incorporates BiLSTM as the fundamental structure. BiLSTM was chosen as the base model because it has 

demonstrated improved prediction performance compared with that of traditional LSTM models. BiLSTM models 

process input sequences bidirectionally, allowing for better information collection and representation.  

Moreover, we have enhanced the performance of our models by adding an attention layer to BiLSTM. The 

attention layer assigns higher weights to features that exert a significant impact on the prediction, allowing the 

model to focus on relevant information and gather necessary input features. This helps improve the accuracy of 

the prediction. Furthermore, the attention layer reduces the amount of information processed, resulting in 

improved computational efficiency. Ultimately, this contributes toward enhancing the overall performance of the 

model. 

The window length of the input sequence was divided into three different intervals, viz., 3, 7, and 30 days. 

The WBOR model was trained on sequences with a window length of 7 and 30 days, whereas the RBOR model 

was trained on sequences with a window length of 3 and 7 days. The first layer of our model consisted of BiLSTM, 

which was followed by the LeakyReLU activation function. LeakyReLU is a linear function that has a small 

gradient for negative input values, similar to ReLU. It helps the model converge faster. After applying this process 

once again, the AttentionWithContext layer was applied, which focuses on important components of input 

sequence data and transforms outputs obtained from the previous layer. After applying the activation function 

again, a dense layer with one neuron was added for generating the final output. The sigmoid function was used to 

limit the output values between 0 and 1. Finally, our model was compiled using the MSE loss function, Adam 

optimizer, and MAE metric. The parameters for each layer were selected based on accumulated experience 

through research. Figure 2 visually represents the above-described structure. 
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Figure 2. Base model architecture 

 

2.3.2 Combining dynamic and static data using DL model   

The accumulated bed data, which were collected on a time basis, were divided into dynamic and static data 

of the rooms, which were then inputted separately. To improve the performance of the BOR prediction model, we 

designed different DL architectures for the characteristics of these two types of data. 

We first used a base model based on BiLSTM to learn the time-series data and then focused the model’s 

attention using the dense layer to process fixed-size inputs. To prevent overfitting, we applied the dropout function 

to randomly deactivate neurons in two dense layers. The hidden states of the two networks were combined, and 

the resulting output was passed to a single layer, combining the time dynamic and static data. 

Finally, the hidden states of the two networks were combined, and the combined result was passed to a single 

layer to effectively integrate the dynamic and static data. This allowed us to utilize the information from both the 

dynamic and static data for BOR prediction. This architecture is illustrated in Figure 3. 
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Figure 3. Model architecture combining static and dynamic variables 

 

2.4 Evaluation 

We selected various metrics to evaluate the performance of time-series data predictions. Among them, MAE 

represents the absolute difference between the model’s predicted values and the actual BOR. We also considered 

MSE, which is sensitive to outliers. Moreover, to address the limitations of MSE and provide a penalty for large 

errors, we opted for RMSE. We also used the R2 score to measure the correlation between the predicted and actual 

values. 

MAE is a commonly used metric to evaluate the performance of time-series prediction models. MAE is 

intuitive and easy to calculate, making it widely used in practice. Because MAE uses absolute values, it is less 

sensitive to outliers in the occupancy rate values for specific dates. MAE is calculated using the following formula: 

𝑒𝑖 =  𝑦𝑖  −  𝑦𝑝𝑟𝑒𝑑𝑖 

MAE = 
1

𝑛
 ∑ |𝑒𝑖 |

𝑛
𝑖=1  

MSE is a metric that evaluates the magnitude of errors by squaring the differences between the predicted 

and actual values and then taking the average. It is calculated using the following formula: 

MSE = 
1

𝑛
 ∑ (|𝑒𝑖 |)

2𝑛
𝑖=1  

RMSE is used to address the limitations of MSE where the error scales as a square, providing a more 

intuitive understanding of the error magnitude between the predicted and actual values. It penalizes large errors, 

making it less sensitive to outliers. RMSE is calculated using the following formula: 

RMSE = √
1

𝑛
 ∑ (|𝑒𝑖 |)

2𝑛
𝑖=1  
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The R2 score is used to measure the explanatory potential of the prediction model, and it is calculated using 

the following formula: 

𝑅2𝑠𝑐𝑜𝑟𝑒 = 1 − 
𝑆𝑆𝑅

𝑆𝑆𝑇
  

𝑆𝑆𝑇 =  ∑(𝑦𝑖 − 𝑦̅)2

𝑛

𝑖=1

 

𝑆𝑆𝑅 =  ∑(𝑦𝑖 − 𝑦̂𝑖)
2

𝑛

𝑖=1

 

Here, SSR represents the sum of squared differences between the predicted and actual values, and SST 

represents the sum of squared differences between the actual values and the mean value of actual values.  

 

3. Results 

We compared the performance of six different DL time-series prediction models, which are termed Ward 7 

Days (W7D), Ward 30 Days (W30D), Room 3 Days (R3D), Room 7 Days (R7D), Room Static 3 Days (RS3D), 

and Room Static 7 Days (RS7D). They were evaluated using three time periods: train, validation, and test. 

The prediction performance of WBOR and RBOR was compared, which showed that they were more 

accurate at predicting WBOR, with MAE values of 0.06–0.07. The W7D model, which used 7 days of ward data 

to predict the next day’s ward occupancy, had an MAE of 0.057, an MSE of 0.007, and an RMSE of 0.082, 

showing high accuracy. The R2 score was also 0.582, which was approximately 0.124 higher than that (0.458) of 

the W30D model, indicating that the variables in that model explained occupancy reasonably well. 

We next compared the performance of the four models for RBOR prediction, among them, the RS7D model, 

which was trained on a 7-day time step by integrating static and dynamic data, showed the best performance. It 

achieved an MAE of 0.123, an MSE of 0.052, an RMSE of 0.226, and an R2 score of 0.320. In particular, the R2 

score outperformed the R3D model by 0.026. These data are summarized in Table 4. Regarding the WBOR 

prediction model, the model with a shorter training unit, W7D, demonstrated better performance. However, 

regarding the RBOR prediction model, the model with a longer training unit of 7 days, which incorporated detailed 

room-specific information, exhibited slightly higher performance than the model with a shorter 3-day training 

unit. The model with the added room-specific information still demonstrated superior performance overall. 

 

Table 4. MAE, MSE, RMSE, and R2 score of occupancy prediction models 

 Model MAE MSE RMSE R2 Score 

Ward  

 Ward 7 Days 0.057 0.007 0.082 0.582 

 Ward 30 Days 0.062 0.009 0.093 0.458 

Room  

 Room 3 Days 0.126 0.053 0.231 0.294 

 Room 7 Days 0.123 0.052 0.227 0.317 

 Room Static 3 Days 0.124 0.057 0.239 0.246 

 Room Static 7 Days  0.123 0.051 0.226 0.320 
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We visualized the predicted and actual occupancy for each model and investigated the occupancy trends 

since July 2022 on our test dataset. First, we selected a specific ward in W7D to demonstrate the change in 

WBOR over 2 months. The right panel of Figure 4 shows the WBOR change over 5 months from July 2022 in 

W30D. The blue line represents the actual occupancy value, and the red line represents the predicted occupancy 

value by the model. This provides an at-a-glance view of the overall predicted occupancy level for each month 

and allows hospital staff to observe trends to obtain a rough understanding of WBOR. 

 

 

Figure 4. Examples of predicted and actual BOR for the 2 months of July through August 2022 for 

W7D and the 5 months of July through November 2022 for W30D 

 

Figure 5 shows the graph of occupancy rate values for a randomized specific room, displaying the 

predicted and actual values for the four RBOR prediction models, with two graphs for each model. The left 

graph shows the occupancy rate changes over 5 months from July to November 2022, and the right graph shows 

the occupancy rate for the months of July and August, providing a detailed view of RBOR. By examining the 

trends of the predicted and actual values for the four models in this period for a specific room, we can observe 

that the models maintain a similar trend to the actual occupancy rate. 
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Figure 5. Example of predicted and actual BOR for the 2-month period between July and August 

2022 and the 5-month period from July to November.  
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4. Discussions 

The entire dataset of this study consisted of administrative data collected at AMC at an hourly interval for 

each ward from May 27, 2020, to November 21, 2022. To improve the hospital’s challenges, we developed a 

model to predict the occupancy rate of wards and rooms. Our aim was to contribute toward administrative and 

financial planning for bed management within the hospital. 

During the specified period, we compared the results of using DL models to predict the overall BOR for each 

ward and individual rooms. In the case of WBOR prediction, the MAE of the 7-day window model was 

approximately 0.057, demonstrating a remarkably close prediction to the occupancy compared to that of the 30-

day window model, with a difference of approximately 0.005. Furthermore, the MSE and RMSE were 0.007 and 

0.082, respectively, indicating high accuracy in the predictions. Moreover, the R2 score of 0.582 indicated that 

the model had better explanatory potential than the average. For the individual RBOR prediction, among the four 

models, the RS7D model performed the best, exhibiting an MAE of approximately 0.03, which was remarkably 

lower than that (0.123) of the other models. Moreover, the MSE and RMSE were significantly lower than those 

of the RBOR model, with a difference of 0.002 and 0.013, respectively. The R2 score of 0.320 indicated that it 

had higher explanatory potential than the RS3D model, being higher by 0.07. 

Finally, we visualized the predicted and actual values on a graph for a specific period and observed that each 

model captured the trend of the actual BOR quite well. Although the models were less accurate in predicting low 

occupancy periods, they followed the general trend closely. Overall, these findings demonstrate that our DL 

models effectively predicted BOR for both wards and individual rooms, with certain models demonstrating 

superior performance in different scenarios. 

4.1 Limitations 

Although the models in this study demonstrated good performance in following the trends of BOR and 

achieved good results, there are several limitations to this research. 

First, there are limitations in the data. Although we utilized administrative data and detailed room information 

available from the hospital to enable the models to capture occupancy trends, the relationship between the 

variables and the model’s explanatory potential showed room for improvement, as indicated by the R2 score. To 

achieve higher prediction accuracy, it would be beneficial to incorporate diverse data sources and real-time 

updated information. 

Second, there is variability in external factors. Hospital BORs are heavily influenced by external 

environmental factors. Sudden events such as environmental factors and outbreaks of infectious diseases such as 

COVID-19 can render accurate prediction of bed occupancy challenging [64, 76]. Furthermore, seasonal effects 

and accidents can increase the number of patients. Sufficient collection of long-term data on these external factors 

would be necessary, but such uncertainties can reduce the accuracy of predictions. 

Despite these limitations, our study has demonstrated a significant level of adherence to trends in predictions 

of individual ward and room occupancy. More detailed variables and a longer period of data accumulation would 

be required to predict the specific number of beds. 

 

5. Conclusion 

We have presented models that can predict the occupancy rates of wards and individual hospital rooms using 

artificial neural networks based on time-series data. The predicted results of these models demonstrated a high 

level of accuracy in capturing the future trends of BOR. In particular, we presented four RBOR models with 

structure and window changes to compare their performance and found that the RS7D model showed the best 

performance. Our results can be implemented as web application on hospital online dashboards, as depicted in 
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Figure 1 [68]. In fact, Johns Hopkins University has been applying these methods in their command center to 

monitor hospital capacity and achieve effectiveness in patient management planning [77]. 

Furthermore, predicting BORs supports patient admission and discharge planning, helping to alleviate 

overcrowding in emergency departments and reduce patient waiting times. Staff members can effectively schedule 

patient admissions and discharges and minimize waiting times by understanding the BOR, providing urgent 

treatment to emergency patients. Moreover, providing appropriate information to patients waiting in the 

emergency department can increase patient satisfaction and facilitate efficient transitions to hospital admission 

[78-79]. By applying artificial intelligence models that combine BOR prediction, which contributes toward 

reducing emergency department waiting times, with individual patient admission and discharge prediction, 

hospitals can achieve resource optimization and cost savings, resulting in improved patient satisfaction. 
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Conclusion 

We have developed AI models to improve hospital processes using EMR. We applied this research to predict and 

mitigate ED overcrowding and hospital bed occupancy, aiming to reduce hospital operating costs. Our models 

have demonstrated excellent performance and can contribute to optimizing hospital operations. This paper is 

divided into two parts, with each study conducted in the following order: 1) Predicting the likelihood of 

hospitalization within 24 hours for ED patients and estimating waiting times, 2) Evaluating the impact of 

unstructured text data in ED bed notes, and 3) Predicting individual ward and room BORs. 

In chapter 1, we developed models to predict the likelihood of hospitalization within 24 hours for ED patients and 

estimate waiting times, while also examining the impact of unstructured text data. These models were created to 

assist ED physicians in making rapid decisions and have demonstrated outstanding performance in predicting the 

likelihood of hospitalization within 24 hours and waiting times for patients in the ED. Furthermore, the utilization 

of unstructured text data has enhanced the model's performance, and through XAI, we confirmed the significance 

of unstructured text in ED bed notes. 

In chapter 2, we involved a study to predict the BORs of individual hospital wards and rooms. Various datasets 

were created by combining time-series data related to bed occupancy recorded at hourly intervals with static data 

for the rooms. Using these datasets, we developed two models for predicting WBORs and four models for 

predicting RBORs. These models exhibited high performance, with the model that combined both dynamic and 

static data and predicted on a weekly basis showing the best performance. This further emphasized the significance 

of static data. 

Research aimed at improving hospital processes should produce practical outcomes that can be utilized within the 

healthcare facility. Therefore, we have not only proposed models that significantly enhance the economic 

efficiency of hospital and ED operations but have also introduced a practical virtual web application for use. By 

applying AI models to hospital processes, healthcare professionals and administrators can streamline operations 

and efficiently allocate limited medical resources, leading to improvements in healthcare services and the potential 

for cost savings. 
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국문 요약 

 

전 세계적으로 헬스케어 시장 규모가 확대되고 의료 수준이 향상됨에 따라 의료 비용이 증가되고 

있습니다. 동시에 제한된 예산을 가진 국가와 개인의 의료 비용 부담은 증가하고 있습니다. 이 

문제를 해결하기 위해 의료비 낭비를 줄이고 제어하기 위한 다양한 접근 방법이 제안되고 

있습니다. 그 중에서도 병원 프로세스 개선은 환자에게 커다란 혜택을 주는 서비스와 치료를 

제공하는 중요한 방법 중 하나입니다. 특히 프로세스의 최적화는 병원과 환자 모두에게 

비효율성의 낭비를 줄이는 효과적인 방법 중 하나로 여겨집니다.  

최근 인공지능을 의료 분야에 적용하는 연구가 활발히 진행되고 있으며, 이를 통해 의료 자원의 

한정성을 극복하려는 노력이 늘어가고 있습니다. 다양한 방법 가운데 응급실 과밀화 완화 및 

병원의 병상 점유율을 예측하는 방법이 특히 주목받고 있습니다. 응급실의 과밀화는 사망률 상승, 

대기 시간 증가, 치료 실수, 진단 및 절차 지연과 같은 문제를 야기할 수 있습니다. 또한, 높은 

병상 점유율은 의료 직원의 건강에 부정적인 영향을 미치고 감염 위험도를 증가시킬 수 있습니다.  

본 연구에서는 전자의무기록(EMR)을 활용하여 병원 프로세스를 개선하는 인공지능 모델을 

개발했습니다. 우리 모델은 뛰어난 성능을 보이며 병원 운영 최적화에 기여할 수 있다는 것을 

입증했습니다. 본 논문은 두 부분으로 구성되며, 각 연구는 다음과 같습니다. 1) 응급실 경유 

환자의 24 시간 이내 입원 가능성 및 대기 시간 예측, 2) 응급실 병상 노트의 비구조적 텍스트 

데이터 영향 평가, 3) 개별 병동 및 병실 이용률 예측의 순서대로 진행되었습니다.  

1 장에서는 응급실 경유 환자의 24 시간 이내 입원 가능성과 예상 대기 시간을 예측하는 모델을 

만들고, 비정형 텍스트 데이터의 영향을 확인했습니다. 이 모델은 응급실 의사가 신속한 

의사결정을 지원하기 위해 개발되었으며, 뛰어난 성능으로 응급실 경유 환자의 24 시간 이내 

입원 가능성과 대기 시간을 예측합니다. 더불어, 비정형 텍스트 데이터의 활용을 통해 모델의 

성능을 향상시키고, XAI 를 통해 변수 영향력을 확인함으로써 응급실 병상 노트의 비정형 

텍스트가 중요한 역할을 한다는 사실을 입증했습니다. 

2장에서는 개별 병동 및 병실의 병상 점유율을 예측하는 연구가 진행되었습니다. 1시간 간격으로 

기록된 병상과 관련된 시계열 데이터와 병실의 정적 데이터를 결합하여 다양한 데이터셋을 

구성하였으며, 이를 활용하여 2 개의 병동 병상 이용률 예측 모델과 4 개의 병실 병상 이용률 

예측 모델을 개발하였습니다. 이러한 모델은 높은 정확성을 보이며, 특히 병실의 동적 및 정적 

데이터를 결합하여 일주일 간격으로 예측한 모델이 가장 우수한 결과를 보여주었습니다. 이를 

통해 정적 데이터의 중요성도 보여주었습니다. 

병원 프로세스 개선을 위한 연구는 실질적인 결과물을 병원에서 활용 가능하도록 생산해야 

합니다. 따라서 우리는 병원 및 응급실 운영의 경제적 효율성을 크게 향상시키는데 도움이 되는 

모델을 제안하기 위해 실질적으로 활용 가능한 가상 웹 애플리케이션도 제안했습니다. 인공지능 

모델을 병원 프로세스에 적용하면 의료진과 병원 관리자가 프로세스를 간소화하고 제한된 의료 

자원을 효율적으로 활용할 수 있으므로 의료 서비스의 향상과 함께 비용 절감 효과를 기대할 수 

있습니다. 

 

중심 단어: EMR, Emergency department, Artificial intelligence, Natural language 

processing, Time series forecasting, Combining static and dynamic variables 
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