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Abstract

Background and objective: As the global healthcare market expands and medical standards improve, healthcare
costs are increasing. At the same time, the financial burden of healthcare costs on both nations with limited budgets
and individuals is growing. To address this issue, various approaches to reducing and controlling healthcare costs
have been proposed. Among these approaches, hospital process improvement is considered a significant method
for providing important benefits to patients and treatment services. In particular, process optimization is regarded
as an effective way to reduce inefficiencies for both hospitals and patients. Recent research has been actively
applying artificial intelligence (Al) to the field of medicine, and efforts to overcome the constraints of medical
resources are increasing. Among various methods, there is particular attention to predicting emergency department
(ED) overcrowding and hospital bed occupancy rates (BORs). ED overcrowding can lead to issues such as
increased mortality rates, longer wait times, treatment errors, diagnostic and procedural delays, and more. High
BORs can also negatively affect the health of healthcare staff and increase the risk of infections. In this study, we
developed Al models that utilize electronic medical records (EMR) to improve hospital processes.

Method: In the first chapter, we focus on creating models to predict the likelihood of admission within 24 hours
for patients passing through the ED and forecasting expected wait times. This model was developed to support
quick decision-making by ED physicians and has shown outstanding performance in predicting the likelihood of
admission within 24 hours and wait times. Furthermore, by leveraging unstructured text data, we enhanced the
model's performance and proved the importance of unstructured text in ED notes using explainable artificial
intelligence (XAI) to confirm variable influences.

In the second chapter, we conducted research on predicting the BORs of individual wards and rooms. We
combined time-series data related to bed occupancy recorded at hourly intervals with static room data to create
various datasets. Using these datasets, we developed two models for predicting ward BORs and four models for
predicting room BORs. These models demonstrated high performance, with the model that combined dynamic
and static data and predicted BORs at weekly intervals performing the best. This emphasized the importance of
static data.

Results: In chapter 1, among several evaluated models, the extreme gradient boosting model (XGB) that
incorporated text data yielded the best performance. This model achieved an area under the receiver operating
characteristic curve (AUROC) score of 0.922 and an area under the precision-recall curve (AUPRC) score of
0.687. The mean absolute error (MAE) revealed a difference of approximately 3 hours. Through XAI, we
identified important variables affecting this classification and found that unstructured text data variables mainly
had a large impact.

In chapter 2, the ward-level prediction model with an MAE of 0.057, a mean squared error (MSE) of 0.007,
a root mean squared error (RMSE) of 0.082, and an R2 score of 0.582. Among the room-level prediction models,
the model that combined static data exhibited superior performance with an MAE of 0.123, an MSE of 0.051, an
RMSE of 0.226, and an R2 score of 0.320. Model results can be displayed on an electronic dashboard for easy
access via the web.

Conclusions: Research aimed at improving hospital processes must produce practical results that can be used in
healthcare institutions. Therefore, we have proposed a virtual web application that is practically applicable to
significantly enhance the economic efficiency of hospital and ED operations. Applying Al models to hospital
processes can simplify procedures and efficiently utilize limited medical resources. This not only enhances
medical services but also offers the potential for cost savings.

Key words: EMR, Emergency department, Artificial intelligence, Natural language processing, Time series
forecasting, Combining static and dynamic variables
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AUC
AUPRC
AUROC
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DNN
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LSTM
MAE
MAPE
ML
MLP
MSE
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R3D
R7D
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Abbreviation

artificial intelligence

Asan Medical Center

area under the curve

area under the precision-recall curve
area under the receiver operating characteristic
bidirectional long short-term memory
bed occupancy rates

document frequency

deep learning

deep neural network

document-term matrix

emergency department

electronic health record

electronic medical record

false positive rate

gradient boosting machine
institutional review board

intensive care unit

Korea Triage and Acuity Scale
logistic regression

long short-term memory

mean absolute error

mean absolute percentage error
machine learning

multi-layer perceptron

mean squared error

nonlinear autoregressive exogenous
naive bayes

National Emergency Department Information System
natural language processing
Organisation for Economic Co-operation and Development
polymerase chain reaction

room 3 days

room 7 days

room bed occupancy rates

random forest



RMSE
RNN
ROC
RS3D
RS7D
SHAP
TF-IDF
TPR
W30D
W7D
WBORs
XAl
XGB

root mean squared error

recurrent neural network

receiver operating characteristic
room static 3 days

room static 7 days

SHapley Additive exPlanations
term frequency-inverse document frequency
true positive rate

ward 30 days

ward 7 days

ward bed occupancy rates
eXplainable Artificial Intelligence
extreme gradient boosting
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Introduction

The global healthcare market has been expanding, leading to improvements in medical standards. However,
this progress has also resulted in an increase in healthcare costs. Simultaneously, both governments and individuals
have limited budgets for these expenses, leading to a growing burden of healthcare costs. To address this issue,
various approaches have been proposed to reduce and control healthcare cost wastage [1, 2]. Among these
approaches, the improvement of hospital processes stands out as one of the key methods that provide significant
benefits to patients by delivering essential services and treatments. Simplifying processes, in particular, is
considered an effective way to reduce inefficiencies and waste for both hospitals and patients [3].

Recent research has seen a surge in the application of artificial intelligence (AI) in the field of healthcare,
with a growing effort to overcome the limitations of medical resources. Among various approaches, methods for
alleviating emergency department (ED) overcrowding and predicting hospital bed occupancy rates (BORs) have
garnered particular attention [4-20]. ED overcrowding can lead to issues such as increased mortality rates, longer
wait times, treatment errors, diagnostic delays, and more [21-23]. Additionally, high BORs can have adverse
effects on the health of medical staff and increase the risk of infections [24-25]. The application of Al models to
hospital processes can streamline these processes, enabling medical professionals and hospital administrators to
efficiently utilize limited medical resources. This, in turn, holds the promise of improving healthcare services and
reducing costs.

Studies aimed at improving hospital processes should yield practical, real-world applications within the
healthcare setting. Therefore, this research proposes the following approach: First, the development of a model
for predicting the likelihood of hospitalization within 24 hours and waiting times for patients visiting the ED. This
model aims to enable ED physicians to rapidly and accurately assess a patient's likelihood of hospitalization,
contributing to the alleviation of ED overcrowding. Furthermore, by utilizing bed occupancy data recorded at
hourly intervals, predictions for the occupancy rates of individual wards and rooms can be made. This enables the
establishment of medium and long-term bed resource management plans.

In the first chapter, we predict the likelihood of hospitalization within 24 hours and estimate waiting times
for patients who pass through the ED. We refine electronic medical record (EMR) data derived from admission
decision forms prescribed to patients passing through the ED, and build two versions of a Gradient Boosting
Machine (GBM). The first model serves as a classification model for predicting hospitalization likelihood, while
the second model offers a regression prediction model for estimated waiting times. Subsequently, we assess the
influence of relevant variables through unstructured text data in the ED bed notes. By employing Natural
Language Processing (NLP) to process unstructured text data recorded in the bed notes, we conduct additional
training to compare its performance with the existing models. Furthermore, we utilize eXplainable Artificial
Intelligence (XAI) to determine the impact of unstructured text data on the models.

In the second chapter, we predict the BORs of individual wards and rooms. We refine the bed occupancy
time-series data recorded at one-hour intervals and group them into separate datasets corresponding to each ward
and room. To predict the BORs of each ward and room, we build Deep Learning (DL) models. These DL-based
models are trained on one-week and one-month BORs for each ward to predict the expected BORs. We employ
various techniques, such as predicting short-term occupancy rates for individual rooms and combining them with
the static features of the rooms. We compare the performance of six DL-based models and select the final model
based on their performance.

The first study was published as " Prediction of hospitalization and waiting time within 24 hours of
emergency department patients with unstructured text data" in Health Care Management Science on Nov, 2023.



Chapter 1.

Prediction of hospitalization and waiting time within 24 hours of emergency department patients with
unstructured text data

1. Introduction

In addition to the ED serving as a key central access point for cases of critical emergencies, it functions as a
primary health care system for patients who present with non-critical, concerning symptoms without an alternative
option for outpatient care [26]. The overcrowding of EDs occurs as a result of the lack of hospital beds, distorted
nurse-to-patient ratios, diagnostic errors, and ambulance diversions to the EDs, as well as delays in diagnostic and
procedural practices [27-29]. ED overcrowding has negative consequences, including increased mortality rates,
longer ED lengths of stay, treatment errors, lower rates of patient satisfaction, and challenges related to ambulance
availability [21-23]. Moreover, as the medical industry is service-oriented, patient dissatisfaction is correlated
with a decline in ED consultations and an unfavorable perception of hospitals. Consequently, the operation of EDs
may be additionally adversely affected, thus impacting the hospital’s financial management [4].

Under the governance of the Ministry of Health and Welfare of South Korea, there are numerous operational
medical institutions and health systems. Furthermore, the emergency medical system in Korea functions through
the collaboration of emergency medical technicians, centers, institutions, and rooms. The emergency medical
response system comprises accident scene management, transportation, stages, and communication systems.
Among these stages, the hospital care stage occurs at the level of the emergency medical center [30].

The healthcare system in South Korea aims to qualitatively improve and expand emergency medical services
through the “Comprehensive Plan for Emergency Medical System Improvement” policy initiative. The
government has provided policy support to achieve this goal, and the decisions arising from this initiative have
considerably influenced EDs nationally. In South Korea, the “24-hour Emergency Department Restriction Act”
was enacted in December 2017 for upper-level general hospitals to address the need for the quick examination
and diagnosis of critically ill emergency department patients, as well as the resolution of overcrowding in the ED.
According to this law, the percentage of patients with an ED length of stay exceeding 24 hours should be
maintained within 5% annually.

Additionally, in 2004, South Korea introduced the National Emergency Department Information System
(NEDIS) to computerize and manage the medical records of patients presenting at emergency medical facilities.
This system enables real-time tracking and sharing of the emergency conditions and treatment details of patients.
In 2017, by utilizing the medical records collected by NEDIS, treatment delays for critically ill patients,
overcrowding in EDs, and lack of diagnostic reliability were nationally addressed by assessing this data using the
Korea Triage and Acuity Scale (KTAS). KTAS is a comprehensive patient classification system that spans from
the pre-hospitalization to in-hospital stages, determining patient priorities and urgency levels. These efforts have
led to the emergence of specialized hospitals that evaluate various medical facilities, healthcare systems, and
medical data. These hospitals serve as the foundation for research and technological development to enhance
South Korea’s emergency medical system [31].

In this study, our motivations included contributing to the emergency medical system and alleviating
overcrowding in the ED, thus improving the ED environment. To act on these motivations, we implemented the
following steps: First, we developed models that could hypothetically predict the likelihood of whether ED
patients would require hospital admission and estimate the waiting time [32]. This was theorized to enable support
for the decision-making process of ED physicians, allowing for the minimization of the proportion of patients
with an ED length of stay exceeding 24 hours. Second, we compared the performance of a training model with
NLP generated variables, from unstructured text data to models without it. The free handwritten text notes of ED
doctors and nurses are a mixture of Korean, English, numerals, and symbols, conveying a substantial amount of
information [33]. Consequently, the rapid reproducibility and easy maintenance of hospitalization prediction
models emphasized the importance of text processing and comparing the performance of models. Finally, we
utilized XAI to distinguish ineligibility factors, explaining why the patient could not be admitted. Thus, this



allowed for identifying departments with waiting time delays and minimizing these waiting times by improving
patient flow.

Therefore, to recapitulate, we aimed to develop a practical and cost-effective tool to assist ED physicians in
making clinical decisions using EMR. Recently, Johns Hopkins Hospital introduced a command center that
utilizes an electronic dashboard to facilitate systematic communication with hospital staff [34]. Figure 1
represents a visualization of a virtual dashboard to potentially be applied in a hospital, integrating the results of
this study. This visualization dashboard is designed to be practical for ED physicians. Displaying real-time
information to medical staff and informing patients about the estimated waiting time on the screen reduces the
number of ED consultations and lessens waiting time in the operating room. Furthermore, forbearance is improved
and anxiety is reduced in patients. Providing patients with delayed information diminishes hospital revenue losses
by preventing them from leaving the hospital abruptly [35-36].

il

In the Related Works section below, an overview of the existing literature addressing overcrowding in EDs
has been performed. The Methods section covers the datasets used, pre-processing steps, training and evaluation
methods, explanations of Al model algorithms, and XAI techniques. In the Results section, the findings and
performance metrics of this study have been presented. The Discussion section provides an interpretation of the
results of this study, highlights its limitations, and suggests scope for improvement. Finally, the Conclusion section
provides an overall summary of this study, in addition to a detailed explanation of its clinical implications.

Expected waiting time
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Figure 1. A synthesis of the findings of this study: A virtual visualization dashboard depicting the
prediction of the likelihood of hospitalization and estimated waiting times for patients admitted to the
ED. A patient’s likelihood of hospitalization is indicated by blue (High), yellow (Medium), and red
(Low) in order of probability. Displayed in the table on the right, in order of importance from the top,
are the causes of patients not hospitalized within 24 hours of presenting to the ED (Please note that the
names of the patients provided are hypothetical, as only de-identified data were extracted)



2. Related works

Patients often perceive the waiting time for admission to be longer than the actual elapsed time, and reducing
this perceived waiting time has been shown to increase patient satisfaction. Various studies have suggested several
methods to reduce the perceived waiting time of patients. These potential strategies include improving
interpersonal interactions, providing patients with information and guidance on appropriate waiting times, and
considering changes in staffing levels [36-38]. Physicians need to counsel patients regarding lengthy waiting times
until admission or when hospital admission is not possible. Large data and predictive analytics from EDs improve
the efficiency of emergency medical services and enhance the treatment of patients. This results in personalizing
patient care, improved efficiency, and limited wasteful spending by providing practical guidance without investing
in extra resources [40]. To do this, we require efficient and cost-effective decision-making tools to help ED
physicians [41].

One technique to alleviate overcrowding is to admit the appropriate ED patients to the hospital promptly.
Numerous studies have been conducted on the admission prediction for mitigating ED overcrowding. A high-
performance logistic regression (LR) admission prediction model incorporating demographics, management, and
clinical data can be routinely obtained in a hospital, informing patients about the likelihood of their admission [5].
One model uses patient information commonly acquired during ambulance transportation [6]. Based on the
baseline characteristics provided on presenting at an ED, yet another predictive model divides a patient’s
electronic health record (EHR) dataset regarding statistics on prior medical use, past medical histories, insurance
companies, and employment agencies into three categories (triage, history, full) [7]. The optimal waiting time for
patients with low acuity grades using historical patient data, such as a machine learning (ML) tree-based predictive
model, has been predicted [4]. Moreover, a model exists for predicting the expected waiting time from
classification to consultation; therefore, predictive models of the median and 95th percentile waiting times of
patients based on queuing theory have been studied [8].

The findings of some studies have revealed better performance of hospital admission prediction models by
including text data. A study was conducted to train a deep neural network (DNN) using unstructured text data
from EHR datasets of pediatric emergency patients. The model from this study showed that the DNN achieved a
high-performance score of 0.892, which was 2% higher in the area under the curve (AUC) than that of the model
not including text data [9]. Additionally, LR trained by NLP on the reason for a patient’s visit demonstrated a 2%
higher performance score at 0.846 compared to when text data was not included [10].

While acknowledging the considerable value of previous studies on mitigating overcrowding in EDs,
limitations remain in the practical implementation of these studies. This is primarily due to a lack of intuitiveness
in supporting ED physicians and effectively applying these models in real ED scenarios for patient communication
[4-10]. Therefore, we have improved on the existing literature by developing our approach based on these previous
studies.

3. Methods
3.1 Materials
3.1.1 Study design and setting

This retrospective, single-center, cohort study included a total of 271,143 patients who consulted at the
hospital’s ED between June 2018 and May 2022. Data was collected from 192,240 patients > 19-years-old. Of
these, 49,266 patients required hospitalization. The exclusion of 142,974 patients from the dataset was due to the
difficulty in distinguishing between patients with prolonged waiting times and those who were transferred back
to the ED based on the discretion of the physician. Patients who were transferred back to the ED had to wait for
hospitalization and frequently experienced a total waiting time exceeding 24 hours, which made them ineligible
for our study. Although this exclusion could have introduced bias to our results, the decision was made because it
was challenging to distinguish the reasons for transfer in the dataset. This is depicted in Figure 2.
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Visiting patients

in the ED of AMC
June 2018 — May 2022

(n=271,143)

Age <19
(n =78,903)

Age =219
(n = 192,240)

Non-Hospitalized
patients
y (n = 142,974)

Hospitalized patients
(n = 49,266)

Figure 2. The number of patients who consulted at the ED between
June 2018 and May 2022, requiring hospitalization for further
care, is depicted. Patients < 19 years old and those who did not
require hospitalization were excluded from the final data analyses

This study used ethically pre-approved data and underwent Asan Medical Center (AMC) Institutional Review
Board (IRB) review (IRB 2021-0321), which was conducted by the Declaration of Helsinki (2008). De-identified
data were extracted from the “data” and “clinical research data” warehouses.

3.1.2 The process from ED registration to inpatient hospitalization

As per the government guidelines, the ED length of stay should be <24 hours after arrival at our hospital in
Seoul, South Korea. Upon arrival at the ED, patients first undergo registration and then proceed to the hospital
office to obtain the ED treatment application form. Thereafter, they move to the triage area to undergo a
preliminary medical examination and are subsequently assigned to a treatment room based on the severity of their
condition. After the patients have submitted their medical receipts to the ED nurses in the treatment area, the ED
physicians will review the recommended treatment. Depending on the severity of the condition or the
appropriateness of hospitalization, patients are discharged from the ED. If the patient requires hospitalization for
treatment, a hospitalization decision form is prepared. Subsequently, the patients are admitted on the designated
admission date stated on the hospitalization decision form. The input variables we use for prediction are based on
this setup, allowing immediate predictions afterward. The waiting time in the ED refers to the period from ED
registration until receipt of the hospitalization decision form, with a discharge from the ED. The models we have
developed predict the likelihood of hospitalization and estimate the waiting time, with a borderline within 24
hours of the patients presenting at the ED. Depending on the likelihood of admission, if the expected waiting time
exceeds 24 hours, the patient may be advised to be transferred or discharged. This process is shown in Figure 3.
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Figure 3. This model of prediction flow is based on the process from ED registration to hospitalization.
The red line represents patients who have been discharged from the ED, while the blue line represents
hospitalized patients. Depending on the discretion of the ED physicians, decisions regarding discharge
can be made in “Triage” and “Treatment.” The ED length of stay is defined as the waiting time from
the arrival of the patients at the ED to when they are discharged from the ED. According to the
prediction of the ML model, a patient who has received a hospitalization decision form will be classified
as “discharged” if the total waiting time exceeds 24 hours or classified as “hospitalized” if it does not

3.1.3 Description of independent variables

Demographic, administrative, and clinical variables were collected from the information provided during the
process of the ED visit registration to the hospitalization decision form. A detailed presentation of the variables
generated for each category of data in Table 1 is depicted.

Table 1. Independent variables description

Category Data source Description
Non-Hospitalized patients A patient transferred to another hospital after visiting the ED
When ED registration Year, Month, Date, Day, Time, Hour, and Minute
Hospitalization decision form Admission order date, Expected date of admission, Scheduled
surgery date, Diagnosis code in hospital,
Reason for exceeded schedule,
Tuberculosis ward admission possible, Organ transplant,
Administrative CP application, Isolation, Single room availability,

Withholding the hospitalization decision form,

Suspension of patient treatment,

Single room availability at the time of admission reservation,
Exceeded schedule,

The time from the moment patients visit the ED to a decision for
admission

In emergency department

Pregnant, Severe emergency disease,
Admission decision check, Delay in treatment,
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Delay in treatment decision, Waiting for admission, Inspection,
Reading, Follow-up, Cross-consultation, Hospitalization decision,
Check-out,

Cardio-pulmonary resuscitation (CPR),

Do not resuscitate (DNR), Intensive care unit (ICU),

Multiple traumas, Emergency surgery, Helicopter transport; Code
of ED area,

National emergency department information system (NEDIS),
Classification for admission through ED,

Purpose of treatment;

Patient number and type, Doctor's number,

Admission officer's doctor number;

ED sickbed information note

Information that can be obtained in the ED sickbed being a brief
note in Korean. The word was made into a variable according to
the frequency, and the description of each variable is as follows:
Unknown meaning missing value; Acute care unit (ACU); Acute
stroke unit (ASU); Critical care unit (CCU); Neurological
intensive care unit (NRICU);

General ward meaning the rest of the wards except for special
departments such as ICU/ED;

Respiratory syncytial (RS); Emergency; Level; Possible; Multi-
person rooms; Assignment; Preemptive; Person room; Waiting for
hospitalization outside; Admission postpone; Severe; Confirm;

Demographic Patient information

Hospital registration number, Gender, Birth, and Age

Medical department data

Clinical

Department code when making a reservation for admission
(dept0), Department (deptl), Main department code in ED
(dept2), Department code of admission (dept3), Department code
in ED (dept4), Department code (dept5), Admission department
code on the hospitalization decision form (dept6)

Hospitalization decision form

Isolation type: Unknown, Air, Protect, Droplet, Contact, and
Blood

3.2 Data pre-processing

3.2.1 Pre-processing of structured data

Table 2 describes and lists the main structured variables of this study. Duplicate or “Admission” tagged
features were removed because they were classified as future variables and were unnecessary for this study. To
calculate the waiting time, we created a variable that subtracted the ED visit time from the admission reservation
time and converted it into hourly units. Text-type features were converted into integers. For example, ‘4.0
indicated the ED location code was converted to the number “4.” Missing value transformations were determined
based on the data type. Variables were populated with “Unknown,” “U,” or “0.” The target value, which is the
time spent in the ED, was expressed as a decimal by converting minutes into hours.

Table 2. Description of the major variables that affect the outcome among all the variables

Type Variable Name Description
Patient Information
Patient Number Number num Randomly
Age Number age 19, 20, ...103, 109
Gender 2 categories gender Male, Female

Kinds of

Department code 7 categories

deptO, deptl, dept2,
dept3, dept4, dept5,
dept6

GI3, ONC®, OBY¢,
CVY NRe ...




Information in ED

1, 2, 3, 4(Severe level),
5, 7(Waiting for
ED Location Code 17 categories ed_loc_code hospitalization level),
6(Mild level), C(Cancer),
D(Delivery), R(CPR) ...
EoDcela\:iEo?ICSode 7 categories ed_nedis_code 1.0,20,...6.0,8.0
Sngere Emergency 2 categories severe No(N), Yes(Y)

isease
gngslitg::zcaggcnk 2 categories adm_check No(0), Yes(1)
Waiting for Admission 2 categories waiting No(0), Yes(1)

. R . . 11.0 (Via general ward),
Via ED Classification 15 categories via_ed_code 28.0 (Via intensive care unit) ...
Hospitalization
Decision Form
Admission 577 categories adm dr num D990010, D130578,
Physician Number - = D070498 ...

Admission Order Date 883 categories adm_day 20180614, ... 20201101
Diagnosis Code in . U(Unknown),

Hospital 2811 categories | dx_code D003017, D012602 ...
Organ Transplant Check | 3 categories organ No(0), Yes(1), Unknown(U)
Isolation Check 3 categories iSO No(0), Yes(1), Unknown(U)
ED Admission Time

ED Admission Year 3 categories ed y 2018, 2019, 2020

ED Admission Month 12 categories ed m 01,02,03,...10,11, 12

ED Admission Date 31 categories ed d 01, 02,03, ... 29, 30,31

ED Admission Time 1440 categories | ed_time 0000, 0001, ... 2358, 2359
ED Admission Hour 24 categories ed_hour 00,01,02,...21,22,23

ED Admission Day 7 categories ed_days Mon, Tue, Wed, ... Sat, Sun
Admission 72 categories adm_reserv_t 10,20, ...

Reservation Time - - 98.0,118.0 (hour)

6L gastroenterology division
b -
ONC: oncology-hematology division
OBY: obstetrics and gynecology
d . S
CV: cardiology division

°NR: neurology

3.2.2 Pre-processing of unstructured text data

Variables with unstructured text included “Isolation types” and “ED Sickbed Information Notes.” Each text
variable was pre-processed through normalization, tokenization, word frequency counting, term frequency-
inverse document frequency (TF-IDF), and missing value filling.

First, after filling in the missing values with “Unknown,” unnecessary words, such as special characters and
numbers, were removed. Additionally, after consolidation, all letters were changed to lowercase [42].

Second, for tokenization, the length was cropped to 2—5 words for word extraction. Korean words that were
not automatically tokenized were manually spaced [42]. Table 3 shows the original and modified text through
normalization and tokenization.



Table 3. Pre-processing results of unstructured text data. In case Korean and English are mixed in the text,
the Korean meaning is written in parentheses for clarity

Raw data | Normalization | Tokenization
Isolation type
% F2|(contact precaution) HEFC, &30
H| 2= 2| (droplet precaution) H| 2 Z=9| El=lESe]
gEFol, HUR gEFol, H2Ro SEESIVPIES
S 7|(air), H|Z(droplet), HEF2 27|, HY, M&EZ9 7| HY FHEZ=o
ED sickbed information note

Ol Al L=
Oy ot oo eants gw CHOIATLS
gw,Lv4(Ct 2l & (shared room)),rS(N) gw, lv, CFRI e, rs gwlv BRI s
CSICU/E(pre) PS prof i p. prof cicups prof
GW) VRE ow, El fa gw Effa
GW 10-> Ef(other)FA

Third, the tokenized words were converted into bag-of-words-encoded vectors. In the “Isolation type”
column, only words with a document frequency (DF) of > 10 and “Sickbed Information Notes” of > 500 were
extracted. The df number criterion was set based on the interval in which the frequency of tokens generated for
each column sharply differed.

Fourth, we applied TF-IDF, which calculates the importance of words in a document-term matrix (DTM)
[42]. This technique assigns weights to specific words in a DTM by applying a specific formula to the word and
document frequency. It is simple to use and characteristically performs better in ML models.

The TF-IDF score created a DTM. Thereafter, the value was obtained by multiplying TF, which represented
the relative frequency of term t in document d, and IDF measured the importance of the term t in the corpus. This
can be expressed in the equation as follows:

Number of occurrences of termt in document d

TF(t, d) =

Total number of terms in the document d

Total number of documents in the corpus

IDF(t, D) =

Number of documents with term t in them

TF—IDF = TF(t d) x IDF(t D)

Finally, the TF-IDF scores for each selected word were transformed into a two-dimensional array. Rows
processed as missing values at this time because they did not contain words were replaced with 0.0. The variables
generated through this process were assigned new names, as indicated in Table 4.



Table 4. Description of variables created by TF-IDF

Type Variable Name Description
Isolation tvpe 6 catecories 10, 11, 12 Unknown, Air, Protect,
yp & i3, 14, 15 Droplet, Contact, Blood
ACU, Acute care un1t,'
Acute stroke unit,
ASU, o .
Critical care unit,
CCU,
Emergency, General ward,
EM, GW, .
National emergency
NRICU, . .
department information system,
Bed Inf ti 15 cat i RS, Respirat tial
ed Information categories POSSIBLE, espiratory syncytial,

SHARED ROOM,
ASSIG, FIRST,
ADD BEFORE,
ADD WAIT,
SEVERE, CON

Possible,

Multiple rooms,
Assignable, Preemptive,
Admission postpone,
Waiting for hospitalization,
Severe, Confirm

3.2.3 Target variable

The “target value” of the waiting time prediction model is a numerical value denoting the waiting time. For
the classification model regarding the likelihood of hospitalization in ED, the target value was standardized as 24
when it exceeded 24 hours for training. If the actual waiting time was < 24 hours, it was converted to the number

“0”. If it was > 24 hours, it was converted to the number “1”. The result value was set in binary format.

Finally, a total of 82 variables were used, including 61 structured data variables and 21 variables generated

by NLP from unstructured text data.

Figure 4 depicts the overall flow of the prediction method and usage of XAl in this study.

S —
Raw data
S—

Data cleaning

Remove duplicate values

+

Remove future values

'

Filling missing values

S ——
Structure +
uUnstructured text data

Text preprocessing

Normalization
Tokenization

CountVectorizer(min_df=500)

TF-IDF

Handling missing values

5-fold cross-validation

Classification Models

Gradient boosting

Multi-layer
perceptron

Random
forest

Logistic
regression
Naive
Bayse

Regression Models

Gradient boosting
Linear regression
Multi-layer perceptron

Random forest

Calibration curve &

Explanation

Discharge probability level

SHAP feature influence

by each Low, Middle, High

Best :

Performance

Classification Models
AUROC AUPRC

Regression Models

MAE

Figure 4. The overall flow of the prediction method and XAI usage in this study are depicted
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3.3 Admission prediction ML-based models

In this study, two ML approaches were applied based on the research objectives. First, the ML classification
model was used to predict the likelihood of hospitalization for patients waiting in the ED. Second, an ML
regression model was used to predict the waiting time until hospitalization.

We evaluated five different ML models to predict the likelihood of hospitalization. These included the
Gradient Boosting Machine (GBM) [43] and Extreme Gradient Boosting (XGB) [44] models. Typically, XGB
aims to improve models by sequentially and iteratively training multiple decision trees on training data. It
minimizes prediction errors and avoids overfitting through regularization techniques, ultimately improving
generalization performance. Random Forest (RF) [45] is an ensemble learning algorithm based on decision trees,
where multiple decision trees are combined to create a single model. During the construction of decision trees,
features and data are randomly selected. Additionally, the prediction results are aggregated to prevent overfitting
and achieve stable predictions. Multi-layer perceptron (MLP) [46] is a neural network architecture consisting of
multiple hidden layers. MLP is capable of modeling non-linear correlations, making it suitable for addressing
complex problems. The weight updates using backpropagation enable learning from diverse inputs and outputs.
LR is a statistical technique [47] that models the correlation between inputs and outputs. It involves taking a linear
combination of input features and weights, passing it through a logistic function to generate probability values
between 0 and 1, and using a threshold to predict classes. LR is simple and interpretable; however, it is limited in
modeling non-linear correlations among input features. Naive Bayes (NB) is a supervised learning algorithm
based on the principles of Bayes’ theorem. This model assumes that input variables are independent and directly
impact only one output variable, making it computationally efficient and quick to train [48]. Nonetheless, in many
real-world scenarios, it may be unrealistic to assume such independence among input variables. This limitation
can restrict the practical applicability of the model.

We used XGB, RF, MLP, and LR [49] among the ensemble techniques to determine the waiting time until
hospitalization. Moreover, among the five classification models described earlier, XGB, RF, and MLP can be used
for regression tasks. Thus, the same models were used to streamline the training process. Additionally, LR is a
method used to model correlations between two or more variables, assuming the correlations between the variables
are linear. Therefore, changes in one variable are proportionally related to changes in other variables. LR creates
a prediction line based on these suppositions, making it simple and easy to interpret. However, with real-world
data, complex non-linear correlations often exist, making it difficult to model.

The performance of these models was compared by training them on both structured and unstructured text
data. Finally, we used XGB which resulted in it being the model with the best performance. For the
hyperparameters, a grid search was used for fine-tuning.

3.4 Cross-validation

Between June 2018 and May 2022, a total of 49,266 patients who consulted at the hospital’s ED in Seoul,
South Korea, required hospitalization. Of these, 44,753 patients (90.8%) were admitted within 24 hours, while the
remaining 4,513 patients (9.2%) were not admitted within 24 hours. Despite the imbalance in the data classes, our
goal was to use 5-fold cross-validation without shuffling the data to assess the predictive performance of the
admission prediction model on new patient data in the future. Data bias is conventionally reduced by 5-fold cross-
validation in ML model evaluation, thus improving accuracy [50]. Five cross-validations were performed by
dividing 44,753 patient data into five equal parts, with 80% of the data used for training and 20% used for
validation.

3.4.1 Data transformation

We transformed the data at every fold validation for model training. The data were divided into categorical
and numeric types based on variables. For the categorical type, the target encoder had to be applied. This encoding
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method is characterized by expressing the correlations between similar categories. However, this correlation is
limited to only categories and targets. The advantage of this method is that it facilitates fast learning without
compromising on the quantity of data; consequently, we implemented it in our model. To achieve balance, the
mean was considered by setting the smoothing to 1.0 and minimum samples to 1. Furthermore, any columns with
zero variance had to be dropped. For numeric types, a MinMaxScaler was used. This ensured that the value of
each variable adhered to a specific range or rule; here, the data was converted to a range between 0 and 1.

3.4.2 Performance

The predictive performance of the ED hospitalization model was evaluated using the area under the receiver
operating characteristic (AUROC) and the area under the precision-recall curve (AUPRC). The receiver operating
characteristic (ROC) curve was used to indicate the performance of a classification model when determining a
patient’s hospitalization status that was represented in binary form as positive or negative. The X-axis represented
the false positive rate (FPR), and the Y-axis represented the true positive rate (TPR) with a proportional correlation
between the two. Measuring the AUROC was used to evaluate performance. The closer this value was to 1, the
better the model and the higher the likelihood of hospitalization. The AUPRC was indicated by setting the X-axis
to recall and the Y-axis to precision. These two values are inversely proportional to each other and form a
downward curve towards the right. Both precision and recall are ideal models when close to 1; therefore, the closer
the value of AUPRC is to 1, the better the model.

The performance of the predictive waiting time model for patients consulting at the ED was evaluated using
the mean absolute error (MAE). MAE is the average of the absolute sum of the differences between the predicted
waiting time by the regression model and the actual time. The error size was accordingly reflected. Because MAE
is a highly sensitive indicator, the difference between the predicted ED waiting times by the model can be
recognized immediately. In the given formula, e; represented the difference between the actual value, y;, and the
predicted value, ypredi. MAE was calculated as the average of the absolute differences divided by the total number
of data points:

1
MAE = n Yi=1lec| (1)

%k
€i=y; - ypred;

3.5 Calibration curve and SHapley Additive exPlanations

We utilized a calibration curve to identify the factors that impacted the determination of discharged patients
in general ED scenarios. Additionally, we employed SHapley Additive exPlanations (SHAP) for XAl

The calibration curve revealed the realistic predictive correlation between the predicted and actual probability
of admission likelihood. Thus, if the patient’s admission probability was 80%, it indicated that the actual admission
probability was also 80%. We used the calibration curve of XGB with text data that had the highest performance
among the models for predicting hospitalization. The X-axis of the calibration plot of this model was divided by
0.1 units. After calculating each section’s event rate, the predicted and actual probabilities were displayed as a bar
plot. Moreover, the proportion of non-hospitalized patients was similarly calculated and divided into three
categories: Low (0-0.5), Medium (0.6-0.8), and High (0.9—1.0). The criteria for dividing the levels were based
on the proportion of patients who were not admitted within 24 hours at each interval. The classes Low, Middle,
and High comprised 1017, 173, and 245 patients, respectively.

SHAP is a technique that transparently reveals the internal functioning of a complex Al model. A Shapley
value is calculated by measuring the average change in the presence or absence of a feature when combining
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multiple features, assisting in distinguishing the importance of each individual feature. Additionally, the
importance of each feature can be calculated using the feature importance function in tree-based or boosting
algorithms. However, this technique, used to identify variables, affects the prediction through permutation. Due
to the estimation limit imposed by the degree of error, the importance of variables may vary each time the
algorithm is executed, potentially leading to the oversight of dependencies between features. Therefore, models
with correlations between features should avoid using the feature importance function. The Shapley value utilizes
the concept of independence between variables as a key idea. It is used to calculate the impact of variables by
comparing the results obtained when all combinations of variables related to a specific variable are input. The
selection is made based on the effect on the target variable. Moreover, it can explain the negative and positive
correlations between the value of the result and the variable. The technique should be selected based on the
viewpoint. In our study, we chose to use SHAP because there was a high likelihood of a dependency between the
features [51].

Each level was applied to the SHAP summary plot and plots bar. The SHAP summary plot can determine the
magnitude of a feature based on its Shapley value. The plots bar calculates the global importance by averaging
the absolute values of each Shapley value. Consequently, it is possible to grasp the detailed influence of the
variable on the model. Among the Shapley values that were generated using the plots bar, the top eight values
were depicted using radar plots.

4. Results
4.1 Performance of the ML-based predictive models

Table 5 and Table 6 show the AUROC and AUPRC metrics for each fold of a 5-fold cross-validation of ML
models that have been trained to predict the likelihood of hospitalization within 24 hours after arrival at the ED.
Comparing the two models, the models trained with unstructured text data outperformed those without
unstructured text data by 6-10% and 20-28% on AUROC and AUPRC, respectively. The average values of
AUROC and AUPRC for XGB, including text data, were the highest compared to other classification models. The
AUROC and AUPRC were 0.922 (SD 0.030) and 0.687 (SD 0.085), respectively. By presenting the mean AUROC
and AUPRC of each classification model using text data in Figure 5 and Figure 6, XGB evidently exhibited the
best performance.

Table 5. Evaluation of 5-fold cross-validation for each ML model using AUROC and AUPRC

RF MLP LR NB XGB

AUROC | AUPRC | AUROC | AUPRC | AUROC | AUPRC | AUROC | AUPRC | AUROC | AUPRC
Fold 1 0.845 0.323 0.864 0.286 0.846 0.225 0.722 0.241 0.228 0.412
Fold 2 0.875 0.395 0.789 0.259 0.785 0.228 0.740 0.201 0.227 0.437
Fold 3 0.862 0.587 0.812 0.482 0.824 0.447 0.779 0.383 0.875 0.604
Fold4 | 0.824 0.371 0.792 0.335 0.752 0.206 0.717 0.188 0.837 0.400
Fold 5 0.756 0472 0.634 0.335 0.755 0.363 0.720 0.362 0.822 0.542
Mean | 0.832 0.430 0.788 0.339 0.788 0.294 0.736 0275 0.800 0.480

(SD) | (0.042) | (0.092) | (0.058) | (0.077) | (0.035 | (0.095) | (0.023) | (0.082) | (0.025) | (0.080)

Table 6. Evaluation of 5-fold cross-validation for each ML-model with NLP using AUROC and AUPRC

RF with NLP MLP with NLP LR with NLP NB with NLP XGB with NLP
AUROC | AUPRC | AUROC | AUPRC | AUROC | AUPRC | AUROC | AUPRC | AUROC | AUPRC
Fold 1 0.891 0.525 0.896 0.474 0.890 0.436 0.759 0.360 0.922 0.577
Fold 2 0.948 0.703 0.936 0.701 0.920 0.609 0.892 0.630 0.953 0.735
Fold 3 0.946 0.780 0.930 0.726 0.932 0.723 0.913 0.759 0.955 0.822
Fold4 | 0.897 0.601 0.893 0.575 0.856 0.512 0.799 0411 0.908 0.634
Fold 5 0.833 0.612 0.835 0.585 0.826 0.558 0.783 0.511 0.875 0.667
Mean | 0.902 0.644 0.898 0.612 0.885 0.568 0.829 0.534 0.922 0.687
(SD) | (0.042) | (0.088) | (0.036) | (0.092) | (0.039) | (0.096) | (0.061) | (0.145) | (0.030) | (0.085)
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Figure 5, 6. AUROC and AUPRC curves of hospital admission prediction models with NLP

Table 7 and Table 8 show the MAE and average values for each fold of the regression ML model that predicts
the waiting time from arrival at the ED to hospitalization. The MAE of the XGB model that included text data
revealed the smallest difference when compared to that of the other models. The MAE of XGB with NLP revealed
a difference of approximately 3.02 from the actual value and equated to 3 hours when converted into time. The
difference was 30 minutes less than that of a normal XGB model, equating to 3 hours 30 minutes with a time
conversion of 3.53.

Table 7. Evaluation by MAE of 5-fold cross-validation for each ML-model

MAE
RF MLP LR XGB
Fold 1 3.67 3.43 3.80 3.53
Fold 2 3.55 3.51 3.99 3.55
Fold 3 3.66 3.98 4.25 3.52
Fold 4 3.40 3.35 3.73 3.38
Fold 5 3.87 3.95 421 3.66
Mean 3.63 3.64 3.99 3.53
(SD) (0.154) (0.267) (0.209) (0.090)

Table 8. Evaluation by MAE of 5-fold cross-validation for each ML-model with NLP

MAE
RF with NLP MLP with NLP LR with NLP XGB with NLP
Fold 1 3.35 3.00 3.55 3.38
Fold 2 2.66 2.90 3.48 2.77
Fold 3 2.69 2.71 345 2.61
Fold 4 3.03 3.00 351 2.96
Fold 5 3.54 3.67 4.02 3.35
Mean 3.05 3.05 3.60 3.02
(SD) (0.349) (0.325) (0.213) (0.310)
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We selected the XGB with text data as the final model. XGB has fast learning and classification speed due
to parallel processing and strong durability with its overfitting regulation function. Furthermore, it demonstrates
excellent predictive performance in both classification and regression tasks; therefore, it was hypothesized to
predict the likelihood of hospitalization accurately and expected waiting time as a single model, making the
process uncomplicated.

4.2 Variable importance through SHAP

The summary_plot of SHAP means that the performance contributing to the model's prediction increases as
it moves up from the bottom of the y-axis. The x-axis represents the magnitude of each variable's impact on the
outcome value. In our study, we found that the color red was associated with a delay in admission within 24 hours,
while the color blue was found to have an impact on the admission process. For example, in the case of ‘Bed
information - Confirm’, it most likely indicates a low likelihood of hospitalization. Conversely, in the case of ‘ED
admission day’, where the blue color appears longer, it can be considered a variable that increases the likelihood
of hospitalization within 24 hours. The SHAP results of XGB with the highest performing text data are shown in
Figure 7. Table 2 and Table 4 were referred to for a description of the variables in Figure 7.

The SHAP summary plot demonstrates that the performance contributing to the model’s prediction increases
as it moves up from the bottom of the Y-axis. The X-axis represents the magnitude of each variable’s impact on
the outcome value.

In our study, we found that the color red was correlated with a delay in admission within 24 hours, while the
color blue was found to have an impact on the admission process. For example, in the case of the variable “Bed
information - Confirm,” a low likelihood of hospitalization was indicated. Conversely, in the case of the variable
“ED admission day,” where the blue color appeared longer, the likelihood of hospitalization within 24 hours
increased. The SHAP results of XGB with the highest-performing text data are shown in Figure 7. Table 2 and
Table 4 are referred to for a description of the variables in Figure 7.
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Figure 7. Shapley effect values for variables in the XGB model
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We analyzed the calibration curve to determine the statistical significance of the variables affecting patients
who either had a low or high probability of being admitted within 24 hours of their arrival at the ED. In addition,
the XGB model with the best performance was used to analyze the target value, set to “1,” of patients who were
not hospitalized within 24 hours. The X-axis of the calibration curve was delineated as the average value,
established as the predict_proba of the predicted value. The Y-axis delineated the average of the actual values (the
fraction of positives correctly classified). By creating a histogram of the X- and Y-axes of the calibration curve,
the ratio between the predicted value and the actual value was plotted, as presented in Figure 8.

As revealed in the histogram, the likelihood of events for observed discharged patients was higher than that
of predicted discharged patients.
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Figure 8 The X-axis is divided into deciles based on increments of 0.1 for
the predicted discharge probability of the patients, while the Y-axis
represents the actual discharge rate. The orange bar represents the rate of
observed discharged patients, while the blue bar represents the rate of
predicted discharged patients

The number of patients corresponding to each level was 10 186, 221, and 255 for the Low, Middle, and High
level classes, respectively. Each level was confirmed by SHAP. We replaced the top eight quantifiable variables
in the bar plots with radar plots, as depicted in Figure 9.

For the Low level class, “Admission reservation time” was the highest with a value of 0.47, followed by
values for the “ED admission time” (0.35), “ED location code” (0.33), “ED admission day” (0.32), “EM” (0.3),
“dept5” (0.28), “GW” (0.19), and “Date of admission” (0.15).

For the Middle level class, “ADD_WAIT” was the highest with a value of 1.18, followed by “EM” (1.11),
“Admission reservation time” (0.94), “CON” (0.42), “ED admission time” (0.34), “GW” (0.31), “ED location
code” (0.26), and “ED admission day” (0.23).

For the High level class, “Admission reservation time” was the highest with a value of 3.95, followed by
values for the “EM” (1.06), “CON” (0.4), “ED location code” (0.38), “ED admission time” (0.3), “ADD_ WAIT”
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(0.28), “GW?” (0.24), and “ED admission day” (0.22). Descriptions of the variables are mentioned in Table 2 and

Table S4.

With these results, it is possible to demonstrate to the patient the likelihood of being admitted and inform
them about their expected waiting time. If admission is not possible, the patient can be informed of the reason. As
a result, EDs and hospitals will exhibit high operational efficiencies by implementing these methods.
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Figure 9. Radar plots of the influence of Shapley values of the top eight variables
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5. Discussions

The full dataset for our study utilized patient information obtained between June 2018 and May 2022 from a
hospital in Seoul, South Korea, where patients were admitted through the ED. Moreover, this dataset included a
specific subset of patients who were hospitalized in a designated COVID-19 environment. In addition to the
economy and society, the recent global pandemic, COVID-19, has impacted the ED. After the outbreak of COVID-
19, the waiting time in the ED has become irregular, as patients are only allowed to visit the hospital once their
polymerase chain reaction (PCR) test results are confirmed in order to prevent the spread of infectious diseases.
Furthermore, hospitals have experienced shortages of wards, as they have had to allocate infected and non-infected
patients to separate wards [52]. Nationally, South Korea has established a centralized funding system [53], and
this system offers patients considerable autonomy. Patients can consult at primary and secondary hospitals, as
well as the ED, without requiring a referral. Additionally, if patients receive an initial diagnosis from a physician,
they can consult at tertiary hospitals with a referral form issued by the diagnosing physician. Moreover, the
government supports cost-sharing programs that assist in reducing the financial burden on patients during hospital
consultations [53-54]. In contrast, the healthcare workforce regarding medical personnel remains below the
average, as advised by the Organisation for Economic Co-operation and Development (OECD) [55]. This shortage
of medical staff leads to inadequate patient care that is further exacerbated by the challenge of managing a large
number of patients.

We compared ML-based models trained on data during this period. XGB revealed a high performance with
an AUROC of 0.860 and an MAE of 3 hours 30 minutes. Additionally, we trained unstructured text data on XGB
to predict the likelihood of hospitalization. Our model achieved an AUROC score of 0.922 and an MAE of 3 hours,
demonstrating strong performance. Our model had an AUROC that was 6% higher and a MAE that was 30 minutes
less than the existing XGB. Regarding text manually entered by doctors and nurses in the ED, such as ED sickbed
information notes, this contains information that can be immediately updated based on new environmental
changes, including COVID-19. This differed from simple computer-entered demographic, administrative, and
clinical variables.

The text data contained important information regarding the patient’s condition or hospitalization [33]. We
applied TF-IDF to this data and further trained it on the existing XGB to exhibit improved performance in
predicting hospitalization and estimated waiting time. By applying SHAP to the XGB model with added text data,
we revealed the contribution of features based on the probability level of discharged patients. Informing the patient
about the reason for not being hospitalized involves clearly counseling the patient about the condition. This
practice enables the efficiency and accuracy of emergency physicians, ultimately reducing overcrowding in the
ED.

The common variable that showed the greatest effect across the Low-, Middle-, and High-level classes was
the “Admission reservation time”. In the High level class, with the least likelihood of hospitalization, the effects
of the parameters gradually decreased in the order of “EM”, “CON”, and “ED location code”. By utilizing this
information to enhance the process in the healthcare system, hospitals can appropriately elevate patient admission
rates and decrease waiting times.

The study’s findings revealed that the variables had a statistically significant influence on the results, as
demonstrated by SHAP. These findings can improve the efficiency of the operation of the ED by enhancing the
processes related to variables in unpredictable situations, such as COVID-19. High-performance models and the
identification of adjustable variables can facilitate the maintenance of ML models and augment existing models.
Our model is a useful and inexpensive tool that provides decisive clinical support to ED physicians constructed
on readily available patient medical data.

Despite this considerable performance, the estimated waiting time provided by the ED to the patient and the
time perceived by the patient may be different. These differences should be resolved through effective
communication with patients in the hospital. Additionally, the ED should create a comfortable waiting room
environment and provide feedback on estimated waiting times, notifying the patient of any updates in progress.
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Furthermore, it is important to regularly check the waiting room area and apply a personalized approach to patient
care. If these series of improvements are integrated, the overcrowding of the ED will be reduced [56-58].

Several limitations should be considered in this study. First is the limitation regarding the objective evaluation
of the clinical usability and acceptability. It may be challenging to empirically appraise the actual value of the
application of results of this independent single-center study for other hospitals and clinicians. However, this study
was initiated in response to a request from physicians working in the ED to address overcrowding issues. To make
the algorithms more user-friendly for practical use in the ED, we developed ML models that provided predictive
results and worked on software development. Furthermore, a systematic evaluation of the effectiveness of the
EMR system is planned.

The second limitation is the lack of validation for external generalizability. Our models can be applied to
predict the likelihood of hospitalization and waiting time in the ED of tertiary hospitals in Korea. However, since
each hospital has different systems, users of models may experience the inconvenience of having to learn new
functionalities. Additionally, the EMR systems utilized by each hospital have varying interfaces and terminologies
for input variables. This discrepancy may lead to reduced accuracy when comparing the models of our study to
other models if they are implemented without modifications. Although validation is possible for commonly used
variables, differences in variable definitions could impact accuracy. Nevertheless, this research was initiated in
response to clinical requests from hospitals, indicating a high probability of its relevance in other hospitals.

The third limitation of developing prediction models for hospital admissions in the ED of Korean hospitals
is the data imbalance caused by including mixed data from before and after the outbreak of COVID-19. This
limitation may restrict the performance of the models of this study. However, according to the policies of the
Korean government and hospitals, the ED needs to be sufficiently flexible to accommodate various diseases that
are unrelated to COVID-19. Thus, a system has been implemented that requires COVID-19-suspected patients to
be admitted after PCR testing. Moreover, numerous changes have been made to the ED system in response to the
COVID-19 outbreak. In this context, we believe it is appropriate to use mixed data, including data related to
COVID-19, for predicting sudden changes in the system that we aim to address. Therefore, we value the high
performance of our study results. This study proposed prediction models for situational changes that may occur
in the healthcare system due to various disease occurrences, including COVID-19.

The fourth limitation is regarding the sole use of XAl which does not suffice when counseling patients on
non-admission. While XAI offers interpretable features, it only contributes individual variables to specific
predictions, making it challenging to fully comprehend the overall behavior of the model. Consequently,
particularly if a specific variable has a substantial impact on non-admission, the explanation given to the patient
would still be inadequate. Moreover, XAl relies on the trained model and specific data distributions, thus making
it arduous when generalizing SHAP values once new data is introduced. Exclusively relying on SHAP values to
drive changes in specific areas of the ED is limiting. However, ED physicians can still provide patients with
appropriate explanations regarding non-admission using this functionality, supporting the counseling of patients.

Despite these limitations, we have developed a high-performance predictive model. This is the first time that
we identified the contribution of variables by dividing patients who were not hospitalized by levels.

6. Conclusion

We created models that included unstructured text data that can be easily overlooked to predict the likelihood
of hospitalization within 24 hours and estimated waiting times for admission for patients using the ED. The data
consisted of demographic, administrative, and clinical information that was easily obtained from registration at
the ED until admission to the hospital. The XGB with text data model predicts the likelihood of admission and
the expected waiting time within 24 hours of an ED length of stay. Moreover, via SHAP it includes a function that
identifies the variables that have the greatest impact on difficult admissions. It has been confirmed that applying
NLP to unstructured text data has a considerable effect on the target.
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This model will contribute to improving the accuracy and speed of decision-making for ED physicians. The
influence of variables on the number of patients who are not admitted within 24 hours, as identified through XAlI,
provides crucial information for ED physicians to explain to patients who cannot be admitted under the “24-hour
Emergency Department Restriction Act”.

By utilizing this information, the estimated average length of stay for all patients can be determined by
considering the estimated waiting times. This lets doctors promptly notify patients about non-admission and
transfer options, thus optimizing hospital operational costs and reducing waiting times. Furthermore, hospital
managers can obtain information to optimize waiting times, improve hospital processes, and minimize operational
costs. Such information greatly improves hospital operations and economic efficiency and can be particularly
useful in mitigating ED overcrowding.

After implementing this model in a real ED, it is crucial to collect feedback from healthcare professionals
and consistently update and optimize the model’s performance by incorporating new data and receiving
continuous feedback. The model should incorporate real-time patient monitoring to instantaneously integrate the
patient’s status into the model. Furthermore, utilizing a customized model that considers individual circumstances
and medical conditions can improve the accuracy of admission predictions. These suggestions should be followed
to further advance the future scope of research. In the future, if this model is applied and utilized within a
monitoring system, such as a command center [34], it is postulated that hospital processes will be greatly improved.
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Chapter 2.
Forecasting hospital room and ward occupancy using static and dynamic information concurrently
1. Introduction

The global healthcare market continues to grow, but the burden of healthcare costs on governments and
individuals is reaching its limits. Consequently, there is increasing interest in the efficient utilization of limited
resources in healthcare systems, and hospitals must develop approaches to maximize medical effectiveness within
budgetary constraints [59-60]. One approach to this is optimizing the utilization of medical resources. Medical
resources can be broadly categorized into three categories: human resources, physical capital, and consumables.
The appropriate and optimized utilization of these resources is critical for improving healthcare quality and
providing care to a larger number of patients [61-62].

Among the three medical resources, hospital beds are considered one of the physical capitals provided by
hospitals to patients. These beds are allocated for various purposes such as rest, hospitalization, postsurgical
recovery, and more. They constitute one of the factors that can directly influence the patient’s internal satisfaction
within the hospital. However, due to limited space, hospitals often have a restricted number of beds. Moreover,
the number and functionality of beds are often fixed due to budgetary or environmental constraints, making it
difficult to make changes. Nonetheless, if hospital administrators can evaluate BORs according to different time
periods, they can predict the need for healthcare professionals and resources. On the basis of this information,
hospitals can plan resources efficiently, reduce operational costs, and achieve economic objectives [63]. In
addition, excessive BORs can exert a negative effect on the health of staff members and increase the possibility
of exposure to infection risks. Hence, emphasizing only maintaining a high BORs may not necessarily lead to
favorable outcomes for the hospital [24-25]. Considering these reasons, BOR prediction plays a vital role in
hospitals and is recognized as a broadly understood necessity for resource optimization in the competitive medical
field.

1.1 Prior Works

Hospital bed occupancy prediction has been investigated using various approaches recently. From studies
predicting bed demand using mathematical statistics or regression equation models based on given data [11-14],
the focus has shifted towards modeling approaches using time-series analysis. This approach observes recorded
data over time to predict future values.

There is research that took an innovative approach using time-series analysis alongside the commonly used
regression analysis for bed demand prediction. In this study, it demonstrates that using time-series prediction for
bed occupancy yielded higher performance results than using a simple trend fitting approach [15]. In previous
research, they used the ARIMA model for univariate data and a time-series model for multivariate data to predict
BOR [16]. With the advancement of deep learning (DL) models that possess strong long-term memory capabilities,
such as the recurrent neural network (RNN) and long short-term memory (LSTM), there has been an increase in
studies applying these models to time-series data for prediction purposes. For instance, in a study by Kutafina
[17], hospital BORs were predicted based on dates and public holiday data from government agencies and schools,
without involving patients’ personal information. That study used a nonlinear autoregressive exogenous (NARX)
model to predict a short-term period of 60 days, with an aim to contribute to the planning of hospital staff. The
model demonstrated good performance with an average mean absolute percentage error (MAPE) of 6.24%. In
emergency situations such as the recent global COVID-19 pandemic, the sudden influx of infected patients can
disrupt the hospitalization plans for patients with preexisting conditions [64]. Studies have been conducted using
DL architectures to design models for predicting the BOR of patients with COVID-19 on a country-by-country
basis. Some studies incorporated additional inputs such as vaccination rates and median ages to train the models
[18]. Studies have also been conducted to focus on the short-term prediction of BOR during the COVID-19 period
[19-20].
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Table 1. Summary table of prior works

Citation Year Data Set Method Prediction Target

Number

Mackay M, and | 2007 De-identified data the date Comparison of two Entire hospital

Lee MD and time of patient compartment models bed occupancy (annual

[11] admission and discharge through cross-validation average)
between 1998 to 2000

Littig, SJ, 2007 Historical and real-time data | Computerized model of Entire hospital short-

and Isken MW warehouse. MLR? and LR term occupancy (24h or

[12] hospital information systems 72h) based on LOS¢
(the emergency department,
financial, surgical
scheduling, and inpatient
tracking systems)

Kumar A, 2010 The Bed Management The three methods are: The three prediction

and Mo J between June 1, 2006 to 1) Poisson bed occupancy targets are:

[13] June 1, 2007 model 1) Estimation of bed
1) In each class based on 2) Simulation model occupancy and
length of stay and 3) Regression model optimal bed
admissions data requirements in each
2) Historical previous year’s class
same week admissions data 2) Bed occupancy
3) Relationship between levels for every class
identified for the following week
variables to aid bed 3) Weekly average
managers number of occupied

beds

Seematter- 2015 Inpatient stays data in 2010 Three models of hypothesis- | 1) The number of

Bagnoud, L, (acute somatic care based statistical forecasting hospital stays

et al inpatients & outpatients) of future trends 2) Hospital inpatient

[14] days

3) Beds for medical
stays

Farmer RD, and | 1990 Inpatient stays data for The two methods are: Entire hospital short-

Emami J general surgery in the age 1) Forecasting from a term daily bed

[15] group 15-44 years between structural model requirements
1969 to 1982 2) The time series or Box-

Jenkins' method.
Kim K, et al 2014 Data warehouse between The two methods are: Entire hospital
[16] January, 2009 to June, 2012 1) The ARIMA model for bed occupancy (1 day
univariate data and 1 week)
2) The time-series model for
multivariate data

Kutafina E, 2019 Inpatient stays data between | NARX model, a type of Entire hospital

et al October 14. 2002 to RNN mid- term bed

[17] December 31. 2015 occupancy (60 days,
(patient identifier, time of bed pool in units of 30
admission, discharge, the beds
name of the clinic the patient )
was admitted to. No personal
information on the patients
or staff was provided)

Bouhamed H, 2022 COVID-19 hospital The three models are: Entire hospital

Hamdi M, occupancy data in 15 LSTM, GRU, and SRNN. bed occupancy

and Gargouri R countries between Incorporate vaccination

[18] December. 2021 to early percentages and median ages
January. 2022 of populations data to

improve performance
Bekker R, uit 2021 Historical data publicly The two methods are: 1)Patients admission

het Broek M,
and Koole G

available until mid-October

1) Using linear programming
to predict admissions
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[19] 2020 2) Fit remaining LOS and 2) Entire hospital short-

use results from queuing term bed occupancy

theory to predict occupancy | from new and current
Farcomeni A, et | 2021 Patients admitted to ICU The two methods are: Entire hospital short-
al between January to June 1) Generalized linear mixed | term intensive care bed
[20] 2020 regression model occupancy

2) Area-specific
nonstationary integer
autoregressive methodology

*MLR: multinomial logistic regression
PLR: linear regression

°LOS: length of stay

Although previous research has contributed to BOR prediction and operational planning at the hospital level,
more detailed and systematic predictions are necessary for practical application in real-world operations. To
address this issue, there have been studies that develop their own computer simulation hospital systems to not
only predict bed occupancy but also execute scheduling for admissions and surgeries to enhance resource
utilization [65-67]. Nevertheless, the existing studies have limitations of focusing solely on the overall BOR of
the hospital. As an advancement to those studies, we aim to propose a strategy for predicting BOR at the level of
each ward and room using various variables in a time-series manner. Interestingly, to our knowledge, this is the
first study to apply DL to predict ward- and room-specific occupancy rates using time-series analysis.

1.2 Goal of this study

The aim of this study was to predict the BOR of hospital wards and rooms using time-series data from
individual beds. Although overall bed occupancy prediction is useful for macro-level resource management in
hospitals, resource allocation based on the prediction of occupancy rates for each ward and room is required for
specific hospital scheduling and practicality. Through this approach, we aim to contribute to the efficient
operational cost optimization of the hospital and ensure the availability of resources required for patient care.

We have developed DNN based time-series prediction models, among which one model combines data
representing room-specific features (static data) with dynamic data to enhance prediction performance for room
bed occupancy rates (RBORSs). This model outperforms other RBOR prediction models, demonstrating a lower
MAE of 0.003, a mean squared error (MSE) of 0.002, a root mean squared error (RMSE) of 0.005, and a higher
R2 score of 0.074, indicating the highest performance among all RBOR models.

We developed six time-series prediction models, of which two were used for predicting ward bed occupancy
rates (WBORs), and the other four focused on predicting RBORs. These models utilize LSTM architectures with
strong long-term memory capabilities as their base structures. The WBOR models were used for predicting weekly
and monthly occupancy rates, serving long-term hospital administrative planning purposes. Conversely, the
RBOR models were designed for immediate and rapid occupancy planning and were trained with 3- and 7-day
intervals. Each RBOR model was enhanced by combining static data, which represents room-specific features, to
generate more sophisticated prediction models.

Figure 1 shows the potential application of our model as a form of web software in a hospital setting. Through
an online dashboard, it can provide timely information regarding bed availability, enabling intelligent management
of patient movements due to admissions and discharges. It facilitates shared responsibilities within the hospital
and simplifies future resource planning [68].
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In the Introduction section, we explored the importance of this research and investigated relevant previous
studies, providing a general overview of the direction of our research. In the Methods section, we will provide
descriptions of the dataset used and the structure of the DNN algorithm used and explain the model architecture
and performance. In the Results section, we will present the performance and outcomes of this study, and finally,
we will discuss the contribution, limitations, and potential avenues for improvement of the research.

Update date 'S

Hospital Occupancy Dashboard

Total Ward Octupam‘}' Currently used beds Available beds Reaktime ward status
¥ In use 56% 62 * Ward 78 89 (191 e

OT08 14:5030 PM
arch

&, Vool ward vtatms &

Jhﬂ-ﬂﬁmm

458

. ) Number of
a ¢ F Y Numib .
B86% Empty 11% umber of impatients discharped pathents

\W Other 3% 53 20

=2, T
L ' | ¥ ﬂ :

Predicted ward occupancy by period

o
{F

n
F

Lmﬂn,] AN B
Il

ﬂﬁ\i'f

Total ward predict

3 " Occupancy rate (month)
‘t; rr"q Cheler date
A 7/28 Thu 91.2%
0 (J Expecied Expecied
PR accupied beds margin of error
"V 189 £3.5%
m 4 ¥ L T T 1

Hospital Occupancy Dashboard

Occupancy
[ Rebim tearch
by room Erpels
MICUL_01 (eode: Ui MICUT_02 (eode: Ul NICUL_01 (eode: 20,
Now 7728 predict Now 28 predict Now 7728 predict
88.9% 79.1% 85.7% 82.3% 94.0% 95.3%
Room 1 Room i Room i
Status i n = Status 6 ] = Status 4 np =
Details Details  Nechear: Details N ar ¥
Info. 1 Info. Tolaioa: i Ifo.  relacen:v |
CCU (code: 40) ACU (code: 24) 136 {rode: VE)
Now 7728 predict Now 7728 predict New 7128 predict
100% 94.7% 84.0% 75.0% 62.2% B84.1%
Room ' I Room ' i Room i
Status 10 il ] Status 3 7 ] Smtus 6 0 ']
Details Sories Details Soriex Details soies
. Jusbation: ¥ _— bialaiva: _— Diolarisa: ¥

Figure 1. A virtual dashboard of the status and forecast of WBOR and RBOR. (1) On the first screen,
the overall BOR of the hospital is shown, along with the number of beds in use and available. Moreover,
a predictive graph displays the anticipated WBOR for selected dates. (2) The second screen presents
the WBOR for individual beds, indicating their statuses such as “in use,” “reserved,” “empty,” and
“cleaning.” Detailed information about each room is also displayed
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2. Methods

We intended to predict the occupancy rates of individual hospital wards and rooms based on the information
accumulated in individual bed-level data on an hourly basis, aggregated on a daily basis. For this purpose, we
developed six time-series models. As the base model, we applied LSTM, which is suitable for sequence data. This
model addresses the limitation of long-term memory loss in traditional RNNs and was chosen because of its
suitability for training bed data represented as sequence data.

There were two WBOR prediction models, which were trained at 7- and 30-day intervals to predict the
occupancy rate for the next day. Moreover, there were four RBOR prediction models, similar to the ward models,
using LSTM as the base model and were trained at 3- and 7-day intervals. Furthermore, as another approach, each
RBOR prediction model was augmented with static data, and four DL algorithms were proposed for the final
comparison of their performances in predicting RBOR.

2.1 Materials
2.1.1 Study setting

This was a retrospective, single-center cohort study. Data were collected from AMC, with information on the
occupancy status of each bed recorded at hourly intervals between May 27, 2020, and November 21, 2022. The
dataset comprised a total of 54,632,684 records. This study used ethically preapproved data and underwent AMC
IRB review (IRB 2021-0321), which was conducted according to the 2008 Declaration of Helsinki. De-identified
data used in the study were extracted from ABLE, the AMC clinical research data warehouse.

A total of 57 wards, encompassing specialized wards, 1411 rooms, including private and shared rooms, and
4990 beds, were included in this study. Wards and rooms with specific characteristics such as the intensive care
unit (ICU), new-born, and nuclear medicine treatment room were excluded from the analysis as their occupancy
prediction using simple and general variables did not align with the direction of this study.

2.1.2 Supporting data

Supporting data for public holidays were added in our dataset. We considered that holidays have both a
recurring pattern with specific dates each year and a distinctive characteristic of being nonworking days, which
could affect occupancy rates. Based on Korean public holidays, which include “Chuseok, Hangeul Proclamation
Day, Children’s Day, National Liberation Day, Memorial Day, Buddha’s Birthday, Independence Movement Day,
and Constitution Day,” there were 27 days that corresponded to public holidays during the period covered by the
dataset. We denoted these dates with a value of “1” if they were public holidays and “0” if they were not, based
on the reference date.

2.1.3 Preprocessing and description of variables

Among the variables representing individual beds, the reference date, ward and room information, patient’s
occupancy status, bed cleanliness status, and detailed room information were available. Based on the recorded
date of bed status, we derived additional variables such as the reference year, reference month, reference week
(week of the year), reference day, and reference day of the week.

Room data were derived from the input information representing the cleanliness status of beds. This variable
has two possible states, viz., “admittable” or “discharge.” If neither of these states was indicated, it implied that a
patient was currently hospitalized in the bed. As the status of hospitalized patients was indicated by missing values,
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we replaced them with the number “1” to indicate the presence of a patient in the bed, and “0” otherwise. The sum
of all “1” values represents the current number of hospitalized patients. The count of beds in each room indicates
the capacity of each room. The target variable BOR was calculated by dividing the number of patients in the room
by the room capacity, resulting in a room-specific patient occupancy rate variable. The ward data were subjected
to a similar process as that of the room data, with the difference being that we generated ward-specific variables
such as ward capacity and WBOR using the same approach. The static room data consisted of 14 variables,
including the title of the room and the detailed information specific to each room.

For the variables in the ward and room data, we disregarded the units of the features and converted them into
numerical values for easy comparison, after which we performed normalization. Regarding the variables
representing detailed room information, we converted them to numerical values where “Yes” was represented as
“1,” and “No” was represented as “0.”

The final set of variables used in this study was categorized into date, ward, room, and detailed room
information. Table 2 shows the detailed descriptions of the variables used in our training, including all the

administrative data related to beds that are readily available in the hospital.

Table 2. Description of variables by category

Variable | Type | Description
Date

year 3 categories The reference year for bed status

month 12 categories The reference month for bed status

week 53 categories The reference week for bed status

day 31 categories The reference date for bed status

weekday 7 categories The reference day of the week for bed status

holiday 2 categories Holiday status
Ward

ward abbreviation 57 categories Abbreviations for entire ward names

ward capacity numeric Number of available ward beds

ward bed capacity numeric Number of patients currently admitted to the

ward

ward occupancy rate numeric Ward bed capacity divided by ward capacity
Room

room abbreviation 1411 categories Abbreviations for entire room names

room capacity numeric Number of available room beds

room bed capacity numeric Number of patients currently admitted to the

room

room occupancy rate numeric Room bed capacity divided by room capacity

Room

static feature

room code 34 categories Room grade code

nuclear 2 categories (N/Y) Nuclear medicine room availability

sterile 2 categories (N/Y) Sterile room availability

isolation 2 categories (N/Y) Isolation room availability

EEG testing 2 categories (N/Y) EEG testing room availability

observation 2 categories (N/Y) Observation room availability

kidney 2 categories (N/Y) Kidney transplant room availability

liver 2 categories (N/Y) Liver transplant room availability

sub-ICU 2 categories (N/Y) Sub-ICU room availability

special 2 categories (N/Y) Special room availability

small single 2 categories (N/Y) Small single room availability

short-term 2 categories (N/Y) Short-term room availability

psy-double 2 categories (N/Y) Psychiatry department double room availability
psy-open 2 categories (N/Y) Psychiatry department open room availability
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The explanation of the classification for generating the datasets for training each model is provided in Table
3. The static features of the detailed room information were combined with the room dataset, which has sequence
characteristics, to generate a separate dataset termed Room+Static.

Table 3. Dataset classification and included variables

Dataset Name Variables

Ward dataset ward abbreviation, year, month, week, day, weekday, holiday, ward capacity, ward bed capacity,
ward occupancy rate

Room dataset room abbreviation, year, month, week, day, weekday, holiday, room capacity, room bed capacity,
room occupancy rate

Static dataset 14 static variables related to detailed room information

Room+Static room abbreviation, year, month, week, day, weekday, holiday, room capacity, room bed capacity,

dataset 14 static variables related to detailed room information, room occupancy rate

2.1.4 Separation

Each dataset was split into training, validation, and test sets for training and evaluation of the model. The
training set consisted of 32,153 rows (67.8%) with data from May 27, 2020, to December 2021. The validation
set, used for parameter tuning, included 7085 rows (15.0%) with data from January to June 2022. Finally, the test
set comprised 8208 rows (17.2%) with data from July 2022 to November 21, 2022.

2.2 DL algorithms

We used various DL algorithms for in-depth learning. In the following subsections, we shall provide
explanations for each model algorithm used in our research.

2.2.1 LSTM network

The RNN [69] is a simple algorithm that passes information from previous steps to the current step, allowing
it to iterate and process sequential data. However, it encounters difficulties in handling long-term dependencies,
such as those found in time-series data, due to the vanishing gradient problem. To address this issue, LSTM [70]
was developed. LSTM excels in handling sequence data and is commonly used in natural language processing,
machine translation, and time-series data analysis. LSTM consists of input gate, output gate, and forget gate. And
the 'cell state,' is carefully controlled by each gate to determine whether the memory should be retained or forgotten
for the next time step.

2.2.2 Bidirectional LSTM network

Although RNN and LSTM possess the ability to remember previous data, they have a limitation in that their
results are primarily based on the immediate past patterns because the input is processed in a sequential order.
This limitation can be overcome through a network architecture known as bidirectional long short-term memory
(BiLSTM) [71]. BiLSTM allows end-to-end learning, minimizing the loss on the output and simultaneously
training all parameters. It also has the advantage of performing well even with long data sequences. Because of
its suitability for models that require knowledge of dependencies from both the past and future, such as LSTM-
based time-series prediction, we selected BiLSTM as the base model.
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2.2.3 Attention mechanism

The attention mechanism [72-73] refers to the process of incorporating the encoder’s outputs into the decoder
at each time step of predicting the output sequence. Rather than considering the entire input sequence, it focuses
more on the relevant components that are related to the predicted output, allowing the model to focus on important
areas. This mechanism helps minimize information loss in datasets with long sequences, enabling better learning
and improving the model’s performance. It has been widely utilized in areas such as text translation and speech
recognition. Nevertheless, as it is still based on RNN models, it has the drawbacks of slower speed and not being
completely free from information loss issues.

2.2.4 Combining static and dynamic features

Data can exhibit different characteristics even at the same time. For instance, in data collected at 1-h intervals
for each hospital bed, we can distinguish between “dynamic data,” which include features that change over time
such as the bed condition, date, and patient occupancy, and “static data,” which consists of information that
remains constant, such as the ward and room number.

DL allows us to utilize all the available information for prediction. Therefore, for predicting RBOR, we
investigated an approach that combines dynamic and static data using an LSTM-based method [74]. This approach
demonstrated better performance than LSTM alone [75]. Our approach involves adding a layer that incorporates
static data as an input to the existing room occupancy prediction model.

2.3 Model architecture
2.3.1 Base model

Our objective was to predict the intermediate-term occupancy rates of wards and rooms within the hospital
to contribute to hospital operations planning. Among the six DL models we developed, four used a base model
that incorporates BiLSTM as the fundamental structure. BILSTM was chosen as the base model because it has
demonstrated improved prediction performance compared with that of traditional LSTM models. BILSTM models
process input sequences bidirectionally, allowing for better information collection and representation.

Moreover, we have enhanced the performance of our models by adding an attention layer to BiLSTM. The
attention layer assigns higher weights to features that exert a significant impact on the prediction, allowing the
model to focus on relevant information and gather necessary input features. This helps improve the accuracy of
the prediction. Furthermore, the attention layer reduces the amount of information processed, resulting in
improved computational efficiency. Ultimately, this contributes toward enhancing the overall performance of the
model.

The window length of the input sequence was divided into three different intervals, viz., 3, 7, and 30 days.
The WBOR model was trained on sequences with a window length of 7 and 30 days, whereas the RBOR model
was trained on sequences with a window length of 3 and 7 days. The first layer of our model consisted of BiLSTM,
which was followed by the LeakyReLU activation function. LeakyReLU is a linear function that has a small
gradient for negative input values, similar to ReLU. It helps the model converge faster. After applying this process
once again, the AttentionWithContext layer was applied, which focuses on important components of input
sequence data and transforms outputs obtained from the previous layer. After applying the activation function
again, a dense layer with one neuron was added for generating the final output. The sigmoid function was used to
limit the output values between 0 and 1. Finally, our model was compiled using the MSE loss function, Adam
optimizer, and MAE metric. The parameters for each layer were selected based on accumulated experience
through research. Figure 2 visually represents the above-described structure.
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Figure 2. Base model architecture

2.3.2 Combining dynamic and static data using DL model

The accumulated bed data, which were collected on a time basis, were divided into dynamic and static data
of the rooms, which were then inputted separately. To improve the performance of the BOR prediction model, we
designed different DL architectures for the characteristics of these two types of data.

We first used a base model based on BiLSTM to learn the time-series data and then focused the model’s
attention using the dense layer to process fixed-size inputs. To prevent overfitting, we applied the dropout function
to randomly deactivate neurons in two dense layers. The hidden states of the two networks were combined, and
the resulting output was passed to a single layer, combining the time dynamic and static data.

Finally, the hidden states of the two networks were combined, and the combined result was passed to a single
layer to effectively integrate the dynamic and static data. This allowed us to utilize the information from both the
dynamic and static data for BOR prediction. This architecture is illustrated in Figure 3.
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Figure 3. Model architecture combining static and dynamic variables

2.4 Evaluation

We selected various metrics to evaluate the performance of time-series data predictions. Among them, MAE
represents the absolute difference between the model’s predicted values and the actual BOR. We also considered
MSE, which is sensitive to outliers. Moreover, to address the limitations of MSE and provide a penalty for large
errors, we opted for RMSE. We also used the R2 score to measure the correlation between the predicted and actual
values.

MAE is a commonly used metric to evaluate the performance of time-series prediction models. MAE is
intuitive and easy to calculate, making it widely used in practice. Because MAE uses absolute values, it is less
sensitive to outliers in the occupancy rate values for specific dates. MAE is calculated using the following formula:

e; = y; — ypred;
1
MAE = 2 37, |e;|

MSE is a metric that evaluates the magnitude of errors by squaring the differences between the predicted
and actual values and then taking the average. It is calculated using the following formula:

1
MSE = 2 5% (leg )2

RMSE is used to address the limitations of MSE where the error scales as a square, providing a more
intuitive understanding of the error magnitude between the predicted and actual values. It penalizes large errors,
making it less sensitive to outliers. RMSE is calculated using the following formula:

1
RMSE= [~ 37 (le; )2
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The R2 score is used to measure the explanatory potential of the prediction model, and it is calculated using
the following formula:
SSR

R? =1-——
score SST

n
SST = > (=3
i=1

n
SSR= ) i =9
i=1

Here, SSR represents the sum of squared differences between the predicted and actual values, and SST
represents the sum of squared differences between the actual values and the mean value of actual values.

3. Results

We compared the performance of six different DL time-series prediction models, which are termed Ward 7
Days (W7D), Ward 30 Days (W30D), Room 3 Days (R3D), Room 7 Days (R7D), Room Static 3 Days (RS3D),

and Room Static 7 Days (RS7D). They were evaluated using three time periods: train, validation, and test.

The prediction performance of WBOR and RBOR was compared, which showed that they were more
accurate at predicting WBOR, with MAE values of 0.06—0.07. The W7D model, which used 7 days of ward data
to predict the next day’s ward occupancy, had an MAE of 0.057, an MSE of 0.007, and an RMSE of 0.082,
showing high accuracy. The R2 score was also 0.582, which was approximately 0.124 higher than that (0.458) of
the W30D model, indicating that the variables in that model explained occupancy reasonably well.

We next compared the performance of the four models for RBOR prediction, among them, the RS7D model,
which was trained on a 7-day time step by integrating static and dynamic data, showed the best performance. It
achieved an MAE of 0.123, an MSE of 0.052, an RMSE of 0.226, and an R2 score of 0.320. In particular, the R2
score outperformed the R3D model by 0.026. These data are summarized in Table 4. Regarding the WBOR
prediction model, the model with a shorter training unit, W7D, demonstrated better performance. However,
regarding the RBOR prediction model, the model with a longer training unit of 7 days, which incorporated detailed
room-specific information, exhibited slightly higher performance than the model with a shorter 3-day training
unit. The model with the added room-specific information still demonstrated superior performance overall.

Table 4. MAE, MSE, RMSE, and R2 score of occupancy prediction models

| Model | MAE | MSE | RMSE | R2 Score

Ward |

Ward 7 Days 0.057 0.007 0.082 0.582

Ward 30 Days 0.062 0.009 0.093 0.458
Room |

Room 3 Days 0.126 0.053 0.231 0.294

Room 7 Days 0.123 0.052 0.227 0.317

Room Static 3 Days 0.124 0.057 0.239 0.246

Room Static 7 Days 0.123 0.051 0.226 0.320
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We visualized the predicted and actual occupancy for each model and investigated the occupancy trends
since July 2022 on our test dataset. First, we selected a specific ward in W7D to demonstrate the change in
WBOR over 2 months. The right panel of Figure 4 shows the WBOR change over 5 months from July 2022 in
W30D. The blue line represents the actual occupancy value, and the red line represents the predicted occupancy
value by the model. This provides an at-a-glance view of the overall predicted occupancy level for each month
and allows hospital staff to observe trends to obtain a rough understanding of WBOR.

Ward occupancy 7 days

Ward occupancy 30 days

Occupancy rate
Occupancy rate

actual actual
I — prediction —— prediction

jiol i ls i 31 Aug 01 Aug 15 Aug 31 il g Sep Ouc Nov

Dates Dates

Figure 4. Examples of predicted and actual BOR for the 2 months of July through August 2022 for
W7D and the 5 months of July through November 2022 for W30D

Figure 5 shows the graph of occupancy rate values for a randomized specific room, displaying the
predicted and actual values for the four RBOR prediction models, with two graphs for each model. The left
graph shows the occupancy rate changes over 5 months from July to November 2022, and the right graph shows
the occupancy rate for the months of July and August, providing a detailed view of RBOR. By examining the
trends of the predicted and actual values for the four models in this period for a specific room, we can observe
that the models maintain a similar trend to the actual occupancy rate.
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Figure 5. Example of predicted and actual BOR for the 2-month period between July and August
2022 and the 5-month period from July to November.
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4. Discussions

The entire dataset of this study consisted of administrative data collected at AMC at an hourly interval for
each ward from May 27, 2020, to November 21, 2022. To improve the hospital’s challenges, we developed a
model to predict the occupancy rate of wards and rooms. Our aim was to contribute toward administrative and
financial planning for bed management within the hospital.

During the specified period, we compared the results of using DL models to predict the overall BOR for each
ward and individual rooms. In the case of WBOR prediction, the MAE of the 7-day window model was
approximately 0.057, demonstrating a remarkably close prediction to the occupancy compared to that of the 30-
day window model, with a difference of approximately 0.005. Furthermore, the MSE and RMSE were 0.007 and
0.082, respectively, indicating high accuracy in the predictions. Moreover, the R2 score of 0.582 indicated that
the model had better explanatory potential than the average. For the individual RBOR prediction, among the four
models, the RS7D model performed the best, exhibiting an MAE of approximately 0.03, which was remarkably
lower than that (0.123) of the other models. Moreover, the MSE and RMSE were significantly lower than those
of the RBOR model, with a difference of 0.002 and 0.013, respectively. The R2 score of 0.320 indicated that it
had higher explanatory potential than the RS3D model, being higher by 0.07.

Finally, we visualized the predicted and actual values on a graph for a specific period and observed that each
model captured the trend of the actual BOR quite well. Although the models were less accurate in predicting low
occupancy periods, they followed the general trend closely. Overall, these findings demonstrate that our DL
models effectively predicted BOR for both wards and individual rooms, with certain models demonstrating
superior performance in different scenarios.

4.1 Limitations

Although the models in this study demonstrated good performance in following the trends of BOR and
achieved good results, there are several limitations to this research.

First, there are limitations in the data. Although we utilized administrative data and detailed room information
available from the hospital to enable the models to capture occupancy trends, the relationship between the
variables and the model’s explanatory potential showed room for improvement, as indicated by the R2 score. To
achieve higher prediction accuracy, it would be beneficial to incorporate diverse data sources and real-time
updated information.

Second, there is variability in external factors. Hospital BORs are heavily influenced by external
environmental factors. Sudden events such as environmental factors and outbreaks of infectious diseases such as
COVID-19 can render accurate prediction of bed occupancy challenging [64, 76]. Furthermore, seasonal effects
and accidents can increase the number of patients. Sufficient collection of long-term data on these external factors
would be necessary, but such uncertainties can reduce the accuracy of predictions.

Despite these limitations, our study has demonstrated a significant level of adherence to trends in predictions
of individual ward and room occupancy. More detailed variables and a longer period of data accumulation would
be required to predict the specific number of beds.

5. Conclusion

We have presented models that can predict the occupancy rates of wards and individual hospital rooms using
artificial neural networks based on time-series data. The predicted results of these models demonstrated a high
level of accuracy in capturing the future trends of BOR. In particular, we presented four RBOR models with
structure and window changes to compare their performance and found that the RS7D model showed the best
performance. Our results can be implemented as web application on hospital online dashboards, as depicted in
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Figure 1 [68]. In fact, Johns Hopkins University has been applying these methods in their command center to
monitor hospital capacity and achieve effectiveness in patient management planning [77].

Furthermore, predicting BORs supports patient admission and discharge planning, helping to alleviate
overcrowding in emergency departments and reduce patient waiting times. Staff members can effectively schedule
patient admissions and discharges and minimize waiting times by understanding the BOR, providing urgent
treatment to emergency patients. Moreover, providing appropriate information to patients waiting in the
emergency department can increase patient satisfaction and facilitate efficient transitions to hospital admission
[78-79]. By applying artificial intelligence models that combine BOR prediction, which contributes toward
reducing emergency department waiting times, with individual patient admission and discharge prediction,
hospitals can achieve resource optimization and cost savings, resulting in improved patient satisfaction.
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Conclusion

We have developed Al models to improve hospital processes using EMR. We applied this research to predict and
mitigate ED overcrowding and hospital bed occupancy, aiming to reduce hospital operating costs. Our models
have demonstrated excellent performance and can contribute to optimizing hospital operations. This paper is
divided into two parts, with each study conducted in the following order: 1) Predicting the likelihood of
hospitalization within 24 hours for ED patients and estimating waiting times, 2) Evaluating the impact of
unstructured text data in ED bed notes, and 3) Predicting individual ward and room BORs.

In chapter 1, we developed models to predict the likelihood of hospitalization within 24 hours for ED patients and
estimate waiting times, while also examining the impact of unstructured text data. These models were created to
assist ED physicians in making rapid decisions and have demonstrated outstanding performance in predicting the
likelihood of hospitalization within 24 hours and waiting times for patients in the ED. Furthermore, the utilization
of unstructured text data has enhanced the model's performance, and through XAI, we confirmed the significance
of unstructured text in ED bed notes.

In chapter 2, we involved a study to predict the BORs of individual hospital wards and rooms. Various datasets
were created by combining time-series data related to bed occupancy recorded at hourly intervals with static data
for the rooms. Using these datasets, we developed two models for predicting WBORs and four models for
predicting RBORs. These models exhibited high performance, with the model that combined both dynamic and
static data and predicted on a weekly basis showing the best performance. This further emphasized the significance
of static data.

Research aimed at improving hospital processes should produce practical outcomes that can be utilized within the
healthcare facility. Therefore, we have not only proposed models that significantly enhance the economic
efficiency of hospital and ED operations but have also introduced a practical virtual web application for use. By
applying Al models to hospital processes, healthcare professionals and administrators can streamline operations
and efficiently allocate limited medical resources, leading to improvements in healthcare services and the potential
for cost savings.
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