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Abstract 
Cardiovascular border (CB) analysis is a fundamental method for detecting and assessing the 

severity of heart diseases using chest X-ray (CXR). This study aimed to develop and validate 

a deep learning-based CB automatic analysis software algorithm for quantitative analysis of 

lateral chest X-ray images. For detecting CB in Lateral CXR images, we utilized the Mask R-

CNN. This model is an algorithm capable of accurate object detection and segmentation. We 

proposed more precise results using reasonable pre-processing and post-processing algorithms 

with this model, and suggested indicator for quantitative analysis of images. The CB detection 

performance of the developed model was evaluated with a precision of 99.92%, recall of 

99.89%, F1 score of 99.91%, and a false positive rate per patient of 0.48. We used a developed 

validation dataset to verify the reliability between the CB automatic label (CB_auto) and the 

CB manual label (CB_hand) using the proposed CB measure index. At the 4cm point in the 

proposed CB measure, the highest Intraclass correlation coefficient (ICC) (0.95-0.99) was 

observed. Comparing the absolute difference in CB measure between the normal control group 

and abnormal groups at the 4cm point, significant differences were found in Tricuspid valve 

disease (TD) 12.7mm, Mitral valve disease (MD) 11.2mm, Pulmonary valve disease (PD) 

8.5mm, and Aortic valve disease (AD) 6.8mm. The success rate of the CB measure was 91.6% 

in normal, 83.0% in AD, 84.5% in MD, 84.4% in PD, and 77.7% in TD. Subsequently, we 

conducted statistical analysis on the measured CB measure results by gender (male, female) 

in the normal control group. The Mean and Standard deviation in the normal control group 

were 25.5±9.7 for males and 16.7±8.9 for females, and the median (Interquartile ranges (IQRs)) 

were 25.5 (18.9-31.9) for males and 16.7 (10.7-22.6) for females. Additionally, we compared 

the median (IQRs) values of z-scores after fitting the model for the normal control group using 

the GAMLSS library. For males, normal was 0.01 (-0.69 to +0.68), AD was -0.58 (-1.51 to 

+0.29), MD was -0.90 (-1.62 to -0.10), PD was -0.17 (-1.03 to +0.21), and TD was -1.09 (-

1.78 to +0.30). For females, normal was 0.01 (-0.67 to +0.68), AD was -0.33 (-1.12 to +0.42), 

MD was -0.91 (-1.57 to -0.22), PD was -0.80 (-1.57 to +0.13), and TD was -0.90 (-1.47 to 

0.00). When comparing normal control with abnormal groups, the abnormal groups generally 

showed lower values.  
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1. Introduction 
Valvular Heart Disease (VHD) occurs when one or more of the heart valves do not open or 

close properly. This encompasses various conditions, including Stenosis, where the valve 

opening narrows, impeding the normal blood flow. Another manifestation is Prolapse, 

characterized by a displacement of the valve or improper closure of valve flaps. Additionally, 

Regurgitation occurs when blood flows backward through a valve. These valve dysfunctions 

contribute to the complexity of VHD. In the context of VHD, Heart Failure emerges as a 

serious medical condition, signifying the heart’s inability to pump sufficient blood to meet the 

body’s oxygen requirements. This can lead to an enlarged heart or Heart Failure. Treatment 

options include medication, surgery, and other procedures aimed at repairing or replacing the 

affected valve. 

Cardiac Chamber Enlargement is important in the prediction of morbidity and 

mortality for a multitude of cardiovascular processes. The changes in the cardiac border and 

the emergence of new or different interfaces with adjacent lungs can be readily identified in 

chest radiographs. These radiographic images provide a valuable means to observe alterations 

in the cardiac border, contributing to the non-invasive and cost-effective evaluation and 

diagnosis of Cardiac chamber enlargement. Thus, leveraging the advantages of chest 

radiographs in assessing cardiac morphology becomes pivotal in enhancing our understanding 

and management of cardiovascular conditions, particularly those associated with cardiac 

chamber enlargement. 

Recent integrations of deep learning technologies have catalyzed significant 

advancements in the domain of computer vision. Convolutional Neural Networks (CNNs), a 

predominant deep learning algorithm, are primarily harnessed for tasks related to image 

recognition and classification. Through the automatic extraction of high-level abstract features 

from images, CNNs have demonstrated unparalleled efficacy in image processing, particularly 

in discerning local patterns and structures [4]. In the realm of semantic segmentation, Fully 

Convolutional Networks (FCN) have emerged as a transformative approach, enabling end-to-

end pixel-wise classification and facilitating dense predictions across images [17]. 

Furthermore, the Feature Pyramid Network (FPN) has been introduced to address the inherent 

challenges associated with detecting objects of diverse sizes [5]. By generating feature maps 

across multiple scales, the FPN augments the efficacy of object detection and classification. 

This enhancement is realized by amalgamating feature maps from disparate layers, thereby 

harnessing both high-resolution and multi-scale information. 

These methodologies have paved the way for monumental progress in object 

detection algorithms, which are predominantly bifurcated into single-stage and two-stage 

paradigms. The single-stage approach amalgamates the processes of object candidate region 

extraction, classification, and bounding box regression [6,7]. Prototypical examples of this 

approach include You Only Look Once (YOLO) and Single Shot Multibox Detector (SSD), 

which prioritize computational efficiency, rendering them apt for real-time object detection 

[6,7]. Conversely, the two-stage paradigm, epitomized by the Region with Convolutional 

Neural Networks (RCNN) series, segregates the extraction of object candidate regions from 

images and their subsequent classification via distinct CNN models [9,10]. While this method 

boasts superior accuracy, it is encumbered by computational overheads. To mitigate this, Fast 

RCNN amalgamates object candidate extraction and classification [9], while Faster RCNN 

further streamlines the process by incorporating the Region Proposal Network (RPN) for 
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automated object candidate extraction [10]. Notably, Mask R-CNN, a salient member of the 

RCNN lineage, is distinguished by its capability to execute both object detection and pixel-

level segmentation of individual entities [11]. This is achieved by integrating the FCN and 

FPN, which, during the processing phase of Mask R-CNN, furnishes rich spatial information 

and multi-scale context for each object candidate region [5,11,17]. 

In this study, our primary objective is to develop a deep learning-based software 

algorithm for detecting and segmenting borderlines in chest X-ray images using the Mask R-

CNN framework. Building upon this, the study also aims to establish normal reference values 

for cardiovascular borders by applying the proposed cardiac border (CB) measurement method 

on Lateral chest X-ray images within a large dataset, and subsequently, to conduct a 

comparative analysis with an abnormal group. 
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2. Background 

In the evolving landscape of computer vision, Convolutional Neural Networks (CNNs) have 

emerged as a foundational deep learning algorithm tailored for structured data like images [3]. 

Building upon CNNs, Fully Convolutional Networks (FCN) introduced a paradigm shift, 

targeting semantic segmentation with pixel-wise predictions [17]. To address the challenges 

of multi-scale object detection, the Feature Pyramid Network (FPN) was developed, utilizing 

a multi-scale pyramid of feature maps [4]. The Region with Convolutional Neural Networks 

(R-CNN) series [8, 9, 19, 11] achieved progress using superior techniques with CNN, FCN, 

and FPN for object detection, segmentation, and classification. 

 
Figure 1. Overview of CNN, FCN and FPN. 

 

2.1. Convolutional Neural Networks (CNNs) 

2.1.1. CNNs. Convolutional Neural Networks (CNNs) have witnessed substantial evolution 

since their inception. The foundational model, LeNet-5, introduced by LeCun et al., was 

designed for handwritten digit recognition. It utilized convolution operations defined as 

(𝐼 ∗ 𝐹)(𝑥, 𝑦)  = ∑ ∑ 𝐼(𝑥 + 𝑖, 𝑦 + 𝑗) ⋅ 𝐹(𝑖, 𝑗)

𝑘
2

𝑗=−
𝑘
2

𝑘
2

𝑖=−
𝑘
2

 

to extract features from images [2]. 

The groundbreaking AlexNet by Krizhevsky et al. significantly outperformed other 

models in the ImageNet challenge in 2012. This model introduced the use of Rectified Linear 

Units (ReLUs) as activation functions, defined as 

𝑓(𝑥) = 𝑚𝑎𝑥(0, 𝑥) 

, and Dropout layers to prevent overfitting [3]. 

After AlexNet, the VGGNet further deepened the network architecture, employing 

multiple 3x3 convolutional layers to capture intricate patterns [12]. GoogLeNet, also known 

as the Inception network, introduced the "Inception module", a novel structure that allowed 

for increased depth without a substantial rise in computational cost [13]. These developments 

set the stage for the introduction of ResNet, which tackled the vanishing gradient problem 

inherent in very deep networks through the use of Skip Connections. 
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2.1.2. Residual Network (ResNet). Residual Network (ResNet) introduced a novel architecture 

that revolutionized deep learning by allowing the training of much deeper networks than was 

previously feasible [14]. The core idea behind ResNet is the introduction of "skip" or 

"shortcut" connections that bypass one or more layers. The fundamental building block of 

ResNet is the Residual Block. Instead of trying to learn an underlying mapping 𝐻(𝑥) directly, 

ResNets aim to approximate the residual function: 

𝐹(𝑥) = 𝐻(𝑥) − 𝑥 

The original input 𝑥 is then added back to this residual, resulting in the final output [14]: 

𝐻(𝑥) = 𝐹(𝑥) + 𝑥 

This simple yet powerful concept of adding the input to the output helps in mitigating the 

vanishing gradient problem, allowing for the training of networks with depths of even 100 

layers or more. The introduction of these residual connections led to significant improvements 

in training deep networks. Not only did ResNet achieve state-of-the-art performance on 

various benchmarks, but they also highlighted the importance of network architecture design 

in deep learning. The residual learning principle has since become a foundational concept, 

inspiring numerous subsequent architectures and variants [15]. 

 

2.2. Full Convolutional Network (FCN). Fully Convolutional Networks (FCN) have 

revolutionized the domain of semantic segmentation, where the goal is to assign a class label 

to each pixel in an image. Unlike traditional CNNs that produce a fixed-size output (typically 

a vector of class probabilities), FCNs are designed to produce outputs (segmentation maps) 

that are of the same spatial dimensions as the input image. This is achieved by replacing the 

Fully connected layers in CNNs with Convolutional layers. Given an input image 𝐼, an FCN 

produces a segmentation map 𝑆 where each pixel 𝑆𝑖,𝑗 represents the probability of the pixel 

𝐼𝑖,𝑗  belonging to a particular class. The transformation from 𝐼  to 𝑆  is governed by the 

convolutional operations and learned filters in the FCN. Additionally, FCNs employ Up 

sampling layers to upscale coarse feature maps to the original input size, ensuring dense pixel-

wise predictions. The loss function for training an FCN typically involves comparing the 

predicted segmentation map 𝑆 with the ground truth map 𝐺 using a pixel-wise cross-entropy 

loss: 

𝐿 = − ∑ 𝐺𝑖,𝑗𝑙𝑜𝑔(𝑆𝑖,𝑗)

𝑖,𝑗

 

This loss ensures that the FCN learns to produce accurate pixel-wise class probabilities. 

Through this architecture and training mechanism, FCNs have set new benchmarks in 

semantic segmentation tasks [17]. 

 

2.3. Feature Pyramid Network (FPN). Feature Pyramid Network (FPN) is a novel neural 

network architecture designed to enhance the scale invariance in object detection tasks [4]. 

Traditional convolutional networks tend to produce feature maps at a single scale, which may 

not be optimal for detecting objects of varying sizes. FPN addresses this by constructing a 

multi-scale pyramid of feature maps.  

The FPN architecture builds a Top-down pathway with Lateral connections to the 

Bottom-up computed feature hierarchy. For a given feature map level 𝑙, the Top-down feature 

map is up sampled by a factor of 2 and then merged with the corresponding Bottom-up feature 

map through an Element-wise addition: 

𝑀𝑙 = 𝑈(𝑀𝑙+1) + 𝐿𝑙 
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Where 𝑀𝑙 is the Merged feature map at level 𝑙, 𝑈 is the Up-sampling Operation, and 𝐿𝑙 is the 

Lateral connection from the Bottom-up pathway [4]. This process is repeated across all levels 

of the pyramid, ensuring high-resolution features are enriched with semantic information from 

deeper layers. 

The introduction of FPNs has significantly improved the performance of object 

detection models, especially for detecting objects across a wide range of scales. By leveraging 

multi-scale feature representations, FPNs provide a more comprehensive and semantically rich 

feature set for object detection tasks [11]. 

 
2.4. Region with CNN (R-CNN) Series. The Regions with CNN Features (R-CNN) series of 

models have revolutionized object detection by seamlessly integrating Region proposal 

methods with deep convolutional networks. Starting with the foundational R-CNN, which 

introduced Region-based Object detection, the lineage evolved with Fast R-CNN and Faster 

R-CNN, streamlining the detection process and enhancing computational efficiency. Mask R-

CNN further extended this lineage by adding Pixel-level Segmentation capabilities, 

showcasing the continual advancements in Object detection and Instance segmentation. 

 

2.4.1. R-CNN. R-CNN marked a significant advancement in object detection by seamlessly 

integrating Region proposal methods with CNNs [8]. Traditional object detection techniques 

often employed a sliding window approach, which, while comprehensive, was 

computationally intensive and lacked precision. R-CNN innovatively addressed this limitation 

by introducing a two-stage method. 

Initially, for each image, approximately 2000 Region proposals are generated using the 

Selective Search [16], a technique that clusters adjacent pixels based on texture, color, and 

intensity to identify potential object bounding boxes. Mathematically, for an image 𝐼, the set 

of region proposals 𝑅 = {𝑅1, 𝑅2, . . . , 𝑅𝑛} is obtained using: 

𝑅 = 𝑆𝑒𝑙𝑒𝑐𝑡𝑖𝑣𝑒𝑆𝑒𝑎𝑟𝑐ℎ(𝐼) 

Each proposed region 𝑅𝑖  is resized and processed through a Pre-Trained CNN, typically 

AlexNet, to derive a fixed-length feature vector 𝐹𝑖: 

𝐹𝑖 = 𝐶𝑁𝑁(𝑅𝑖) 

Subsequently, these feature vectors are classified using Class-specific linear SVMs. 

Additionally, a Bounding box regressor refines the object's location based on the extracted 

features. 

R-CNN's approach revolutionized object detection, setting new performance 

benchmarks. Its methodology of combining region proposals with deep learning laid the 

foundation for future advancements in the domain. 

 

2.4.2. Fast R-CNN. Fast R-CNN emerged as an optimized successor to R-CNN, addressing 

its predecessor's computational inefficiencies by introducing a unified model that uses a single 

network for both Object classification and Bounding box regression [9]. Unlike R-CNN, which 

processed regions independently, leading to redundant computations, Fast R-CNN streamlined 

the process. The entire image is first passed through a convolutional network to produce a 

feature map. Then, using a technique called Region of Interest (RoI) Pooling, proposed regions 

(typically obtained from an external method like Selective Search) are mapped onto this 

feature map. This RoI Pooling layer standardizes the varying sizes of the proposed regions 

into a fixed-size feature vector. 

A pivotal innovation in Fast R-CNN is its multi-task loss function. For each RoI, the 

network predicts a set of class probabilities and bounding box offsets. The Multi-task loss 𝐿 is 

defined as: 
𝐿(𝑝, 𝑢, 𝑡𝑢, 𝑣)  =  𝐿𝑐𝑙𝑠(𝑝, 𝑢) + 𝜆[𝑢 ≥ 1]𝐿𝑙𝑜𝑐(𝑡𝑢, 𝑣) 
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Where 𝑝 represents the predicted probability distribution over classes. 𝑢 denotes the ground-

truth class label. 𝑡𝑢 is the predicted bounding box offset for class 𝑢. 𝑣 stands for the ground-

truth bounding box offset. 𝐿𝑐𝑙𝑠 and 𝐿𝑙𝑜𝑐 are the Classification and Bounding box regression 

losses, respectively. 𝜆 is a balancing parameter. The term [𝑢 ≥ 1] ensures that the bounding 

box regression loss is only considered for RoIs containing an object [9]. This combined loss 

function allows for end-to-end training, optimizing both classification and bounding box 

regression simultaneously, leading to enhanced accuracy and efficiency. 

 

2.4.3. Faster R-CNN. Faster R-CNN's pivotal innovation is the Region Proposal Network 

(RPN), a Fully convolutional network that predicts Object bounds and Objectness scores 

simultaneously [10]. The RPN operates on the feature map obtained from the primary 

convolutional layers of the network. 

For each position in the feature map, the RPN predicts multiple Region proposals 

based on predefined Anchor boxes. These anchor boxes are of various scales and aspect ratios, 

providing a set of reference boxes over which the predictions are made. Given a feature map 

𝐹, for each anchor 𝐴 at position 𝑝, the RPN predicts: An objectness score 𝑜𝑝,𝐴 indicating the 

likelihood that the anchor contains an object. Four values 𝑡𝑝,𝐴 = (𝑡𝑥, 𝑡𝑦, 𝑡𝑤 , 𝑡ℎ) representing 

the predicted bounding box's offsets and scales relative to the anchor. the objectness score is 

given by: 

𝑜𝑝,𝐴 = 𝜎 (𝑓𝑜(𝐹𝑝)) 

Where 𝜎 is the sigmoid function and 𝑓𝑜  is the part of the RPN predicting objectness. The 

bounding box offsets and scales are predicted as: 

𝑡𝑝,𝐴 = 𝑓𝑡(𝐹𝑝) 

Where 𝑓𝑡 is the part of the RPN predicting box coordinates. 

The proposals generated by the RPN, based on these scores and offsets, are then 

processed further for object detection. The combined multi-task loss of the RPN considers 

both the Objectness loss (binary logistic regression) and the Bounding box regression loss. 

Faster R-CNN's introduction of the RPN streamlined the object detection pipeline, making it 

both efficient and accurate by generating high-quality region proposals. 

 

2.4.4. Mask R-CNN. A pioneering architecture in Instance segmentation ingeniously builds 

upon the principles of FCN and FPN to achieve unparalleled precision in delineating object 

boundaries [5,11,17]. FCN revolutionized semantic segmentation by enabling end-to-end 

pixel-wise classification, while FPN addressed the challenge of detecting objects across 

varying scales by generating multi-scale feature maps. Integrating these concepts, Mask R-

CNN employs an FPN backbone for robust feature extraction and appends an FCN-inspired 

branch for mask prediction. For each Region of Interest (RoI), this Mask branch predicts a 

Binary mask, capturing the object's spatial contours at the pixel level. The overall loss function 

𝐿 in Mask R-CNN is a combination of the Classification loss 𝐿𝑐𝑙𝑠, Bounding box regression 

loss 𝐿𝑏𝑜𝑥, and Mask binary classification Loss 𝐿𝑚𝑎𝑠𝑘: 

𝐿 = 𝐿𝑐𝑙𝑠 + 𝐿𝑏𝑜𝑥 + 𝐿𝑚𝑎𝑠𝑘 

This multi-task loss ensures that the network simultaneously optimizes object classification, 

bounding box regression, and mask prediction. By leveraging the strengths of FCN and FPN 

and optimizing this composite loss, Mask R-CNN sets a benchmark in instance segmentation, 

showcasing its versatility and effectiveness.  
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3. Related Works 
3.1. Previous studies 

In earlier studies, it's important to recognize that while initial models laid the foundation for 

the use of CNNs in classifying thoracic diseases, including cardiomegaly, they may have had 

limitations in the specificity and precision of cardiac border segmentation. For instance, 

Ferreira Junior et al. [22] achieved substantial results with their DenseNet model but possibly 

faced challenges in model generalization across diverse datasets, which is crucial for robust 

diagnostic tools. The study by Arunachalam and Bhavathankar [23] advanced the field by 

modifying DenseNet121 to improve classification performance, yet it may not have fully 

addressed the complexities of cardiac structure delineation, which is critical for accurate heart 

disease diagnosis. In contrast, the research by Pi-Yun Chen et al. [24] introduced an innovative 

high-dimensional multiple regression estimator, signaling a shift towards more sophisticated 

analytical tools that can rapidly screen and differentiate cardiomegaly from normal anatomical 

variations. This approach likely offers improvements in the automated and assistive aspects of 

chest X-ray analysis, addressing labor shortages and the need for more efficient diagnostic 

workflows. The study by C. Kim et al. [1] represents a significant advancement by not only 

focusing on cardiomegaly detection but also providing detailed cardiovascular border analysis. 

Their deep learning-based algorithm was specifically designed to diagnose and quantitatively 

evaluate valvular heart disease, presenting a highly reliable system with a strong correlation 

to echocardiographic measurements. This research likely overcomes many of the earlier 

limitations by delivering precise cardiac border segmentation and comprehensive diagnostic 

insights. 

The use of chest X-ray (CXR) imaging itself presents several advantages for cardiac 

border analysis. It is a non-invasive, cost-effective, and widely accessible method that allows 

for the rapid screening of cardiopulmonary diseases. Compared to more complex imaging 

modalities like cardiac CT or MRI, CXRs can be performed quickly and do not require 

extensive preparation or high operational costs, making them suitable for routine and follow-

up health examinations. Additionally, CXRs can reveal asymptomatic stages of diseases like 

cardiomegaly, which might not be detectable with other methods such as electrocardiography. 

In summary, while earlier studies laid the groundwork for the use of CNNs in thoracic 

disease classification, recent advancements have refined these approaches to offer more 

detailed cardiac analyses, addressing previous limitations and enhancing the overall utility of 

CXR imaging in cardiac diagnostics. 

 

3.2. Automated cardiovascular border analysis 

In the research presented herein, the application of deep learning techniques to medical image 

analysis explores new potentials for significantly enhancing diagnostic accuracy. A custom 

deep-learning methodology for the automatic analysis of cardiovascular borders in chest 

radiographs is introduced [1]. This methodology has been developed to improve the 

effectiveness of diagnosing valvular heart disease. 

Our team has rigorously trained and validated the model across diverse patient cohorts 

to ensure its robustness and generalizability. The findings demonstrate the potential of the 

proposed methodology to surpass traditional radiographic analysis in specific scenarios, 

thereby increasing diagnostic accuracy for heart disease. This underscores the innovative 

impact of deep learning in medical imaging, especially in tasks requiring precision and 

consistency. Moreover, the study emphasizes the need for integrating advanced computational 

techniques into clinical practice to enable more efficient diagnostic processes. Our current aim 

is to develop a CB_auto system specifically for Lateral CXRs. 

Consequently, following our preliminary research on frontal images, we explored the 

potential to deepen our understanding of heart disease from different perspectives by detecting 

and analyzing cardiac borders in lateral images.   
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4. Proposed Methods 

We propose methodologies aimed at enhancing and refining the detection and segmentation 

capabilities. This paper presents Figure 2 illustrating the architecture of the CB_auto system 

developed in our study. 

 
Figure 2. Overall procedure on CB detection in Lateral chest X-ray. 

 

4.1. Model development 

The input image is resized to a dimension of 1024 x 1024 with 3 channels. serving as the 

model’s input image. The operation of this model can be divided into three key stages. Firstly, 

for object detection and segmentation, the ResNet101 architecture is chosen as the backbone 

network and is initialized with pre-trained weights from the MSCOCO dataset. The ResNet 

model offers two variants in terms of size, namely ResNet50 and ResNet101. The chosen 

model facilitates the capture of even richer features. ResNet, a prevalent convolutional neural 

network structure in deep learning, mitigates the problem of vanishing gradients in deep 

networks through the integration of residual connections, thereby enabling efficient training. 

In the second stage, the extracted feature maps are passed through a RPN to predict object 

positions and classes. Leveraging this information, Region of Interest Align (RoIAlign) is 

employed to accurately extract regions of detected objects. Interposed within these stages, the 
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FPN is strategically employed to effectively recognize objects of varying sizes and generate 

robust feature representations. FPN adopts a pyramid structure to generate feature maps of 

diverse resolutions, enabling the model to adapt to objects of varying scales. Consequently, 

the Mask R-CNN framework excels in accurately detecting objects and performing pixel-level 

segmentation within input images, underscored by its formidable capabilities.  

 

4.2. Implementation details 

The parameters applied to proceed learning are as follows. We used a mini-batch size of 8 

images and a stochastic gradient descent (SGD) optimizer for 100 epochs was applied with an 

initial learning rate of 0.001with weight decay, where the learning rate drops by a factor of 0.1 

every 25 epochs. The learning momentum is used 0.9. Anchors per image of RPN network 

used 256. The number of ROIs per image to feed to Classifier and Mask heads used 256. Due 

to the nature of multiple classes, Cross entropy was used as a loss function. Model learning 

required approximately 1 to 2 hours per epoch and approximately 5 to 6 days of total time 

spent. The inference time of CB detection required approximately 2 to 3 seconds per image. 

The algorithm was assessed by using Computer specification; Intel Xeon®  Silver 4214R CPU 

@ 2.40GHz 49GB RAM, NVIDIA®  Quadro RTX 8000 with 49GB, Ubuntu 22.04.2 LTS OS. 

 

4.3. Pre-Processing: Image processing and Data augmentation 

To enhance the image quality conveyed to the model, a preprocessing procedure is applied to 

the input images. The process involves calculating the 95% confidence interval from the 

histogram distribution of the image and then clipping pixel values to predefined lower and 

upper bounds. This effectively mitigates the impact of outliers or extreme values, resulting in 

clipped min-max normalization of the image data. Next, Contrast limited adaptive histogram 

equalization (CLAHE) is employed to enhance contrast and finer details within the image. 

Parameters such as an 8 x 8 tile size and a clipping limit of 8.0 are experimentally selected 

from various candidates. As a result, the resultant images showcase improved features and a 

balanced brightness distribution. This aids in visualizing previously concealed subtle patterns 

within the original image, now refined.  Building on this foundation, a final step involves 

geometric adjustments to maintain the aspect ratio of the image. The absolute difference 

between the width and height values is computed, and zero padding is added to the smaller 

dimension based on this calculated absolute difference. This ensures the preservation of the 

image’s aspect ratio as it is resized to 1024 x 1024, conforming to the model’s input 

specifications. This integration not only enhances the structural accuracy of the image but also 

prepares it in an optimally suitable form for the model’s interpretative capabilities. 

In the data augmentation process, a series of techniques were strategically employed 

to enhance the diversity and robustness of the training dataset. Specifically, Gaussian blur was 

applied with a sigma parameter set to the range of (0.0, 1.5) to introduce subtle blurring effects. 

To incorporate controlled noise variations, Adaptive gaussian noise was utilized with a scale 

parameter of (0, 0.1 * 255) and was set to be consistent across all channels (per_channel=False). 

To further augment the dataset's spatial diversity, Horizontal flip was incorporated for 

mirroring, while Affine transformations were judiciously applied, encompassing rotations 

between (-15, 15) degrees, scaling adjustments in both x and y axes ranging from 0.8 to 1.2, 

and translational shifts spanning from -1.5 to 1.5 in both dimensions. Notably, to ensure a 

balanced and varied application of these techniques, two random augmentations were selected 

and applied to each mini-batch during the training phase. The applied augmentation is 

visualized in Figure 3.
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Figure 3. Augmentation techniques applied to the model training of the CB_auto system.
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4.4. Post-Processing: Rule-based algorithms 

As part of our post-processing strategy, we applied two rule-based algorithms. The first 

algorithm focuses on cases where there can only be one instance of the CB class within an 

image. Following this rule, if duplicate detections occur within the same class, we retain the 

result with the highest Confidence score and discard the other duplicates. Applying this post-

processing step reduces false positives and yields more accurate results from Bounding box 

regression information. The pseudo-code is articulated in Algorithm 1. 

Algorithm1: Post-Processing for Duplicate detections 

Input List of detected objects D 

Output Updated list of detected objects D' 

Initialize an empty list D' 

for each class c do 

    Initialize a temporary list T 

    for each object o in D do 

         if o's class is c then 

            Add o to T 

        end for 

        if length of T > 1 then 

            Find object o_max with the highest confidence score in T 

           Add o_max to D' 

       else 

           Add all objects in T to D' 

       end if 

end for 

return D' 

 

The second algorithm addresses instances where extracted CB masks lack consecutive 

information. This situation can arise due to insufficient contrast or brightness quality along the 

heart’s borders in the image. To address this, we initially utilize Connected-component 

analysis (CCA) to determine whether the mask contains consecutive information. In this 

assessment, pixel connectivity is evaluated in a 2D mask using the 8-adjacency criteria. If the 

mask is found to be non-consecutive, we apply a fitting algorithm for n-degree equations to 

enhance segmentation performance.  The fitting of the Nth-degree polynomial function fitting 

can be achieved using the “polyfit” and “polyval” functions from the Numpy library. Before 

applying the Fitting algorithm, we obtain the coordinates of the centerline of the mask. The 

definition of the centerline coordinates is either the average value of y for the same x value or 

the average value of x for the same y value among the coordinates where the mask has pixels. 

The better representation is predefined for each class. Afterward, we apply the fitting algorithm. 

The operational sequence can be explained in three main steps. First, the equation for the X, 

Y coordinates of the Centerline values is obtained using the “polyfit” function. The 

information of the axis that can better represent consecutive data is used as input, while the 

values from the other axis are used as output. Equations are generated from quadratic to fifth-

degree equations, and among the generated equations, the one with the lowest Mean squared 

error (MSE) loss is selected. Next, the “polyval” function is used to calculate the values of the 

other axis based on the input axis values. It’s important that the values of the input axis used 

in this step should be continuous from the beginning to the end. This means that were 
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disconnected should be included as input. Finally, the “polylines” function provided by the 

OpenCV library is used to fit the CB mask, allowing it to follow the calculated Polynomial 

centerline equation. The pseudo-code is articulated in Algorithm 2. 

Algorithm2: Post-Processing for Enhance segmentation with Polynomial fitting 

Input CB mask M 

Output Enhanced CB mask M' 

Initialize an empty mask M' 

Perform CCA on M to check for consecutive information 

if mask M is found to be non-consecutive then 

    Obtain the coordinates of the centerline of mask M 

    Predefine the better representation axis for each class 

    for degree n from 2 to 5 do 

        Fit a polynomial of degree n to the centerline coordinates using numpy.polyfit 

        Calculate MSE loss for the fitted polynomial 

    end for 

Select the polynomial with the lowest MSE loss 

Use numpy polyval to calculate the values of the other axis based on the selected polynomial 

Use Opencv.polylines to fit the CB mask M to follow the calculated polynomial centerline equation, update M' 

end if 

return enhanced CB mask M' 

 

4.5. Statistical analysis 

For model performance evaluation, the detection or segmentation performance for all Total 

CBs was evaluated. The detection performance was evaluated using True Positive (TP), False 

Positive (FP), False Negative (FN), Precision, Recall, F1 score, and False Positive Ratio (FPR). 

The segmentation performance was assessed using the Jaccard Coefficient and Dice Similarity 

Coefficient (DSC). 

The CB parameters, using CB_auto and CB_hand, were calculated at 1, 2, 3, 4, and 5 cm above 

the intersection point of the diaphragm and cardiac borderline. This CB measure is visualized 

in Figure 5. The distances from the cardiac to the spine borderline were measured at these 

points. The reliability of the CB parameters determined by CB_auto was evaluated using the 

Intraclass correlation coefficient (ICC) and 95% limits of agreement by Bland-Altman analysis. 

To evaluate the difference between CB_auto and CB_hand, the Absolute error was calculated 

using the following formula: |(CB_auto)-(CB_hand)|. The differences in CB parameters 

determined by CB_auto or CB_hand between normal controls and abnormal groups were 

evaluated using paired t-tests or ANOVA. A p-value of less than 0.05 was considered 

statistically significant. 

Characteristics of the study population were described using means, standard deviations, 

medians, and Interquartile ranges (IQRs) for continuous variables and absolute (n) and relative 

(%) frequencies for categorical ones. additionally, modeling strategies were considered for the 

construction of the charts called Generalized Additive Models for Location, Scale, and Shape 

(GAMLSS), which is available in the GAMLSS package in R software, was used. GAMLSS 

are distributional regression models, where all the parameters of the assumed distribution for 

the response can be modeled as functions of the explanatory variables. The models are 

appropriate when the focus is not only on the mean (or location) of the distribution but possibly 

other parts of the distribution like variance, quantiles and skewness and kurtosis or tails. We 
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aimed to gain a comprehensive understanding of the characteristics and patterns of CB 

measure by fitting the Box-Cox 𝑡 distribution (BCTo) model. To achieve this, we utilized 

Quantile-Quantile (QQ) plots for each percentile (1st, 2.5th, 5th, 10th, 20th, 30th, 50th, 70th, 80th, 

90th, 95th, 97.5th, 99th) providing an intuitive visualization of the distribution and variations in 

CB measure. Finally, to rigorously validate our findings and assess their significance, z-scores 

were computed for comparative analysis across diverse cohorts. 

 
Figure 4. Visualization of Pre-Processed images in Lateral CXR images. 

 

 
Figure 5. Visualization of Post-Processing according to Rule-based algorithms. The figure 

delineates the before and after scenarios using PreOP and PostOP cases from the same patient.  
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5. Internal Results  

We conducted four experiments for our study. Firstly, in the Pre-Processing stage before 

model input, a comparative experiment was performed using the histogram of images to 

improve the contrast of the images. Secondly, a comparative experiment of well-known CNN 

models was conducted for the Encoder backbone network of the model. Thirdly, we propose 

to enhance detection and segmentation performance by applying Rule-based algorithms for 

Post-Processing, utilizing the result values obtained from the model output. Lastly, image 

analysis is performed using the Proposed metric values. Our experiments were conducted in 

phases: Pre-Processing, Model backbone, Post-Processing, and Quantitative image analysis.  

For all the experiments, pre-trained weights from the MSCOCO dataset were 

employed. All the results were obtained for model evaluation parameters with a confidence 

score greater than 0, and the evaluation was carried out with Bounding Box (BBox) detection 

Intersection over Union (IoU) values greater than 0.05 between Ground truth and Prediction. 

In the Pre-Processing experiment, ResNet101 was utilized as the Backbone network for Mask 

R-CNN. 

The two terms carry the following meanings: CB_auto represents results obtained 

using a software algorithm based on deep learning. On the other hand, CB_hand corresponds 

to labeling results drawn by expert radiologists. 

 

5.1. Datasets. For the development of this study, we utilized a total of 2,998 Lateral chest X-

ray (CXR) images, spanning from 2002 to 2020. These images were sourced from Asan 

Medical Center. The dataset comprises a mix of normal CXRs and those involving valve 

prosthetics, both pre- and post-operation. In terms of dataset distribution, for training purposes, 

we included 793 Normal, 630 Pre-Operation (PreOP), and 952 Post-Operation (PostOP) 

images. For validation and testing, the dataset was composed of 199 normal, 212 PreOP, and 

212 PostOP images. Notably, the valve prosthetic images in the validation and test sets 

consisted of paired patient images, offering a comprehensive view of pre- and post-operation 

states. This dataset enabled us to train our model to recognize and understand the diversity in 

heart size and shape. Furthermore, our objective was to extract specific measurements related 

to the Heart from CXR images.  To achieve this, we focused on detecting various anatomical 

lines, including the cardiac, spine, posterior wall, diaphragm, anterior cardiac, and sternum. 

The image labeling process was carried out with the assistance of a senior radiologist, utilizing 

the ImageJ labeling tool. 

 

5.2. Pre-Processing for CB detection of Lateral CXR images. Histogram Equalization (HE) 

and CLAHE share a commonality in utilizing the histogram of images to improve contrast. 

Initially, HE adjusts the distribution of pixel intensities to enhance the contrast between darker 

and lighter regions. Subsequently, CLAHE divides the image into small tiles and applies HE 

independently to each tile. While HE applies uniform adjustments across the entire image, 

CLAHE operates independently on each tile. Examples of image processing using each 

technique are illustrated in Figure 3, and the performance outcomes are presented in Table 1. 

Consequently, prioritizing the False Negative and Recall performance, we were able to select 

the result values of CLAHE (parameter settings: clip 8, tile 8x8) and applied them uniformly 

in subsequent experiments.  
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Total 

CBs 
TP FP FN Precision Recall F1 score FPR✝ 

w/o Pre-Processing 3738 3732 9 6 99.76 99.84 99.80 1.28 

 w HE 3738 3731 11 7 99.71 99.81 99.76 1.77 

w 

CLAHE 

clip 4 

tile 8 
3738 3729 9 9 99.76 99.76 99.76 1.44 

clip 4 

tile 16 
3738 3731 7 7 99.81 99.81 99.80 1.12 

clip 8 

tile 8 
3738 3734 11 4 99.71 99.89 99.80 1.77 

clip 8 

tile 16 
3738 3728 7 10 99.81 99.73 99.77 1.12 

Table 1. Detection performance based on each Pre-Processing technique. Herein, TP denotes 

True Positive, FP signifies False Positive, FN stands for False Negative, and FPR✝ represents 

the False Positive Ratio on a Per-Patient basis. The metrics Precision, Recall, F1 Score, and 

FPR have been expressed by multiplying by 100 for better representation and clarity. This 

configuration was maintained consistently in subsequent experiments.  

 

5.3. Backbone network of Mask R-CNN. The backbone network serves as the Encoder 

segment of the model, tasked with extracting feature values from the input images. 

Accordingly, we selected commonly utilized backbone networks [14, 18, 19] for a 

comparative examination. The performance outcomes are tabulated in Table 2. Based on the 

results, we were able to select the ResNet101, which was then uniformly applied in the ensuing 

experiments. 

Backbone 

Network 

Total 

CBs 
TP FP FN Precision Recall F1 score FPR✝ 

ResNet50 3738 3721 5 17 99.87 99.55 99.71 0.80 

ResNet101 3738 3734 11 4 99.71 99.89 99.80 1.77 

DenseNet121* 3738 3709 4 29 99.89 99.22 99.56 0.64 

EfficientNet-B3 3738 3642 16 96 99.56 97.43 98.49 2.57 

Table 2. Detection performance according to the Backbone network of the Mask R-CNN 

framework. The growth rate of the final dense layer's block in DenseNet121* has been 

adjusted from 16 to 48 to achieve channel size matching.  

 

5.4. Post-Processing for Enhanced performance of CB detection. The configuration 

incorporating CLAHE (clip 8, tile 8x8) along with the ResNet101 backbone network was 

employed. In this section, two Rule-based algorithms are elucidated. Firstly, a method is 

delineated to bolster detection performance by retaining the detection with the highest 

Confidence score within a specific class while discarding the others, in scenarios where 
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multiple detections transpire. Secondly, in instances where the mask values in the imagery are 

discontinuous, a method is proposed to augment segmentation performance using Nth-degree 

polynomial function fitting. Detailed discussions on these methodologies are furnished in 

Section 3.5. The result is visualized in Figure 4 and Table 3. 

 
Total  

CBs 

Detection Segmentation 

TP FP FN Precision Recall 
F1 

score 
FPR✝ Jaccard DSC 

w/o Post-

Processing  
3738 3734 11 4 99.71 99.89 99.80 1.77 32.73 46.16 

w Highest 

Confidence score 
3738 3734 3 4 99.92 99.89 99.91 0.48 33.06 46.55 

w Highest 

Confidence score + 

Nth-degree 

polynomial 

function fitting 

3738 3734 3 4 99.92 99.89 99.91 0.48 35.32 49.35 

Table 3. Performance Evaluation of Detection and Segmentation according to Post-Processing 

as Per Rule-based algorithms. 

 

5.5. Reliability of CB_auto. In terms of accordance with CB_hand measurements, the CB 

measure of 4cm’s cardiac to spine borderline point above diaphragm and cardiac borderline 

delineated by CB_auto yielded excellent reliability (ICC>0.95) in the development validation 

group(Normal: 1cm 0.89, 2cm 0.95, 3cm 0.70, 4cm 0.97, 5cm 0.88; PreOP: 1cm 0.97, 2cm 

0.43, 3cm 0.94, 4cm 0.99, 5cm 0.97; PostOP: 1cm 0.95, 2cm 0.76, 3cm 0.91, 4cm 0.95, 5cm 

0.91)(all p < 0.05). 

 
Figure 6. Visualization of Example CB indicator measurement in Lateral CXR images. 

 

 1cm 2cm 3cm 4cm 5cm 

Normal 4.9±3.5 4.7±3.3 4.0±3.1 3.5±2.8 3.2±2.7 

ValveProsthetic(PreOP) 4.5±4.1 4.3±3.8 3.8±3.5 3.5±3.3 3.5±3.4 

ValveProsthetic(PostOP) 4.6±5.0 4.5±5.0 4.4±5.1 4.5±5.0 4.7±4.8 

Table 4. Mean and Standard deviation of Absolute error measurement of Cardiovascular 

border parameter between CB_auto and CB_hand. 
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On Bland-Altman Plot analysis, the 95% limits of agreement for the CB measure of 4cm’s 

cardiac to spine borderline was Normal -2.46±3.73, PreOP -1.64±4.53 and, PostOP -0.81±6.72. 

The Bland-Altman plots are visualized in Figure 6. The difference between CB_auto and 

CB_hand as defined by the Absolute error was less than 4.9. The AE of CB measure is 

represented by the Mean and Standard deviation in Table 4. In the validation dataset of VHD 

and the Public dataset, the difference between CB_auto and CB_hand was not calculated due 

to the absence of CB_hand. 

 
Figure 7. Bland-Altman of 4cm point indicator value above the diaphragm and cardiac 

borderline intersection among Normal, PreOP and, PostOP. 

 

When categorizing CBs into Concordant and Discordant situations, it was possible to visualize 

them as shown in Figure 7. Typically, concordant results between CB_hand and CB_auto are 

demonstrated. However, in cases where the contrast of certain images is low or when there is 

overlap with other borderlines, discordant results were observed, especially in the presence of 

artifacts such as device. In discordant situations, it is challenging to locate the intersection 

point of the diaphragm and cardiac borderline. Consequently, the measurement of CB becomes 

unattainable, necessitating the proposal of diverse and robust CB measures for such cases. 

In the success rate of the development dataset, all points of CB measure were 

successfully drawn: Normal 173(86.9%), PreOP 175(82.5%), PostOP 160(75.5%). 
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Figure 8. Examples of 

concordant and discordant 

results between CB_hand 

and CB_auto. a b c 

Concordant case between 

human measurement and the 

deep learning algorithm. The 

cardiovascular borders (CBs) 

drawn by the deep learning 

algorithm are almost same as 

those drawn manually. b c 

the two images belong to the 

same patient. c e Case 

showing a little discordant 

result for the anterior cardiac. 

d f Discordant case between 

human measurement and the 

deep learning algorithm, 

especially in the drawing of 

the anterior cardiac, cardiac. 

This case is quite difficult 

even for an observer because 

the identification of each CB 

is not easy due to the 

decreased overall density of 

the cardiac border. 
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6. External Results  

The comparisons among the Validation datasets, Mean and Standard deviation of CB measure 

calculated by CB_auto among Normal, Aortic valve disease (AD), Mitral valve disease (MD), 

Pulmonary valve disease (PD), and Tricuspid valve disease (TD), which are presented in Table 

5. Figure 8 illustrates the plotted average CB measure values, while the y-axis indicates points 

1, 2, 3, 4, and, 5cm above the intersection of the diaphragm and cardiac borderline. This plot 

allows the visualization of the average cardiac borderline for each validation dataset, 

facilitating the observation of differences in CB measure average values. 

 
Figure 9. The CB measure plot of CB measures (1, 2, 3, 4, 5 cm points) using CB_auto. 

 

6.1. Datasets. The external large dataset validated a total of 32,875 Normal CXR images and 

a total of 6,957 VHD CXR images, with 2,564 images related to Aortic valve disease (AD), 

3,644 images related to Mitral valve disease (MD), 64 images related to Pulmonary valve 

disease (PD), and 685 images related to Tricuspid valve disease (TD). 

The external public dataset, CheXpert [20], provided a collection of images, 402 from 

a normal cardiac condition group and 284 from an abnormal cardiac condition group, for 

analysis. The Normal group comprised subjects with no Lung Lesion and either no Enlarged 

Cardiom and Cardiomegaly or no mention of these conditions in the radiology reports. 

Conversely, the abnormal group included subjects with either no Lung Lesion or no mention 

of it in the radiology reports, but with the presence of Enlarged Cardiom and Cardiomegaly. 

 

6.2. CB measurement among the normal control and abnormal groups.  

The mean CB measure’s Absolute error is calculated between normal control and abnormal 

groups in all cases (vs. AD: 1cm 6.1mm, 2cm 5.4mm, 3cm 4.9mm, 4cm 4.5mm, 5cm 4.1mm; 

vs. MD: 1cm 8.9mm, 2cm 8.8mm, 3cm 8.9mm, 4cm 8.9mm, 5cm 8.9mm; vs. PD: 1cm 6.5mm, 

2cm 6.2mm, 3cm 5.8mm, 4cm 6.2mm, 5cm 6.1mm; vs. TD: 1cm 11.3mm, 2cm 10.9mm, 3cm 

10.6mm, 4cm 10.4mm, 5cm 10.3mm). normal control measured larger than the abnormal 

groups (all p < 0.05). At the 4cm point, where the ICC was high, significant differences were 

observed in the following order when distinguishing between normal control and 

abnormalities: TD, MD, PD, and AD. The corresponding Absolute error measurement was as 

follows: TD 12.7mm, MD 11.2mm, PD 8.5mm and, AD 6.8mm. At normal and abnormal 

condition of the public dataset, normal control had larger CB measurements than abnormal 

group (p < 0.05). Due to the absence of unit vector values in the public dataset, a direct 

comparison with other validation datasets could not be conducted. 

In the success rate of validation and public dataset, all points of CB measure were 

successfully drawn Normal 30131 (91.6%), AD 2128 (83.0%), MD 3080 (84.5%), PD 54 

(84.4%), TD 532 (77.7%), Normal and Abnormal of the public dataset are 317 (78.9%) and 
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192 (67.6%). 
 1cm 2cm 3cm 4cm 5cm 

Normal 33.9 ± 12.8 28.2 ± 11.7 24.2 ± 10.9 21.6 ± 10.3 20.1 ± 9.8 

Aortic Valve Disease (AD) 27.8 ± 14.2 22.8 ± 13.1 19.3 ± 12.3 17.1 ± 11.7 16.0 ± 11.3 

Mitral Valve Disease (MD) 25.0 ± 12.9 19.4 ± 11.8 15.3 ± 11.0 12.7 ± 10.5 11.2 ± 10.2 

Pulmonary Valve Disease (PD) 27.4 ± 12.9 22.0 ± 11.6 18.4 ± 10.4 15.4 ± 10.0 14.0 ± 9.7 

Tricuspid Valve Disease (TD) 22.6 ± 13.0 17.3 ± 12.0 13.6 ± 11.4 11.2 ± 10.8 9.8 ± 10.6 

Table 5. Mean and Standard deviation of CB measures (1, 2, 3, 4, 5 cm points) using CB_auto. 

 

For the CB measure values measured at the 4cm point under normal controls, the Mean and 

Standard deviation by gender are as follows: for males, it is 25.5±9.7, and for females, it is 

16.7±8.9. The median (IQR) is 25.5 (18.9-31.9) for males and 16.7 (10.7-22.6) for females. 

These results suggest that the reference values for CB measure in females are generally lower 

than in males. CB measure values were analyzed by Gender (male, female) and Age groups 

(under 39, 40-59, 60-79, 80 and above). For males, the Mean ± Standard deviation of CB 

measure values was as follows: under 39 years, 24.6±9.7; 40-59 years, 25.6±9.4; 60-79 years, 

25.7±10.3; and 80 years and above, 24.5±12.9. For females, these values were: under 39 years, 

17.2±8.5; 40-59 years, 16.8±8.7; 60-79 years, 16.4±9.4; and 80 years and above, 18.2±10.8. 

The median (IQR) values for males were: under 39 years, 24.9 (18.5-30.9); 40-59 years, 25.7 

(19.1-31.9); 60-79 years, 25.5 (18.5-32.5); and 80 years and above, 23.8 (14.8-33.7). For 

females, these were: under 39 years, 17.7 (12.3-23.0); 40-59 years, 16.9 (10.9-22.8); 60-79 

years, 16.1 (9.9-22.4); and 80 years and above, 17.7 (8.6-26.3). These findings indicate that 

CB measures reference values are generally lower in females across all age groups when 

compared to males. The reference values for CB measure by Gender and Age under normal 

controls are detailed in Table 6. 

 
male female 

-39 year 40-59 year 60-79 year 80- year -39 year 40-59 year 60-79 year 80- year 

Baseline Characteristics: mean ± standard deviation 

Age, years 52.7 ± 10.7 53.3 ± 10.3 

gender, n(%) 
1825 

(10.7) 

11053 

(65.1) 

4008 

(23.6) 

101 

(0.6) 

1176 

(8.7) 

8979 

(66.3) 

3306 

(24.4) 

80 

(0.6) 

CB measures: mean ± standard deviation 

1cm 38.8±12.4 39.2±11.9 38.6±12.7 37.0±14.5 29.2±10.1 27.6±10.1 26.4±10.9 27.8±13.1 

2cn 32.5±11.3 33.1±10.8 32.8±11.7 31.4±13.8 23.7±9.4 22.5±9.5 21.5±10.2 22.9±12.1 

3cn 27.8±10.4 28.6±10.0 28.5±10.9 27.3±13.2 19.7±8.9 18.9±9.1 18.3±9.8 19.7±11.4 

4cm 24.6±9.7 25.6±9.4 25.7±10.3 24.5±12.9 17.2±8.5 16.8±8.7 16.4±9.4 18.2±10.8 

5cn 22.7±9.1 23.7±9.0 23.9±9.9 22.8±12.6 15.9±8.1 15.7±8.5 15.5±9.2 17.2±9.9 

CB measures: median(IQR ranges) 

1cm 
38.1 

(30.4 - 46.7) 

38.9 

(31.0 - 46.9) 

38.3 

(29.8 - 46.5) 

36.8 

(27.0 - 46.2) 

29.2 

(22.6 - 35.5) 

27.4 

(21.0 - 34.2) 

26.1 

(18.9 - 33.7) 

28.0 

(17.6 - 38.1) 

2cm 
31.9 

(24.7 - 39.9) 

32.9 

(25.7 - 40.3) 

32.5 

(24.7 - 40.3) 

31.6 

(20.0 - 41.0) 

23.7 

(17.9 - 29.8) 

22.4 

(16.1 - 28.8) 

21.2 

(14.4 - 28.2) 

23.2 

(13.4 - 33.2) 

3cm 
27.6 

(21.0 - 34.8) 

28.6 

(21.6 - 35.2) 

28.4 

(20.8 - 35.8) 

26.7 

(16.8 - 37.0) 

20.0 

(14.2 - 25.7) 

18.9 

(12.8 - 25.1) 

18.1 

(11.5 - 24.7) 

20.2 

(9.9 - 28.3) 

4cm 
24.9 

(18.5 - 30.9) 

25.7 

(19.1 - 31.9) 

25.5 

(18.5 - 32.5) 

23.8 

(14.8 - 33.7) 

17.7 

(12.3 - 23.0) 

16.9 

(10.9 - 22.8) 

16.1 

(9.9 - 22.4) 

17.7 

(8.6 - 26.3) 

5cm 
23.0 

(17.1 - 28.9) 

23.9 

(17.9 - 29.8) 

23.9 

(17.1 - 30.4) 

21.4 

(13.0 - 31.1) 

16.5 

(11.0 - 21.4) 

16.0 

(10.1 - 21.4) 

15.4 

(9.1 - 21.4) 

16.6 

(8.7 - 24.5) 

Table 6. Normal reference value according to gender and age of cardiovascular borders in 

chest X-ray. 

 

In the CB measures, the value at the 4cm point, which showed the highest reliability, was used 

as a basis for comparing normal controls and abnormal groups. Firstly, distributions that can 
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be visually compared are visualized in Figure 10. Additionally, Table 5 presents the Mean and 

Standard deviation of the distributions for each category in the validation dataset. 

 
Figure 10. The Comparison distribution of normal control vs abnormal groups. 

 

Then, for the analysis using Generalized Additive Models for Location, Scale, and Shape 

(GAMLSS), the CB measure values were subjected to a Shift transformation of +40mm. After 

fitting the model with these adjusted values, statistical analysis was conducted on the restored 

values. For comparative analysis, the CB measure values from the normal control group in the 

validation dataset were divided by gender (male, female) and fitted to the model. The Quantile-

Quantile (QQ) plots for each percentile (1st, 2.5th, 5th, 10th, 20th, 30th, 50th, 70th, 80th, 90th, 

95th, 97.5th, 99th) of this model are visualized in Figure 11. According to the percentile ranges, 

the distribution among all males was 4,561 (27.2%) for less than -30%, 7,130 (42.4%) for 30-

70%, and 5,115 (30.4%) for more than 70%. For all females, the distribution was 3,906 (29.3%) 

for less than -30%, 5,561 (41.7%) for 30-70%, and 3,858 (29.0%) for more than 70%. 
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Figure 11. Normal Quantile-Quantile (QQ) plots of the fitted model using GAMLSS library. 

 

Using the fitted Normal distribution model, the z-scores for percentile ranges were calculated. 

For the entire male population, the median (IQRs) was 0.01 (-0.69 to +0.68), for the average 

below -30% range it was -1.09 (-1.49 to -0.84), for the 30-70% range it was -0.04 (-0.31 to 

+0.24), and for above 70% it was 1.02 (+0.75 to +1.40). For the entire female population, the 

median (IQRs) was 0.01 (-0.67 to +0.68), for the average below -30% range it was -1.08 (-

1.49 to -0.77), for the 30-70% range it was 0.01 (-0.25 to +0.29), and for above 70% it was 

1.05 (+0.78 to +1.44). 

The z-scores for the defined percentile ranges of abnormal groups are as follows, 

presented as median (IQRs). For AD, the overall male population showed -0.58 (-1.51 to 

+0.29), average below -30% was -1.34 (-1.81 to -0.94), 30-70% was -0.07 (-0.26 to +0.23), 

and above 70% was 0.90 (+0.68 to +1.38). The overall female population showed -0.33(-1.12 

to +0.42), average below -30% was -1.20 (-1.66 to -0.88), 30-70% was -0.05 (-0.30 to +0.19), 

and above 70% was 1.05 (+0.75 to +1.52). For MD, the overall male population was -0.90(-

1.62 to -0.10), average below -30% was -1.40 (-1.99 to -1.00), 30-70% was -0.05 (-0.32 to -

0.20), and above 70% was 1.05 (+0.77 to +1.47). The overall female population was -0.91(-

1.57 to -0.22), average below -30% was -1.39 (-1.82 to -0.95), 30-70% was -0.12 (-0.34 to 

+0.14), and above 70% was 0.99 (+0.74 to +1.32). For PD, the overall male population was -

0.17(-1.03 to +0.21), average below -30% was -1.40 (-1.53 to +1.17), 30-70% was -0.04 (-

0.21 to +0.21), and above 70% was 0.89 (+0.87 to +0.91). The overall female population was 

-0.80(-1.57 to +0.13), average below -30% was -1.57 (-1.80 to -0.94), 30-70% was -0.05 (-

0.30 to +0.17), and above 70% was 1.43 (+1.30 to +1.61). For TD, the overall male population 

was -1.09(-1.78 to +0.30), average below -30% was -1.57 (-2.06 to -1.16), 30-70% was -0.19 

(-0.37 to +0.13), and above 70% was 0.84 (+0.63 to +1.16). The overall female population 

was -0.90(-1.47 to -0.00), average below -30% was -1.36 (-1.82 to -0.99), 30-70% was -0.89 

(-1.43 to -0.01), and above 70% was 0.92 (+0.73 to +1.10). It was observed that the z-score 

values in the abnormal groups were lower compared to the normal control.  



23 

 

7. Discussion 

We developed a novel deep learning-driven CB_auto system and validated it using Datasets 

from the Internal datasets using a manually generated reference standard (CB_hand) and, 

studied external datasets. The major findings of this study are as follows: (1) The development 

of software for CB detection involved three fundamental stages. Firstly, Pre-Processing was 

conducted to enhance image contrast. Secondly, an efficient model backbone network was 

selected and applied for feature extraction. Lastly, Rule-based algorithms were employed as a 

post-processing step to enhance overall performance. Ultimately, this comprehensive 

approach resulted in the successful development of software capable of superior CB detection 

in Lateral CXR images; (2) CB_auto exhibited high reliability for determining CB 

measurement at 4cm point above between diaphragm and cardiac (ICC range, 0.95-0.99) and 

yielded narrow 95% limits of agreement (-2.46±3.73mm for the Normal, -1.64±4.53 for the 

PreOP, -0.81±6.72 for the PostOP); (3) the CB measure, normal control measures larger than 

abnormal groups (all p < 0.05). 

We consider the contributions of this study to be as follows: First, if deep learning 

can perform automatic and comprehensive CB analysis, it would be possible to establish sex- 

and age-specific CB reference values and to more objectively describe CB abnormalities 

according to the pattern of cardiovascular disease. Second, for experts, understanding the 

cardiac border in CXR images is facilitated not only by the frontal view but also by integrating 

lateral images to provide additional visual information. Third, understanding the cardiac 

border in CXR images is facilitated not only by the frontal view but also by integrating lateral 

images to provide additional visual information. 
In our study, although the difference between CB_auto and CB_hand as defined by 

the Absolute error was less than 4.9mm for all points. The accurate representation of changes 

in cardiac enlargement through the variation between PreOP and PostOP of the valve 

prosthetic images was not achieved. Therefore, to apply this deep learning-based algorithm to 

actual clinical practice, further optimization is still necessary to reduce this difference.  
This study had several limitations. First, Accurate and diverse CB measures that can 

precisely represent the borders of the heart need to be proposed and validated. Therefore, this 

CB measurement should be secured in future studies in more detail. Second, there is currently 

insufficient correlation information between CB parameters and Echocardiography (ECHO) 

parameters. We plan to conduct further research on this matter. Third, Sufficient analysis has 

not been conducted on external datasets and a large, diverse cohort of various diseases. Some 

Lateral CXR images present challenges in accurately distinguishing the Cardiac border due to 

either the presence of diseases or lower image quality. Removing such types of evaluations 

can lead to improved overall performance. Finally, the possibility of human error cannot be 

excluded in this study setting. Since some parameters of the CBs, overlap with several 

anatomical structures, line delineation is difficult in some cases although an expert draws the 

line. Moreover, since the CBs are drawn with free curves rather than straight lines, different 

experts may draw the CBs differently even if they intend to delineate the same structure. In 

these cases, the line depicted by the deep learning algorithm cannot be determined to be wrong. 

If different experts draw the same structure, there is a possibility that it might have been drawn 

differently. Therefore, if the deep learning algorithm provides consistent results for parts that 

are inconsistent among humans, it is expected to reduce human error from the point of view 

of use. 
Our proposed algorithm and image analysis results contribute significantly to the 

assessment and analysis of the severity of cardiovascular diseases by measuring CB in CXR 

images, aiding in image interpretation and analysis. 
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8. Conclusion 

Our goal was to develop the CB_auto system, and towards this end, we have successfully 

created an algorithm that automatically detects borders in Lateral Images. Furthermore, our 

deep learning-driven CB_auto system provided high reliability in terms of CB Measurement. 

We conducted a quantitative analysis of images using the proposed CB measurement method, 

which can demonstrate its potential for effective application in clinical settings. Finally, this 

study not only introduces a novel CB measurement method but also seeks to establish normal 

reference values for cardiovascular borders on Lateral CXR images by applying this method 

to a large dataset. Furthermore, the study endeavors to provide a comprehensive comparative 

analysis by contrasting these normal reference value with abnormal groups. 
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국문 요약 

Cardiovascular border(CB) 분석은 흉부 엑스레이를 이용하여 심장 질환의 

감지 및 심각도를 평가하는 기본 방법이다. 이 연구의 목적은 옆면 흉부 

엑스레이의 정량적인 영상 분석을 위한 딥러닝 기반 CB 자동 분석 소프트웨어 

알고리즘을 개발하고 검증하는 것이다.  Lateral CXR 영상에서 CB 검출을 

위해, 우리는 Mask R-CNN 을 이용했다. 이 모델은 정확한 객체 탐지 및 

분할을 수행할 수 있는 알고리즘이다. 이 모델을 이용한 합리적인 전처리, 

후처리 알고리즘을 이용하여 더 정확한 결과를 얻기 위한 결과를 제안하며, 

영상의 정량적인 분석을 위한 지표를 제안한다. 개발된 모델의 CB 검출 성능은 

정밀도 99.92, 재현율 99.89, F1 점수 99.91, 환자 당 거짓 양성률 0.48 결과로 

평가되었다. 제안된 CB measure 지표를 이용하여 CB_auto 와 CB_hand 간의 

신뢰성을 확인하기 위해 개발 검증 데이터셋을 사용했습니다. 제안된 심장 

보더 척도에서 4cm 지점은 가장 높은 급내상관계수 (0.95-0.99) 를 

보였습니다. 심장 보더 척도 중에서 4cm 지점에서 정상 대조군과 비정상 집단 

간의 CB measure 의 절댓값 차이를 비교한 결과 삼첨판막질환 12.7mm, 

승모판막질환 11.2mm, 폐동맥판막질환 8.5mm 및 대동맥판막질환 6.8mm 로 

상당한 차이가 있었습니다. CB measure 성공적으로 측정한 것은 정상 대조군 

91.6%, 대동맥판막질환 83.0%, 승모판막질환 84.5%, 폐동맥판막질환 84.4%, 

삼첨판막질환 77.7% 이었습니다. 그 다음으로, 측정된 CB measure 결과값을 

이용하여 정상 대조군의 성별 (남성, 여성) 을 구분하여 통계 분석을 

진행했습니다. 먼저, 정상 대조군의 평균과 표준편차는 남성 25.5±9.7 

이었으며, 여성은 16.7±8.9 이었습니다. 그리고 중간값(IQRs)는 남성 

25.5(18.9-31.9) 이었으며, 여성은 16.7(10.7-22.6) 이었습니다. 그 

다음으로, GAMLSS 라이브러리를 이용하여 정상 대조군의 모형 적합을 

진행하여 z-score 의 중간값(사분위수 범위) 값을 비교했습니다. 남성의 경우 

정상 대조군 0.01(-0.69 to +0.68), 대동맥판막질환 -0.58(-1.51 to +0.29), 

승모판막질환 -0.90(-1.62 to -0.10), 폐동맥판막질환 -0.17(-1.03 to + 

0.21), 삼첨판막질환 -1.09(-1.78 to +0.30) 이었습니다. 여성의 경우 정상 

대조군 0.01(-0.67 to +0.68), 대동맥판막질환 -0.33(-1.12 to +0.42), 

승모판막질환 -0.91(-1.57 to -0.22) 폐동맥판막질환 -0.80(-1.57 to +0.13), 

삼첨판막질환 -0.90(-1.47 to -0.00) 이었습니다. 정상 대조군 과 비정상 

그룹을 비교할 때 비정상 그룹이 전반적으로 낮은 값을 가지고 있었습니다.  
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