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Abstract 

Computed tomography (CT) image is one of the diagnostic imaging widely used in the medical field. 

CT image is reconstructed from sinogram, which is the 2D array data containing the projections, using 

convolution kernel through back projection. At this point, the kernel differs depending on which 

anatomical structure is evaluated in qualitative evaluation. Also, quantitative evaluation is crucial as 

well as qualitative evaluation and affects the choice of kernel. However, there are two problems. First, 

sinogram has large capacity and storage space is limited, so CT image is usually reconstructed with 

only one specific kernel for evaluation and sinogram is removed in a week. Second, patients should be 

scanned and exposed radiation once again. Recently, many researchers have proposed image-to-image 

translation methods using generative adversarial networks (GANs) for CT kernel conversion. 

Nevertheless, preserving anatomical structure including fine details, e.g., airway and blood vessel, while 

transferring the style of the target kernel is still challenging when CT image is translated from the source 

kernel to the target kernel. In this study, kernel conversion GAN (KCGAN) is proposed to alleviate 

these problems with perceptual guidance and showed robust and efficient performance in kernel 

conversion. Perceptual guidance is a type of discriminator regularization method using feature map of 

generator to learn semantic representation better. For content and style features, cosine similarity 

content loss and contrastive style loss are defined between the feature map of generator and semantic 

label map of discriminator, respectively. KCGAN can preserve the fine-grained anatomical structure of 

the source domain and transfer the style of the target domain, simultaneously. In addition, this method 

can be easily applied with only changing the discriminator architecture and without utilizing any 

additional learnable or pre-trained networks. Experimental results showed that this method 

outperformed existing GAN-based methods in most direction of kernel conversion among three kernels. 
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Introduction 

Computed Tomography (CT) image is now one of the diagnostic imaging widely used in medical field 

and has recently been used for screening for disease. CT image is acquired through back-projection 

from sinogram, which is 2D array projection data collected from rotating X-ray tube and detectors. 

Before back-projection, convolution kernel is applied as a kind of technical parameter and filter that 

changes frequency of the reconstructed CT image. Depending on what kernel being used for CT image 

reconstruction, there is a trade-off between the spatial resolution and noise, so it affects texture 

quantitative values [1–3]. The sharp kernel makes CT image have high spatial resolution and noise, and 

this can help to screen abnormality in bone or lung. On the other side, the soft kernel makes CT image 

have low spatial resolution and noise, and this can help to screen abnormality in soft tissue or 

mediastinum. Likewise, CT image needs to be reconstructed with different kernels depending on which 

anatomical structure is being evaluated. Furthermore, even if the same anatomical structure is being 

evaluated, the kernel being used is different depending on whether qualitative or quantitative evaluation 

is performed. For instance, in chest CT image to analyze chronic obstructive pulmonary disease (COPD), 

it is reconstructed with soft kernel for quantitative evaluation and with sharp kernel for qualitative 

evaluation. For these reasons, CT images reconstructed with various kernels are sometimes necessary 

for more accurate diagnosis. 

However, there are limitations in reconstructing CT images with different kernels. First, sinogram has 

large capacity, so CT image is reconstructed with only one specific kernel for evaluation and sinogram 

is usually removed in a week. Even though CT image is reconstructed with all kinds of kernels, storage 

space is limited. Therefore, medical doctors have had difficulty evaluating qualitatively or 

quantitatively without CT images reconstructed with other kernels. Particularly, this limitation reveals 

on retrospective or longitudinal studies because they cannot control kernels which are technical 

parameters [2]. Consequently, patients should be scanned again to acquire new CT images, then exposed 

to unnecessary radiation. 

Many studies have proposed image-to-image translation (I2IT) methods [4] using convolutional neural 

network (CNN)-based CT kernel conversion [2,3,5,6]. However, there is a disadvantage of CNN that 

must be a paired dataset for training. Recently, instead of CNN, Generative adversarial network (GAN) 

[7]-based CT kernel conversion [8,9] have been proposed due to unsupervised manner and the powerful 

generation ability. But when using unsupervised I2I (UI2IT) methods, preserving anatomical structure 

including fine details, e.g., airway and blood vessel, while transferring the style of the target image is 

still challenging when translated from the source image to the target image, especially in medical 

domain [10]. This can cause large pixel intensity variation and be critical for analyzing quantitative 

evaluation. In this study, kernel conversion GAN (KCGAN) is proposed to alleviate these limitations 
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using chest CT images with perceptual guidance which improves performance of multi-domain UI2IT 

in kernel conversion. Perceptual guidance is proposed as a new type of discriminator regularization 

method using feature map of generator to learn semantic representation better. For content and style 

features, cosine similarity content loss and contrastive style loss are defined between the feature map 

of generator and semantic label map of discriminator, respectively. 

The contributions of KCGAN with perceptual guidance are as follows: 

• KCGAN preserves the coarse-to-fine anatomical structure of the source image. 

• Perceptual guidance can be easily applied with only changing the discriminator architecture 

and without utilizing any additional learnable or pre-trained networks and encoding process. 

• Experimental results showed that this method outperformed existing GAN-based methods in 

CT kernel conversion. 
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Materials and Method 

Datasets 

This retrospective study was approved by the institutional review board of Asan Medical Center and 

written informed consent was waived. A total of 170 patients scanned CT images and consisted of 

unpaired 150 patients for training and paired 20 patients for test. CT images were obtained using 

Somatom Definition Edge, AS, AS+ and Flash; Siemens Healthineers, Forchheim, Germany. 

For train datasets, from January 2015 to July 2021, unpaired non-contrast chest CT images 

reconstructed with B30f (soft), B50f (standard) and B70f (sharp) kernels were collected from 50 

patients (16760 slices; 37 men and 13 women; mean age, 61.7 ± 13.5 [SD] years), 50 patients (16339 

slices; 24 men and 26 women; mean age, 66.7 ± 13.1 [SD] years) and 50 patients (17042 slices; 25 men 

and 25 women; mean age, 62.6 ± 12.3 [SD] years), respectively. 

For test datasets, from April 2017 to July 2021, paired non-contrast chest CT images reconstructed with 

same kernels as trainset were collected from 20 patients (6897 slices; 15 men and 5 women; mean age, 

67.1 ± 7.4 [SD] years) for quantitative and qualitative evaluations. Other CT acquisition parameters are 

shown in Table 1. 

 

Table 1. CT acquisition parameters of dataset according to type of kernel. 

 Kernel Patients Slices Age (year) Sex (M:F) Slice Thickness kVp mAs 

Train 

B30f 50 16760 61.7 ± 13.5 37:13 1.0 120 120 

B50f 50 16339 66.7 ± 13.1 24:26 1.0 120 120 

B70f 50 19469 62.6 ± 12.3 32:23 1.0 120 120 

 Kernel Patients Slices Age (year) Sex (M:F) Slice Thickness kVp mAs 

Test 

B30f 20 6897 67.1 ± 7.4 15:5 1.0 120 120 

B50f 20 6897 67.1 ± 7.4 15:5 1.0 120 120 

B70f 20 6897 67.1 ± 7.4 15:5 1.0 120 120 

 

Multi-domain Image-to-image Translation 

Image-to-image translation (I2IT) aims to mapping from a source domain to a target domain. Since 

GAN came out in 2014, I2IT made tremendous progress. Pix2Pix [11] is representative supervised I2IT 

model using conditional input to translate an image. However, Pix2Pix needs paired train datasets, so 

researchers have proposed unsupervised I2IT (UNI2IT) [12–17] for unpaired datasets. CycleGAN [12] 

was proposed as UNI2IT model that uses two generators, one translates from the source domain to the 

target domain, and the other translates from the translated domain back to the source domain. 

CycleGAN optimizes these two generators to reduce the difference between the source domain and the 

translated source domain using cycle-consistency loss [12]. Although CycleGAN breaks paired 

constraint, it suffers from the limitation which cannot translate from one domain to multiple domains at 
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once. As multi-domain UNI2IT model, StarGAN [13] was proposed and it could translate the source 

domain to multiple domains by embedding various attributes as mask vectors. 

I2IT task has also been utilized in medical domain. Many researchers have proposed for CT kernel 

conversion [2,3,5,6], however, they used convolutional neural networks (CNN) that requires paired 

datasets. Gravina, M., et al. [8] used CycleGAN for unpaired manner, but it was still for only two 

domains. Therefore, they should train multiple networks for each kernel conversion. Switchable 

CycleGAN [9] solved this two domains limitation and proposed a continuous kernel conversion using 

adaptive instance normalization (AdaIN) [18]. This method has advantages of interpolating images 

from the source domain to the target domain and translating various kernels between the two domains 

but could not preserve fine-grained anatomical structure perfectly. 

In this study, StarGAN [13] which is one of multi-domain UNI2IT models was exploited as baseline 

model to translate kernels to all directions at once. StarGAN consists of generator that has an encoder 

and a decoder and discriminator that performs multi-task for adversarial classification and attributes 

classification. The losses of discriminator and generator are as follows: 

ℒ𝐷 = −ℒ𝑎𝑑𝑣 + 𝜆𝑐𝑙𝑠ℒ𝑐𝑙𝑠
𝑟 , (1) 

ℒ𝐺 = ℒ𝑎𝑑𝑣 + 𝜆𝑐𝑙𝑠ℒ𝑐𝑙𝑠
𝑓

+ 𝜆𝑐𝑦𝑐ℒ𝑐𝑦𝑐 , (2) 

where ℒ𝐷 and ℒ𝐺  are the discriminator and generator losses, respectively. ℒ𝑎𝑑𝑣 is the adversarial 

loss for binary classification between real and generated images. ℒ𝑐𝑙𝑠
𝑟   and ℒ𝑐𝑙𝑠

𝑓
  are the domain 

attributes classification losses for a real and generated image, respectively. ℒ𝑐𝑦𝑐  is the cycle 

consistency loss. 𝜆𝑐𝑙𝑠 and 𝜆𝑐𝑦𝑐 are the hyperparameters that weight the importance of the domain 

attributes classification losses and the cycle consistency loss. These two hyperparameters are set 1 and 

10 like configuration of StarGAN, respectively. 

 

Regularization for Discriminator in GANs 

Several studies have proposed regularization methods for the balance between the discriminator and the 

generator such as differentiable augmentation [19], gradient penalty [20], spectral normalization [21] 

and generator-guided discriminator regularization [22]. 

DiffAugment [19] for data efficient training applies the augmentation to both the real image and the 

generated image when discriminator is updated and to the generated image when generator is updated, 

because augmentation function should be differentiable. DiffAugment is efficient when the number of 

training data lacks, so this method wasn’t used in this study. Gradient penalty [20] is a soft version of 

the Lipschitz constraint, which gives gradient norm penalty instead of weight clipping [23]. This can 

be GAN training more stable and has been used in recent state-of-the-art GAN including StarGAN [13]. 
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Spectral normalization [21] uses Lipshitz constant, which is the only hyper parameter and doesn’t 

require tuning, to regularize discriminator instead of batch normalization [24]. It also showed 

tremendous increased performance of GAN and quality of the output image likewise other 

regularization methods. Recently, Generator-guided discriminator regularization (GGDR) [22] was 

proposed as a new type of discriminator regularization method that discriminator can learn semantic 

representation and extract semantic label map by comparing with intermediate feature map from 

generator for unconditional generation. This method improves fidelity as much as conditional GAN 

[25–27] without any ground-truth semantic label maps. Our proposed method is directly inspired by 

GGDR. 

 

Cosine Similarity Content Loss 

In GGDR, cosine distance loss was applied between the intermediate feature map and the semantic label 

map. This is for convenience of scaling within a specified range because of balance with adversarial 

loss. Cosine distance loss would be helpful for discriminator to learn overall semantic content 

representation of translated image in terms of I2IT, so we define this loss as cosine similarity content 

loss (CCL) and this loss function follows as: 

ℒ𝑐𝑐𝑙 = 𝔼𝑥~𝑝(𝑥) [1 −
𝐹(𝐺ℓ(𝑥)) ⋅ 𝐺ℓ(𝑥)

‖𝐹(𝐺ℓ(𝑥))‖2 ⋅ ‖𝐺ℓ(𝑥)‖2
] , (3) 

where 𝑥 is input images from the source domain. 𝐹 is the decoder of discriminator and 𝐺ℓ(⋅) is the 

ℓth decoder layer of generator. The resolution of semantic label map from 𝐹 is the same with that of 

the intermediate feature map from 𝐺ℓ. 

 

Contrastive Style Loss 

In I2IT, it is important to learn style as well as content, so CCL may be not sufficient to segment a 

detailed semantic label map. Recently, contrastive learning has been proved to be effective in learning 

semantic label maps for semantic segmentation and object detection [28,29]. Also, it has shown superior 

performance that patch-wise contrastive loss can transfer the style of the target image for I2IT [16], 

even as a substitute of cycle-consistency loss. Unlike image generation task, I2IT task needs generator 

which consists of an encoder, residual block [30] and a decoder, this structure design is a core for 

translating the style of the source image. Through the decoder, source image is getting closer to 

translated image and the feature map in decoder layer might contain the style of the target image. For 

these reasons, the intermediate feature map from the decoder of the generator might be effective for 

discriminator to learn fine-grained semantic style representation. We use PatchNCE loss [16] and define 

this loss as contrastive style loss (CSL), and this loss function follows as: 
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ℒ𝑐𝑠𝑙 = 𝔼𝑣 [− log
exp(𝑣 ∙  𝑣+/𝜏)

exp(𝑣 ∙  𝑣+/𝜏) + ∑ exp(𝑣 ∙  𝑣𝑛
−/𝜏)𝑁

𝑛=1

] , (4) 

where 𝑣 is a vector which are mapped with query patch from the semantic label map of discriminator 

decoder and 𝑣+, 𝑣𝑛
− are vectors which are mapped with positive and 𝑛-th negative patches from the 

intermediate feature map of generator decoder, respectively. 𝜏 is the hyperparameter, but we set 𝜏 = 

0.07 like configuration of CUT. ℒ𝑐𝑠𝑙 performs (N+1)-way classification that the positive patch is made 

up to associate with the query patch more than the negative patches. 

 

Perceptual Guidance 

CCL plays a role to inform coarse semantic content representation and CSL plays a role to inform fine-

grained semantic style representation. Here, we propose perceptual guidance which is combined with 

CCL and CSL so that the discriminator can learn both content and style feature from the generator to 

improve performance of multi-domain UNI2IT. Perceptual guidance is inspired from perceptual loss 

[31,32] which consists of content loss and style loss in feature domain through VGG model [33]. 

However, unlike perceptual loss, perceptual guidance only needs two feature maps from the 

discriminator and the generator themselves, so it doesn’t require any additional learnable or pre-trained 

feature extractor networks and encoding process. It is defined as follows: 

ℒ𝑝𝑔 = 𝜆𝑐𝑐𝑙ℒ𝑐𝑐𝑙  + 𝜆𝑐𝑠𝑙ℒ𝑐𝑠𝑙, (5) 

where 𝜆𝑐𝑐𝑙  and 𝜆𝑐𝑠𝑙  are the hyperparameters for balance between ℒ𝑐𝑐𝑙  and ℒ𝑐𝑠𝑙 . These two 

hyperparameters are respectively set 1 and 5 and will be shown in experiments and results section for 

balancing them. ℒ𝑝𝑔 is added when the discriminator updates, so the discriminator conducts multi-

task learning [34]—real and fake classification, domain attributes classification and semantic 

segmentation. The total loss functions for the discriminator and the generator follows as: 

ℒ𝐷 = −ℒ𝑎𝑑𝑣 + 𝜆𝑐𝑙𝑠ℒ𝑐𝑙𝑠
𝑟 + ℒ𝑝𝑔, (6) 

ℒ𝐺 = ℒ𝑎𝑑𝑣 + 𝜆𝑐𝑙𝑠ℒ𝑐𝑙𝑠
𝑓

+ 𝜆𝑐𝑦𝑐ℒ𝑐𝑦𝑐 . (7) 

The overall framework of perceptual guidance is shown in Figure 1. 
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Figure 1. Overall framework of perceptual guidance. Perceptual guidance learns coarse semantic 

content representation and fine-grained semantic style representation through cosine similarity content 

loss and patch-wise contrastive style loss between intermediate feature map from decoder of generator 

and semantic label map from decoder of discriminator. 

 

Implementation Details 

The resolution of CT images was not resized and maintained the size 512 × 512. The intensities of CT 

images were normalized from their full range of Hounsfield units (HU) (-1024–3071) to (-1–1) as pre-

processing. As optimization for the discriminator and the generator, Adam [35] was used with 𝛽1 = 0.5 

and 𝛽2 = 0.999 and the learning rate is 1e-4. Gradient penalty [20] is used with critics as 5, where 

critics is the number of updates for the discriminator per each update of the generator. The intermediate 

feature map from the decoder of the generator was extracted with the size 256 × 256. The number of 

patches was 64. All experiments including other GAN-based UNI2IT models were conducted using 

single NVIDIA GeForce RTX3090 24GB GPU for 16 epochs with batch size 2. 

 

Architecture Improvements 

We selected StarGAN [13] as a baseline model which showed plausible performance in multi-domain 

translation, however, other GAN-based UNI2IT models [14,16,17] has come out superior to StarGAN. 

Nevertheless, by applying perceptual guidance, adapting spectral normalization [21] to the 

discriminator and pixelshuffle [36]—up-sampling method for high quality image—to the generator, we 

thought that it can still have possibility to increase performance of StarGAN and catch-up other GAN-
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based UNI2IT models. Architectural ablation studies were implemented empirically for the best quality 

results. At the up-sampling layers in decoder block of the generator, 4 × 4 transposed convolution was 

applied but it caused degradation of visual quality results because of checkerboard artifact [37]. Using 

3 × 3 convolution with 2 × 2 pixelshuffle could prevent the checkerboard artifact and showed better 

visual quality results than the transposed convolution. Meanwhile, the discriminator followed U-Net 

[38] architecture with skip connection to extract the semantic label map through the intermediate feature 

map from the generator. It consisted of encoder block which classifies real or fake images and domain 

attributes of images through 𝑁 down-sampling layers, and decoder block which extracts the semantic 

label map through 𝑁 − 1  up-sampling layers by matching the intermediate feature map of the 

generator. Since the semantic label map should have the same size with the intermediate feature map, 

we notify that the decoder block has 𝑁 − 1 up-sampling layers. For skip connections, each feature 

map from the down-sampling and the up-sampling layers was concatenated together, then 1 × 1 

convolution with 2 × 2 pixelshuffle was applied. Additionally, spectral normalization and leakyReLU 

activation function were applied in all layers of the discriminator instead of instance normalization and 

ReLU activation function. Through this application of architectural changes with perceptual guidance, 

we propose kernel conversion GAN (KCGAN). 

 

Experiments and Results 

We compared KCGAN with two-domain UNI2IT models such as CycleGAN [12], CUT [16] and 

DCLGAN [17] and multi-domain UNI2IT models such as StarGAN [13] and AttGAN [14]. In this 

section, qualitative and quantitative results were evaluated 6 directions—B30f to B50f, B30f to B70f, 

B50f to B30f, B50f to B70f, B70f to B30f and B70f to B50f—about kernel conversion. Also, 

visualization of feature maps from the discriminator and the generator was conducted for better 

comprehension. Lastly, ablation studies about the balance of the hyperparameters 𝜆𝑐𝑐𝑙  and 𝜆𝑐𝑠𝑙 , 

separate usage of CCL and CSL, usage of encoder feature map from the generator for CCL, effect of 

perceptual guidance and computational cost were conducted to prove efficiency of our proposed method. 

 

Comparison with GAN-based Unsupervised Image-to-image Translation Models 

We showed the qualitative results of kernel conversion about 6 directions using GAN-based UNI2IT 

models including KCGAN. For qualitative result visualization, window width and level were set 1500 

and -700, respectively. As shown in Figure 2, for each kernel conversion, figure is consisted of whole 

image and airway zoomed image in first row and second row, respectively. While CycleGAN and 

DCLGAN could not preserve the overall sparse anatomical structure when compared to the target image 

and DCLGAN showed worst performance, the other models showed plausible qualitative results. 
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Nevertheless, if the translated images are zoomed in and looked deeply into the airway and the vessel, 

they also could not preserve fine-grained anatomical structure in the translation about most direction. 

For better understanding the structural differences between the target image and the translated image, 

we visualized difference maps in Figure 3. More details for each kernel conversion are as follows: 

1) The translation from sharp kernels to soft kernels (B50f to B30f, B70f to B30f and B70 to B50f):  

CT images translated from sharp kernels to soft kernels should look blur and have less noise. It is 

shown that AttGAN could not translate blurriness as much as the target kernel and created new vessels 

that did not exist before. As seen in B50f to B30f and B70f to B50f, the translated image generated by 

CycleGAN created artifact around soft tissues and lung, and the translated image generated by 

DCLGAN removed the original information or created new information that did not exist before. 

Additionally, they could not preserve the coarse anatomical structure as well as the fine-grained 

details. In AttGAN, CUT and StarGAN, it is shown that the thickness of airway wall is different or 

disconnected. In addition, the translated images generated by StarGAN have more noise than the 

target images and too much blurriness. On the other hand, KCGAN showed great translation 

performance preserving the anatomical structure including airway and vessel. These results showed 

that our proposed method could preserve the anatomical structure better than the other models. 

2) The translation from soft kernels to sharp kernels (B30f to B50f, B30f to B70f and B50f to B70f): 

CT images translated from soft kernels to sharp kernels should look clear and have a lot of noise. Like 

the translation from sharp kernels to soft kernels, the translated images generated by CycleGAN have 

disconnected airway wall and the translated images generated by CUT have different thickness of 

airway wall. DCLGAN could not preserve the anatomical structure badly. As seen in B30f to B50f, 

the translated image generated by AttGAN could not express the blurriness and noise as much as the 

target image and the translated image generated by StarGAN showed hatch pattern artifact, so it 

degraded the qualitative result. In B30f to B70f, CycleGAN and CUT created some artifacts that looks 

like vessels. In B50f to B70f, all results showed plausible qualitative results that translates blurriness 

and noise level. However, they still have weakness in preserving the fine-grained details. StarGAN 

showed overall poor quality of the translated images. Although our model is based on vanilla 

StarGAN, it is shown that our proposed method could improve performance much better. 
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Figure 2. The qualitative results of kernel conversion about 6 directions. For each kernel conversion, 

first row is a whole chest CT image, and second row is a zoomed image which points out airway and 

vessels. 
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Figure 3. Visualization of pixel absolute value differences between the target images and the translated 

images. For each kernel conversion, the first row is the qualitative results of UNI2IT models including 

our proposed model (KCGAN). The second row is difference map corresponding to the first row. 
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As shown in Table 2, We also showed the quantitative results of kernel conversion about 6 directions. 

PSNR, SSIM and RMSE were used as quantitative metrics. In two domain UNI2IT models, CycleGAN 

and DCLGAN showed relatively low PSNR, SSIM and RMSE about all directions, but CycleGAN 

achieved 0.901 ± 0.021 in SSIM in the translation from B70f to B30f. CUT achieved 0.910 ± 0.024 as 

the best SSIM performance in the translation from B70f to B50f and comparably high PSNR, SSIM 

and RMSE about all directions. Nevertheless, it is still hard for them to translate the kernel from B30f 

to B70f. It should be noted that they are not robust and can’t preserve the anatomical structures well. In 

multi-domain UNI2IT models, AttGAN showed great PSNR and RMSE performance, which is superior 

to StarGAN and CUT, excluding the translation from B30f to B70f. KCGAN showed tremendously 

increased PSNR, SSIM and RMSE performance compared to vanilla StarGAN and even other GAN-

based UNI2IT models about all directions of kernel conversion. This indicates that our proposed method 

can help to improve robustness and performance when the model is learned about the kernel conversion. 
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Table 2. The quantitative results of kernel conversion about 6 directions. 

Method 

Sharp to Soft 

B50f → B30f B70f → B30f B70f → B50f 

PSNR SSIM RMSE PSNR SSIM RMSE PSNR SSIM RMSE 

CycleGAN 
26.522 

± 0.914 

0.833 

± 0.021 

195.512 

± 19.177 

29.662 

± 2.153 

0.901 

± 0.021 

139.161 

± 31.672 

24.882 

± 1.336 

0.790 

± 0.050 

238.286 

± 34.563 

CUT 
33.779 

± 2.585 

0.941 

± 0.020 

89.130 

± 27.837 

30.001 

± 1.816 

0.893 

± 0.029 

132.51 

± 25.402 

31.053 

± 2.150 

0.910 

± 0.024 

123.857 

± 28.234 

DCLGAN 
27.129 

± 1.491 

0.771 

± 0.023 

183.629 

± 30.120 

26.011 

± 0.801 

0.626 

± 0.046 

206.574 

± 18.485 

24.899 

± 0.972 

0.643 

± 0.044 

236.236 

± 24.910 

AttGAN 
39.211 

± 0.413 

0.941 

± 0.008 

45.213 

± 2.210 

35.832 

± 0.536 

0.889 

± 0.012 

66.639 

± 4.117 

34.761 

± 0.594 

0.817 

± 0.031 

75.627 

± 5.288 

StarGAN 
31.416 

± 0.859 

0.880 

± 0.028 

110.668 

± 10.672 

30.906 

± 0.636 

0.841 

± 0.040 

117.143 

± 8.377 

31.657 

± 0.982 

0.783 

± 0.035 

108.169 

± 11.791 

KCGAN (ours) 
46.161 

± 0.601 

0.984 

± 0.006 

20.289 

± 1.488 

42.552 

± 0.592 

0.971 

± 0.010 

30.711 

± 2.167 

37.430 

± 0.707 

0.897 

± 0.022 

56.117 

± 4.745 

Method 

Sharp to Soft 

B30f → B50f B30f → B70f B50f → B70f 

PSNR SSIM RMSE PSNR SSIM RMSE PSNR SSIM RMSE 

CycleGAN 
25.895 

± 1.104 

0.766 

± 0.054 

210.860 

± 25.015 

26.579 

± 0.952 

0.683 

± 0.039 

193.908 

± 21.624 

26.110 

± 0.623 

0.752 

± 0.021 

204.453 

± 14.743 

CUT 
31.700 

± 1.494 

0.867 

± 0.040 

108.520 

± 18.943 

28.884 

± 0.894 

0.694 

± 0.046 

149.090 

± 16.234 

30.762 

± 1.049 

0.796 

± 0.031 

120.877 

± 14.824 

DCLGAN 
25.557 

± 1.046 

0.719 

± 0.062 

218.819 

± 27.954 

25.209 

± 2.366 

0.604 

± 0.070 

237.335 

± 75.458 

25.830 

± 1.521 

0.652 

± 0.056 

214.752 

± 42.994 

AttGAN 
35.443 

± 0.384 

0.861 

± 0.020 

69.632 

± 3.121 

28.140 

± 0.550 

0.588 

± 0.039 

161.520 

± 10.199 

29.253 

± 0.663 

0.616 

± 0.040 

142.785 

± 11.235 

StarGAN 
28.774 

± 0.713 

0.755 

± 0.024 

149.692 

± 12.131 

28.456 

± 0.580 

0.604 

± 0.046 

156.015 

± 10.883 

27.355 

± 0.589 

0.584 

± 0.045 

177.083 

± 12.337 

KCGAN (ours) 
38.728 

± 0.571 

0.925 

± 0.021 

47.948 

± 3.286 

31.735 

± 0.695 

0.764 

± 0.034 

107.787 

± 9.104 

32.721 

± 0.954 

0.797 

± 0.034 

97.135 

± 11.422 

Note—Mean and SD were calculated per patient; RMSE was calculated in range [-1024–3071]. 
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Figure 4. Visualization of the intermediate feature map from the generator and the semantic label map 

from the discriminator through 𝑘-means clustering (𝑘 = 12). The first row shows the translated CT 

image about 6 directions of kernel conversion. The second row shows the intermediate feature maps 

from the decoder of the generator. The third row shows the semantic label maps from the decoder of 

the discriminator. The size of the intermediate feature maps and the semantic label maps is 256 × 256. 

 

Visualization of Intermediate Feature Map and Semantic Label Map 

When using perceptual guidance, we can see how the intermediate feature map is extracted from the 

generator and the semantic label map is generated from the discriminator. For visualization of feature 

map, we clustered the pixel using 𝑘-means clustering. In this study, we used 𝑘 = 12 for the coarse 

and fine-grained detail semantic information. As shown in Figure 4, the same anatomical structures 

such as bones with bones or muscles with muscles are clustered well in the intermediate feature map 

and the semantic label map. Interestingly, it was shown that the air in lung and the air outside are 

clustered differently. In addition, airway or vessels are also clustered differently with muscles which 

have similar pixel intensity. Through this, we could see that the generator could generate the translated 

image with rich semantic representation, so this intermediate feature map could teach the discriminator 

as a semantic ground-truth mask. 

 

Ablation Studies 

Ablation studies were implemented about the balance of the hyperparameters 𝜆𝑐𝑐𝑙 and 𝜆𝑐𝑠𝑙, separate 

usage of CCL and CSL, usage of encoder feature map from the generator for CCL, effect of perceptual 

guidance and computational cost difference between StarGAN and KCGAN. More details about the 

ablation studies are as follows: 

1) The balance of the hyperparameters 𝜆𝑐𝑐𝑙  and 𝜆𝑐𝑠𝑙 : we experimented the combination of the 

hyperparameters 𝜆𝑐𝑐𝑙 and 𝜆𝑐𝑠𝑙 for the best performance. As shown in Table 3, when the combination 
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of CCL and CSL weights was 1 and 5, it showed the best performance, although 2 and 10 showed good 

performance in the translation from B70f to B30f.  

2) Separated usage of CCL and CSL: we studied that whether only using one loss function—CCL or 

CSL—can improve performance. As shown in Table 4, the results showed that they can significantly 

improve performance. Especially when using CSL, it showed powerful performance in the translation 

from sharp kernels to soft kernels. Nevertheless, if we use perceptual guidance which uses CCL and 

CSL together, it is shown that the performance increased tremendously when translating from soft 

kernels to sharp kernels. 

3) Usage of encoder feature map from the generator for CCL: cosine similarity content loss was defined 

to preserve coarse anatomical structure of the source image. CCL was utilized with the intermediate 

feature map from the decoder of the generator in our experiments, however, there is an encoder which 

can also extract the feature map. Thus, we experimented whether the intermediate feature map from 

encoder of the generator can help for the discriminator to learn semantic content information instead of 

the intermediate feature map from decoder. As shown in Table 5, although the encoder showed good 

performance, it was slightly lower than the decoder. This might be because the translated image has 

more similar content representation than the source image. 

4) Effect of perceptual guidance: we experimented the effect of perceptual guidance in KCGAN. As 

shown in Table 6, it is shown that KCGAN without perceptual guidance and with cycle consistency loss 

already showed significantly increased performance compared to StarGAN. Nevertheless, KCGAN 

with perceptual guidance and cycle consistency loss showed that perceptual guidance can be effective 

in improving performance especially in translation from soft kernels to sharp kernels. 

5) Computational cost between baseline and our proposed method: we calculated computational cost 

between baseline model (StarGAN) with and without architectural improvements and perceptual 

guidance to show efficiency of our proposed method. As shown in Table 7, the parameters and FLOPs 

increased 25.9% and 6.2%, respectively. This indicates that using our proposed method doesn’t cost a 

lot and is efficient. This experiment was conducted with image size 512 × 512 and a single NVIDIA 

GeForce RTX3090 24GB GPU. 
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Table 3. Ablation study about the balance of the hyperparameters 𝜆𝑐𝑐𝑙 and 𝜆𝑐𝑠𝑙. 

Method 

Sharp to Soft 

B50f → B30f B70f → B30f B70f → B50f 

PSNR SSIM RMSE PSNR SSIM RMSE PSNR SSIM RMSE 

CSL 1 + CCL 5 
46.161 

± 0.601 

0.984 

± 0.006 

20.289 

± 1.488 

42.552 

± 0.592 

0.971 

± 0.010 

30.711 

± 2.167 

37.430 

± 0.707 

0.897 

± 0.022 

56.117 

± 4.745 

CSL 1 + CCL 10 
45.313 

± 0.576 

0.982 

± 0.006 

22.332 

± 1.522 

42.201 

± 0.624 

0.970 

± 0.011 

31.946 

± 2.364 

36.198 

± 0.800 

0.867 

± 0.031 

59.652 

± 6.255 

CSL 2 + CCL 5 
44.353 

± 0.987 

0.980 

± 0.004 

25.095 

± 3.388 

41.934 

± 0.715 

0.967 

± 0.006 

33.003 

± 3.029 

36.182 

± 0.820 

0.873 

± 0.024 

64.472 

± 6.234 

CSL 2 + CCL 10 
45.359 

± 0.488 

0.982 

± 0.005 

22.263 

± 1.329 

43.213 

± 0.441 

0.975 

± 0.007 

28.447 

± 1.510 

36.349 

± 0.783 

0.854 

± 0.030 

63.411 

± 5.901 

Method 

Soft to Sharp 

B30f → B50f B30f → B70f B50f → B70f 

PSNR SSIM RMSE PSNR SSIM RMSE PSNR SSIM RMSE 

CSL 1 + CCL 5 
38.728 

± 0.571 

0.925 

± 0.021 

47.948 

± 3.286 

31.735 

± 0.695 

0.764 

± 0.034 

107.787 

± 9.104 

32.721 

± 0.954 

0.797 

± 0.034 

97.135 

± 11.422 

CSL 1 + CCL 10 
37.927 

± 0.562 

0.909 

± 0.025 

52.455 

± 3.526 

31.401 

± 0.695 

0.734 

± 0.036 

111.941 

± 9.463 

32.063 

± 0.899 

0.760 

± 0.038 

104.486 

± 11.512 

CSL 2 + CCL 5 
37.546 

± 0.472 

0.912 

± 0.017 

54.663 

± 3.113 

31.414 

± 0.722 

0.743 

± 0.037 

111.921 

± 9.857 

31.503 

± 0.935 

0.737 

± 0.044 

111.418 

± 12.782 

CSL 2 + CCL 10 
37.255 

± 0.635 

0.889 

± 0.021 

56.868 

± 4.318 

30.619 

± 0.712 

0.690 

± 0.039 

122.826 

± 10.551 

30.765 

± 0.878 

0.692 

± 0.043 

121.485 

± 12.941 

Note—Mean and SD were calculated per patient; RMSE was calculated in range [-1024–3071]; CSL: 

Contrastive style loss; CCL: Cosine similarity content loss. 
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Table 4. Ablation study about separated usage of CCL and CSL. 

Method 

Sharp to Soft 

B50f → B30f B70f → B30f B70f → B50f 

PSNR SSIM RMSE PSNR SSIM RMSE PSNR SSIM RMSE 

CCL 
44.970 

± 0.482 

0.978 

± 0.009 

23.252 

± 1.363 

42.655 

± 0.496 

0.968 

± 0.014 

30.325 

± 1.817 

36.058 

± 0.831 

0.847 

± 0.033 

65.762 

± 6.518 

CSL 
45.668 

± 0.505 

0.984 

± 0.007 

21.466 

± 1.333 

43.398 

± 0.483 

0.977 

± 0.009 

27.830 

± 1.625 

38.147 

± 0.662 

0.898 

± 0.026 

51.164 

± 4.064 

PG 
46.161 

± 0.601 

0.984  

± 0.006 

20.289 

± 1.488 

42.552 

± 0.592 

0.971 

± 0.010 

30.711 

± 2.167 

37.430 

± 0.707 

0.897 

± 0.022 

56.117 

± 4.745 

Method 

Soft to Sharp 

B30f → B50f B30f → B70f B50f → B70f 

PSNR SSIM RMSE PSNR SSIM RMSE PSNR SSIM RMSE 

CCL 
37.704 

± 0.640 

0.899 

± 0.021 

54.012 

± 4.155 

31.133 

± 0.789 

0.718 

± 0.038 

115.811 

± 11.007 

31.235 

± 0.886 

0.716 

± 0.039 

114.926 

± 12.399 

CSL 
36.723 

± 0.392 

0.893 

± 0.020 

59.963 

± 2.772 

30.961 

± 0.708 

0.735 

± 0.033 

117.735 

± 9.978 

32.013 

± 0.908 

0.775 

± 0.033 

104.958 

± 11.643 

PG 
38.728 

± 0.571 

0.925 

± 0.021 

47.948 

± 3.286 

31.735 

± 0.695 

0.764 

± 0.034 

107.787 

± 9.104 

32.721 

± 0.954 

0.797 

± 0.034 

97.135 

± 11.422 

Note—Mean and SD were calculated per patient; RMSE was calculated in range [-1024–3071]; CSL: 

Contrastive style loss; CCL: Cosine similarity content loss; PG: Perceptual guidance 

 

Table 5. Ablation study about usage of encoder feature map from the generator for CCL. 

Method 

Sharp to Soft 

B50f → B30f B70f → B30f B70f → B50f 

PSNR SSIM RMSE PSNR SSIM RMSE PSNR SSIM RMSE 

CCL from encoder 
45.529 

± 0.506 

0.984 

± 0.005 

21.773 

± 1.335 

42.073 

± 0.510 

0.969 

± 0.011 

32.410 

± 1.968 

37.240 

± 0.911 

0.884 

± 0.032 

57.264 

± 6.324 

CCL from decoder 
46.161 

± 0.601 

0.984 

± 0.006 

20.289 

± 1.488 

42.552 

± 0.592 

0.971 

± 0.010 

30.711 

± 2.167 

37.430 

± 0.707 

0.897 

± 0.022 

56.117 

± 4.745 

Method 

Soft to Sharp 

B30f → B50f B30f → B70f B50f → B70f 

PSNR SSIM RMSE PSNR SSIM RMSE PSNR SSIM RMSE 

CCL from encoder 
38.450 

± 0.608 

0.921 

± 0.022 

49.426 

± 3.610 

31.419 

± 0.687 

0.743 

± 0.036 

111.606 

± 9.266 

32.222 

± 0.987 

0.769 

± 0.041 

102.578 

± 12.422 

CCL from decoder 
38.728 

± 0.571 

0.925 

± 0.021 

47.948 

± 3.286 

31.735 

± 0.695 

0.764 

± 0.034 

107.787 

± 9.104 

32.721 

± 0.954 

0.797 

± 0.034 

97.135 

± 11.422 

Note—Mean and SD were calculated per patient; RMSE was calculated in range [-1024–3071]; CSL: 

Contrastive style loss; CCL: Cosine similarity content loss 
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Table 6. Ablation study about effect of perceptual guidance. 

Method 

Sharp to Soft 

B50f → B30f B70f → B30f B70f → B50f 

PSNR SSIM RMSE PSNR SSIM RMSE PSNR SSIM RMSE 

StarGAN 
31.416 

± 0.859 

0.880 

± 0.028 

110.668 

± 10.672 

30.906 

± 0.636 

0.841 

± 0.040 

117.143 

± 8.377 

31.657 

± 0.982 

0.783 

± 0.035 

108.169 

± 11.791 

KCGAN 
45.009 

± 0.604 

0.969 

± 0.011 

23.221 

± 1.677 

43.583 

± 0.547 

0.966 

± 0.010 

27.337 

± 1.792 

36.803 

± 0.836 

0.867 

± 0.028 

60.336 

± 6.066 

w/ PG (ours) 
46.161 

± 0.601 

0.984 

± 0.006 

20.289 

± 1.488 

42.552 

± 0.592 

0.971 

± 0.010 

30.711 

± 2.167 

37.430 

± 0.707 

0.897 

± 0.022 

56.117 

± 4.745 

Method 

Soft to Sharp 

B30f → B50f B30f → B70f B50f → B70f 

PSNR SSIM RMSE PSNR SSIM RMSE PSNR SSIM RMSE 

StarGAN 
28.774 

± 0.713 

0.755 

± 0.024 

149.692 

± 12.131 

28.456 

± 0.580 

0.604 

± 0.046 

156.015 

± 10.883 

27.355 

± 0.589 

0.584 

± 0.045 

177.083 

± 12.337 

KCGAN 
37.338 

± 0.662 

0.892 

± 0.023 

56.329 

± 4.496 

30.539 

± 0.730 

0.679 

± 0.041 

124.017 

± 10.881 

30.726 

± 0.831 

0.683 

± 0.044 

121.982 

± 12.312 

w/ PG (ours) 
38.728 

± 0.571 

0.925 

± 0.021 

47.948 

± 3.286 

31.735 

± 0.695 

0.764 

± 0.034 

107.787 

± 9.104 

32.721 

± 0.954 

0.797 

± 0.034 

97.135 

± 11.422 

Note—Mean and SD were calculated per patient; RMSE was calculated in range [-1024–3071]; PG: 

Perceptual guidance. 

 

Table 7. Ablation study about computational cost between baseline and our proposed method. 

Method #params FLOPs 

Baseline 54.1M 363.8G 

+ Architecture improvements and 

perceptual guidance (ours) 
68.1M 386.4G 

 (+25.9%) (+6.2%) 
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Discussion 

In medical I2IT, preserving the anatomical structure of the source image is quite important as well as 

transferring the style of the target image because there are some cases that quantitative analysis is 

performed. Also, the changed anatomical structure is crucial when qualitative analysis is performed. 

However, GAN-based I2IT has a chronic problem that training procedure is not stable, so it makes to 

occur hallucination which generates fake structure. In UNI2IT, GAN-based networks rely on cycle 

consistency method generally. If this method fails to learn, the translated image can’t preserve the 

structure like CycleGAN and StarGAN as shown in Figure 2. CUT, DCLGAN and AttGAN were 

proposed as new methods which can replace the cycle consistency method, but they also have the same 

limitation. We alleviated this problem with perceptual guidance by utilizing the intermediate feature 

map from the generator and the semantic label map from the discriminator and other regularization 

methods. In addition, through ablation study about effect of perceptual guidance, it is shown that using 

perceptual guidance and cycle consistency loss simultaneously can improve performance by 

complementing each other. 

Perceptual guidance is motivated from GGDR [22] which uses cosine similarity loss between the 

intermediate feature map from the generator and the semantic label map from the discriminator. GGDR 

showed that it can improve fidelity as much as conditional GAN generation without any ground-truth 

semantic segmentation masks. However, the generator consists of an encoder and a decoder in I2IT 

differently from image generation and this is required that the generator should preserve the structure 

of the source input image. Especially for CT kernel conversion, preserving structure including fine-

grained details while transferring style of the target image is important for qualitative and quantitative 

analysis, so only using cosine similarity loss may not be sufficient. Previous study [39] proposed 

PatchNCE loss instead of cosine similarity loss for the discriminator to learn fine-grained detail 

anatomical structure in CT kernel conversion. We thought that combination of cosine similarity loss 

and PatchNCE loss can help to learn overall coarse-to-fine anatomical structure including style of the 

target image in feature domain. 

The advantage of perceptual guidance was shown in the translation from soft kernels to sharp kernels. 

Despite it is a more difficult task because the spatial resolution should be increased, and the noise pattern 

should be clear, perceptual guidance showed great performance. Also, perceptual guidance showed 

tremendous improvement through quantitative results in 6 directions of the kernel conversion. 

Furthermore, to apply perceptual guidance, it requires no additional learnable or pre-trained encoding 

networks and low computational cost. Nevertheless, our study has some limitations. First, KCGAN 

showed weakness in qualitative results. It could preserve the coarse-to-fine details anatomical structure, 

but it still could not transfer the style of the target image perfectly as shown in Figure 2. Second, we did 
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not show the results about the translation of more various kernels including external manufacturers, so 

our proposed method needs to prove generalizability of kernel conversion. Finally, we didn’t compare 

our proposed method with denoising diffusion probabilistic models (DDPM) [40] which show 

tremendous generation performance better than GAN, recently. 

 

Conclusion 

In this study, we proposed perceptual guidance which regularizes the discriminator for robust and 

efficient learning of GAN-based multi-domain image-to-image translation. Our proposed method can 

preserve the coarse-to-fine detail anatomical structure of the source image. This method needs only 

changing discriminator architecture to U-Net and does not require introducing any additional learnable 

or pre-trained networks which are accompanied by an encoding process. Experimental results showed 

that our proposed method outperformed existing GAN-based image-to-image translation models in CT 

kernel conversion. 
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Abstract (with Korean) 

컴퓨터 단층촬영 (CT) 영상은 의료 분야에서 널리 사용되는 진단 영상 중 하나이다. CT 

영상은 투영을 포함하는 2차원 배열 데이터인 사이노그램으로부터 역투영을 통한 컨볼루

션 커널을 이용하여 재구성된다. 이때 정성적 평가에서는 어떤 해부학적 구조는 평가하

느냐에 따라 커널이 달라진다. 또한 정성적 평가뿐만 아니라 정량적 평가도 중요하며 커

널 선택에 영향을 미친다. 그러나 여기에는 두가지 문제가 있다. 첫번째로, 사이노그램은 

용량이 크고 저장 공간은 제한되어 있기 때문에 일반적으로 평가를 위해 하나의 특정 커

널만으로 CT 영상을 재구성하고 일주일 내에 사이노그램을 제거한다. 두번째로, 환자를 

스캔하고 다시 한번 방사선에 노출이 된다. 최근에는 많은 연구자들이 CT 커널 변환을 

위해 적대적 생성 신경망 (GAN)을 사용한 이미지 대 이미지 변환 방법을 제안해왔다. 

그럼에도 불구하고, CT 이미지가 소스 커널에서 대상 커널로 변환될 때 기도 및 혈관과 

같은 미세한 세부 사항을 포함한 해부학적 구조를 보존하면서 대상 커널의 스타일로 변

환하는 것은 여전히 어려운 일이다. 본 연구에서는 이러한 문제를 지각적 안내로 완화하

기 위해 커널 변환 GAN (KCGAN)을 제안하고 커널 변환에서 강력하고 효율적인 성능을 

보여주었다. 지각적 안내는 의미론적 표현을 더 잘 학습하기 위해 생성자의 특징 맵을 

사용하는 판별자 정규화 방법의 일종이다. 콘텐츠 및 스타일 특징의 경우 생성자의 특징 

맵과 판별자의 의미 레이블 맵 간에 코사인 유사성 콘텐츠 손실과 대비 스타일 손실이 

각각 정의된다. KCGAN은 소스 도메인의 세밀한 해부학적 구조를 보존하는 동시에 대상 

도메인의 스타일을 전달할 수 있다. 또한 이 방법은 판별자 구조만 변경하고 추가적인 

학습 가능 네트워크나 사전 훈련된 네트워크를 활용하지 않고도 쉽게 적용할 수 있다. 

실험 결과, 3개 커널 사이에서 대부분의 커널 변환 방향에서 이 방법이 기존 GAN 기반 

방법보다 성능이 뛰어난 것을 보여주었다. 
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