creative
comimons

C O M O N S
& X EAlI-HI el Xl 2.0 Gigel=
Ol OtcHe =2 E 2= FR0l 86tH AFSA
o Ol MHE=E= SN, HE, 8E, A, SH & &5 = AsLIC

XS Mok ELICH

MNETEAl Fots BHEHNE HEAIGHHOF SLICH

Higel. M5t= 0 &

o Fot=, 0l MEZ2 THOIZE0ILE B2 H, 0l HAS0 B2 0|8
£ 2ok LIEFLH O OF 8 LICEH
o HEZXNZREH EX2 oItE O 0lelet xAdE=2 HEX EsLIT

AEAH OHE oISt Aele 212 WS0ll 26t g&
71 2f(Legal Code)E OloiotI| &H

olx2 0 Ed=t

Disclaimer =1

ction

Colle


http://creativecommons.org/licenses/by-nc-nd/2.0/kr/legalcode
http://creativecommons.org/licenses/by-nc-nd/2.0/kr/

4 CT dollMel A4 Ad Hsks #1%
A= Ao Y AGE HESA i

Development of unsupervised generative adversarial network for
reconstruction kernel conversion in chest CT imaging
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Abstract

Computed tomography (CT) image is one of the diagnostic imaging widely used in the medical field.
CT image is reconstructed from sinogram, which is the 2D array data containing the projections, using
convolution kernel through back projection. At this point, the kernel differs depending on which
anatomical structure is evaluated in qualitative evaluation. Also, quantitative evaluation is crucial as
well as qualitative evaluation and affects the choice of kernel. However, there are two problems. First,
sinogram has large capacity and storage space is limited, so CT image is usually reconstructed with
only one specific kernel for evaluation and sinogram is removed in a week. Second, patients should be
scanned and exposed radiation once again. Recently, many researchers have proposed image-to-image
translation methods using generative adversarial networks (GANs) for CT kernel conversion.
Nevertheless, preserving anatomical structure including fine details, e.g., airway and blood vessel, while
transferring the style of the target kernel is still challenging when CT image is translated from the source
kernel to the target kernel. In this study, kernel conversion GAN (KCGAN) is proposed to alleviate
these problems with perceptual guidance and showed robust and efficient performance in kernel
conversion. Perceptual guidance is a type of discriminator regularization method using feature map of
generator to learn semantic representation better. For content and style features, cosine similarity
content loss and contrastive style loss are defined between the feature map of generator and semantic
label map of discriminator, respectively. KCGAN can preserve the fine-grained anatomical structure of
the source domain and transfer the style of the target domain, simultaneously. In addition, this method
can be easily applied with only changing the discriminator architecture and without utilizing any
additional learnable or pre-trained networks. Experimental results showed that this method

outperformed existing GAN-based methods in most direction of kernel conversion among three kernels.
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Introduction

Computed Tomography (CT) image is now one of the diagnostic imaging widely used in medical field
and has recently been used for screening for disease. CT image is acquired through back-projection
from sinogram, which is 2D array projection data collected from rotating X-ray tube and detectors.
Before back-projection, convolution kernel is applied as a kind of technical parameter and filter that
changes frequency of the reconstructed CT image. Depending on what kernel being used for CT image
reconstruction, there is a trade-off between the spatial resolution and noise, so it affects texture
quantitative values [1-3]. The sharp kernel makes CT image have high spatial resolution and noise, and
this can help to screen abnormality in bone or lung. On the other side, the soft kernel makes CT image
have low spatial resolution and noise, and this can help to screen abnormality in soft tissue or
mediastinum. Likewise, CT image needs to be reconstructed with different kernels depending on which
anatomical structure is being evaluated. Furthermore, even if the same anatomical structure is being
evaluated, the kernel being used is different depending on whether qualitative or quantitative evaluation
is performed. For instance, in chest CT image to analyze chronic obstructive pulmonary disease (COPD),
it is reconstructed with soft kernel for quantitative evaluation and with sharp kernel for qualitative
evaluation. For these reasons, CT images reconstructed with various kernels are sometimes necessary
for more accurate diagnosis.

However, there are limitations in reconstructing CT images with different kernels. First, sinogram has
large capacity, so CT image is reconstructed with only one specific kernel for evaluation and sinogram
is usually removed in a week. Even though CT image is reconstructed with all kinds of kernels, storage
space is limited. Therefore, medical doctors have had difficulty evaluating qualitatively or
quantitatively without CT images reconstructed with other kernels. Particularly, this limitation reveals
on retrospective or longitudinal studies because they cannot control kernels which are technical
parameters [2]. Consequently, patients should be scanned again to acquire new CT images, then exposed
to unnecessary radiation.

Many studies have proposed image-to-image translation (I121T) methods [4] using convolutional neural
network (CNN)-based CT kernel conversion [2,3,5,6]. However, there is a disadvantage of CNN that
must be a paired dataset for training. Recently, instead of CNN, Generative adversarial network (GAN)
[7]-based CT kernel conversion [8,9] have been proposed due to unsupervised manner and the powerful
generation ability. But when using unsupervised 121 (UI2IT) methods, preserving anatomical structure
including fine details, e.g., airway and blood vessel, while transferring the style of the target image is
still challenging when translated from the source image to the target image, especially in medical
domain [10]. This can cause large pixel intensity variation and be critical for analyzing quantitative

evaluation. In this study, kernel conversion GAN (KCGAN) is proposed to alleviate these limitations
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using chest CT images with perceptual guidance which improves performance of multi-domain UI2IT
in kernel conversion. Perceptual guidance is proposed as a new type of discriminator regularization
method using feature map of generator to learn semantic representation better. For content and style
features, cosine similarity content loss and contrastive style loss are defined between the feature map
of generator and semantic label map of discriminator, respectively.
The contributions of KCGAN with perceptual guidance are as follows:

e KCGAN preserves the coarse-to-fine anatomical structure of the source image.

e Perceptual guidance can be easily applied with only changing the discriminator architecture

and without utilizing any additional learnable or pre-trained networks and encoding process.
e Experimental results showed that this method outperformed existing GAN-based methods in

CT kernel conversion.



Materials and Method

Datasets
This retrospective study was approved by the institutional review board of Asan Medical Center and
written informed consent was waived. A total of 170 patients scanned CT images and consisted of
unpaired 150 patients for training and paired 20 patients for test. CT images were obtained using
Somatom Definition Edge, AS, AS+ and Flash; Siemens Healthineers, Forchheim, Germany.
For train datasets, from January 2015 to July 2021, unpaired non-contrast chest CT images
reconstructed with B30f (soft), B50f (standard) and B70f (sharp) kernels were collected from 50
patients (16760 slices; 37 men and 13 women; mean age, 61.7 £ 13.5 [SD] years), 50 patients (16339
slices; 24 men and 26 women; mean age, 66.7 + 13.1 [SD] years) and 50 patients (17042 slices; 25 men
and 25 women; mean age, 62.6 + 12.3 [SD] years), respectively.
For test datasets, from April 2017 to July 2021, paired non-contrast chest CT images reconstructed with
same kernels as trainset were collected from 20 patients (6897 slices; 15 men and 5 women; mean age,
67.1 £ 7.4 [SD] years) for quantitative and qualitative evaluations. Other CT acquisition parameters are

shown in Table 1.

Table 1. CT acquisition parameters of dataset according to type of kernel.

Kernel Patients Slices Age (year) Sex (M:F) | Slice Thickness kVp | mAs
B30f 50 16760 | 61.7 + 13.5 37:13 1.0 120 120
Train B50f 50 16339 | 66.7 £ 13.1 24:26 1.0 120 120
B70f 50 19469 | 62.6 £ 12.3 32:23 1.0 120 120
Kernel Patients Slices Age (year) Sex (M:F) | Slice Thickness kVp | mAs
B30f 20 6897 67.1+ 7.4 15:5 1.0 120 120
Test B50f 20 6897 67.1+ 7.4 15:5 1.0 120 120
B70f 20 6897 67.1+ 7.4 15:5 1.0 120 120

Multi-domain Image-to-image Translation
Image-to-image translation (I2IT) aims to mapping from a source domain to a target domain. Since
GAN came out in 2014, I2IT made tremendous progress. Pix2Pix [11] is representative supervised 121T
model using conditional input to translate an image. However, Pix2Pix needs paired train datasets, so
researchers have proposed unsupervised [2IT (UNI2IT) [12—17] for unpaired datasets. CycleGAN [12]
was proposed as UNI2IT model that uses two generators, one translates from the source domain to the
target domain, and the other translates from the translated domain back to the source domain.
CycleGAN optimizes these two generators to reduce the difference between the source domain and the
translated source domain using cycle-consistency loss [12]. Although CycleGAN breaks paired

constraint, it suffers from the limitation which cannot translate from one domain to multiple domains at
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once. As multi-domain UNI2IT model, StarGAN [13] was proposed and it could translate the source
domain to multiple domains by embedding various attributes as mask vectors.

I2IT task has also been utilized in medical domain. Many researchers have proposed for CT kernel
conversion [2,3,5,6], however, they used convolutional neural networks (CNN) that requires paired
datasets. Gravina, M., et al. [8] used CycleGAN for unpaired manner, but it was still for only two
domains. Therefore, they should train multiple networks for each kernel conversion. Switchable
CycleGAN [9] solved this two domains limitation and proposed a continuous kernel conversion using
adaptive instance normalization (AdaIN) [18]. This method has advantages of interpolating images
from the source domain to the target domain and translating various kernels between the two domains
but could not preserve fine-grained anatomical structure perfectly.

In this study, StarGAN [13] which is one of multi-domain UNI2IT models was exploited as baseline
model to translate kernels to all directions at once. StarGAN consists of generator that has an encoder
and a decoder and discriminator that performs multi-task for adversarial classification and attributes

classification. The losses of discriminator and generator are as follows:

Lp =—Lgay + AclsLle' (1)
Le=Laay + Aclngls + Acychyc' (2)

where L5, and L; are the discriminator and generator losses, respectively. L,4, is the adversarial
loss for binary classification between real and generated images. L[;; and Lfls are the domain
attributes classification losses for a real and generated image, respectively. L., is the cycle
consistency loss. A and Agyc are the hyperparameters that weight the importance of the domain

attributes classification losses and the cycle consistency loss. These two hyperparameters are set 1 and

10 like configuration of StarGAN, respectively.

Regularization for Discriminator in GANs

Several studies have proposed regularization methods for the balance between the discriminator and the
generator such as differentiable augmentation [19], gradient penalty [20], spectral normalization [21]
and generator-guided discriminator regularization [22].

DiffAugment [19] for data efficient training applies the augmentation to both the real image and the
generated image when discriminator is updated and to the generated image when generator is updated,
because augmentation function should be differentiable. DiffAugment is efficient when the number of
training data lacks, so this method wasn’t used in this study. Gradient penalty [20] is a soft version of
the Lipschitz constraint, which gives gradient norm penalty instead of weight clipping [23]. This can

be GAN training more stable and has been used in recent state-of-the-art GAN including StarGAN [13].



Spectral normalization [21] uses Lipshitz constant, which is the only hyper parameter and doesn’t
require tuning, to regularize discriminator instead of batch normalization [24]. It also showed
tremendous increased performance of GAN and quality of the output image likewise other
regularization methods. Recently, Generator-guided discriminator regularization (GGDR) [22] was
proposed as a new type of discriminator regularization method that discriminator can learn semantic
representation and extract semantic label map by comparing with intermediate feature map from
generator for unconditional generation. This method improves fidelity as much as conditional GAN
[25-27] without any ground-truth semantic label maps. Our proposed method is directly inspired by
GGDR.

Cosine Similarity Content Loss
In GGDR, cosine distance loss was applied between the intermediate feature map and the semantic label
map. This is for convenience of scaling within a specified range because of balance with adversarial
loss. Cosine distance loss would be helpful for discriminator to learn overall semantic content
representation of translated image in terms of 12IT, so we define this loss as cosine similarity content
loss (CCL) and this loss function follows as:

) _ FGE'@) 6k
Lea = Beveo) |1 \EGEG), 16 00TL |

(3)

where x is input images from the source domain. F is the decoder of discriminator and G*(-) is the
£th decoder layer of generator. The resolution of semantic label map from F is the same with that of

the intermediate feature map from G¥.

Contrastive Style Loss
In I21IT, it is important to learn style as well as content, so CCL may be not sufficient to segment a
detailed semantic label map. Recently, contrastive learning has been proved to be effective in learning
semantic label maps for semantic segmentation and object detection [28,29]. Also, it has shown superior
performance that patch-wise contrastive loss can transfer the style of the target image for I2IT [16],
even as a substitute of cycle-consistency loss. Unlike image generation task, 21T task needs generator
which consists of an encoder, residual block [30] and a decoder, this structure design is a core for
translating the style of the source image. Through the decoder, source image is getting closer to
translated image and the feature map in decoder layer might contain the style of the target image. For
these reasons, the intermediate feature map from the decoder of the generator might be effective for
discriminator to learn fine-grained semantic style representation. We use PatchNCE loss [16] and define

this loss as contrastive style loss (CSL), and this loss function follows as:
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exp(v - vT/7)
Sexp(v - vH/0) + 2 exp(v + v /D)’

where v is a vector which are mapped with query patch from the semantic label map of discriminator

Lesg =Ey[—lo ©))

decoder and v*, v, are vectors which are mapped with positive and n-th negative patches from the
intermediate feature map of generator decoder, respectively. 7 is the hyperparameter, but we set T =
0.07 like configuration of CUT. L. performs (N+1)-way classification that the positive patch is made

up to associate with the query patch more than the negative patches.

Perceptual Guidance

CCL plays a role to inform coarse semantic content representation and CSL plays a role to inform fine-
grained semantic style representation. Here, we propose perceptual guidance which is combined with
CCL and CSL so that the discriminator can learn both content and style feature from the generator to
improve performance of multi-domain UNI2IT. Perceptual guidance is inspired from perceptual loss
[31,32] which consists of content loss and style loss in feature domain through VGG model [33].
However, unlike perceptual loss, perceptual guidance only needs two feature maps from the
discriminator and the generator themselves, so it doesn’t require any additional learnable or pre-trained
feature extractor networks and encoding process. It is defined as follows:

Lpg = Acctlect + AcsiLest 5)
where A, and A, are the hyperparameters for balance between L., and L. . These two
hyperparameters are respectively set 1 and 5 and will be shown in experiments and results section for
balancing them. £, ; is added when the discriminator updates, so the discriminator conducts multi-
task learning [34]—real and fake classification, domain attributes classification and semantic

segmentation. The total loss functions for the discriminator and the generator follows as:

Lp =—Lgay + Aclsﬁgls + ‘C'pg' (6)
Le =Ly + Aclstls + Acycﬁcyc- (7)

The overall framework of perceptual guidance is shown in Figure 1.
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Figure 1. Overall framework of perceptual guidance. Perceptual guidance learns coarse semantic
content representation and fine-grained semantic style representation through cosine similarity content
loss and patch-wise contrastive style loss between intermediate feature map from decoder of generator
and semantic label map from decoder of discriminator.

Implementation Details

The resolution of CT images was not resized and maintained the size 512 x 512. The intensities of CT
images were normalized from their full range of Hounsfield units (HU) (-1024-3071) to (-1-1) as pre-
processing. As optimization for the discriminator and the generator, Adam [35] was used with ; = 0.5
and S, = 0.999 and the learning rate is le-4. Gradient penalty [20] is used with critics as 5, where
critics is the number of updates for the discriminator per each update of the generator. The intermediate
feature map from the decoder of the generator was extracted with the size 256 x 256. The number of
patches was 64. All experiments including other GAN-based UNI2IT models were conducted using
single NVIDIA GeForce RTX3090 24GB GPU for 16 epochs with batch size 2.

Architecture Improvements
We selected StarGAN [13] as a baseline model which showed plausible performance in multi-domain
translation, however, other GAN-based UNI2IT models [14,16,17] has come out superior to StarGAN.
Nevertheless, by applying perceptual guidance, adapting spectral normalization [21] to the
discriminator and pixelshuftle [36]—up-sampling method for high quality image—to the generator, we

thought that it can still have possibility to increase performance of StarGAN and catch-up other GAN-



based UNI2IT models. Architectural ablation studies were implemented empirically for the best quality
results. At the up-sampling layers in decoder block of the generator, 4 x 4 transposed convolution was
applied but it caused degradation of visual quality results because of checkerboard artifact [37]. Using
3 x 3 convolution with 2 x 2 pixelshuffle could prevent the checkerboard artifact and showed better
visual quality results than the transposed convolution. Meanwhile, the discriminator followed U-Net
[38] architecture with skip connection to extract the semantic label map through the intermediate feature
map from the generator. It consisted of encoder block which classifies real or fake images and domain
attributes of images through N down-sampling layers, and decoder block which extracts the semantic
label map through N — 1 up-sampling layers by matching the intermediate feature map of the
generator. Since the semantic label map should have the same size with the intermediate feature map,
we notify that the decoder block has N — 1 up-sampling layers. For skip connections, each feature
map from the down-sampling and the up-sampling layers was concatenated together, then 1 x 1
convolution with 2 x 2 pixelshuffle was applied. Additionally, spectral normalization and leakyReLU
activation function were applied in all layers of the discriminator instead of instance normalization and
ReLU activation function. Through this application of architectural changes with perceptual guidance,

we propose kernel conversion GAN (KCGAN).

Experiments and Results

We compared KCGAN with two-domain UNI2IT models such as CycleGAN [12], CUT [16] and
DCLGAN [17] and multi-domain UNI2IT models such as StarGAN [13] and AttGAN [14]. In this
section, qualitative and quantitative results were evaluated 6 directions—B30f to B50f, B30f to B70f,
B50f to B30f, B50f to B70f, B70f to B30f and B70f to B50f—about kernel conversion. Also,
visualization of feature maps from the discriminator and the generator was conducted for better
comprehension. Lastly, ablation studies about the balance of the hyperparameters A.,; and A.g,
separate usage of CCL and CSL, usage of encoder feature map from the generator for CCL, effect of

perceptual guidance and computational cost were conducted to prove efficiency of our proposed method.

Comparison with GAN-based Unsupervised Image-to-image Translation Models
We showed the qualitative results of kernel conversion about 6 directions using GAN-based UNI2IT
models including KCGAN. For qualitative result visualization, window width and level were set 1500
and -700, respectively. As shown in Figure 2, for each kernel conversion, figure is consisted of whole
image and airway zoomed image in first row and second row, respectively. While CycleGAN and
DCLGAN could not preserve the overall sparse anatomical structure when compared to the target image

and DCLGAN showed worst performance, the other models showed plausible qualitative results.
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Nevertheless, if the translated images are zoomed in and looked deeply into the airway and the vessel,
they also could not preserve fine-grained anatomical structure in the translation about most direction.
For better understanding the structural differences between the target image and the translated image,
we visualized difference maps in Figure 3. More details for each kernel conversion are as follows:

1) The translation from sharp kernels to soft kernels (B50f to B30f, B70f to B30f and B70 to B50f):

CT images translated from sharp kernels to soft kernels should look blur and have less noise. It is
shown that AttGAN could not translate blurriness as much as the target kernel and created new vessels
that did not exist before. As seen in B50f to B30f and B70f to B50f, the translated image generated by
CycleGAN created artifact around soft tissues and lung, and the translated image generated by
DCLGAN removed the original information or created new information that did not exist before.
Additionally, they could not preserve the coarse anatomical structure as well as the fine-grained
details. In AttGAN, CUT and StarGAN, it is shown that the thickness of airway wall is different or
disconnected. In addition, the translated images generated by StarGAN have more noise than the
target images and too much blurriness. On the other hand, KCGAN showed great translation
performance preserving the anatomical structure including airway and vessel. These results showed
that our proposed method could preserve the anatomical structure better than the other models.

2) The translation from soft kernels to sharp kernels (B30f to B50f, B30f to B70f and B50f to B70f):
CT images translated from soft kernels to sharp kernels should look clear and have a lot of noise. Like
the translation from sharp kernels to soft kernels, the translated images generated by CycleGAN have
disconnected airway wall and the translated images generated by CUT have different thickness of
airway wall. DCLGAN could not preserve the anatomical structure badly. As seen in B30f to B50f,
the translated image generated by AttGAN could not express the blurriness and noise as much as the
target image and the translated image generated by StarGAN showed hatch pattern artifact, so it
degraded the qualitative result. In B30f to B70f, CycleGAN and CUT created some artifacts that looks
like vessels. In B50f to B70f, all results showed plausible qualitative results that translates blurriness
and noise level. However, they still have weakness in preserving the fine-grained details. StarGAN
showed overall poor quality of the translated images. Although our model is based on vanilla

StarGAN, it is shown that our proposed method could improve performance much better.



Source Target Ours CycleGAN cuT DCLGAN AttGAN StarGAN

B30f — B70f B70f — B50f B30f — B50f B70f — B30f B50f — B30f

B50f — B70f

Figure 2. The qualitative results of kernel conversion about 6 directions. For each kernel conversion,
first row is a whole chest CT image, and second row is a zoomed image which points out airway and
vessels.
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Source Target Ours CycleGAN CUT DCLGAN AttGAN StarGAN

B30f — B70f B70f — B50f B30f — B50f B70f — B30f B50f — B30f

BS0f — B70f

Figure 3. Visualization of pixel absolute value differences between the target images and the translated
images. For each kernel conversion, the first row is the qualitative results of UNI2IT models including
our proposed model (KCGAN). The second row is difference map corresponding to the first row.
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As shown in Table 2, We also showed the quantitative results of kernel conversion about 6 directions.
PSNR, SSIM and RMSE were used as quantitative metrics. In two domain UNI2IT models, CycleGAN
and DCLGAN showed relatively low PSNR, SSIM and RMSE about all directions, but CycleGAN
achieved 0.901 £ 0.021 in SSIM in the translation from B70f to B30f. CUT achieved 0.910 + 0.024 as
the best SSIM performance in the translation from B70f to B50f and comparably high PSNR, SSIM
and RMSE about all directions. Nevertheless, it is still hard for them to translate the kernel from B30f
to B70f. It should be noted that they are not robust and can’t preserve the anatomical structures well. In
multi-domain UNI2IT models, AttGAN showed great PSNR and RMSE performance, which is superior
to StarGAN and CUT, excluding the translation from B30f to B70f. KCGAN showed tremendously
increased PSNR, SSIM and RMSE performance compared to vanilla StarGAN and even other GAN-
based UNI2IT models about all directions of kernel conversion. This indicates that our proposed method

can help to improve robustness and performance when the model is learned about the kernel conversion.
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Table 2. The quantitative results of kernel conversion about 6 directions.

Sharp to Soft

Method B50f — B30f B70f — B30f B70f — B50f
PSNR SSIM RMSE PSNR SSIM RMSE PSNR SSIM RMSE
26.522 0.833 195.512 29.662 0.901 139.161 24.882 0.790 238.286
CycleGAN
+ 0914 + 0.021 + 19.177 | + 2.153 + 0.021 + 31.672 | + 1.336 + 0.050 =+ 34.563
c 33.779 0.941 89.130 30.001 0.893 132.51 31.053 0.910 123.857
UT
+ 2.585 + 0.020 + 27.837 | + 1.816 + 0.029 £ 25402 | + 2.150 + 0.024  + 28.234
27.129 0.771 183.629 26.011 0.626 206.574 24.899 0.643 236.236
DCLGAN
+ 1.491 + 0.023  + 30.120 | + 0.801 + 0.046 + 18485 | + 0972 + 0.044  + 24910
39.211 0.941 45.213 35.832 0.889 66.639 34.761 0.817 75.627
AttGAN
+ 0413 + 0.008 + 2210 + 0.536 + 0.012 + 4.117 + 0.594 + 0.031 + 5.288
31.416 0.880 110.668 30.906 0.841 117.143 31.657 0.783 108.169
StarGAN
+ 0.859 + 0.028 + 10.672 | + 0.636 + 0.040 + 8.377 + 0.982 + 0.035 + 11.791
46.161 0.984 20.289 42.552 0.971 30.711 37.430 0.897 56.117
KCGAN (ours)
+ 0.601 + 0.006 + 1.488 + 0.592 + 0.010 + 2.167 + 0.707 + 0.022 + 4.745
Sharp to Soft
Method B30f — B50f B30f — B70f B50f — B70f
PSNR SSIM RMSE PSNR SSIM RMSE PSNR SSIM RMSE
25.895 0.766 210.860 26.579 0.683 193.908 26.110 0.752 204.453
CycleGAN
+ 1.104 + 0.054 £ 25.015 + 0.952 + 0.039  + 21.624 | + 0.623 + 0.021 + 14.743
CUT 31.700 0.867 108.520 28.884 0.694 149.090 30.762 0.796 120.877
+ 1.494 + 0.040 £ 18.943 + 0.894 + 0.046  + 16.234 | + 1.049 + 0.031 + 14.824
25.557 0.719 218.819 25.209 0.604 237.335 25.830 0.652 214.752
DCLGAN
+ 1.046 + 0.062  + 27954 | + 2366 + 0.070  + 75458 | £ 1.521 + 0.056  + 42.994
35.443 0.861 69.632 28.140 0.588 161.520 29.253 0.616 142.785
AttGAN
+ 0.384 + 0.020 + 3.121 + 0.550 + 0.039  + 10.199 | + 0.663 + 0.040 + 11.235
28.774 0.755 149.692 28.456 0.604 156.015 27.355 0.584 177.083
StarGAN
+ 0.713 + 0.024  + 12.131 + 0.580 + 0.046  + 10.883 | + 0.589 + 0.045  + 12.337
38.728 0.925 47.948 31.735 0.764 107.787 32.721 0.797 97.135
KCGAN (ours)
+ 0.571 + 0.021 + 3.286 + 0.695 + 0.034 + 9.104 + 0.954 + 0.034 + 11.422

Note—Mean and SD were calculated per patient; RMSE was calculated in range [-1024-3071].
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Figure 4. Visualization of the intermediate feature map from the generator and the semantic label map
from the discriminator through k-means clustering (k = 12). The first row shows the translated CT
image about 6 directions of kernel conversion. The second row shows the intermediate feature maps
from the decoder of the generator. The third row shows the semantic label maps from the decoder of
the discriminator. The size of the intermediate feature maps and the semantic label maps is 256 x 256.

Visualization of Intermediate Feature Map and Semantic Label Map
When using perceptual guidance, we can see how the intermediate feature map is extracted from the
generator and the semantic label map is generated from the discriminator. For visualization of feature
map, we clustered the pixel using k-means clustering. In this study, we used k = 12 for the coarse
and fine-grained detail semantic information. As shown in Figure 4, the same anatomical structures
such as bones with bones or muscles with muscles are clustered well in the intermediate feature map
and the semantic label map. Interestingly, it was shown that the air in lung and the air outside are
clustered differently. In addition, airway or vessels are also clustered differently with muscles which
have similar pixel intensity. Through this, we could see that the generator could generate the translated
image with rich semantic representation, so this intermediate feature map could teach the discriminator

as a semantic ground-truth mask.

Ablation Studies
Ablation studies were implemented about the balance of the hyperparameters 1., and A, separate
usage of CCL and CSL, usage of encoder feature map from the generator for CCL, effect of perceptual
guidance and computational cost difference between StarGAN and KCGAN. More details about the
ablation studies are as follows:
1) The balance of the hyperparameters A., and A.g: we experimented the combination of the

hyperparameters A, and A5 for the best performance. As shown in Table 3, when the combination
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of CCL and CSL weights was 1 and 5, it showed the best performance, although 2 and 10 showed good
performance in the translation from B70f to B30f.

2) Separated usage of CCL and CSL: we studied that whether only using one loss function—CCL or
CSL—can improve performance. As shown in Table 4, the results showed that they can significantly
improve performance. Especially when using CSL, it showed powerful performance in the translation
from sharp kernels to soft kernels. Nevertheless, if we use perceptual guidance which uses CCL and
CSL together, it is shown that the performance increased tremendously when translating from soft
kernels to sharp kernels.

3) Usage of encoder feature map from the generator for CCL: cosine similarity content loss was defined
to preserve coarse anatomical structure of the source image. CCL was utilized with the intermediate
feature map from the decoder of the generator in our experiments, however, there is an encoder which
can also extract the feature map. Thus, we experimented whether the intermediate feature map from
encoder of the generator can help for the discriminator to learn semantic content information instead of
the intermediate feature map from decoder. As shown in Table 5, although the encoder showed good
performance, it was slightly lower than the decoder. This might be because the translated image has
more similar content representation than the source image.

4) Effect of perceptual guidance: we experimented the effect of perceptual guidance in KCGAN. As
shown in Table 6, it is shown that KCGAN without perceptual guidance and with cycle consistency loss
already showed significantly increased performance compared to StarGAN. Nevertheless, KCGAN
with perceptual guidance and cycle consistency loss showed that perceptual guidance can be effective
in improving performance especially in translation from soft kernels to sharp kernels.

5) Computational cost between baseline and our proposed method: we calculated computational cost
between baseline model (StarGAN) with and without architectural improvements and perceptual
guidance to show efficiency of our proposed method. As shown in Table 7, the parameters and FLOPs
increased 25.9% and 6.2%, respectively. This indicates that using our proposed method doesn’t cost a
lot and is efficient. This experiment was conducted with image size 512 x 512 and a single NVIDIA

GeForce RTX3090 24GB GPU.
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Table 3. Ablation study about the balance of the hyperparameters 1., and A.g.

Sharp to Soft
Method B50f — B30f B70f — B30f B70f — B50f

PSNR SSIM RMSE PSNR SSIM RMSE PSNR SSIM RMSE
46.161 0.984 20.289 42.552 0.971 30.711 37.430 0.897 56.117
+ 0.601 + 0.006 + 1.488 + 0.592 + 0.010 + 2.167 + 0.707 + 0.022 + 4.745
45313 0.982 22.332 42.201 0.970 31.946 36.198 0.867 59.652
+ 0.576 + 0.006 + 1.522 + 0.624 + 0.011 + 2.364 + 0.800 + 0.031 + 6.255

CSL1+CCL5

CSL 1+CCL 10

44.353 0.980 25.095 41.934 0.967 33.003 36.182 0.873 64.472
+ 0.987 + 0.004 + 3.388 + 0.715 + 0.006 + 3.029 + 0.820 + 0.024 + 6.234
45.359 0.982 22.263 43.213 0.975 28.447 36.349 0.854 63.411
+ 0.488 + 0.005 + 1.329 + 0.441 + 0.007 + 1.510 + 0.783 + 0.030 + 5.901

CSL2+CCL5

CSL2+CCL 10

Soft to Sharp
Method B30f — B50f B30f — B70f B50f — B70f

PSNR SSIM RMSE PSNR SSIM RMSE PSNR SSIM RMSE

38.728 0.925 47.948 31.735 0.764 107.787 32.721 0.797 97.135
CSL1+CCLS5

+ 0.571 + 0.021 +3.286 | +0.695 £ 0.034 £ 9.104 | £ 0954 £ 0.034 =+ 11.422

37.927 0.909 52.455 31.401 0.734 111.941 32.063 0.760 104.486
CSL1+CCL 10

+ 0.562 £ 0025 + 3526 | £0.695 +0.036 +9463 | £ 0899 +0.038 + 11.512

37.546 0912 54.663 31.414 0.743 111.921 31.503 0.737 111.418
CSL2+CCL5

+ 0472 + 0.017 + 3.113 + 0.722 + 0.037 + 9.857 + 0.935 + 0.044 £ 12,782

37.255 0.889 56.868 30.619 0.690 122.826 30.765 0.692 121.485
CSL2+CCL 10

+ 0.635 + 0.021 + 4318 + 0.712 + 0.039 + 10.551 | + 0.878 + 0.043 + 12.941

Note—Mean and SD were calculated per patient; RMSE was calculated in range [-1024-3071]; CSL:
Contrastive style loss; CCL: Cosine similarity content loss.
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Table 4. Ablation study about separated usage of CCL and CSL.

Sharp to Soft

Method B50f — B30f B70f — B30f B70f — B50f
PSNR SSIM RMSE PSNR SSIM RMSE PSNR SSIM RMSE
44.970 0.978 23.252 42.655 0.968 30.325 36.058 0.847 65.762
cCL + 0.482 + 0.009 + 1.363 + 0.496 + 0.014 + 1.817 + 0.831 + 0.033 + 6.518
45.668 0.984 21.466 43.398 0.977 27.830 38.147 0.898 51.164
CSL + 0.505 + 0.007 + 1.333 + 0.483 + 0.009 + 1.625 + 0.662 + 0.026 + 4.064
G 46.161 0.984 20.289 42.552 0.971 30.711 37.430 0.897 56.117
P + 0.601 + 0.006 + 1.488 + 0.592 + 0.010 + 2.167 + 0.707 + 0.022 + 4.745

Soft to Sharp

Method B30f — B50f B30f — B70f B50f — B70f
PSNR SSIM RMSE PSNR SSIM RMSE PSNR SSIM RMSE
37.704 0.899 54.012 31.133 0.718 115.811 31.235 0.716 114.926
CCL + 0.640 + 0.021 + 4.155 + 0.789 + 0.038 £+ 11.007 | + 0.886 + 0.039 + 12.399
36.723 0.893 59.963 30.961 0.735 117.735 32.013 0.775 104.958
CSL + 0.392 + 0.020 + 2.772 + 0.708 + 0.033 + 9.978 + 0.908 + 0.033 £ 11.643
38.728 0.925 47.948 31.735 0.764 107.787 32.721 0.797 97.135
PG + 0.571 + 0.021 + 3.286 + 0.695 + 0.034 + 9.104 + 0.954 + 0.034 £ 11.422

Note—Mean and SD were calculated per patient; RMSE was calculated in range [-1024-3071]; CSL:
Contrastive style loss; CCL: Cosine similarity content loss; PG: Perceptual guidance

Table 5. Ablation study about usage of encoder feature map from the generator for CCL.

Method

Sharp to Soft

B50f — B30f B70f — B30f B70f — B50f
PSNR SSIM RMSE PSNR SSIM RMSE PSNR SSIM RMSE
45.529 0.984 21.773 42.073 0.969 32.410 37.240 0.884 57.264
CCL from encoder
+ 0.506 + 0.005 + 1.335 + 0.510 + 0.011 + 1.968 + 0911 + 0.032 + 6.324
46.161 0.984 20.289 42.552 0.971 30.711 37.430 0.897 56.117
CCL from decoder
+ 0.601 + 0.006 + 1.488 + 0.592 + 0.010 + 2.167 + 0.707 + 0.022 + 4.745
Soft to Sharp
Method B30f — B50f B30f — B70f B50f — B70f
PSNR SSIM RMSE PSNR SSIM RMSE PSNR SSIM RMSE
38.450 0.921 49.426 31.419 0.743 111.606 32.222 0.769 102.578
CCL from encoder
+ 0.608 + 0.022 + 3.610 + 0.687 + 0.036 + 9.266 + 0.987 + 0.041 £ 12422
38.728 0.925 47.948 31.735 0.764 107.787 32.721 0.797 97.135
CCL from decoder
+ 0.571 + 0.021 + 3.286 + 0.695 + 0.034 + 9.104 + 0.954 + 0.034 + 11.422

Note—Mean and SD were calculated per patient; RMSE was calculated in range [-1024-3071]; CSL:
Contrastive style loss; CCL: Cosine similarity content loss
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Table 6. Ablation study about effect of perceptual guidance.

Sharp to Soft
Method B50f — B30f B70f — B30f B70f — B50f
PSNR SSIM RMSE PSNR SSIM RMSE PSNR SSIM RMSE
31416 0.880 110.668 30.906 0.841 117.143 31.657 0.783 108.169
StarGAN
+ 0.859 + 0.028 £ 10.672 | + 0.636 + 0.040 + 8.377 + 0.982 + 0.035 £ 11.791
45.009 0.969 23.221 43.583 0.966 27.337 36.803 0.867 60.336
KCGAN
+ 0.604 + 0.011 + 1.677 + 0.547 + 0.010 + 1.792 + 0.836 + 0.028 + 6.066
46.161 0.984 20.289 42.552 0.971 30.711 37.430 0.897 56.117
w/ PG (ours)
+ 0.601 + 0.006 + 1.488 + 0.592 + 0.010 + 2.167 + 0.707 + 0.022 + 4.745
Soft to Sharp
Method B30f — B50f B30f — B70f B50f — B70f
PSNR SSIM RMSE PSNR SSIM RMSE PSNR SSIM RMSE
28.774 0.755 149.692 28.456 0.604 156.015 27.355 0.584 177.083
StarGAN
+ 0.713 + 0.024 £+ 12.131 | + 0.580 + 0.046 + 10.883 | + 0.589 + 0.045 £ 12337
37.338 0.892 56.329 30.539 0.679 124.017 30.726 0.683 121.982
KCGAN
+ 0.662 + 0.023 + 4.496 + 0.730 + 0.041 + 10.881 | + 0.831 + 0.044 £ 12312
38.728 0.925 47.948 31.735 0.764 107.787 32.721 0.797 97.135
w/ PG (ours)
+ 0.571 + 0.021 + 3.286 + 0.695 + 0.034 + 9.104 + 0.954 + 0.034 + 11.422

Note—Mean and SD were calculated per patient; RMSE was calculated in range [-1024-3071]; PG:
Perceptual guidance.

Table 7. Ablation study about computational cost between baseline and our proposed method.

Method #params FLOPs
Baseline 54.1M 363.8G
+ Architecture improvements and
68.1M 386.4G
perceptual guidance (ours)
(+25.9%) (+6.2%)
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Discussion

In medical 12IT, preserving the anatomical structure of the source image is quite important as well as
transferring the style of the target image because there are some cases that quantitative analysis is
performed. Also, the changed anatomical structure is crucial when qualitative analysis is performed.
However, GAN-based I2IT has a chronic problem that training procedure is not stable, so it makes to
occur hallucination which generates fake structure. In UNI2IT, GAN-based networks rely on cycle
consistency method generally. If this method fails to learn, the translated image can’t preserve the
structure like CycleGAN and StarGAN as shown in Figure 2. CUT, DCLGAN and AttGAN were
proposed as new methods which can replace the cycle consistency method, but they also have the same
limitation. We alleviated this problem with perceptual guidance by utilizing the intermediate feature
map from the generator and the semantic label map from the discriminator and other regularization
methods. In addition, through ablation study about effect of perceptual guidance, it is shown that using
perceptual guidance and cycle consistency loss simultaneously can improve performance by
complementing each other.

Perceptual guidance is motivated from GGDR [22] which uses cosine similarity loss between the
intermediate feature map from the generator and the semantic label map from the discriminator. GGDR
showed that it can improve fidelity as much as conditional GAN generation without any ground-truth
semantic segmentation masks. However, the generator consists of an encoder and a decoder in I12IT
differently from image generation and this is required that the generator should preserve the structure
of the source input image. Especially for CT kernel conversion, preserving structure including fine-
grained details while transferring style of the target image is important for qualitative and quantitative
analysis, so only using cosine similarity loss may not be sufficient. Previous study [39] proposed
PatchNCE loss instead of cosine similarity loss for the discriminator to learn fine-grained detail
anatomical structure in CT kernel conversion. We thought that combination of cosine similarity loss
and PatchNCE loss can help to learn overall coarse-to-fine anatomical structure including style of the
target image in feature domain.

The advantage of perceptual guidance was shown in the translation from soft kernels to sharp kernels.
Despite it is a more difficult task because the spatial resolution should be increased, and the noise pattern
should be clear, perceptual guidance showed great performance. Also, perceptual guidance showed
tremendous improvement through quantitative results in 6 directions of the kernel conversion.
Furthermore, to apply perceptual guidance, it requires no additional learnable or pre-trained encoding
networks and low computational cost. Nevertheless, our study has some limitations. First, KCGAN
showed weakness in qualitative results. It could preserve the coarse-to-fine details anatomical structure,

but it still could not transfer the style of the target image perfectly as shown in Figure 2. Second, we did
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not show the results about the translation of more various kernels including external manufacturers, so
our proposed method needs to prove generalizability of kernel conversion. Finally, we didn’t compare
our proposed method with denoising diffusion probabilistic models (DDPM) [40] which show

tremendous generation performance better than GAN, recently.

Conclusion

In this study, we proposed perceptual guidance which regularizes the discriminator for robust and
efficient learning of GAN-based multi-domain image-to-image translation. Our proposed method can
preserve the coarse-to-fine detail anatomical structure of the source image. This method needs only
changing discriminator architecture to U-Net and does not require introducing any additional learnable
or pre-trained networks which are accompanied by an encoding process. Experimental results showed
that our proposed method outperformed existing GAN-based image-to-image translation models in CT

kernel conversion.
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