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Abstract

Background: CD36, also known as fatty acid translocase and scavenger receptor, is a trans-

membrane molecule which functions as signaling molecule and lipid transporter. CD36 binds

oxidized low-density lipoprotein (ox-LDL), long chain fatty acid, damage-associated molecu-

lar pattern (DAMP), and pathogen-associated molecular pattern (PAMP). CD36 is expressed

not only in fat cells, muscle cells, and endothelial cells, but also in immune cells such as plate-

lets, red blood cells, macrophages, dendritic cells, and T cells. CD36 expressed in immune

cells is known to play a role in immune metabolism, but its function in T cell development has

been less elucidated.

Methods: CD36-floxed mice and Lck-cre mice were crossed to generate T-cell-specific CD36

knock-out (KO) mice, which were named CD36 conditional KO (cKO) mice. The thymus,

spleen, and bone marrow cells of 3-4 week-old CD36 ¢cKO mice and thymocytes of 5-8 week-

old CD36 cKO mice were analyzed by flow cytometry. T cell proliferation was assessed by



carboxyfluorescein succinimidyl ester (CFSE) dilution and cell counting kit 8 (CCK8) assay

in the presence of IL-2, anti-CD3, and anti-CD28 monoclonal antibodies. To investigate the

mechanism underlying increased T cell proliferation, the activation of AKT, mTOR, and ERK

was observed by flow cytometry. RNA was extracted from thymus and bone marrow cells and

mRNA sequencing was performed.

Results: Three- to four-week-old CD36 ¢KO mice displayed increases in CD3", double nega-

tive (DN), DN3, CD3" double positive (DP) and CDS8 single positive (SP) cells and reduction

in DN4, total DP, CD3"DP and CD4 SP cells in the thymus. CD36 cKO splenocytes had lower

frequency of CD4 SP cells, compared with WT. The frequency and mean fluorescence index

(MFTI) of CD3* bone marrow cells from CD36 cKO mice were lower than those of WT. Thymic

T cells from CD36 ¢cKO mice were more proliferative than those of WT upon CD3 and CD28

stimulation. mRNA-sequencing data showed that the expressions of Cc/l/7 and Ccr7 were up-

regulated, and those of Cc/22 and Ccr9 were downregulated in CD36 ¢cKO thymus. It was

confirmed by quantitative real-time PCR (qRT-PCR) that the expressions of Cc/22 and Ccr9
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were significantly decreased in CD36 cKO thymocytes, compared with those of WT. Ccll7

and Ccr7 expressions were higher and Cc/22 and Ccr9 expressions were lower in the CD36

cKO bone marrow than in WT, although the differences were not statistically significant.

Conclusion: CD36 cKO 3-4 week-old mice had defects in DN3 to DN4 transition. CD36 cKO

thymic T cells were more proliferative than WT. The developmental changes of thymic T cells

might result from the changes of the expression of chemokines and chemokine receptors. This

study suggests that CD36 is a potential contributor to thymic T cell development from DN

stage and has a regulatory function in proliferation.



Introduction

CD36 is a transmembrane glycoprotein that is also known as fatty acid translocase and scav-

enger receptor class B member 3 [1]. CD36 binds thrombospondin-1, damage-associated mo-

lecular patterns (DAMPs), pathogen-associated molecular patterns (PAMPS), oxidized low-

density lipoproteins (ox-LDLs), and long-chain fatty acids [2]. It is expressed in various cell

types including adipocytes, myocytes, endothelial cells, platelets, erythrocytes, macrophages,

monocytes, dendritic cells, and T cells [3]. As CD36 is expressed in those cells and binds

multiple ligands, it exerts multifunction associated with lipid metabolism and cell signaling,

including immune-metabolic functions. CD36 plays a functional role in lipoprotein and fatty

acid metabolism. The early research reveals that CD36 null mice significantly impair in the

binding and uptake of ox-LDL as well as in the transport of long-chain fatty acids [4].

In immune system, macrophage CD36 mediates lipid uptake and the formation of

foam cells in atherosclerosis and phagocytosis [5, 6]. On dendritic cells, CD36 recognizes,



phagocytoses apoptotic cells, and affects T cell priming [7]. CD36 mediates the uptake of fatty

acids in tumor infiltrating CD8" T cells and it promotes lipid peroxidation and ferroptosis,

which are associated with impaired CD8" T cell cytotoxic function and antitumor activity [8].

The expression of CD36 is upregulated in intratumoral Treg cells, that allows to uptake fatty

acids within tumor microenvironment and promote mitochondrial fitness through peroxisome

proliferator-activated receptor-p (PPAR-fB)-dependent mechanism. Genetic ablation of CD36

in Treg cells impairs intratumoral Treg function, improving antitumor activity [9]. However,

the role of CD36 in T cell development remains poorly understood.

T cells develop through a serial process in which bone marrow-derived hematopoietic

progenitor cells enter the thymus, where they are matured and selected by migrating from the

cortex to the medulla, and egress to the periphery and the tissues [10]. In the bone marrow,

hematopoietic stem cells (HSCs), determined as Lin Sca-1"c-kit*, differentiate multipotent

progenitors (MPPs) which have lost self-renewal capacity. MPPs generate common myeloid



progenitors (CMPs) and common lymphoid progenitors (CLPs) that have T lineage potential

[11]. CLPs referred to as thymus seeding progenitors (TSPs) enter the thymus via the blood

vessels at the junction of cortical and medullary regions [12]. After entering the thymus, TSPs

become early T cell progenitors (ETPS) as double negative (DN) stage 1 thymocytes that lack

the expressions of CD4 and CD8 and are defined as CD44*CD25". Immature thymocytes go

through CD44*CD25* DN2 and CD44-CD25" DN3 stages and migrate toward the subcapsular

zone. DN3 thymocytes undergo T cell receptor (TCR)-B, TCR-y, and TCR-6 chain gene rear-

rangements that promote to differentiate to the off lineage and yd lineage [13]. Following the

rearrangement of TCR-f chain, the TCR- chain associates with the pre-TCR-a chain and

CD3 signaling molecules to produce the pre-TCR complex [14]. This process called B-selec-

tion and the cell that fails this process undergoes apoptosis. It results in the expansion and

transition of DN3 thymocytes to CD44°'CD25 DN4 and subsequently double-positive (DP)

thymocytes expressing both CD4 and CD8. DN3 thymocytes which express TCR-y and TCR-

d chain generate y3-TCR and differentiate to v T cells [15]. DP thymocytes are located in the
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cortex replace the pre-TCR-a chain with the TCR-a chain [16] and undergo positive selection

that allows only T cells with TCRs that bind to MHC complexes expressed in thymic cells to

survive. After positive selection, DP thymocytes mature to single positive (SP) cells through

negative selection in the medulla. This leads to the apoptosis of immature cells with strong

TCR signaling in response to self-MHC complexes [17]. Then, SP thymocytes, that recognize

antigens and have self-tolerant immune function, exit from the thymus to the periphery [18].

T cell development, as well as T cell differentiation and activation, is dependent on

energy metabolism. It is influenced by the uptake of nutrients. Lipid metabolism has been

considered a regulator of T cell responses. The cells interact with environmental lipids and

activate lipid intracellular signaling [19]. Lipid metabolism might be critical for maintaining

thymic T cell development. For example, high-fat diet starting from young age impairs T cell

development in the thymus and induces the apoptosis of thymocytes [20]. Glycerol-3-phos-

phate acyltransferase-1 gene ablation changes thymocyte lipid content, and it leads to the



reduction of thymic T cell production in mice [21]. Mice with deficiency of lysosomal acid

lipases, which hydrolyze cholesterol esters and triglycerides to generate free fatty acids and

cholesterols, have decreased thymocytes and defected T cell development in the thymus [22].

Those studies reveal lipid metabolisms in thymic microenvironments have a significant effect

on the development of thymocytes. However, the function of CD36 in thymic T cell develop-

ment has not been elucidated yet.

In this study, T-cell-specific CD36 knock-out (KO) mice, named CD36 conditional

KO (cKO) mice, were utilized to determine whether CD36 is involved to thymic T-cell devel-

opment. I investigated the phenotypes of thymocytes, bone marrow cells, and splenocytes from

CD36 cKO mice and wild type (WT) mice, thymic T cell proliferation, and gene expressions

of chemokines and chemokine receptors associated with T cell development, differentiation,

and thymic egress. These results suggest that CD36 would be a potential contributor to T cell

development, differentiation, and proliferation in the thymus.



Materials and Methods

Mouse

Cd36™!lg/J and B6.Cg-Tg(Lck-cre)548Jxm/J mice were purchased from Jackson Laboratory

(Bar Harbor, ME, USA). All mice were on C57BL/6 background. Mice were crossed to gen-

erate T-cell-specific CD36 KO mice. CD36 cKO mice were bred under specific pathogen-free

conditions. Experiments were performed at 3-8 weeks of age and studied in males and females.

Wild type (WT) mice that were not ablated of exons 3 and 4 of CD36 gene were used as control.

All experiments were approved by IACUC (Approval No.2022-14-288).

For genotyping, genomic DNA was extracted from the tail of mice. PCR was con-

ducted by C1000 Touch Thermal Cycler (Bio-Rad, Hercules, CA, USA) using BioFACT 2X

Lamp Taq PCR Master Mix 1 (BIOFACT, Daejeon, Republic of Korea). The primer sequences

(from 5’ to 3°) are as follow: LoxP locus forward: ATTGGCATCTGTGTAGCGCTCTTGGC,

LoxP locus reverse: TGCTACTATGCACTCCATGCAGGC, CD36 deletion forward: ATT-

GGCATCTGTGTAGCGCTCTTGGC, CD36 deletion reverse:



TCAGGACCATAGCAAGTAGGC [23], Cre forward: TGTGAACTTGGTGCTTGAGG, Cre

reverse: CAGGTTCTTGCGAACCTCAT, Internal positive control (IPC) forward:

CTAGGCCACAGAATTGAAAGATCT, IPC reverse: GTAGGTGGAAATTCTAG-

CATCATCC. Since PCR assay for Lck-cre detection does not distinguish hemizygous, qRT-

PCR was performed according to the Jackson Laboratory protocols. The primer sequences

(from 5’ to 3’) are as follow: Cre forward: CAGTCAGGAGCTTGAATCCC, Cre reverse:

CACTAAAGGGAACAAAAGCTGG, IPC forward: CACGTGGGCTCCAGCAT, IPC re-

verse: TCACCAGTCATTTCTGCCTTTG.

Isolation of thymocytes, splenocytes, and bone marrow cells

Thymus, spleen, and bone marrow were placed on cell strainers of pore size 100 pm (CORN-

ING, Corning, NY, USA) and ground with the plunger of 1 ml syringe. Red blood cells (RBCs)

were lysed with 1 x RBC lysis buffer (BioLegend, San Diego, CA, USA), Cells were sus-

pended in RPMI 1640 (Welgene, Gyeongsan-si, Gyeongsangbuk-do, Republic of Korea)
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supplemented with 10% inactivated FBS (Welgene), 100 U/mL penicillin, 100 pg/ml strepto-

mycin (Welgene), 1 mM sodium pyruvate (Sigma Aldrich, St. Louis, MO, USA), and 55 uM

2-Mercaptoethanol (Gibco; Thermo Fisher Scientific, Waltham, MA, USA). The cell number

was counted by trypan blue (Welgene) exclusion method using a hemocytometer.

Flow Cytometry

Isolated thymocytes, splenocytes, and bone marrow cells were blocked for non-specific Fc-

mediated binding using purified rat anti-mouse CD16/CD32 (clone 2.4G2, BD Biosciences,

San Diego, CA, USA), stained with antibodies, and washed twice with phosphate-buffered

saline (PBS) (Biosesang, Seongnam-si, Gyeonggi-do, Republic of Korea) containing 2% FBS.

Cells were stained with APC-conjugated anti-mouse CD45 (clone 30-F11, eBioscience;

Thermo Fisher Scientific, Waltham, MA, USA) PerCP-Cy5.5 conjugated anti-CD3 (clone

145-2C11, eBioscience), BV510-conjugated anti-CD4 (clone FM4-5, BioLegend), BV650-

conjugated anti-CD8 (clone 53-6.7, BioLegend), PE-conjugated anti-CD25 (clone PC61.5,
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eBioscience), APC-conjugated anti-CD44 (clone IM7, BD Biosciences), PE-Cy7-conjugated

anti-CD117 (clone ACK2, BioLegend), BV421-conjugated anti-CD34 (clone SA376A4, Bio-

Legend), PE-Cy5-conjugated anti-TCR- (clone H57-597, BioLegend), FITC-conjugated

anti-CD3 (clone 145-2C11, BD Biosciences), PE-conjugated anti-CD8 (clone 53-6.7, eBiosci-

ence), PE-conjugated anti-phosphorylated-mTOR (clone MRRBY, eBioscience), BV421-con-

jugated anti-phosphorylated-AKT (clone M89-61, BD Biosciences), and Alexa Fluor 647-

conjugated anti-phosphorylated-ERK (clone 6B8B69, BioLegend) monoclonal antibodies.

For intracellular staining, cells were fixed and permeabilized with BD Phosflow

Lyse/Fix Buffer (5X) and BD Phosflow Perm Buffer III (BD Biosciences). After washing,

Cells were detected by a CytoFLEX flow cytometer (Beckman Coulter Life Sciences, Brea,

CA, USA) and analyzed using a FlowJo v10 software (Tree Star, Ashland, OR, USA).

T cell proliferation assay



T cell proliferation was assessed by CFSE dilution and CCKS8 assay. Thymocytes were labeled

with CFSE (Invitrogen, Thermo Fisher Scientific) and cultured at 1 x 10° cells/well in 24 well

plates with 100 U/ml recombinant human IL-2 (rhIL-2; PeproTech, Rocky Hill, NH, USA), 1

ug/ml of mouse anti-CD3 (clone 145-2C11, BioLegend), and anti-CD28 (clone 37.51, Bio-

Legend) monoclonal antibodies and rhIL-2 were treated every 2 days. On day 0, 3, and 5,

CFSE dilution was detected by flow cytometry.

For CCKS8 assay, cells were plated at 1 x 10* cells in triplicates in 96 well plates with

rhIL-2, mouse anti-CD3, and anti-CD28 monoclonal antibodies. After 7 days, cells were

treated with CCK8 reagent (Dojindo, Tabaru, Kumamoto, Japan) and the absorbance was

measured using a microplate reader (TECAN, Méannedorf, Switzerland) according to the man-

ufacturer’s instructions.

RNA isolation and qRT-PCR
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RNA from thymocytes and bone marrow cells of CD36 cKO mice was extracted using TRIzol

(Invitrogen). Complementary DNA (cDNA) was synthesized using Oligo(dT)12-18 Primer

(Invitrogen), Superscript 11 reverse transcriptase (Invitrogen), 10 mM dNTP Mix (Invitrogen),

and RNaseOUT Recombinant Ribonuclease Inhibitor (Invitrogen). qRT-PCR was performed

by QuantStudio 5 Real-Time PCR system, 384-well (Applied Biosystems; Thermo Fisher Sci-

entific) using cDNA mixtures with SYBR Green PCR Master Mix (Applied Biosystems). Re-

sults were normalized to the expression of Gapdh and Hprt. The primer sequences (from 5’ to

3’) are as follow: Gapdh forward: TTGTCAGCAATGCATCCTGCAC, Gapdh reverse:

ACAGCTTTCCAGAGGGGCCATC [24], Hprt  forward: TGCCGAGGATTT-

GGAAAAAGTG, Hprt reverse: AGAGGGCCACAATGTGATGG [25], Ccr7 forward:

TCATTGCCGTGGTGGTAGTCTTCA, Cer7 reverse: ATGTTGAGCTGCTT-

GCTGGTTTCG [26], Ccr9 forward: TGGCTTGTGTTCATTGTGGG, Ccr9 reverse:

CAGAAGGGAAGAGTGGCAAG [27], Ccl17 forward: TTGTGTTCGCCTGTAGTGCATA,

Ccll7  reverse:  CAGGAAGTTGGTGAGCTGGTATA  [28], Ccl22  forward:

11



AAGCCTGGCGTTGTTTTGAT, Ccl22 reverse: CCTGGGATCGGCACAGATA [29]. All

primers were purchased by COSMOgenetech (Seoul, Republic of Korea).

RNA sequencing

RNA was extracted from thymocytes and bone marrow cells from CD36 cKO and WT mice

as above. cDNA library was constructed using RiboCop rRNA Depletion and NEBNext Ultra

II Directional RNA kit by Ebiogen (Seoul, Republic of Korea) for RNA sequencing. mRNA

sequencing was performed using NovaSeq 6000 (Illumina, CA, USA). Venn diagram, cluster-

ing heatmap, and comparing gene expressions were generated using an exDEGA software

(Ebiogen, Seoul, Republic of Korea).

Statistics

Statistical tests were performed by student #-test using a GraphPad Prism software

(GraphPad Software, Inc., San Diego, CA, USA). CCKS assay was analyzed by ordinary

12



two-way ANOVA followed by multiple comparisons. All data are shown as means + SEM. *

p<0.05, ** p<0.01.
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Results

CD36 cKO thymocytes of 3-4 week-old mice showed defects in T cell development.

To determine whether CD36 was involved in thymic T-cell development, I investigated the

phenotypes of thymocytes from 3-4 week-old CD36 cKO mice and WT mice by flow

cytometry. I used mice with Cre expression controlled by the /ck promoter to generate T-cell-

specific CD36 KO mice. The protein tyrosine kinase Lck is expressed in T cell lineages and

critical for T cell development [30]. The gating strategy to analyze T cell phenotypes of the

thymocytes is shown in Fig. 1A. The developmental stages are defined as DN, DP, CD4 SP

and CD8 SP as previously described [31]. The percentages of CD3- thymocytes from CD36

c¢KO mice were decreased by approximately 0.96 fold, while those of CD3" thymocytes were

increased by appreoximately 1.26 fold, compared with those of WT. The MFI of CD3"

thymocytes were 1.72 fold higher in CD36 ¢cKO mice than WT. The percentages of thymocytes

from CD36 cKO mice were significantly increased by approximately 1.44 fold in the DN stage,

but significantly decreased in the DP stage by approximately 0.95 fold, compared with WT.

14



CD36 cKO mice had 1.51-fold more percentages of DN3 thymocytes and 0.73-fold less

percentages of DN4 stage than WT. CD36 cKO mice had 0.99-fold less percentages of CD3-

DP cells and 1.27-fold more percentages of CD3" DP cells than WT. The percentages of CD4

SP cells were 0.82-fold less and CD8 SP cells were 1.25-fold more in CD36 ¢cKO compared

with WT. The differences in DN3, DN4, DP, and SP were statistically significant. The cell

number of each stage from CD36 cKO was slightly increased than WT, but not statistically

significant (Fig. 1B, Fig. 1C and D). The results suggest that CD36 cKO thymocytes have

defects in DN3 to DN4 transition, possibly resulting in the accumulation of DN cells. CD36

cKO thymocytes of 3-4 week-old mice seemed to have problems in CD3 expression and

progress to DP and SP.

To investigate whether developmental defects were specific in 3-4 week-old mice,

flow cytometry was performed to analyze thymocytes in mice aged 5-8 weeks. No difference

was found in frequencies, cell numbers, and CD3" MFI (Fig. 2A). These results indicate that

development defects occur only in the thymus of 3-4 week-old mice, not in the adult mice.

15



The phenotypes of splenocytes from 3-4 week-old CD36 cKO mice and WT mice

were observed by flow cytometry to identify any defects after thymic egress. The gating

strategy of splenocytes is shown (Fig. 3A). The results display that CD4 SP cells from CD36

cKO mice were significantly decreased by approximately 0.72 fold, compared with WT. (Fig.

3B). In summary, the results suggest that development defects in the thymus might affect the

phenotype of splenocytes in CD36 cKO mice.

16



Figure 1.

< % 1007
¢ s00k] = CD3 e
(72} o 80
[} ~
.. 400K ‘ T 60 §
g 200K ] e '% 40 CD3*
%) £ 20
%) 0] 5 ol
0 300K 900K zZ a0to 10% 10°10°
FSC-A | FSC-A CD3
)
o J
107] ~ bP| £ '™icD3 , | CD3
101 @ [ o &iDP DP
© 10" 1 =i — 601 ©
o) 10 W) K 5]
01 M N 407
® i
_1044 g 20
A R A S O 4856 T
4100 10" 10° 10 z 41070 10 10”10 100 10 107 10
CD4 CD3 CD4
B WT CD36 cKO WT CD36 cKO
3 3 3 3
2 ™jg903 94, 2 'ig49 148 2 %7963 369 2 %7941 5.88
o 801 o 807 o 801 o 807
= 607 = 607 ; 604 ; 607
ﬁ 407 ﬁ 407 ﬁ 401 ﬁ 401
g 207 g 207 g 201 g 201
5 04 . 5 0L —— 5 ol 5 0.
z 1070 10" 1010 z 4070 10" 10”10 z a0to 10t 1001 2 10to 10t 10°10°
CD3 CD3 CcD3 CcD3
10°] 82.1 101168 |
4 2 10° &=
103 a © 5
3 L g8 2
(SR O O 1 O
01 0
10° 6.69 -1°4n v
PRI a0t o 10t 10°
CD4 CD4
2 X
[m] a
O (@]

0 104 105"106

CD44

17



C Thymocyte (3-4 w) Thymocyte (3-4 w)
*

100 — 150
i *% i wT
- :5;‘ mm CD36 cKO
-
3 I N * X 100+
-~ - 1 [T I
2 5 ' £ l |
3 * 5 I
—_ *¥ c 504
* i — =
_*_* |'| - 'I 8
i 5 AL, N
B ritastddde P L S
5388022220066 S0 R80zzZzzZzZooaow
g0 8 DDDDM*«;EB g0 QDGQ'”"«:EB
o
E Thymocyte DN 8 8 oo E Thymocyte DN 5] 8 oo
= —_— = R
E DP CD3" = DP CD3’
Thymocyte (3-4 w)
150000 *
£ 100000+
2
g 1
O 50000
0_

Figure 1. The phenotypes of thymic T cells in 3-4 week-old mice.

Flow cytometric analysis of thymocytes from 3-4 week-old CD36 cKO and WT mice. (A)

Representative gating strategy was displayed. (B) Representative flow cytometric plots are

shown. (C) The percentages and cell numbers of thymocyte subsets are shown (n = 9-14 per

group). (D) The MFI of CD3" thymocytes are shown (n = 8-13 per group). Data are shown as

mean = SEM. * p <0.05, ** p <0.01. DN, double negative. DP, double positive. MFI, Mean

fluorescence indice.
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Figure 2.
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Figure 2. The phenotypes of thymic T cells in adults.

Flow cytometric analysis of thymocytes from 5-8 week-old CD36 cKO and WT mice. (A) The

percentages, cell numbers of thymocytes’ subset and the MFI of CD3" thymocytes from 5-8

week-old CD36 cKO and WT mice are shown (n = 4-7 per group). Data are shown as mean +

SEM.

19



Figure 3.
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Figure 3. The phenotypes of splenic T cells in 3-4 week-old mice.

Flow cytometic analysis of splenocytes from 3-4 week-old CD36 ¢cKO and WT mice. (A)

Representative gating strategy is displayed. (B) Representative flow cytometric plots are

shown. (C) The percentages, MFI, and cell numbers of splenocyte subsets are shown (n = 6-

11 per group). Data are shown as mean + SEM. * p <0.05.
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The reduced CD3" T cell population was only defect in the bone marrow from CD36 cKO

3-4 week-old mice.

To determine any defect of hematopoietic stem cells (HSCs) before thymic entry, I observed

the phenotypes of bone marrow cells from CD36 cKO and WT mice by flow cytometry. The

gating strategies of bone marrow cells are shown in Fig. 4A. Lin"Sca-1"c-kit" HSCs consist of

long-term HSCs (LT-HSCs) and short-term HSCs (ST-HSCs) and they are distinguished by

the expression of CD34. CD34¢c-kit" LT-HSCs, which have a long-term reconstitution capacity,

differentiate into CD34"c-kit" ST-HSCs that have a short-term reconstitution capacity. The

expressions of CD34 and CD117 (c-kit) are maintained in MPPs which are derived from ST-

HSCs [32]. MPPs generate CD34"c-kit" CMPs and CD34"c-kit'® CLPs [33]. As progenitors

mature, the expression of CD34 is lost. CD34c-kit cells represent mature progenitors [34].

Flow cytometric results showed similar phenotypes between CD36 ¢cKO and WT bone marrow

cells except for CD3" frequency and MFI. The levels of CD3" frequency and MFI of CD36

cKO were reduced significantly by 0.7-fold and 0.57-fold, respectively (Fig. 4B, and C). The
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expression of CD3 appears after DP stage of the thymus, and bone marrow cells entering the

thymus do not express CD3 [35]. Taken together with the intact CD3" T cell population in the

spleen, the results suggest that CD36 may be involved in homing to the bone marrow.

23



Figure 4.

5 6

4
10 10 1010

CD3

0

105 10610

CD34

(

i

40
20

o 9 o
S © ©

SpO|\ 0] paziewloN

1.5M

FSC-A:: FSC-A

-0) £11d0

CD36 cKO

6.76
10* 10° 10%

CD3

0

o 9 9 o 9o o
S ® ©® ¥ «

8poJ\ 0] pazilew.ioN

16.7
10° 1070

104
cD3

0

SpoJ\ 0] pazilew.ioN

BM (3-4 w)
*

150001

(14w) €ad

q¥OL

cp3*

L114a0 v€ad

+L11ad $€Aad

21100 ,v£ao

BM (3-4 w)
cD45*

21102 ,¥€Aad

e WT
Em CD36 cKO

,£ao

,§¥ao

1 1 1
(= o o o o
© © N

100

(%) s11@d

Y

2 4



Figure 4. The phenotypes of hematopoietic stem cells and T cell precursors in the bone

marrow.

Flow cytometric analysis of bone marrow cells from 3-4 week-old CD36 cKO and WT mice.

(A) Representative gating strategy is displayed. (B) Representative flow cytometry plots are

shown. (C) The percentages and MFI of bone marrow cell subsets are shown (n = 7-8 per

group). Data are shown as mean +£ SEM. * p <0.05.
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The proliferation of activated CD36 cKO thymic T cells in vitro was increased in 3-4

week-old mice.

I investigated the proliferation of activated CD36 cKO thymic T cells. To assess the

proliferation, thymocytes were labeled with CFSE. After CFSE staining, the cells were

stimulated with IL-2, IL-2 and anti-CD3 mAb, or IL-2 and anti-CD3/28 mAb. The CFSE

dilution was measured by flow cytometry on day 0, 3, and 5. The histogram plots were

arbitrarily divided into 4 phases (Fig. 5A). Fig. 5B summarizes the flow cytometric data of

Fig. 5A. CD36 cKO thymocytes stimulated with IL-2 and anti-CD3 mAb were significantly

decreased by 0.1-fold and 0.37-fold in the phase 1 and 2 that were not or less divided and

increased by 4.45-fold in the phase 4 compared with WT. CD36 cKO thymocytes with 1L-2

and anti-CD3/28 mAb treatment were significantly downregulated by 0.07-fold and 0.19-fold

in the phase 1 and 2 and upregulated by 3.5-fold in the phase 3, indicating that thymic T cells

from CD36 cKO were more proliferative than those of WT (Fig. 5B). This results were

confirmed using the CCKS8 assay. The absorbance was measured on day 7. The cell
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proliferation was significantly increased and nearly doubled in CD36 cKO thymic T cells (Fig.

5C).

To understand the underlying mechanisms of cell expansion, intracellular signaling

molecules were assessed in thymic T cells. The flow cytometric gating strategy was shown in

Fig. 6A. AKT and mTOR were more activated in 5 min, and ERK was more activated in 30

min upon anti-CD3 and anti-CD28 mAb stimulation, although the differences were not

statistically significant. The percentage and MFI of CD36 cKO T cells were comparable to

WT (Fig. 6B). The results suggest that CD36 cKO T cells got more activated upon CD3

complex stimulation.
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Figure 5.
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Figure 5. Increased thymic T cell proliferation in CD36 cKO mice.

The proliferation of thymic T cells was assessed by CFSE labeling and CCK8 assay. After

CFSE labeling, thymic T cells were stimulated in the presence of IL-2, anti-CD3, and anti-

CD3/28 mAb and analyzed by flow cytometry on day 0, 3, and 5. (A) Representative flow

cytometric plots are displayed. (B) The graphs show flow cytometric data of A (n =4 — 10 per

group). (C) Thymic T cells were cultured with IL-2, anti-CD3, and anti-CD3/28 mAb for 7

days and CCKS8 assay was performed (n = 3 per group). CFSE, Carboxyfluorescein

succinimidyl ester. CCKS8, cell counting kit 8. Data are shown as mean = SEM. * p <0.05. **

p<00l.
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Figure 6.
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Figure 6. Expressions of phosphorylated (p)-AKT, p-mTOR, and p-ERK in thymic T cells.

For intracellular staining of p-AKT, mTOR, and ERK, thymic T cells were stimulated with a-

CD3 and a-CD3/28 mAb for 5 and 30 min and immediately fixed. Expressions of p-AKT, p-

mTOR, and p-ERK were determined by flow cytometry. (A) Representative gating strategy of

p-AKT, p-mTOR, and p-ERK is displayed. (B) The percentages and MFI of p-AKT, p-mTOR,

and p-ERK are shown (n = 3-5 per group). Data are shown as mean = SEM.
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The expression of selected chemokines and related molecules of CD36 ¢cKO and WT mice

in the thymus and bone marrow.

To understand underlying mechanisms in thymic T cell defect in CD36 cKO mice, mRNA

sequencing was performed. Total RNA was extracted from CD36 ¢cKO and WT thymocytes

and bone marrow cells, and mRNA sequencing was performed. Venn diagram displayed sig-

nificantly up-regulated, and down-regulated genes in the thymus and the bone marrow of

CD36 cKO mice, compared with WT (Fig. 7A). One hundred and eight genes were up-regu-

lated, and 49 genes were down-regulated in the thymus of CD36 ¢cKO. CD36 ¢cKO bone mar-

row cells highly expressed 183 genes and low expressed 103 genes. There were up-regulated

18 genes, down-regulated 8 genes, and contra-regulated 8 genes in the thymus, compared with

bone marrow. Heat map indicated the expressions of the genes that are associated with immune

response. It shows differential expression of chemokines and chemokine receptors such as

Ccl22, and Ccr7 (Fig. 7B). Interaction of the chemokines and chemokine receptors are essen-

tial for thymic development and selection [12]. The expression of selected chemokines and
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chemokine receptors that mediate thymic development were shown in the table. The expres-

sion of Ccll7 was significantly upregulated by 2.038-fold and the expression of Cc/22 and

Ccr9 was significantly downregulated by 0.444- and 0.611-fold in CD36 cKO thymus, com-

pared with WT thymus. The bone marrow of CD36 cKO had 1.862-fold higher expression of

Ccll7, and 0.497- and 0.410-fold lower expression of Ccr7 and Ccr9 than that of WT (Fig.

7C). To confirm the results, I compared the selected chemokines’ and chemokine receptors’

gene expressions in the thymus and bone marrow by qRT-PCR. The expressions of Cc/22 and

Ccr9 were significantly decreased by 0.28- and 0.58-fold in CD36 cKO thymocytes, compared

with WT. Ccl17 and Ccl22 expressions were higher and Ccr7 and Ccr9 expressions were lower

in CD36 ¢cKO bone marrow than in WT, but the differences were not statistically significant

(Fig. 7D). In addition, Bcl6, a transcription repressor, was significantly downregulated in the

thymus from CD36 cKO. The results suggest that the deficiency of CD36 in T cells could

change the expression of chemokines and their receptors, consequently affecting thymic T cell

development and migration.
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Figure 7.
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Figure 7. The gene expression of CD36 cKO thymus and bone marrow.

mRNA sequencing of thymocytes and bone marrow cells from CD36 cKO and WT mice was

performed. Analysis data from RNA-seq results are shown (n= 1 per group). (A) Venn diagram

indicates significantly up, contra, and down-regulated genes between the thymus and bone

marrow. (B) Heat map for immune response genes. (C) Differential expressions of chemokine

and chemokine receptor genes (Ccl17, Ccl22, Ccr7, Cer9, Bcl6, and Itgax) between CD36

cKO and WT. (D) Expression of Ccll7, Ccl22, Ccr7, Ccr9, Bcl6, and Iltgax from the thymus

and bone marrow was analyzed by qRT-PCR (n = 4-8 per group). Data are shown as mean +

SEM. * p <0.05. qRT-PCR, quantitative real-time PCR.
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Discussion

This study demonstrates that DN, DN3, CD3" DP and CD8 SP T cells significantly increased

and DN4, total DP, CD3" DP and CD4 SP T cells significantly decreased in the thymus of 3-4

week-old T cell-specific CD36 cKO mice, and that activated thymic CD3" T cells from CD36

cKO were more proliferative, compared with those of WT.

Thymic T cells develop as they migrate within the cortex and the medulla of the thy-

mus and interact with stromal cells. Chemokines and their receptors are involved in thymocyte

migration and differentiation. Chemokines known as essential chemoattractant molecules for

migration are expressed in the thymus at various developmental stages [36]. The chemokine

receptor CCR9 begins to be expressed at DN3 thymocytes. Its ligand, CCL25, is expressed in

the thymic cortex where DN thymocytes are located [37]. The expression of CCRY is increased

during the transition from DN to DP [38]. CCR9 expression is induced by pre-TCR signals

that lead to expansion and differentiation to the DP thymocytes. CCR9Y is subsequently upreg-

ulated between the DN4 and DP stages, and functions in the localization of thymocytes during
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maturation [39]. Thymocytes, which downregulate CCR9 expression, impair migration toward

the subcapsular zone where they undergo their TCR B-, y-, and 3-chain gene recombination

[40]. In this study, mRNA sequencing data showed that the expression of CCR9 was down-

regulated by 0.611-fold in the thymus of 3-4 week-old CD36 cKO mice than WT. The expres-

sion of CCR9 was significantly decreased by 0.58-fold in CD36 cKO thymocytes by qRT-PCR,

compared with WT. These results suggest that a decrease of DN4 thymocytes from CD36 cKO

mice might be associated with the downregulation of CCRO.

Transcription repressor Bcl6 induces pre-TCR signaling and is required for differen-

tiation to DP. Bcl6 deficiency in thymocytes dysregulate B-selection and increase cell death of

the DN4 in fetus and adult [41]. RNA sequencing results showed 0.618-fold downregulation

of Bcl6 in the thymus. The expression of Bc/6 in qRT-PCR was significantly downregulated

by 0.615-fold in CD36 cKO thymus, compared with WT thymus (Fig.7D). None of the genes

tested in the study was significantly changed in its expression in the bone marrow. Further

experiments are needed to evaluate cell death at developmental stages. Since my RNA
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sequencing has limitations that have been performed by the entire thymus tissue, further re-

search is also required to analyze gene expressions in the T cell subsets at each developmental

stage.

Thymic T cells from CD36 ¢cKO mice were more proliferative than WT, but the per-

centages and MFI of p-AKT", p-mTOR", and p-ERK" CD36 cKO T cells were comparable to

WT. A recent study reported that integrin aX (CD11c¢) is contributed to late-stage T cell devel-

opment and maintains T cell survival. CD11c deficiency showed increasing apoptosis of CD3*

thymocytes, but not DN cells [42]. [rgax expression in RNA-seq data was upregulated by

1.962-fold. As integrins play important roles in TCR signaling thymic differentiation [43], the

increase of CD11c¢ might enforce the immune synapses between T cells and APCs, conse-

quently enhance the T cell proliferation. However, the qRT-PCR results were not statistically

significant. The thymus of CD36 cKO displayed 0.987-fold decrease in /zgax expression com-

pared with WT (Fig.7D). Given the specific contribution of CD11c to distinct developmental

stages, additional study is needed to analyze each developmental stage using flow cytometry.
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Recent human studies indicate that CD36 plays a crucial role in the pathogenesis of

tumors and autoimmune diseases. The function of CD36 that mediated fatty acid uptake has

been correlated with progression and metastasis of various human tumors, including breast

cancer [44] and hepatocellular carcinoma [45]. The loss of CD36 has been associated with the

development of colorectal cancer, where CD36 acts as a tumor suppressor and inhibits aerobic

glycolysis [46]. In autoimmune diseases, CD36 as a scavenger receptor contributes to the im-

munopathogenesis of Kawasaki disease, an autoimmune-like vasculitis affecting the coronary

arteries in childhood. CD36 plays a role in clearing cellular debris and then activating the

inflammasome pathway [47]. CD36 is implicated in clearing myelin debris and suppressing

neuroinflammation in demyelinating disorders such as multiple sclerosis [48]. Thus, the phys-

iological roles of CD36 in T cells should be further investigated in tumor and autoimmune

disease models.

In conclusion, this study suggests that CD36 is a potential contributor to the transition

from DN3 to SP cells in thymic T cell development and has a regulatory function in
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proliferation. The results imply the potential role of CD36 in T cells in pediatric tumors and

autoimmune diseases.
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