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Introduction  

 The anterolateral thigh (ALT) flap is one of the most preferred flaps for 

maxillofacial reconstruction and for finding a skin perforator in an important first 

step in flap design. Computed tomography angiography (CTA) can be used through 

image mapping, contributing to the establishment of an appropriate flap design 

plan and reducing surgical time. However, preoperative mapping is time-

consuming and can be affected by the image quality and clinician’s skill. This 

study aimed to develop an automatic segmentation system for ALT flap perforators 

using a convolutional neural network in CTA and evaluate its efficiency and 

accuracy. 

Material & Methods 

 This study enrolled 80 patients who underwent CTA for 

maxillofacial reconstruction. A single researcher performed mapping of bilateral 

lateral femoral circumflex artery perforators on uploaded CTA using AVIEW 

Modeler (version 1.1.42.7, Coreline Software, Seoul, Korea). Training for the 



 

 

 

development of automatic segmentation system was conducted using DeepLabv2 

and 3D ResNet152. Dice Similarity Coefficient (DSC) and Jaccard Similarity 

Coefficient (JSC) values were calculated, and the distance difference between two 

points was measured. Furthermore, quadrant distribution analysis was conducted. 

Results 

As a result of the training, the DSC and JSC values were 69.67 ± 1.48 and 

67.81 ± 1.70, respectively. The test results for the 13 dataset were DSC with 69.34 

± 0.83 and JSC with 67.47 ± 0.96. The distance difference between manual and 

automatic detection was 38.28 ± 15.52 mm on the left side and 31.96 ± 18.11 mm 

on the right side. Quadrant distribution was most prevalent in the distosuperior area. 

Conclusion 

The reasonable results indicate that the automatic segmentation system for 

ALT flap perforator has potential for clinical application. 

Keywords: Anterolateral thigh flap, Perforator flap, Automatic segmentation, 

Image mapping   
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Introduction 

In 1984, Song et al. first introduced the anterolateral thigh (ALT) flap as a septocutaneous 

vessel-based flap progressing between the rectus femoris and vastus lateralis muscles.1) Since then, 

ALT flap has become one of the most preferred and versatile flap options with numerous advantages 

for maxillofacial reconstruction.2) The advantages of free flap surgery include long pedicle length with 

sufficient vessel diameter, various flap designs, and reduced morbidity of the donor site.2-4) Based on 

these benefits, the ALT flap has become a workhorse flap for soft tissue reconstruction.5) 

Previous studies with cadaver and image have shown significant variations of the ALT 

perforator anatomy in its origin, location, and course.6-8) Up to 75% of ALT flap perforators originate 

from the descending branch of the lateral circumflex femoral artery, the largest branch of the profunda 

femoris, and up to 25% from the transverse branch.2, 5, 6) These perforators can also be found on the 

ascending and lateral branches of the lateral circumflex femoral artery.9) The progression of 

perforators can be categorized as septocutaneous or musculocutaneous; in the previous study, more 

than 85% of cases exhibited a musculocutaneous course.2, 8-10) The anatomical variability of ALT flap 

perforators poses challenges in preoperative planning, including the flap design.  

Color Doppler ultrasound (CDU) and computed tomography angiography (CTA) are the 

most common techniques for preoperative perforator detection. CDU provides information on the 

flow pattern of vessels and tissue characteristics with relatively cheaper and faster accessibility and, 

with its portability, enables flap monitoring during the intra- and postoperative periods.11, 12) However, 

an important drawback of CDU is the steep learning curve for skilled usage and interobserver 

variability.11, 13) CTA, on the other hand, is mainly used for the detection of preoperative flap 

perforators through image mapping with improved sensitivity and specificity, contributing to the 

establishment of an appropriate flap design plan; however, preoperative mapping on CTA is time-

consuming, depending on the skill of the clinician, and is affected by the quality of images.14) Muscle 

regions in CTA usually exhibit high radiodensity, making it difficult for clinicians to identify 
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perforators that progress through intramuscular regions.15) Furthermore, flap perforator mapping is 

quite subjective, resulting in incoherences between preoperative mapping and surgical findings; this 

may lead to the possibility of intraoperative modification of surgical planning.16) 

Considering the limitations of these diagnostic tools, deep learning and automatic detection 

have been introduced to assess diabetic retinopathy by analyzing fundus images or to detect nodules 

in the lung using computerized tomography scans.17, 18) Previous studies have also suggested the use 

of automatic segmentation for effective preoperative detection of flap perforator in breast 

reconstruction.15, 16) However, thorough examination of relevant literature revealed that automatic 

segmentation for ALT flap perforators has not yet been studied.  

This study aimed to develop an automatic segmentation system for the detection of ALT flap 

perforators, a critical component in maxillofacial reconstruction. An experienced clinician prepared 

the ground truth through manual CTA mapping. Then, machine learning on segmentation using 2D 

and 3D images was performed. Subsequently, retrospective verification was performed on the 

validation datasets to compare the difference in the location of the ALT flap perforators, evaluating 

clinical applicability. 

 

Materials and Methods 

The study protocol was approved by the Institutional Review Board of Asan Medical Center 

(IRB No. 2023-1372). 

 

1. Study subjects and data collection 

This study enrolled 80 patients who underwent preoperative CTA for maxillofacial 

reconstruction at the Department of Oral and Maxillofacial Surgery, Asan Medical Center between 1 

March 2021 and 30 June 2023. The exclusion criteria were (1) patients with missing CTA data (n = 4), 

(2) patients in whom the collected CTA did not run on the mapping program (n = 5), and (3) patients 
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who had poor quality of CTA with artifacts (n = 2). The application of these criteria in this study led 

to the inclusion of 56 patients for training and validation and 13 patients for testing, respectively.  

 

2. Manual mapping of ALT flap perforator 

A single experienced clinician performed ALT flap perforator mapping using AVIEW 

Modeler (version 1.1.42.7, Coreline Software, Seoul, Korea). After uploading anonymized CTAs to 

the mapping program, the 3-mm cut of the CTA was converted to 1-mm cut using an image 

conversion option to accurately predict the ALT flap perforator. Manual mapping of the lateral 

circumflex femoral artery perforator was continuously performed without cutoff segmentation starting 

from the femoral artery near the hip joint to the end of the perforator that reaches the thigh skin (Fig. 

1). This manual mapping served as the ground truth for the subsequent training of the automatic 

mapping system. The progression of the perforator was categorized as septocutaneous or 

musculocutaneous (Fig. 2). Each of the CTA scans from 56 patients was divided into left and right 

halves, thereby eliminating the distinction between sides. This approach effectively doubled our 

dataset, which led to the creation of 112 usable images for a more comprehensive analysis. Then, the 

expanded dataset was strategically divided into three subsets, training, validation, and testing, at a 

ratio of 8:1:1. Subsequently, to further enhance the robustness of our model testing, additional 13 

scans were included in the test set. 

 

3. Network architectures 

This study employed a cascaded approach for the detection and segmentation of the 

perforators.19, 20) The first stage of the process involved the use of DeepLabv2, a convolutional neural 

network known for its efficiency in semantic image segmentation.21) Complete 2D CTA images were 

introduced into this network, and their original resolution of 512 × 512 pixels was maintained to 

preserve details important for accurate detection. The learning rate was meticulously calibrated to 

0.0001 to achieve a balanced compromise between rapid convergence and avoidance of the risk of 
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overshooting the minimum during training. After the assessment, a batch size of 16 was selected and 

the DeepLabv2 model was subjected to extensive training, spanning 500 trials to fine-tune its 

performance. 

After completing the 2D detection phase, the second stage involving 3D segmentation was 

initiated. In this stage, 3D patches centered on the previously detected perforator regions were 

extracted. These patches were 64 × 64 × 64 voxels in size; this size was selected as it was 

computationally manageable in the 3D ResNet152 model while still sufficiently showing the 

perforation regions in detail for effective segmentation. The patches were then entered into the 3D 

ResNet152 model for volume data learning, and network-wide recorrected linear unit activation was 

used, known as the efficiency of deep learning models.22, 23) The model learning rate was set to 0.001, 

striking a balance between training speed and accuracy. Despite the computational complexity of 3D 

image processing, the patch sizes were small and numerous; thus, a batch size of 32 was selected. To 

ensure extensive learning while preventing overfitting, the training was conducted over a span of 300 

epochs. Furthermore, several data augmentation techniques were implemented during the training 

process to enhance the dataset and boost the generalization capability of the model. First, rotation was 

applied to the scans, with random angles of up to 20°, to emulate different anatomical orientations. 

Second, scaling was performed, in which the size of the images was randomly varied between 90% 

and 110% of their original dimensions, addressing variations in anatomical structure sizes. Third, 

random translations were introduced in both horizontal and vertical directions to the images, with the 

aim of replicating positional differences. Lastly, to mimic the variability in image quality typically 

seen in clinical settings, the brightness and contrast of the scans were randomly adjusted. 

 

4. Training evaluation 

Two statistical metrics were mainly used in the evaluation of the performance of our 

segmentation model: Dice Similarity Coefficient (DSC) and Jaccard Similarity Coefficient (JSC).24)  

The DSC, a measure ranging from 0 to 1, quantifies the overlap between two samples, where 
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1 denotes perfect overlap and 0 no overlap at all. It is calculated as follows: 

2 × |𝐴 ∩ 𝐵|

|𝐴| + |𝐵|
 

where A and B denote the actual and predicted regions, respectively. 

The JSC also evaluates similarity with values between 0 and 1, but it measures the 

proportion of overlap to the total size of the combined samples. It is calculated as follows:  

|𝐴 ∩ 𝐵|

|𝐴 ∪ 𝐵|
 

 

5. Clinical evaluation 

The same clinician performed additional manual mapping on the datasets from 13 patients 

after automatic segmentation for testing. Subsequently, the results of the automatic mapping were 

additionally uploaded to the existing dataset with the same header value on the mapping program. The 

results of both automatic and manual segmentations were superimposed on the 3D image. The 

threshold value of the image was adjusted so that the terminal part of the perforator appeared as point 

on the patient’s thigh skin (Fig. 3). The difference in the coordinate values between manually and 

automatically detected perforator points was calculated. Based on the manual detection of the flap 

perforator, the location of the automatic detection was divided into quadrants: mediosuperior, 

medioinferior, distosuperior, and distoinferior. 

 

6. Statistical analysis 

 SPSS version 22.0 (IBM, Chicago, IL, USA) was used to conduct statistical analysis, 

using a significance level of p < 0.05. Mann-Whitney u-test was performed to compare 

differences in DSC and JSC values according to gender, left and right thighs, and the 

progression type of perforators. Additionally, Kruskal-Wallis test was performed to compare 

differences according to body mass index (BMI). BMI was classified based on the World 



 

- 6 - 

 

Health Organization’s cutoffs: underweight (<18.5 kg/m2), healthy weight (18.5–24.99 

kg/m2), overweight (25–29.99 kg/m2), or obese (≥30 kg). /m2).25) 

 

Results 

1. Subject distribution 

The datasets for the gold standard consisted of 26 men and 30 women (average age, 68.1 ± 

9.6 years) for training and validation. The datasets for the test included 10 men and 3 women (average 

age, 61.38 ± 13.07 years). The progression type of the perforator was determined according to sex. In 

the training dataset, 74.1% of septocutaneous and 25.9% of musculocutaneous perforators were 

investigated in men and 41.4% of septocutaneous and 58.6% of musculocutaneous perforators in 

women (Table 1). 

 

2. Training evaluation 

In this study, the ALT flap perforator starting from the femoral artery near the hip joint, 

passing through the lateral circumflex femoral artery and reaching the thigh skin, was detected via 

automatic segmentation (Fig. 4). The validity of automatic segmentation for the lateral circumflex 

femoral artery perforator was examined using DeepLabv2 on 2D CTA and 3D ResNet152 on 3D CTA. 

The average DSC and JSC values were 69.67 ± 1.48 and 67.81 ± 1.70 for the training and validation 

datasets and 69.34 ± 0.83 and 67.47 ± 0.96 for the test datasets, respectively (Table 2). 

When analyzing the DSC and JSC values according to the left and right sides of the thigh, 

the DSC values were 69.73 ± 1.64 for the left side and 67.82 ± 1.58 for the right side (p = 0.005) and 

the JSC values were 68.95 ± 1.69 for the left side and 67.14 ± 1.89 for the right side(p = 0.026), which 

showed a higher degree of accuracy with the automatic segmentation on the left side. On the other 

hands, there were no statistical differences in DSC and JSC values according to gender, perforator 

progression type, and BMI (Table 3). 
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3. Clinical evaluation 

In manual and automatic detection, 2 points of perforators reaching to the thigh skin were 

superimposed and the position difference was calculated. The average difference on the right side was 

31.96 ± 18.11 mm, whereas the average difference on the left side was 38.28 ± 15.52 mm. The 

quadrants distribution of the automatic detection based on the manual detection were presented in 

Figure 5. The quadrants where automatic detection was most distributed was distosuperior, whereas 

the least distribution was mesioinferior.  

 

Discussion 

 Preoperative image detection of the perforator with CTA has been increasingly employed as 

a practicable adjunct for planning the ALT flap design.14) However, the anatomical variability of 

vascular course in the ALT flap perforator may hinder the intraoperative process. This may cause 

prolonged flap harvest time, change the flap design plan, or even necessitate alteration of the flap 

harvest site to the contralateral leg, directly affecting the morbidity of the donor site. Previous studies 

demonstrated that about 3% to 5% of patients failed to find a suitable flap perforator, thus converting 

to an alternative flap design.7, 26) Therefore, increased accuracy of preoperative perforator detection 

plays a pivotal role in long-term prognosis. 

 In this study, an automatic flap perforator segmentation system was developed through 

machine learning with the convolutional neural network to overcome the limitations of manual 

preoperative perforator detection using CTA, which is time-consuming and operator-dependent. The 

accuracy and clinical applicability of this system was also evaluated. The mIoU unit was used as the 

evaluation standard for automatic perforator segmentation. This percentage value is 1 if there is a 

perfect match by overlapping the gold standard and prediction values and 0 if there is no overlapped 

area at all.27, 28) However, due to the lack of an objective indicator of prediction accuracy, a score 
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between 0.7 and 0.8 is regarded as reasonable for clinical applicability. In this study, the average 

scores ranged from 0.6750 to 0.7065 in DSC and from 0.6614 to 0.6882 in JSC, which might be 

acceptable levels. 

 In manual flap perforator mapping, the vascular course was classified into musculocutaneous 

or septocutaneous. Previous studies have reported that 17% to 85% of cases have musculocutaneous 

vascular courses.2, 4, 8-10) Furthermore, some studies have demonstrated that the flap harvest time is 

delayed when the perforator goes through the vastus lateralis as musculocutaneous, which increases 

the morbidity of the donor site.2, 3, 5) In this study, 56.5% and 43.5% of the patients had septocutaneous 

and musculocutaneous courses, respectively. The septocutaneous course was predominant in men 

(70.3%), whereas the musculocutaneous course was prevalent in women (59.4%). Regarding the high 

radiodensity in muscular areas in CTA, it can be deduced that musculocutaneous perforator detection 

is an operator-dependent result.15) In manual segmentation of this study, the most difficult part to 

detect was the case where the perforator traveled through the muscles before proceeding to the 

subcutaneous area. 

 Each subject had varying physical and demographic characteristics, such as age, sex, 

muscular density, and thickness of the subcutaneous tissue. This may affect the detection accuracy and 

the time required for manual segmentation. In manual detection of this study, the progression course 

of the artery could be confirmed more clearly in younger women with sufficient subcutaneous tissue 

thickness in some degree and without myolysis. A previous study reported that there was no 

difference in the number of perforators between the dominant and nondominant legs during the ALT 

flap perforator detection and that it was not affected by the thickness of the subcutaneous tissue and 

muscle.29) When statistical analysis was performed on the test datasets, the accuracy of the left thigh 

between the manual and automatic segmentation was significantly higher than that of the right thigh. 

On the other hand, there was no statistical difference in accuracy depending on the type of perforator 

progression, which was classified as septocutaneous or musculocutaneous, and gender. Additionally, 

no differences were identified depending on BMI index, considered to be related to the subcutaneous 
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tissue. 

 To expand into the area of computer-aided diagnosis using artificial intelligence and deep 

learning, it is important to understand the concepts of image classification, segmentation, and 

detection. Image classification regards each image as a single unit and distinguishes it from others, 

whereas image segmentation regards pixel points as basis, separating the image into several specific 

areas with its exclusive properties, including segmentation of the image with the precise boundary of 

the existing target. On the other hand, image detection is based on the retrieval of a given sub-image 

from a known image. The difference between detection and classification is that the former retrieves 

multiple objects in an image.30-32) If the required level of the perforator prediction is presence or 

absence, detection or classification can be employed. However, image segmentation considering 

boundaries of images was adopted in our study as the exact location of the perforator had to be 

confirmed. 

Our study initially conducted deep learning using DeepLabv2 with 2D images. In fact, the 

mIoU values for the analysis using 2D images were slightly higher than those for the analysis using 

3D images. However, in the process of converting CTA from 3- to 1-mm cuts, the number of slices on 

average increased to more than 1000, and the image segmentation loss was partially detected. As false 

positives were likely to be increased in these circumstances, evaluation of overall connectivity using 

3D ResNet152 with 3D images was attempted. A previous study demonstrated that 2D image 

segmentation was more effective than 3D image segmentation using abdominal CT images.33) Other 

studies conducted segmentation using 2D and 3D images interactively. Similarly, our study used 2D 

and 3D images in a cascaded manner to compensate for the strengths and weaknesses of each 

images.34-36) 

The main trunk starting from the femoral artery near the hip joint had a large diameter, 

showing high agreement with manual and automatic detections, but as it went toward the terminal 

branches reaching the skin, a relatively disconnected area occurred in the middle area of the artery 

compared with the ground truth. However, because detection of perforators terminating the thigh skin 
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is crucial in actual intraoperative procedures, the discontinuity of the middle parts of the artery may 

not be a critical problem in the clinical application of the automatic perforator segmentation system.  

The ABC system was introduced to detect the dominant ALT flap perforators based on the 

vascular characteristics of the lower limbs of Western populations. In this previous study, 89% of 

reliable perforators were detected 3 cm lateral to the midpoint of the line between the anterior superior 

iliac spine and the superior lateral corner of the patella, referred to as the A-P line.37) When test 

datasets were retrospectively evaluated, all 26 ALT flap perforators were located lateral to the A-P line.  

For clinical evaluation, the perforator that terminated on the thigh skin was shown as a point 

and the distance difference between the manual and automatic detections was calculated. There was 

no significant difference between the values between the left and right sides with 38.28 ± 15.52 mm 

and 31.96 ± 18.11 mm, respectively. The deviation was slightly high for both thighs, and in relation to 

this, it is believed that further research is needed on the relationship with gender, age, and perforator 

cousre. In addition, when the distribution of the automatic detection was classified into quadrants 

based on the manual detection, the distosuperior area was most frequently identified. It is expected 

that reproducible and stable flap harvesting would be possible if the distance difference and location 

of the perforator's skin terminal are taken into consideration when performing flap design in 

reconstruction surgery. 

This study has several limitations. First, the n value to proceed with deep learning was 

insufficient. There is a need to further improve the accuracy of the automatic segmentation system by 

conducting external validation using additional datasets. As aforementioned, the detection accuracy 

for perforators on the skin was slightly lower, so retraining is necessary by reducing the region of 

interest (ROI). The ROI set in our study was from the anterior superior iliac crest to directly superior 

to the patella. It would be helpful to conduct additional study by reducing the ROI based on the ABC 

system. As manual detection is time-consuming, it seems necessary to evaluate efficiency by 

comparing the difference in the time required for manual and automatic segmentations. 

Nevertheless, this study suggested the clinical applicability of automatic detection of ALT 
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flap perforator. Additional research may improve the accuracy and efficiency of the automatic 

detection for anterolateral thigh flap perforators in maxillofacial reconstruction. 

 

Conclusion 

 In this study, when automatic segmentation was performed on the ALT flap perforator using 

2D and 3D images, DSC and JSC values were derived at reasonable levels. Furthermore, when the 

perforator was marked as a point on the thigh skin and the distance between the two points was 

compared, the variation was not prominent. This suggests that automatic segmentation for ALT flap 

perforators has potential for clinical application. 
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List of tables 

Table 1. Progression type of perforators according to gender 

N(%) 
Septocutaneous Musculocutaneous 

 
Lt. Rt. Lt. Rt. Total 

Training Male 21(38.9) 19(35.2) 6(11.1) 8(14.8) 54 

 
Female 11(19.0) 13(22.4) 18(31.0) 16(27.6) 58 

 
Total 32(28.6) 32(28.6) 24(21.4) 24(21.4) 112 

Validation Male 6(30.0) 6(30.0) 4(20.0) 4(20.0) 20 

 
Female 1(16.7) 1(16.7) 2(33.3) 2(33.3) 6 

 
Total 7(26.9) 7(26.9) 6(23.1) 6(23.1) 26 

 

 

Table 2. Dice Similarity Coefficient and Jaccard Similarity Coefficient values of automatic 

segmentation for lateral circumflex femoral artery perforators 

Mean (%) ± SD Training and validation Test 

DSC 69.67 ± 1.48 69.34 ± 0.83 

JSC 67.81 ± 1.70 67.47 ± 0.96 

SD: standard deviation, DSC: dice similarity coefficient, JSC: jaccard similarity coefficient 
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Table 3. Comparison of DSC and JSC values according to gender, left and right thighs, 

perforator progression type, and BMI 

Mean(SD) 
 

DSC JSC 

Gender† 
   

 
Female 68.78(1.18) 66.72(0.67) 

 
Male 69.51(0.69) 67.70(0.94) 

 
p value 0.287 0.112 

Location† 
   

 
Left 69.73(1.64) 68.95(1.69) 

 
Right 67.82(1.58) 67.14(1.89) 

 
p value 0.005* 0.026* 

Perforator progression† 
  

 
Septocutaneous 69.33(1.58) 67.18(1.93) 

 
Musculocutaneous 69.36(1.85) 67.84(1.49) 

 
p value 0.86 0.297 

BMI‡ 
   

 
Healthy weight (18.5–24.99 kg/m2) 69.27(0.91) 67.31(0.99) 

 
Overweight (25–29.99 kg/m2) 69.82(0.58) 68.19(0.90) 

 
Obese (≥30 kg). /m2) 69.04(0.00) 67.60(0.00) 

 
p value 0.459 0.392 

*: statistically significant with p < 0.05, †: Mann-Whitney u-test, ‡: Kruskal-Wallis test 

SD: standard deviation, DSC: dice similarity coefficient, JSC: jaccard similarity coefficient, BMI: 

body mass index 
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List of figures 

 

Figure 1. Axial (A), coronal (B), and 3D (C) views of computed tomography angiography. Manual 

mapping from the femoral artery near the hip joint to the lateral circumflex femoral artery perforator 

was performed continuously to the terminal point reaching the thigh skin. 

 

 

Figure 2. The axial views show the perforator progression as musculocutaneous (A) and 

septocutaneous (B). 
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Figure 3. After superimposing manually and automatically segmented perforators on the thigh skin, 

the difference in the coordinate values between two points was calculated. 
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Figure 4. Axial images of original, manual, and automatic detections. The results of the manual and 

automatic detections showed similarity. As the diameter of arteries got smaller, discontinued portions 

were confirmed. 
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Figure 5. Quadrant distribution of the automatic perforator detection. 
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국문 요약 

두경부 재건에서 인공지능을 이용한 전외측대퇴피판 천공기의 

자동감지 시스템 개발 

 

오지수 

지도교수 이지호 

 

울산대학교 대학원 의학과 치의학전공 
 

개요 

전외측대퇴피판은 악안면 재건에서 선호되는 피판 중 하나이며 그것의 피부 

천공기를 찾는 것이 피판 디자인 수립의 중요한 첫번째 단계이다. 컴퓨터 단층촬영 

혈관조영술은 이미지 매핑을 통해 피판 천공기 감지에 활용된다. 그러나, 술전 매핑을 

시간이 소요되고 영상의 질과 임상가의 숙련도에 영향을 받는다. 본 연구는 합성곱 

신경망을 이용하여 컴퓨터 단층촬영 혈관조영술 상에서 전외측대퇴피판 천공기의 자동 

감지 시스템을 개발하고 그것의 효율성과 정확성을 평가하는 것을 목표로 한다.  

재료 및 방법 

악안면 재건을 위해 CTA 를 시행한 총 80 명의 대상자를 수집하였다. 한 명의 

연구자가 AVIEW Modeler 소프트웨어(버전 1.1.42.7, Coreline Software, 서울, 한국)를 

사용하여 업로드된 CTA 에서 양측 대퇴 회선동맥 천공기 매핑을 수행하였다. 자동 감지 

시스템 개발을 위한 트레이닝은 DeepLabv2 및 3D ResNet152 를 사용하였다. 주사위 

유사성 계수(DSC)와 Jaccard 유사성 계수(JSC) 값을 계산하고, 두 지점 사이의 거리 

차이와 사분면 분포 분석을 수행하였다. 

결과 

DSC 값은 69.67±1.48, JSC 값은 67.81±1.70 으로 나타났다. 13 명의 dataset 에 대한 

test 결과는 DSC 69.34 ± 0.83, JSC 67.47 ± 0.96 로 나왔다. 수동감지과 자동감지의 거리 

차이는 좌측이 각각 38.28 ± 15.52 mm, 우측이 31.96 ± 18.11 mm 이었다. 사분면 분포는 

distosuperior 영역에 가장 많이 나타났다. 

결론 

도출된 결과값을 바탕으로 했을때, 전외측대퇴피판 천공기의 자동 감지 시스템은 
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임상 적용 가능성을 고려할 수 있다.  

중심어: 전외측대퇴피판, 천공기, 자동 분할, 영상 매핑 
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