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영문 요약 

 

Background 

 Accurate prognosis estimation for patients with head and neck (H&N) cancer is crucial for 

clinical decision-making. The aim of this study was to identify an effective machine learning 

(ML) model for predicting the 5-year survival of H&N cancer patients. 

 

 

Methods 

We reviewed the records of 3,019 patients from the Asan Medical Center H&N Cancer 

registry collected between 2007-17. The feature set used to compare the performance of 

various ML  algorithms comprised demographic characteristics, past and social history, 

primary site clinical and histopathologic attributes, and treatment modalities. We applied a 

total of five ML models to the dataset to classify H&N cancers based on their 5-year survival 

status. These models included two recently developed gradient-boosting models (XGBoost 

and LightGBM) and three commonly used tree-based models, Random Forest (RF), Support 

Vector Machine (SVM), and Naïve Bayes (NB). We implemented 10-fold cross validation to 

measure model performance. 
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Results 

 After exclusion, the final study population comprised 1,287 patients. Of the five models, 

LightGBM showed the best performance. We evaluated model performance using four metrics: 

sensitivity, accuracy, F1 score, and AUC-ROC. The average model performance scores were 

as follows: SVM, 0.745; RF, 0.823; NB, 0.686; XGBoost, 0.827; and LightGBM, 0.839. The 

SHapley Additive exPlanations (SHAP) values were then calculated for the LightGBM model, 

and these results indicated that the top six (of 16) most important features were, in descending 

order: age, body mass index (BMI), Primary site, Clinical N stage, Overall stage, and Clinical 

T stage. 

 

Conclusion 

 In this study, we found that features associated with staging were the most important for 

predicting H&N cancer survivability. The LightGBM model, combined with an appropriate 

dataset, can be used to construct an accurate prognostic model for patients diagnosed with 

H&N cancer. This can be applied in clinical practices in the future. 
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INTRODUCTION 

 

Head and neck (H&N) cancer comprises a diverse group of diseases, including cancers of 

the oral cavity, pharynx, larynx, and other tissues. It ranks as the seventh most prevalent 

cancer globally, with over 660,000 new diagnoses and approximately 300,000 fatalities 

every year1. Moreover, the global incidence of H&N cancer is increasing. Due to its location, 

H&N cancer greatly affects patient quality of life, and its treatment is often complex. For 

localized cancer cases, the 5-year survival rate is 85.1%, whereas for distant cases, the rate 

drops to 40.1%2.  

Over the past few decades, machine learning has played an increasingly prominent role in 

many scientific fields, including medicine3. ML methods have been proven effective in 

predicting the susceptibility, recurrence, and survival rates of various types of malignancies4. 

Moreover, several H&N research studies have performed survival prediction using ML 

algorithms. For example, Alabi et al. analyzed the performance of ML models in predicting 

overall survival for tongue cancer patients using the National Cancer Institute Database5, 

and Adeoye et al. conducted a study on survival prediction using various ML algorithms to 

accurately predict survival of patients with oral cavity cancers6. Recently, the utility of ML 

in predicting 2-year survival has been reported in patients with cancers of the oral cavity, 

oropharynx, nasopharynx, hypopharynx, and larynx who underwent radiotherapy7. 

A better understanding of 5-year survival predictions can help clinicians and patients to 
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make informed treatment choices, ultimately leading to improved patient outcomes. In this 

study, we analyzed ML algorithm performance in predicting 5-year survival rates of H&N 

cancer patients using clinical features obtainable at the treatment modality decision point. 

We used five representative ML algorithms, ranging from established algorithms such as 

support vector machine and random forest algorithms to more recent gradient-boosting 

models8. Furthermore, we applied the best algorithm to each individual primary site and 

compared the results.  
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MATERIALS AND METHODS 

 

Data and feature sets 

We reviewed the records of 3,019 patients from the Asan Medical Center Head and Neck 

Cancer registry between 2007 and 2017. We included only representative types of H&N 

cancer (i.e., cancers of the oral cavity, oropharynx, hypopharynx, larynx, nasopharynx, 

salivary gland, and nasal cavity). Survival time was calculated on the basis of the end of 

treatment. Cases with a survival time of five years or more were classified as patients 

showing “Survival,” while cases with a survival time of less than five years were classified 

as “Dead.”  Since our primary outcome was 5-year survival prediction, patients who were 

lost to follow-up before the 5-year period were excluded. 

Feature sets included demographic variables (i.e., age, sex, and body mass index (BMI)), 

patient medical and social history (i.e., hypertension (HTN), Diabetes mellitus (DM), 

hepatitis, tuberculosis (TB), smoking status, and alcohol use), primary cancer site (i.e., oral 

cavity, oropharynx, hypopharynx, larynx, nasopharynx, salivary gland, or nasal cavity 

including the paranasal sinus), clinical and histopathologic attributes (i.e., T stage, N stage, 

M stage, differentiation, and overall stage), and treatment modalities (i.e., surgery, radiation 

therapy (RT), concurrent chemoradiation therapy (CCRT), and palliative chemotherapy). 

Feature sets were then used to compare the performance of different ML algorithms. The 

staging of the cancer was assessed in accordance with the 8th edition of the American Joint 
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Commission on Cancer (AJCC) TNM staging guidelines9. This study was conducted with 

the approval of the Institutional Review Board of Asan Medical Center (Approval No. 2023-

0963)  

 

Data pre-processing 

Our datasets contained missing data, which we handled using data imputation 

(Supplemental Table 1). For the nearest neighbor algorithm predictions of unknown values 

used the values of the most similar neighbors10. For K-NN imputation, missing data are 

imputed using the K most similar neighbor values (where “K” represents the number of 

nearest neighbors). The missing values in each dataset were imputed using the most similar 

neighbor values from that dataset. Thus, we replaced the missing data with the value of the 

closest single neighbor (i.e., K = 1). 

Since classification algorithms in ML are prone to overfitting when using unbalanced 

datasets, we used the synthetic minority oversampling technique-nominal continuous 

(SMOTE-NC) technique to balance our datasets11. Using this technique, the number of data 

points for the minority group (“Dead”) in the training set was increased by creating new 

synthetic data. 

 

Machine learning models 

1.Support vector machine 
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The support vector machine (SVM) algorithm is one of the most commonly used in ML 

for classification tasks12,13. The SVM algorithm primarily aims to find the widest margin 

between two classes. This margin is defined as the distance between the closest data points 

from each class. These specific points are referred to as “support vectors,” and serve to 

define the decision boundary. The implementation of the SVM in this study was performed 

using the scikit-learn package as implemented in Python. 

 

2.Random forest 

The random forest (RF) algorithm is a type of ensemble method commonly used in machine 

learning14. It operates by constructing multiple decision trees and controlling for overfitting 

by taking the average of their results. The three key steps in the Random Forest algorithm 

are bootstrap sampling, decision tree construction, and prediction. Bootstrap sampling 

involves randomly selecting samples from a given dataset. For each bootstrap sample, a 

decision tree is constructed. Instead of considering all features at each node, only a random 

subset of features is considered. Each tree’s prediction is then treated as a “vote.” The class 

that receives the most votes is selected as the final prediction. In this study, the RF algorithm 

was implemented using the scikit-learn package in Python. 

 

3. Naive Bayes 

The naïve Bayes (NB) algorithm is a probabilistic classification method based on Bayes’ 
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theorem, and involves an assumption of independence between features. It is termed “naïve” 

due to the often unrealistic assumption that all features are conditionally independent given 

the class label15. Despite its simplicity, the model is particularly effective in text 

categorization tasks. Therefore, NB has traditionally been widely used for classification via 

ML. Here, NB was also implemented using the scikit-learn package in Python. 

 

4.XGboost  

XGBoost, which stands for “Extreme Gradient Boosting,” is a more advanced version of 

the Gradient Boosting algorithm16. This algorithm sequentially adds new models to correct 

errors from previous ones and includes regularization to prevent overfitting and enhance 

generalization. XGBoost is efficient, with fast computation and automatic handling of 

missing data, and uses tree pruning and built-in cross-validation routines to improve 

accuracy. Here, XGBoost models were built using the XGBoost package in Python. 

 

5.LightGBM 

LightGBM is a modern gradient-boosting machine that uses two innovative techniques: 

gradient-based one-side sampling (GOSS) and exclusive feature bundling (EFB). These 

strategies accelerate the training speed of the boosting process. GOSS excludes a 

considerable fraction of data instances with small gradients to increase speed, whereas EFB 

groups together mutually exclusive features to minimize the total number of features, further 
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enhancing efficiency17. To use this algorithm we used the LightGBM package in Python. 

 

Hyperparameter tuning 

Hyperparameters are the configuration settings or variables that control the model training 

process and dramatically influence model performance. Since the selection of 

hyperparameter values can significantly impact a ML model’s ability to learn and make 

accurate predictions, hyperparameter tuning is necessary to optimize model performance18. 

There are two conventional methods for conducting hyperparameter optimization: grid 

search and random search. Grid search optimizes hyperparameters via systematic 

exploration of all possible combinations of predefined values to find the best configuration. 

However, this exhaustive search can become computationally demanding, particularly when 

there are numerous hyperparameters or various potential values for each hyperparameter19. 

Random search involves the random selection of hyperparameters; however, this method 

may overlook important regions in the hyperparameter space, leading to suboptimal 

performance20. Unlike random and grid search, Bayesian optimization uses a probabilistic 

model to predict the performance of a specific set of hyperparameters before conducting an 

actual test. Bayesian optimization iteratively evaluates promising hyperparameter 

configurations based on prior information, including previous configurations and their 

corresponding loss of objective function. It then updates this information for subsequent 

iterations. This method allows Bayesian optimization to use the outcomes of previous 
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evaluations to guide the selection of the next set of hyperparameters. By using accumulated 

knowledge, this approach provides more direction to the search process and increases 

efficiency relative to the indiscriminate methods used by the random and grid search 

approaches. In addition, Bayesian optimization is capable of effectively handling continuous 

parameters, unlike grid search, which is limited to discrete parameters. Moreover, while a 

random search can handle continuous parameters, it does not use prior information, resulting 

in a less efficient process. In this study, we implemented Bayesian hyperparameter 

optimization using the bayes_opt package in Python. The set of hyperparameters that yielded 

the best performance across the 100 trials was then selected as the optimal set of 

hyperparameters for the model. 

 

Model evaluation 

In our study, we employed 10-fold cross validation to evaluate the performance of the ML 

models under consideration. We opted to use 10-fold cross validation since it can provide a 

comprehensive assessment of model performance and reduce the risk of model overfitting17. 

Therefore, the original dataset was first randomly partitioned into 10 equal-sized subsets. 

Of these, nine subsets were used for training the model, and the remaining subset was used 

for model testing the model. This process was repeated ten times (i.e., “10-fold”), with each 

of the ten subsets used exactly once as the test set. These results were then averaged to 

produce a single estimate. Figure 1 shows an overview of the testing process used for this 
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study. 

 

Performance evaluation 

 The classification efficacy of the models in this study was assessed by metrics including 

sensitivity, accuracy, F1 score, and the area under the receiver operating characteristic curve 

(AUC). 

 

1. Sensitivity (also known as Recall): the proportion of actual positive cases that are 

correctly identified.  

Sensitivity = True Positives / (True Positives + False Negatives) 

 

2. Accuracy: the ratio of correctly predicted instances to total instances within the dataset.  

Accuracy = (True Positives + True Negatives) / (True Positives + False Positives + True 

Negatives + False Negatives) 

 

3. F1 Score: the harmonic mean of precision (i.e., the positive predictive value) and 

sensitivity.  

F1 Score = 2 * (Precision * Recall) / (Precision + Recall) 

Here,Precision is defined as: True Positives / (True Positives + False Positives) 
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4. AUC is a single metric that quantifies how well a model distinguishes between positive 

and negative classes across all threshold settings. Higher AUC values indicate better model 

performance, with 1.0 representing a perfect classifier and 0.5 indicating a model that 

performs no better than random chance. 

  

Feature importance 

Feature importance quantifies the influence of individual input features on the predictions 

of a ML model, and can be used to identify the most significant contributors. However, 

feature importance must be interpreted carefully; for this reason we used the SAP (SHapley 

Additive exPlanations) approach, which offers a sophisticated method, rooted in game 

theory, of measuring feature importance. Briefly, SHAP assigns importance scores to each 

feature for specific predictions, ensuring a consistent and fair distribution of contributions 

across potential predictions21. This approach improves local interpretability and elucidates 

how particular features impact individual predictions. Moreover, SHAP effectively captures 

complex feature interactions and can be used to generate intuitive visualizations. In this 

study, SHAP was implemented using the SHAP package in Python. 

Our primary outcome was to identify the most suitable ML algorithm for predicting 5-year 

(overall) survival and to determine the importance of associated features. Subsequently, we 

applied the optimal algorithm to each site. The secondary outcome was to apply the optimal 

algorithm to each primary site and analyze the results. 
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RESULTS 

 

Of all 3,019 patients included in the raw dataset, 1,287 were selected for inclusion in the 

study dataset (Figure 2). Based on survival at the 5-year point, of 1,287 patients 951 (73.9%) 

had “Survived” while 339 (26.1%) were “Dead.” Our data incorporated 16 features, 

categorized under five main headings: demographics, medical and social history, primary 

site, clinical and histopathologic attributes, and Initial Treatment Modality (Table 2). With 

respect to primary site, the Larynx was the most common, with 353 cases (27.4%), followed 

by the oral cavity with 291 cases (22.6%). Regarding treatment modality, surgery was the 

most prevalent, with 814 instances (63.2%). 

 

Optimal hyperparameter values 

Table 2 displays the optimal hyperparameters identified during the tuning process for the 

SVM, NB, RF, XGBoost, and LightGBM ML algorithms. We used various hyperparameters 

for each algorithm:  

Support Vector Machine (SVM): Four parameters - C, gamma, degree, and kernel  

Naïve Bayes (NB): One parameter - var_smoothing  

Random Forest (RF): Four parameters: n_estimators, max_depth, min_samples_split, and 

min_samples_leaf. 

XGBoost: Seven parameters: n_estimators, max_depth, gamma, min_child_weight, 
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subsample, colsample_bytree, and learning_rate. 

LightGBM: Seven parameters: n_estimators, num_leaves, max_depth, min_child_weight, 

subsample, colsample_bytree, and learning_rate. 

 

 

 

Model performances 

Table 3 and Figure 3 present model performance measures derived from 10-fold cross 

validation, including the receiver operating characteristic (ROC) curve, AUC, sensitivity, 

accuracy, and F1 score. Based on average scores, LightGBM was the top-performing 

algorithm during the validation phase with a score of 0.839. This was followed by XGBoost 

(0.827), RF (0.823), SVM (0.745), and NB (0.686). 

 

Feature importance  

Figure 4 shows that the six features played a pivotal role in determining the performance 

of our ML models in predicting the survival outcomes of H&N cancer patients. These 

features included age, BMI, primary site, clinical N stage, overall stage, and clinical T stage. 

 

Analysis at each primary site  

Next, we used the top-performing Light GBM model to analyze each distinct primary site. 
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As shown in Table 4, this model’s predictions were most accurate for 5-year survival 

prediction of salivary gland cancer patients. However, its predictions for 5-year survival of 

the hypopharynx and nasal cavity were less accurate than for other sites. 

  

Analyzing by Primary Site 

 We analyzed the 5-year survival rate for each primary site. The Salivary gland show the 

highest survival rate at 0.84, followed closely by the Larynx at 0.83 and the Oropharynx at 

0.80. Conversely, the Hypopharynx presented the lowest 5-year survival rate (0.57) 

(Supplement Table 2). The survival curves specific to each primary site can be viewed in 

Supplement Figure 1. 

Upon evaluating the treatment modalities by primary site, it was observed that surgical 

treatments were predominant for both Oral cavity and Salivary gland, with over 90% of 

cases undergoing surgical intervention. For Hypopharynx, there was a near-even distribution 

between surgical treatments and CCRT (42.4% vs. 46.7%). In the case of Nasopharynx, a 

significant 76.8% of cases opted for CCRT as the primary treatment modality (detailed in 

Supplement Figure 2). 
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DISCUSSION 

 

In this study, we found that ML algorithms exhibited high performance in predicting 5-

year survival of H&N cancer patients. Notably, gradient-boosting models yielded 

outstanding results, with the Light GBM algorithm demonstrating the best performance. 

Among various primary sites, this model predicted 5-year survival most accurately for 

cancers of the salivary gland, whereas its performance was lower for cancers with the 

hypopharynx or nasal cavity as primary sites. The most critical feature for prediction was 

age, followed by BMI, primary site, clinical N stage, overall stage, and clinical T stage, all 

of which were significant predictive variables. 

In this study, the gradient boosting and random forest models, two representative 

ensemble learning techniques, outperformed the other algorithms. The intrinsic strength of 

ensemble techniques is rooted in their ability to combine insights from multiple weak 

learners, culminating in a more robust and accurate predictive model22. Using this 

aggregation-based approach, the learning process inherently diversifies, concurrently 

reducing model bias and variance while increasing generalizability. Furthermore, Gradient 

Boosting uses a sequential learning strategy to correct prior errors, methodically enhancing 

its accuracy with each iteration. In contrast to the Random Forest approach, which 

constructs independent trees and aggregates their outputs afterward, Gradient-Boosting 

iteratively refines predictions by crafting trees that address the inaccuracies of predecessors. 
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This adaptability positions Gradient Boosting to concentrate on more challenging 

predictions, affording it a distinctive advantage in various situations. Among the evaluated 

models, the Light GBM model stood out as the top performer. Designed for expedited 

processing and efficiency, Light GBM constructs trees in a leaf-wise fashion, and can 

therefore potentially generate deeper and more precise trees than conventional level-wise 

tree development17. Furthermore, Light GBM’s proficiency in managing sizable datasets 

and high cardinality categorical variables might have played a pivotal role in its 

performance in this study. 

It is well known that managing missing and inconsistent data is crucial when dealing with 

medical data, particularly for clinical datasets. If the proportion of missing values exceeds 

a given threshold value (commonly set at 50%), it is generally advisable to delete those 

instances. However, for datasets with a relatively low percentage of missing data, the use 

of appropriate imputation methods is generally preferred8. Here, our dataset contained a 

mix of continuous and categorical variables. Given this composition, we opted for the 

Nearest Neighbor algorithm for imputation, using values from the most proximate 

neighbors. 

 In our dataset, the categories “Survived” and “Dead” were unbalanced, with respective 

proportions of 73.9% and 26.1% of the dataset. Given that ML classification is susceptible 

to overfitting in the presence of imbalanced datasets, it is imperative to seek equilibrium 

in the dataset using appropriate sampling techniques. The Synthetic Minority 
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Oversampling Technique (SMOTE) is a widely recognized resampling method that has 

been employed in numerous cancer prediction studies, including studies by Wang et al.23, 

Santos et al.24 and Doja et al.25 By applying SMOTE, it is possible to enhance the 

representation of the minority class by creating novel synthetic instances. However, the 

SMOTE approach cannot handle nominal features; therefore, we used the Synthetic 

Minority Oversampling TEchnique-Nominal Continuous [SMOTE-NC]11. This allowed us 

to avoid the danger of  overfitting. In addition, we also used cross validation, resulting in 

significant improvements in both classification accuracy and the model’s potential for 

generalization. 

Moreover, it is also essential to adjust hyperparameters, train various models using 

diverse value combinations, and subsequently evaluate their performance to identify 

optimal ML model for highly specialized approaches. In the past, two representative 

methods have been widely used: grid search and random search20. Grid search 

systematically trains a ML model using every permutation of hyperparameter values on the 

training data, and its performance is then assessed based on preset metrics via cross 

validation. This means that the grid search approach can identify the specific 

hyperparameter set that delivers the best results. However, as the number and range of 

hyperparameters expands, the efficiency of this algorithm rapidly diminishes. In contrast, 

a random search explores random hyperparameter combinations within specified bounds. 

Although it operates more efficiently in high-dimensional spaces than the grid search 
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approach, the random search algorithm can sometimes generate inconsistent results when 

training intricate models. Bayesian optimization integrates a priori knowledge of a function 

with sampled data (evidence) to derive the function’s posterior probability. This posterior 

is then used to determine where the function attains a maximum value based on a specific 

criterion26. Using Bayesian optimization for hyperparameter tuning is therefore often a 

more practical and highly effective approach. Before finalizing the model, this step is 

necessary since it significantly improves model performance. 

In our study, age was identified as the most crucial factor for model prediction. Numerous 

studies have demonstrated a significant positive association between age and poorer patient 

survival outcomes27,28. Similarly, it has already been established that pretreatment BMI is 

closely related to survival rate29 Moreover, clinical N stage was also found to be one of the 

most important features for predicting cancer survival. In numerous solid tumors, including 

H&N cancer, lymph node metastasis is widely recognized as a prognostic indicator30. For 

example, it has been established that the number of lymph nodes after neck dissection is 

directly correlated with prognosis31. Similarly, the T stage is also an important factor for 

assessing the prognosis of H&N cancer. Interestingly, within the tumor staging system, the 

M stage did not play as significant a role in predicting survival outcome as the T and N 

stages. This may be attributed to the fact that only 2% of patients were classified as having 

distant metastasis. Based on these findings, tumor staging was a crucial determinant in 

forecasting 5-year survival. 
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 Among various primary sites, the salivary gland exhibited outstanding performance in 

predicting 5-year survival. This may be attributed to the fact that for the salivary gland, 

surgical intervention is the predominant treatment modality. Moreover, compared to other 

sites, the salivary gland presents a more uniform distribution in overall stages, potentially 

making predictions more straightforward. Conversely, model performance for cancers of 

the hypopharynx and nasal cavity was inferior relative to other sites. These sites exhibited 

a tendency toward lower survival rates than other types of cancer. Additionally, in the case 

of the nasal cavity, this diminished efficacy may be attributed to the inclusion of various 

paranasal sinuses within the nasal cavity, leading to increased heterogeneity. 

 In the 5-year survival rates based on primary sites, the salivary gland (0.84) and larynx 

(0.83) demonstrated the highest survival probabilities. According to the 5-year survival 

rates for different types of cancer reported in South Korea in 2020, the 5-year survival rate 

for larynx cancer from 2016 to 2020 was noted as 80.0%32. While our observed survival 

rate for the larynx was slightly higher, the findings were generally similar. Additionally, 

the reported 5-year survival rates for the oral cavity and pharynx were 65.5% for 2011-

2015 and 69.4% for 2016-2020. The survival rate for the oral cavity, oropharynx, 

nasopharynx, and hypopharynx in our data was found to be 68.5%, which aligns closely 

with these reported rates. There have been multiple studies reported on salivary gland 

tumors. In the case of Western Europe, a 5-year survival rate of up to 81% has been reported 

33. While our results showed a slightly higher rate of 84%, they are nonetheless in line with 



19 

 

these findings. 

 O Our study has several limitations. First, although we implemented imputation 

procedures to manage missing data, there may still be constraints in adequately addressing 

all data gaps. In addition, our analyses were based on retrospective cohorts. Patients with 

follow-up durations of fewer than five years were also excluded, and this may introduce 

bias that should be considered. In addition, our analysis was solely based on ML algorithms, 

and we did not conduct tests using deep learning models such as convolutional neural 

networks and recurrent neural networks (RNNs). Therefore, conducting a comparative 

analysis encompassing a broader range of algorithms on a prospective cohort may be 

worthwhile. Nevertheless, our study demonstrated the usefulness of ML algorithms in 

analyzing 5-year survival rates during the treatment decision-making process. We believe 

that with further research, these ML models can be used to predict survival in clinical 

settings. 
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CONCLUSION 

This study highlighted the efficacy of ML algorithms in predicting 5-year survival in 

patients with H&N cancer. Notably, among these algorithms, the gradient-boosting model, 

specifically Light GBM, delivered the best performance. Critical features driving the 

decision-making process included age, BMI, clinical T stage, and N stage. We anticipate 

that ML algorithms could be integrated into clinical practice in the future. 
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Table 1. Feature sets (n=1287) 

Feature sets n (%)  

Demographic 
 

Age, mean±SD (Min-Max) 57.5±12.3 (18-89) 

Sex (male/female) 970/317 (75.4/24.6) 

BMI, mean±SD (Min-Max) 23.6±3.4 (15.1-41.5) 

Past and Social history  

HTN 333 (25.9) 

DM 167 (13.0) 

Hepatitis 33 (2.6) 

TB 65 (5.1) 

Smoking (Non/Ex/Current) 492/321/474 (38.2/24.9/36.9) 

Alcohol (Non/Current) 612/675 (47.5/52.5) 

Primary sites 
 

Oral cavity 291 (22.6) 

  Oropharynx 179 (13.9) 

Larynx  353 (27.4) 

  Hypopharynx 92 (7.2) 

  Nasopharynx 138 (10.7) 

  Salivary gland 146 (11.3) 

Nasal cavity 88 (6.9) 

Clinical and histopathologic attributes   

  T-stage (T1/T2/T3/T4) 457/326/216/288 (35.5/25.3/16.8/22.4) 

  N-stage (N0/N1/N2/N3) 768/151/337/31 (59.7/11.7/26.2/2.4) 

  M-stage (M0/M1) 1261/26 (98.0/2.0) 

  Differentiation (unknown/well/moderate/poorly) 423/301/441/122 (32.8/23.4/34.3/9.5) 

  Overall stage (Ⅰ/Ⅱ/Ⅲ/Ⅳ) 369/181/229/508 (28.7/14.1/17.8/39.4) 

Initial treatment modality  

(Surgery/RT/CCRT/Palliative CTx) 

814/149/274/50  

(63.2/11.6/21.3/3.9) 

Status (Survival/Dead) 951/336 (73.9/26.1) 

BMI, body mass index; HTN, hypertension; DM, diabetes mellitus; TB, tuberculosis; RT, radiation 

therapy; CCRT, concurrent chemoradiation therapy; CTx, chemotheraphy  
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Table 2. Best hyperparameter 

Algorithms Hyperparameters Parameter Range Best Hyperparameters 

SVM C [0.1 – 1000] 457.206 

 gamma [0.0001 – 1] 0.0039 
 

degree [1 – 5] 4 

 kernel linear or RBF RBF 

RF n_estimators [10 – 1000] 999 
 

max_depth [1 – 50] 49 
 

min_sample_split [2 – 20] 2 
 

min_sample_leaf [1 – 10] 2 

NB var_smoothing [1x10-10-1x10-1] 0.0176 

XGboost n_estimators [10 – 1000] 942 
 

max_dept [1 – 50] 14 
 

gamma [0 – 1] 0.3083 
 

min_child_weight [1 – 10] 2 

 subsample [0.1 – 1] 0.5149 
 

colsample_bytree [0.1 – 1] 0.5741 
 

learning_rate [0.01 – 0.3] 0.0248 

LightGBM n_estimators [10 – 1000] 490 

 num_leaves [2 – 200] 102 

 max_depth [1 – 50] 25 

 min_child_samples [1 – 100] 2 
 

Subsample [0.1 – 1] 0.1267 

 colsample_bytree [0.1 – 1] 0.6185 
 

learning_rate [0.01 – 0.3] 0.1626 

SVM, support vector machine; RBF, radial basis function; RF, random forest; NB, naïve Bayes.  
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Table 3. Model performance. 

AUC, area under the receiver operating characteristic curve; SVM, support vector machine; RF, 

random forest; NB, naïve Bayes 

 

 

 

 

 

 

 

 

 

 

 Sensitivity Accuracy F1 score AUC 

SVM 0.702 0.737 0.727 0.816 

RF 0.774 0.811 0.805 0.900 

NB 0.611 0.698 0.665 0.769 

XGboost 0.790 0.814 0.812 0.890 

LightGBM 0.807 0.822 0.820 0.905 
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Table 4. Performance of each primary site using the Light GBM model 

AUC, area under the receiver operating characteristic curve 

 

 

 

 

 

 

 

 

 

 Sensitivity Accuracy F1 score AUC 

Oral cavity 0.709 0.720 0.714 0.775 

Oropharynx 0.827 0.844 0.844 0.895 

Larynx 0.884 0.888 0.891 0.937 

Hypopharynx 0.537 0.571 0.555 0.637 

Salivary gland 0.951 0.968 0.967 0.988 

Nasal cavity 0.667 0.691 0.674 0.700 

Nasopharynx 0.771 0.793 0.788 0.849 
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Supplement Table 1. Missing data (n=1287) 

Feature sets Missing data (%) 

Demographic 
 

Age 18 (1.4) 

Sex  10 (0.8) 

BMI 31 (2.4) 

Past and Social history  

HTN 0 

DM 0 

Hepatitis 0 

TB 0 

Smoking 25 (1.9) 

Alcohol 24 (1.8) 

Primary sites 
 

 Oral cavity 0 

  Oropharynx 0 

  Larynx 0 

  Hypopharynx 0 

  Nasopharynx 0 

  Salivary gland 0 

Nasal cavity 0 

Clinical and histopathologic attributes   

  T-stage 132 (10.3) 

  N-stage 131 (10.2) 

  M-stage 133 (10.3) 

  Differentiation 0  

  Overall stage 135 (10.5) 

Treatment modality 1 (0.1) 

BMI, body mass index; HTN, hypertension; DM, diabetes mellitus; TB, tuberculosis 
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Supplement Table 2. Five-Year Survival Rates for primary site 

 

 

 

 

 

\\ 

 

 

 

 

 

 

 5-year survival rates 

 Oral cavity 0.66 

 Oropharynx 0.80 

 Larynx  0.83 

 Hypopharynx 0.57 

 Nasopharynx 0.66 

 Salivary gland 0.84 

Nasal cavity 0.62 
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Figure 1. Summary of modeling methodology 

 

AMC, Asan medical center; H&N, head & neck; SMOTE-NC, synthetic minority 

oversampling technique-nominal continuous; SVM, support vector machine; RF, random 

forest; NB, naïve Bayes 
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Figure 2. Flow chart for patient inclusion 

 

AMC, Asan medical center. 
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Figure 3. ROC curve based on five machine learning algorithms using 10-fold cross 

validation 

 

(a) SVM, (b) NB, (c) RF, (d) XGboost, (e) Light GBM 

ROC, receiver operating characteristic; SVM, support vector machine; RF, random forest; 

NB, naïve Bayes. 
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Figure 4. SHAP feature importance 

 

SHAP, SHapley Additive exPlanations. 
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Supplement figure 1. Survival Curves by Primary Site 
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Supplement figure 2. Treatment Modalities for Each Primary Site 
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국문 요약 

 

배경 

 두경부암 환자에 대한 정확한 예후 예측은 임상에서 매우 중요하다. 이 연구의 

목적은 두경부암 환자의 생존 예측의 기계 학습 (머신러닝) 알고리즘의 유용성

을 입증하고 효과적인 모델을 찾아내는 것이다. 

 

방법 

 2007년부터 2017 년까지 수집된 서울아산병원 두경부암 레지스트리에 등록된 

3019 명의 환자를 대상으로 연구를 진행하였다. 다양한 기계 학습 알고리즘의 성

능을 비교하기 위해 사용된 데이터 세트에는 인구 통계학적 특성, 과거 및 사회

적 특성, 주요 장소의 임상 및 조직 병리학적 특성 및 치료 방법이 포함되었다. 

우리는 두경부암을 5년 생존 상태를 기준으로 분류하기 위해 데이터세에 총 다

섯 가지 기계 학습 모델을 적용하였다. 이 모델들은 최근 개발된 두 가지 그래

디언트 부스팅 모델 (XGBoost 및 LightGBM), 일반적으로 사용되는 트리 기반 모

델인 Random Forest (RF), Support Vector Machines (SVM) 및 Naive Bayes (NB)

를 포함 한다. 모델 성능을 평가하기 위하여 10겹-교차 검증을 실시하였다. 

 

결과 

 본 연구는 최종적으로 선정된 1,287명의 환자로 구성되었다. 다섯 모델 중 
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LightGBM 이 가장 뛰어난 성능을 보였다. 모델 성능을 평가하기 위해 민감도, 정

확도, F1 점수, 및 AUC-ROC 네 가지 지표를 사용하였다. 모델 성능의 평균 점수

는 다음과 같았다: SVM - 0.745, RF - 0.823, NB – 0.686, XGBoost - 0.827, 및 

LightGBM - 0.839.LightGBM 모델에서는 SHapley Additive exPlanations (SHAP) 

값이 계산되었고, 결과에서 16 개의 특징 중 중요도 측면에서 상위 다섯 가지는 

다음과 같이 내림차순으로 나타났다: 나이,체질량 지수 (BMI), 원발 부위, N-스

테이지, 병기, T-스테이지 

 

 

결론 

 본 연구에서는 나이, 체질량 지수 및 스테이지에 관련된 특성이 두경부암의 생

존 가능성을 예측하는 데 가장 중요하다는 것을 발견하였다. 또한 LightGBM 모

델은 적절한 데이터셋과 결합하여 두경부 암으로 진단된 환자들을 위한 정확한 

예후 모델을 구축하는 데 사용될 수 있었다. 향후 기계 학습 모델들을 임상에 

적용될 수 있을거라 기대 한다. 
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