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Abstract 

Estimating the percentage of neoplastic cells (NCP) is crucial for molecular 

research. While manual counting by a pathologist is the established method, it is 

time-consuming and not easily executable. To address this, we gathered scanned 

images of 34 cases of urinary tract cancer and constructed AI models based on 

convolutional neural networks to estimate NCP. For external validation, 118 cases 

were obtained, and multiplexed immunofluorescence (mIF) served as the gold-

standard. Each AI model demonstrated strong reliability, displaying high intraclass 

correlation coefficients (ICC) ranging from 0.82 to 0.88. Moreover, they exhibited 

consistent results compared to human pathologists, with an ICC value of 0.93. These 

findings suggest that the algorithm of AI models could help effectively human 

pathologists in repetitive NCP calculations. 

 

Keywords: Artificial intelligence, immunofluorescence, urologic neoplasms, tumor 

microenvironment 
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Introduction 

Bladder cancer is one of the most highly mutated tumors with recurrent mutations 

and potential therapeutic targets in the majority (69%) of such patients1. Recently, 

personalized treatments based on the genetic alteration such as pan-FGFR inhibitors 

targeting FGFR3 mutations and FGFR3/2 fusions have been emerging2. In addition, 

several molecular targeting agents are under investigation in clinical trials with 

promising efficacy reported in HER2-targeting antibody-drug conjugate in HER2-

overexpressing bladder cancer3,4. For such personalized treatment, accurate 

molecular diagnosis is prerequisite requirement.  

The targeted next-generation sequencing (NGS) is widely used not only to define 

disease-associated genetic alterations for diagnostic purpose but also to find drug-

associated clinically actionable targets for personalized medicine. As an initial step 

of NGS, an accurate assessment of neoplastic cell percentages (NCP) is essential 

because solid tumors such as bladder cancer contain variable amount of non-

neoplastic cells such as desmoplastic fibroblasts, inflammatory cells, vascular 

endothelial cells, and smooth muscle cells. Depending on the NCP, a NGS test might 

be preceded or canceled in specimens, especially those with low tumor content near 

the cutoff level of the test. NGS test with suboptimal NCP might results in false 

negative results when the test is preceded in spite of insufficient neoplastic cells and 

interpreted as negative for a variant. Furthermore, inappropriately assessed NCP 

produces noise and distorts the relationship between read counts, resulting in 

inaccurate estimation of copy number variation (CNV) in NGS data5.  

NCP, also referring normal cell contamination, is defined as the fraction of cancer 
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cells in a tumor. Currently, NCP is determined by visual estimation of tumor sections 

on H&E-stained slides by pathologists6,7. However, the pathologic estimates have 

been issued for its limited accuracy and wide range of interobserver variation7,8.  

The artificial intelligence (AI) has been emerging as a useful tool for quantitative 

and qualitative analyses of digital histopathologic images9. AI-based quantitative 

image analyses ware tried to estimate NCP for breast cancer10 and tumor cellularity 

for lung cancer11. However, urinary tract cancer images are not analyzed yet, 

although they have diverse morphological appearances12 and clinical settings they 

stand. 

In an attempt to estimate NCP accurately, a machine learning framework-based 

AI model using digital images was developed for urinary tract malignancy in our 

study. The AI-based digital estimates were compared to those of pathologists using 

multiplex immunofluorescence(mIF)-based NCP as the ground-truth. 
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Material and Methods 

 
Figure 1. Study overview. AI models were trained using cell patches extracted 

from the developmental cohort. They estimated NCPs on H&E slides from TMA 

constructs from another validation cohort. Multiplex IF was also performed and 

used as a gold standard. NCP estimates by pathologists and AI models were 

compared for their reliability to multiplex IF. AI, artificial intelligence; NCP, 

neoplastic cell percentage; H&E, hematoxylin and eosin; TMA, tissue microarray; 

IF, immunofluorescence. 

 

Patients  

This retrospective study was approved by the Institutional Review Board of Asan 

Medical Center (AMC) (2022-1558) and included patients with pathologically 

confirmed urinary tract malignancies at Asan Medical Center, Seoul, Republic of 

Korea and their formalin-fixed, paraffin-embedded (FFPE) tumor tissue blocks were 
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available for tissue microarray (TMA) construction. Two cohorts were established 

for this study: a development cohort and a validation cohort. 

The development cohort was utilized to create numerous cell patches for training 

the convolutional neural network models. This cohort was collected between March 

2022 and August 2022, encompassing various subtypes and divergent 

differentiations of urothelial carcinoma, as well as commonly encountered specimen 

types.  

For the validation cohort, NGS cases of the urinary tract were included. This 

cohort, gathered between May 2019 and February 2022, was designed to simulate a 

clinical setting using NCP and used to validate the trained machine learning models.  

 

Tissue microarray construction  

TMA blocks were generated from the validation cohort and constructed with 1 

mm-diameter cores from 10% neutrally buffered FFPE tumor blocks using a tissue 

microarrayer (Quick-Ray, Unitma Co. Ltd., Seoul, Republic of Korea). Three 

representative cores from each case were selected in the area with the variable 

density of viable neoplastic cells, low to high, while trying to avoid necrotic areas13. 

 

Multiplex IF and multispectral imaging analysis  

Four-micron thick tissue sections were cut from the TMA construct; and then 

transferred onto plus-charged slides for multiplexed fluorescent 

immunohistochemistry using a Leica Bond Rx™ Automated Stainer (Leica 

Biosystems) and Opal Polaris 7-Color Automated IHC Detection Kit (AKOYA 

Biosciences) as previously described14. After sequential reactions, tissue sections 
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were counterstained with DAPI (62248, Thermo Scientific) and mounted with 

ProLong Gold antifade reagent (P36935, Invitrogen). The primary antibodies used 

in this study were CD45 (DAKO, Santa Clara, CA, USA,1:200), alpha-smooth 

muscle actin (ɑSMA, Zymed, San Francisco, CA, USA, 1:100), pan-cytokeratin 

(CK, Novus Biologicals, Littleton, CO, 1:300) and the corresponding fluorophores 

for fluorescence signals were Opal 570, Opal 690 and Opal 780, respectively. The 

multispectral fluorescence images were acquired on multiplex stained slides, 

scanned on the Vectra® Polaris Automated Quantitative Pathology Imaging System 

(Akoya Biosciences), and the images were visualized in the Phenochart Whole Slide 

Viewer (Akoya Biosciences). Phenotyping of cellular components in the images was 

performed using inForm image analysis software and phenoptr/phenoptrReports 

tissue analysis software packages (Akoya Biosciences). Based on the phenotyping, 

mIF-based NCP was calculated and used as the ground-truth value. 

 

Whole-slide scanning 

H&E slides from the development cohort and the validation cohort were scanned 

with the PANNORAMIC 250 Flash II (3D HISTECH, Budapest, Hungary) at 40x 

magnification with 0.22 μm/pixel in a single layer.   

 

Deep learning models for NCP estimation  

Cell patch generation for AI model training  

Scanned slides were assessed using open-source digital pathology software, 

QuPath v. 3.4.2.15. In the development cohort, the most representative regions of 

interest, at least one per slide, were drawn by the author (J. A. J.). Cell nuclei were 
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detected with star-convex polygons16 using the provided QuPath plugin to avoid 

incomplete segmentation of overlapping nuclei. The detected cells were then 

manually classified into three classes: tumor cells, stromal cells and immune cells, 

one at a time. For each detected cell, 100×100 pixel image patches were obtained 

with their class labels. Extracted cell patches containing 3 classes were divided into 

3 sets, training set, validation set, and test set, as 7:2:1 ratio and supplied to 

convolutional neural networks. 

Training AI models 

Cell patches in the training and validation sets were transformed to tensors and 

augmented for generality, handled by Pytorch library version 1.12.117. Cell patches 

were provided to nine convoluted neural network (CNN) models, basically provided 

by Pytorch. The models were AlexNet18, VGG19, ResNet20, WideResNet2021, 

EfficientNet22, EfficientNet V223, MobileNet V224, MobileNet V325, and ShuffleNet 

V226. The Adam optimizer27 was adopted with default hyperparameters (β1 = 0.9; β2 

= 0.999; ε = 1.0 × 10 - 8). The Cross Entropy Loss function and Reduce LR On 

Plateau function were used as the loss function and learning rate scheduler, 

respectively. Batch size was set to 128. Learning epoch was set to 80. Models were 

computed by two GPUs, RTX 3090 (NVIDIA). 

Performance metrics of AI models 

The performance of the trained models was evaluated in the predetermined test 

set with four parameters: sensitivity, specificity, precision, accuracy, F1 score and 

the area under the receiver operating characteristic (AUROC). 
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Comparison of NCP estimation performance between pathologists and 

AI models 

The NCPs of each core of H&E-stained slides from the TMA constructs of the 

validation cohort were estimated by seven pathologists with varying levels of 

expertise and the nine trained CNN models. The pathologists consisted of one 

uropathologist (YM Cho), two fellows (SE Jeong and BK Ahn), and three residents 

(KH Kim, HJ Seong, and YI Lee). They were instructed to estimate each individual 

TMA core by eyeball measurement, not by counting cells individually. They 

provided NCP estimates on a 5% scale, ranging from 0% to 100%.  

To obtain NCP estimates from the CNN models, TMA slides were scanned and 

cell patches were generated in a similar way as training patches. The trained deep 

learning models were then applied and classified cell patches into three classes, 

tumor, stroma, and immune cells, and provided NCP estimates of each TMA core.  

The agreement between mIF-based NCP and those of pathologists or AI models 

was calculated using intraclass correlation coefficients, using ICC (2,1) for 

comparing between mIF-based NCP and each pathologist or AI model. ICC (2, k) 

was used for comparing mIF-based NCP and pathologist group or AI model group28. 

The ICC was interpreted as poor ( <0.40), fair (0.40-0.59), good (0.60-0.74) and 

excellent (0.75-1.00) as previously proposed29,30. 

 

Identifying difficult cases 

Mean absolute deviation (MAD) was used for identifying TMA cores with low 

agreements. MAD is used for measuring of variability of data, implying how much 

data values are spread out from the mean. The mean of the absolute deviations 



 8 

around the data’s mean is defined as MAD. 

MAD =	&
|𝑥! 	− 𝑥̅|

𝑛!
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Results 

Patient cohorts 

In the development cohort, from 322 cases of invasive high-grade urothelial 

carcinoma, 34 slides were selected. Data variability and image artifact were also 

considered not only variable histologic morphology31 (Table 1). 

Twenty cases were transurethral resection and fourteen cases were radical 

surgical resection specimens, which included radical cystectomy or 

nephroureterectomy. The cohort consisted of 21 pure invasive urothelial carcinoma 

and 13 urothelial carcinomas with various divergent differentiations and subtypes, 

including glandular and squamous differentiation and microcystic, sarcomatoid, 

poorly differentiated, and micropapillary subtypes (Table 2).  

In the validation cohort, 118 specimens were collected, including 85 radical 

surgical resection specimens and 23 transurethral resection specimens. The 

validation cohort consisted of 105 cases of invasive high-grade urothelial carcinoma, 

one case of non-invasive papillary urothelial carcinoma, two cases of collecting duct 

carcinoma, two cases of urachal adenocarcinoma, and one case of invasive squamous 

cell carcinoma. Fifty-seven cases of urothelial carcinoma contained various 

differentiations and histologic subtypes, including squamous, sarcomatoid, 

glandular, plasmacytoid, micropapillary, giant cell, nested, and microcystic (Table 

2). 
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Table 1. A checklist for findings to include in whole slide images of urinary tract 
cancer. 

Tissue condition 
Fixation 

1. Well fixed 
2. Poorly fixed 

Cauterization effect 
3. Cauterized 
4. Not cauterized 

Focus 
5. Well focused 
6. Partly focused out 

Section thickness 
7. Thick 
8. Thin 

Tearing 
9. Torn 
10. Not torn 

Background 
11. Clear 
12. Hemorrhagic 
13. Degenerative 
14. Necrotic 

Location 
15. In tissue 
16. Floating 

Cellularity 
17. High 
18. Low 

Tumor 
Morphology 

19. Round 
20. Polygonal 
21. Irregular 

Cohesiveness 
22. Cohesive 
23. Overlapping 
24. Poorly cohesive 

Cell membrane 
25. Distinct 
26. Indistinct 

Mitosis 
27. Active 
28. Inactive 

Nucleoli 
29. Prominent 
30. Inconspicuous 
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Chromatin 
31. Fine 
32. Coarse 
33. Vesicular 

Cytoplasm 
34. Eosinophilic 
35. Amphophilic 
36. Basophilic 
37. Clear 
38. Scant 

Mesenchyme 
Location 

39. Intra tumoral 
40. Peri tumoral 
41. Extra tumoral 

Structure 
42. Adipose 
43. Muscularis propria 
44. Muscularis mucosae 
45. Large vessel 
46. Small vessel 
47. Papillary core 
48. Nerve 
49. Granulation tissue 

Reaction 
50. Desmoplastic 
51. Hyalinized 
52. Myxoid 
53. Edematous 
54. Activated 

Immune cells 
Location 

55. Intra tumoral 
56. Peri tumoral 
57. Extra tumoral 

Structure 
58. Aggregate 
59. Follicle 
60. Abscess 

Cells 
61. Neutrophil 
62. Eosinophil 
63. Mature lymphocyte 
64. Histiocyte 
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Table 2. Patient characteristics in the development and validation cohort. 
Characteristic Development cohort 

(n=34) 
Validation cohort 

(n=118) 
 No. % No. % 
Sex     
 Male 24 70.6 90 76.3 
 Female 10 29.4 28 23.7 
Location     
 Urinary Bladder 22 64.7 49 41.5 
 Renal pelvis 5 14.7 16 13.6 
 Ureter 4 11.8 27 22.9 
 Urethra 0 0 1 0.8 
 Multiple location* 2 5.9 11 9.3 
 Others† 1 2.9 14 11.9 
Procedure     
 TURB 20 58.8 23 19.5 
 Surgical resection‡ 14 41.2 85 72.0 
 Biopsy 0 0 1 0.8 
 Others§ 0 0 9 7.6 
Histologic grade     
 Low 0 0 1 0.8 
 High 34 100 105 89.0 
 Not assessed∥ 0 0 12 10.2 

Pathologic T staging     
 Tx 0 0 11 9.3 
 T0¶ 1 0 2 1.7 
 T1 14 41.2 7 5.9 
 T2 9 26.5 29 24.6 
 T3 10 23.5 53 44.9 
 T4 0 0 16 13.6 
Histologic subtype     
 None 21 61.8 56 42.1 
 Squamous 5 14.7 26 19.5 
 Micropapillary 2 5.9 23 17.3 
 Sarcomatoid 2 5.9 8 6.0 
 Other 6 14.7 15 11.3 
 Non-urothelial** 0 2.9 5 3.8 
LVI     
 Not identified 20 58.8 76 64.4 
 Present 13 38.2 32 26.9 
 NA 1 2.9 10 8.4 
Pathologic LN status     
 Nx 25 73.5 52 44.0 
 Negative (N0) 5 14.7 33 28.0 
 Positive (N1/N2/N3) 4 11.8 33 28.0 
UCIS     
 Not identified 18 52.9 36 30.5 
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 Present 15 44.1 64 54.2 
 N/A 1 2.9 18 15.3 
Total 34  118  

* Cases with two or more detected urothelial carcinomas, at same organ or not were 

counted as multiple location cases. 

† Metastectomy cases, such as lymphadenectomy, adrenalectomy, lung wedge 

resection, were usually assigned. 

‡ Radical surgery cases performed to primary urothelial carcinoma for therapeutic 

purpose were assigned. It contains such as radical cystectomy, nephroureterectomy, 

distal ureterectomy, and partial cystectomy specimens. 

§ Metastectomy cases for metastatic tumor in peritoneum, adrenal gland, and lung 

were included. 

∥ Metastatic urothelial carcinoma cases not mentioned their histological grade 

additionally were included. 

¶ Pathologic complete remission of primary tumor after neoadjuvant chemotherapy 

with lymph node metastasis cases were included. 

** Collecting duct carcinoma, urachal adenocarcinoma and pure squamous cell 

carcinoma cases were included. 

TURB, transurethral resection of bladder. 
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Multiplex IF performed as the gold-standard 

Three tissue microarrays were constructed with tissue cores in 1mm diameter and 

used for multiplex IF with 331 cores available for staining (Figure 2). Cell counts of 

tumor cells, immune cells, and stromal cells were determined by pan-cytokeratin-, 

CD45-, and SMA-positive cells, respectively (Figure 3). NCPs were calculated by 

dividing the number of cytokeratin-positive cells by the total number of DAPI-

positive cells. They ranged from zero to ninety-nine. Fifteen cores contained no 

tumor cells. NCP less than 20% were 71 cores (Figure 4). The proportion of cells 

with a single immunophenotype, positive for only one marker, was 89.4%. The most 

common double-positive immunophenotype was CD45 and ɑSMA double positivity, 

representing 6.9% of total cell counts (Table 3). 
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Figure 2. An example of multiplex immunofluorescence image.  

(A) Multiplex immunofluorescence images; Blue, DAPI; Green, CK; Red, ɑ SMA; 

Yellow, CD45. (B, C, D): Images are highlighted by each antibody channel: CK 

(B), ɑ SMA (C), and CD45(D). (E) CD45 stain highlights intratumoral 

lymphocytes (blue arrows). 
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Figure 3. Total cell counts in each TMA core. Immunophenotyped cell counts by 

mIF for each TMA cores were visualized among eight possible 

immunophenotypes.  
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Figure 4. Distribution of mIF-based NCP estimates in the validation cohort. 

 

Table 3. Total immunophenotyped cells by mIF.  

Immunophenotype Cell counts Percentage (%) 
CK+/CD45-/ɑSMA- 863531 40.7 
CK-/CD45+/ɑSMA- 577724 27.2 
CK-/CD45-/ɑSMA+ 455225 21.5 
CK+/CD45+/ɑSMA- 20299 1.0 
CK+/CD45+/ɑSMA+ 56 0.0 
CK+/CD45-/ɑSMA+ 9035 0.4 
CK-/CD45+/ɑSMA+ 145584 6.9 
CK-/CD45-/ɑSMA- 48559 2.3 
Total 2120013 100 
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Optimizing AI models 

Nine supervised deep learning models were evaluated to classify provided cell 

patches into three distinct classes. Within the training cohort, a total of 133,941 cell 

patches were manually classified, comprising 76,330 tumor cell patches, 24,297 

stromal cell patches, and 33,314 immune cell patches (Figure 5). These cell patches 

were divided into training, validation, and test sets as a 7:2:1 ratio. The image patches 

in the training set were converted into tensors and augmented to improve 

generalization using techniques such as random flipping, rotation, padding, and 

normalization (Figure 6). These augmented patches were then fed into a 

convolutional neural network model to train it in classifying cell patches into the 

three specified classes. Model performance was evaluated using the test set (Table 

4). Among these models, EfficientNet showed the highest sensitivity (0.94) and 

accuracy (0.87) while two models (AlexNet and VGG) demonstrated low accuracy 

and area under the receiver operating characteristic curve (AUROC) scores of 0.55 

and 0.5, respectively. (Table 4). 
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Figure 5. Cell patch generation to train AI models using development cohort. (A) 

Region of interest is selected for each digitally scanned whole slide images. (B) 

High magnification view of square area at (A). (C) Segmented nuclei by yellow 

outline. (D) Manually classified cells (Red: tumor cells; green: stromal cells; 

purple: immune cells (arrow)). (E, F, G): Examples of extracted 100×100 pixel 

image patches (E: stromal cells; F: tumor cells; G: immune cells) 
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Figure 6. Image augmentation techniques for helping AI training. 
 

Table 4. Model evaluation metrics in the development cohort.  
Model Sensi-

tivity 
Speci-
ficity 

Precision Accuracy F1-score AUROC 

AlexNet 1.0 0.0 0.55 0.55 0.71 0.5 
VGG 1.0 0.0 0.55 0.55 0.71 0.5 
EfficientNet 0.94 0.88 0.90 0.87 0.92 0.96 
EfficientNet V2 0.93 0.87 0.90 0.86 0.91 0.96 
MobileNet V2 0.92 0.86 0.89 0.85 0.90 0.95 
MobileNet V3 0.92 0.86 0.89 0.86 0.90 0.95 
ResNet 0.92 0.88 0.90 0.86 0.91 0.96 
WideResNet 0.92 0.89 0.91 0.86 0.91 0.96 
ShuffleNet V2 0.93 0.87 0.89 0.86 0.91 0.96 
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Comparison of interobserver agreement between AI models and 

pathologists in NCP assessment 

In general, both the pathologist group and the AI model group showed high 

reliability for mIF-based NCPs. They also showed high reliability for each other 

(Table 5). The all pathologists estimated NCP with excellent reliability, with ICCs 

ranging from 0.81 to 0.91, of which the pathologist specializing in uropathology 

estimated NCP with the highest reliability, 0.91 (95% CI, 0.89-0.93) (Table 6). AI 

models also estimated NCP with excellent reliability, with ICCs ranging from 0.83 

to 0.88. The most reliable model was EfficientNet with an ICC of 0.88 (95% CI, 

0.78-0.92). MobileNet V3 was the least reliable model with an ICC of 0.82 (95% CI, 

0.7-0.88), but was still more reliable than all but three human pathologists (Figure 7 

and Table 7). 

To evaluate the accuracy of NCP assessment according to histological variation, 

we divided the validation cohort into three groups, urothelial carcinoma without 

divergent differentiation, urothelial carcinoma with divergent differentiation, and 

non-urothelial carcinoma (e.g., squamous cell carcinoma and urachal 

adenocarcinoma). ICC values were then measured. AI models demonstrated a robust 

estimation of NCP in cases of urothelial carcinoma, both with [ICC, 0.94 (95% CI, 

0.91-0.95)] and without [ICC, 0.95 (95% CI, 0.94-0.97)] divergent differentiation. 

However, the AI models demonstrated lower reliability in non-urothelial carcinoma 

cases, showing lower reliability [ICC, 0.71 (95% CI, 0.07-0.91)] than those of 

pathologists [ICC, 0.84 (95% CI, 0.41-0.95)] (Table 8 and Table 9). 

 

Table 5. ICC values among each rater group. 
Rater group ICC value CI 95% 
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mIF/Pathologists 0.94 [0.91,0.96] 

mIF/AI models 0.94 [0.92, 0.95] 

Human/AI models 0.93 [0.89, 0.95] 
ICC, intraclass correlation coefficient; mIF, multiplex immunofluorescence; CI, con-

fidence interval. 

 
Table 6. ICC values among mIF and each pathologist. 

Rater ICC value CI 95% 
Specialist 0.91 [0.89, 0.93] 

Fellow 1  0.80 [0.53, 0.89] 

Fellow 2  0.82 [0.78, 0.85] 
Resident 1  0.78 [0.72, 0.83] 
Resident 2 0.82 [0.78, 0.85] 

Resident 3 0.81 [0.73, 0.86] 
NCP, neoplastic cell percentage. 

 
Table 7. ICC values among mIF and each AI model. 

Model ICC value CI 95% 
EfficientNet 0.88 [0.78, 0.92] 
EfficientNet V2 0.87 [0.84, 0.89] 
MobileNet V2 0.87 [0.85, 0.90] 
MobileNet V3 0.82 [0.7, 0.88] 
ResNet 0.86 [0.76, 0.91] 
WideResNet 0.85 [0.8, 0.88] 
ShuffleNet V2 0.83 [0.74, 0.88] 
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Table 8. ICC values among mIF, each pathologist and AI model, divided into 
three histologic groups. 

Rater Urothelial 
carcinoma without 
divergent 
differentiation 
(n=56) 

Urothelial 
carcinoma with 
divergent 
differentiation 
(n=57) 

Non-urothelial 
carcinoma (n=5) 

 ICC 
value 

CI 95% ICC 
value 

CI 95% ICC 
value 

CI 95% 

Specialist 0.91 [0.87, 0.93] 0.94 [0.91, 0.95] 0.75 [0.39, 0.91] 
Fellow 1 0.83 [0.59, 0.91] 0.78 [0.48, 0.89] 0.67 [0.13, 0.89] 
Fellow 2 0.83 [0.77, 0.87] 0.84 [0.79, 0.88] 0.61 [0.17, 0.85] 
Resident 1 0.82 [0.65, 0.89] 0.76 [0.69, 0.82] 0.77 [0.2, 0.93] 
Resident 2 0.84 [0.79, 0.88] 0.84 [0.79, 0.88] 0.63 [0.2, 0.86] 
Resident 3 0.83 [0.7, 0.89] 0.80 [0.72, 0.85] 0.64 [0.17, 0.87] 
EfficientNet 0.89 [0.81, 0.93] 0.89 [0.67, 0.95] 0.62 [0.18, 0.86] 
EfficientNetV2 0.88 [0.83, 0.91] 0.90 [0.85, 0.93] 0.60 [0.12, 0.85] 
MobileNetV2 0.88 [0.84, 0.91] 0.90 [0.87, 0.93] 0.44 [-0.12, 0.78] * 

MobileNetV3 0.81 [0.65, 0.89] 0.87 [0.8, 0.91] 0.33 [-0.18, 0.71] * 
ResNet 0.87 [0.8, 0.92] 0.87 [0.65, 0.93] 0.48 [-0.0, 0.79] 
WideResNet 0.85 [0.78, 0.9] 0.90 [0.86, 0.92] 0.55 [0.05, 0.83] 
ShuffleNetV2 0.83 [0.68, 0.9] 0.89 [0.84, 0.92] 0.54 [0.03, 0.82] 

*P values for F test are greater than 0.05. 
 

Table 9. ICC values among different observer groups divided into three 
histologic groups. 

Rater group Urothelial 
carcinoma without 
divergent 
differentiation 
(n=56) 

Urothelial 
carcinoma with 
divergent 
differentiation 
(n=57) 

Non-urothelial 
carcinoma (n=5) 

 ICC 
value 

CI 95% ICC 
value 

CI 95% ICC 
value 

CI 95% 

mIF/Pathologists 0.94 [0.9, 0.97] 0.94 [0.91, 0.96] 0.84 [0.41, 0.95] 
mIF/AI models 0.94 [0.91, 0.95] 0.95 [0.94, 0.97] 0.71 [0.07, 0.91] 
Pathologists/AI 
models 

0.93 [0.82, 0.97] 0.94 [0.92, 0.96] 0.84 [0.51, 0.94] 
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Figure 7. NCP estimations by pathologists (A) and AI models (B) for each TMA 

core. The values are sorted according to the corresponding mIF values in 

ascending order from 0 to 99. (A) NCP estimations among pathologists are 

extremely variable in any range of NCP (black arrows). (B) NCP estimations 

among AI models are less variable in any range of NCP. However, they have a 

tendency to underestimate NCP, of which mIF estimates more than 60% (blue 

arrow). 
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Difficult cases with high variability 

TMA cores with widely spread NCPs (n = 27) were detected by measuring MAD, 

of which cut-off value was set to 15. Their H&E and mIF slides were reviewed and 

several features were suspected as possible causes: (1) high cellularity (n = 20); (2) 

cauterization and/or crush artifact (n = 10); (3) Abundant cytoplasm (n = 6); (4) 

histologic variant (micropapillary, plasmacytoid and sarcomatoid) (n = 3); (5) 

learning failure of AI (n = 3); (6) tissue loss by deeper section (n = 1) (Figure 8). 
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Figure 8. Examples of H&E and mIF images for TMA cores with high mean 

absolute deviation. Disagreements usually occur in various settings. (A) High 

cellularity precludes accurate NCP estimations to pathologists (range, 0-80%). 

Those of AI models (range, 15.5-36.5%) and mIF (29%) are not consistent with 

them. (B) High magnification view at square area in (A). (C) High magnification 

view of mIF shows tumor cells (green) are admixed with immune cells (yellow). 

Surrounding stromal cells were also observed (red). (D) Cauterization artifact 

makes NCP estimations inaccurate to pathologists (range, 0-70%) and AI models 

(range, 14.5-45.4%). (E) The artifact restricts an assessment to cytologic details. 

(F) However, mIF (37%) is less affected by this artifact. (G) Certain cytologic 

feature, such as abundant cytoplasm makes NCP estimation difficult. (H) 

Pathologists overestimate NCPs (range, 65-90%) than those of AI models (range, 

32.6-48.6%) and (I) mIF (43%).  
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Discussion 

Although pathologists group showed quite excellent reliability compared to 

group of AI models, their ranges of NCP estimation were quite broad while those of 

AI models were not (Figure 3). In practice, NCP is estimated by one pathologist. It 

seems hard to consistently estimate NCPs for human pathologists, especially trainee.  

Our study applied mIF as a new method for calculating NCP and used mIF-based 

estimation as the gold standard. Cytoplasm stained for cytokeratin and CD45 

circumferentially surrounded nuclei, so tumor cells and immune cells were easily 

immunophenotyped, but ɑSMA staining was not. However, the unphenotyped 

mesenchymal cells and double-positive cells for CD45 and ɑSMA did not affect NCP 

estimation because only cytokeratin-positive tumor cells among the total DAPI-

positive nuclei were calculated for NCP estimation.  

The AI models provided reliable estimates of NCP initially despite having limited 

training data. The validation cohort contained approximately ten times as many cases 

as the training cohort and exhibited a more diverse range of histological appearances. 

Furthermore, these appearances were not included in their training material, and 

there were variations in the quality of H&E slides scanned by different WSI scanners. 

Even though they were not specifically trained for non-urothelial carcinoma cases 

such as mucinous adenocarcinomas in the development cohort, they showed 

moderate to good reliability. This suggests that the models have a degree of 

generalizability across diverse tumor morphologies of urinary cancers. 

Although relatively earlier deep learning models such as AlexNet18 and VGG19 

faced challenges in being trained for the classification of tumor cell patches, other 
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AI models were considerably trained, achieving an accuracy surpassing 0.85. 

Nonetheless, there was no overwhelmingly superior model. This observation might 

indicate that cell classification tasks demand not just substantial computational 

resources but also sophisticated cognitive capabilities. 

Human pathologists experienced fatigue when assessing NCPs for approximately 

three hundred TMA cores, a challenge not encountered by the models. Many TMA 

cores were derived from FFPE blocks, which could be considered sufficient in 

quantity to distinguish the differences between human pathologists and AI models. 

However, human pathologists had an advantage in examining smaller regions. As 

the area expands, the task becomes difficult, a challenge usually not encountered by 

artificial intelligence. Therefore, a one-millimeter diameter TMA core may not 

accurately represent the conditions of real-world molecular testing, which requires a 

larger tumor area because it contains a greater number of tumor cells. 
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국문요약 

 

종양세포비율(NCP)을 추정하는 것은 분자 연구에 있어 매우 중요하다. 

현재는 병리학자가 수작업으로 종양세포비율을 세고 있지만, 시간이 많

이 걸리고 번거로운 작업으로 수행이 쉽지 않다. 이 문제를 해결하기 위

해 34건의 요로암 스캔 이미지를 수집하여 컨볼루션 신경망 기반의 AI 

모델들을 구축하였다. 외부 검증을 위해 118건의 추가 사례를 확보했으

며, 다중 면역 형광(mIF) 검사를 통해 취득한 NCP를 기준값으로 사용하

였다. 각 AI 모델은 0.82-0.88의 높은 급내 상관관계 계수(ICC)를 나타

내며 강력한 신뢰성을 입증하였다. 병리의사와 비교했을 때 0.93의 ICC 

값으로 일관된 결과를 나타냈다. 이러한 결과는 AI 모델의 알고리즘이 

NCP 계산에서 병리의사를 효과적으로 보조할 수 있음을 시사한다. 
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