

저작자표시-비영리-변경금지 2.0 대한민국

이용자는 아래의 조건을 따르는 경우에 한하여 자유롭게

l 이 저작물을 복제, 배포, 전송, 전시, 공연 및 방송할 수 있습니다.

다음과 같은 조건을 따라야 합니다:

l 귀하는, 이 저작물의 재이용이나 배포의 경우, 이 저작물에 적용된 이용허락조건
을 명확하게 나타내어야 합니다.

l 저작권자로부터 별도의 허가를 받으면 이러한 조건들은 적용되지 않습니다.

저작권법에 따른 이용자의 권리는 위의 내용에 의하여 영향을 받지 않습니다.

이것은 이용허락규약(Legal Code)을 이해하기 쉽게 요약한 것입니다.

Disclaimer

저작자표시. 귀하는 원저작자를 표시하여야 합니다.

비영리. 귀하는 이 저작물을 영리 목적으로 이용할 수 없습니다.

변경금지. 귀하는 이 저작물을 개작, 변형 또는 가공할 수 없습니다.

http://creativecommons.org/licenses/by-nc-nd/2.0/kr/legalcode
http://creativecommons.org/licenses/by-nc-nd/2.0/kr/

Master of Science

Deep RL-based Ellipsoidal Path Planning for MEC enabled

UAVs to Minimize Data Transmission Latency and Energy

Consumption of Mobile Devices

The Graduate School of the University of Ulsan

Department of Electrical, Electronic and Computer Engineering

RABEYA SADIA

Deep RL-based Ellipsoidal Path Planning for MEC enabled

UAVs to Minimize Data Transmission Latency and Energy

Consumption of Mobile Devices

Supervisor: Prof. Seokhoon Yoon

A Dissertation

Submitted to

the Graduate School of the University of Ulsan

In Partial Fulfillment of the Requirements

for the Degree of

Master of Science

by

Rabeya Sadia

Department of Electrical, Electronic and Computer Engineering

University of Ulsan, Korea

December 2023

Deep RL-based Ellipsoidal Path Planning for MEC enabled

UAVs to Minimize Data Transmission Latency and Energy

Consumption of Mobile Devices

This certifies that the thesis of Rabeya Sadia is approved by:

Department of Electrical, Electronic and Computer Engineering

Ulsan, Korea

December 2023

Dedicated to

My beloved husband, parents, parents-in-law, sisters, and brothers, …

Acknowledgments

First, I would like to express my sincere gratitude to my advisor, Prof. Seokhoon Yoon of the

department of Computer Engineering, University of Ulsan, for his dedicated guidance and

continuous support throughout my study. His critical comments and recommendations not

only made my research easier but also enriched my knowledge and sharpened my analytical

thinking skills. Without his support and guidance, I would not have been able to make my

academic journey successful at the University of Ulsan.

A special thanks goes out to the committee members who reviewed my thesis and pro-

vided valuable comments that allowed me to improve it. I wish to convey my appreciation to

my fellow labmates at the Advanced Mobile Networks and Intelligence Systems Laboratory

for the valuable discussions and great times we’ve experienced together over the last two

years.

Lastly, I want to express my gratitude to my family, who encouraged me to pursue a

higher education and supported me during my time in Korea.

1

Abstract

Due to the flexible deployment and movement capability, unmanned aerial vehicles (UAVs)

are being utilized as flying mobile edge computing (MEC) platforms, offering real-time

computational resources and low-latency data processing for a wide range of applications.

The aim of this article is to explore a multi-UAV-assisted MEC system where multiple

UAVs move using ellipsoidal trajectory to provide MEC services to resource-constrained

mobile devices in temporary hotspot areas such as festival areas that have delay-sensitive

applications with varying task offloading requests. Depending on the position, size, shape,

and orientation of the ellipsoidal trajectories, the coverage area, energy consumption of

mobile devices, and task transmission latency changes. Moreover, the varying user densities

and task offloading request rates make the problem more challenging. Thus, we formulate

an optimization problem that finds the center position, major radius, minor radius, and

rotation angle of the ellipsoidal trajectory of UAV-assisted MEC servers with the objective of

minimizing transmission latency and energy consumption of mobile devices while taking into

account the required data transmission rate, task transmission time, energy consumption and

several system-related constraints. Then, we have transformed this optimization problem

into a Markov decision process and propose a deep Q-learning-based ellipsoidal trajectory

optimization (DETO) algorithm to resolve it. The results from our simulations demonstrate

that our approach outperforms other baselines, particularly in terms of reducing latency and

the energy required for mobile devices to transmit data.

2

Contents

Acknowledgments 1

Abstract 2

1 Introduction 7

1.1 Mobile Edge Computing . 7

1.2 Deployment of UAV enabled MEC servers . 8

1.3 Motivation . 8

1.4 Dissertation Organization . 10

2 Related Works 11

2.1 Optimal placement of static UAVs . 11

2.2 Optimal placement of mobile UAVs . 12

2.3 Optimal placement of UAVs using RL techniques 12

2.4 Minimizing Latency and Energy Consumption for AR/VR applications 13

3 Background 15

3.1 Optimization . 15

3.1.1 Linear Optimization . 16

3.1.2 Integer Linear Optimization . 17

3.1.3 Mixed-Integer Nonlinear Optimization 18

3.2 Optimization Algorithms . 18

3.2.1 Genetic Algorithm . 19

3.3 Reinforcement Learning . 20

3.3.1 Q Learning . 20

3.3.2 Deep Q Learning . 21

3

Contents

4 System Model and Problem Formulation 23

4.1 System Model . 23

4.1.1 Equations of the UAVs Ellipsoidal Movement 25

4.1.2 Air-to-ground Path Loss Model . 26

4.2 Problem Formulation . 29

5 Algorithm 31

5.1 Markov Decision Process Formulation . 31

5.2 DQN-based Ellipsoidal Trajectory Optimization 32

6 Performance Evaluation 36

6.1 Experimental settings . 36

6.2 Training Efficiency of the DETO Scheme . 39

6.3 Description of the Compared Algorithms . 41

6.4 Performance Comparison between DETO and Other Baselines 42

6.4.1 Effects of Different Numbers of MDs 42

6.4.2 Effects of Different Numbers of Task Request 44

6.4.3 Effects of Different Numbers of UAVs 46

7 Concluding Remarks 49

Bibliography 50

4

List of Figures

3-1 The difference of Q-learning and deep Q-learning 22

4-1 The xy-plane position of MDs and a UAV with an ellipsoidal trajectory. . . . 25

5-1 The DETO framework. 32

6-1 Training curve of DETO. 40

6-2 Deployment positions of UAVs ellipsoidal movement. 40

6-3 Reward during the algorithm’s iterative operations. 41

6-4 Effects of different numbers of MDs: (a) effects on the system objective,

(b) effects on the total transmission latency, (c) effects on total transmission

energy consumption, and (d) effects on total throughput. 42

6-5 Effects of different numbers of task requests: (a) effects on the system objec-

tive, (b) effects on the total transmission latency, (c) effects on total trans-

mission energy consumption, and (d) effects on total throughput. 44

6-6 Effects of different numbers of UAVs: (a) effects on the system objective,

(b) effects on the total transmission latency, (c) effects on total transmission

energy consumption, and (d) effects on total throughput. 47

5

List of Tables

4.1 List Of Notations . 24

6.1 Experimental settings . 37

6.2 Hyperparameters of the DETO Model . 39

6

Chapter 1

Introduction

1.1 Mobile Edge Computing

Recent technological advancements and the widespread adoption of smart devices have given

rise to a plethora of innovative applications, including augmented reality (AR), virtual re-

ality (VR), online gaming, infrastructure monitoring, and automatic navigation, which are

complex, computationally intensive, and highly energy demanding [1–4]. Despite being

equipped with advanced computation and communication technology, smart devices or mo-

bile devices (MDs) face restrictions in terms of energy resources, computational power, and

memory [5,6]. These constraints pose a significant challenge for processing compute-intensive

and time-sensitive applications in MDs. Mobile edge computing (MEC) has become increas-

ingly popular as a high-performance server technology that brings computing capabilities

and services closer to the edge of the network, often within close reach of MDs [7–10]. By

offloading resource-intensive computations to MEC servers, MDs can alleviate the burden

of handling computationally intensive tasks. Consequently, this approach not only boosts

system performance overall while using less energy, but it also prolongs the MDs’ battery

life [11,12].

Even though MEC provides useful services, it’s important to take into account the latency

that is brought on by the physical distance between MDs and MEC servers [13]. Moreover,

Task offloading to the MEC server is challenging during congested events or festivals. During

festivals, more people access the network, which results in congestion and a decrease in

the network’s resource capacity. The increased user activity makes it more challenging to

establish a reliable connection between the MDs and the MEC servers. Unmanned aerial

vehicles(UAVs) equipped with MEC servers are being investigated as a potential solution to

7

Chapter 1. Introduction

these problems.

1.2 Deployment of UAV enabled MEC servers

UAV-enabled MEC networks have recently gained significant interest, capturing the atten-

tion of both academia and industry. They have demonstrated their value in various ap-

plications, including search and rescue operations, environmental monitoring, public safety,

military endeavors, infrastructure management, tracking, surveillance, and more. These

UAV-enabled MEC networks have emerged as promising solutions, particularly in scenarios

marked by high congestion, such as festival events.

Their fast deployment, adaptive mobility, and higher likelihood of establishing Line-

of-Sight (LoS) communication pathways all contribute to their suitability for such scenar-

ios. UAV enabled MEC servers become more effective at providing real-time analysis and

accelerating response times when placed close to MDs, which makes them important for

time-sensitive applications [14–18].

Moreover, to provide better services, UAV enabled MEC servers can dynamically adjust

their positions and coverage based on user density and geographical location. Additionally,

they establish direct linkages with MDs, ensuring stable connections throughout their oper-

ations. Thus, the deployment of UAVs is expected to substantially enhance the performance

of MEC servers.

1.3 Motivation

A lot of research is done on UAV location optimization [19–33] focusing on two types of

deployment scenarios: static deployment and mobile deployment in 2D or 3D environments.

UAVs serve fixed or predefined areas for specific purposes using static deployment. Mo-

bile UAV deployment involves UAVs with the ability to change locations and relocate as

necessary.

However, none of the existing research has examined the advantages of utilizing ellip-

soidal movement by multiple UAVs. UAVs with ellipsoidal movement are able to dynamically

adjust their position, trajectory, and shape within a predetermined area. This adaptability

is essential in scenarios with varying user densities. By adjusting their positions in real-

time, UAVs can successfully increase coverage to provide MEC services to the associated

MDs. Consequently, the number of MDs served by UAVs also increases. When a UAV

8

Chapter 1. Introduction

moves in an elliptical pattern, the distance between associated MDs and UAVs is reduced,

which enhances the data transmission rate. Therefore, it takes less time to transfer a task

to the UAV and makes execution faster. In contrast to the common concept noticed in

many task-offloading studies [32–34], which frequently simplify user scenarios by allocating

a single task per user, our research addresses the task-offloading request rate by considering

scenarios where MDs may have multiple tasks or no tasks. When tasks are offloaded by

MDs, task transmission consumes the energy of MDs [35–38]. This energy consumption is

even further influenced by the position of both UAVs and MDs. Because of increased energy

consumption, the battery life of MDs runs out more quickly, which may affect the network’s

total longevity. Thus, we need to deploy UAVs in a way that minimizes the transmission

energy consumption between MDs and UAV-MEC servers. However, focusing exclusively on

energy efficiency can slow down data transmission, which might hinder rapid communication

and can increase total task transmission latency. Conversely, focusing only on minimizing

latency leads to high energy consumption and draining device batteries. Therefore, in this

paper, we aim to optimize both the transmission latency and energy consumption of MDs.

Moreover, a single UAV’s constrained computing and energy capacities can actually limit

its performance in task-offloading scenarios. Employing multiple UAVs may be more advan-

tageous and suitable when the number of users is high, or the coverage area is extensive.

However, it can be difficult to choose a globally optimal strategy in multi-UAV systems

without exact and comprehensive environmental knowledge.

The advancements in machine learning [39], especially the integration of deep reinforce-

ment learning (DRL) with deep neural networks (DNNs) [40] and reinforcement learning

(RL) [41], have gained attention in solving the complex optimization problem for UAV-

assisted MEC systems. Moreover, the complex states of a UAV-assisted MEC system are

captured through the DNNs in DRL, and in each step, the expected reward of the next

state is combined with the immediate reward of the current state, which directs the agent’s

decision-making towards potential actions in each step [42]. Thus, DRL can effectively

resolve the problem under consideration by iteratively improving its learning.

Therefore, this article proposes a DRL model named deep Q-network (DQN) based

ellipsoidal trajectory optimization (DETO) algorithm for UAVs in a UAV-assisted MEC

system. The major contributions of this article are summarized as follows:

� A UAV-MEC system is investigated, where multiple UAVs are used as flying MEC

servers to provide computing services to the associated MDs. Each MD has computation-

9

Chapter 1. Introduction

intensive tasks to offload to the UAV-MEC server. The primary objective is to reduce

the weighted sum of total data transmission latency and energy consumption of MDs

by optimizing the position, size, and shape of ellipsoidal trajectories for the UAV-MEC

servers.

� A Markov decision process (MDP) is formulated for this optimization problem. Then,

a DQN-based ellipsoidal trajectory optimization (DETO) is proposed to optimize the

center position, major radius, minor radius, and rotation angle of the ellipsoidal trajec-

tories of the UAV-MEC servers. Additionally, DETO also optimizes the associations

between MDs and UAV-MEC servers.

� The Geolife dataset [43] providing user position data is used for simulation. Extensive

simulations are done to assess the effectiveness of the algorithm. According to the sim-

ulation findings, the proposed model performs better than other baseline approaches,

including the greedy algorithm and genetic algorithm (GA), in terms of different num-

bers of MDs, different numbers of task request rates, and different numbers of UAVs.

1.4 Dissertation Organization

The subsequent sections of the thesis are organized as follows: The literature that is related

to the location optimization of UAV is presented in Chapter 2. Chapter 3 provides back-

ground information on the topics used in the problem formulation and algorithms. Chapter

4 consists of system model and problem formulation. The proposed Algorithm is described

in detail in chapter 5. Chapter 6 describes the simulation results. The thesis is concluded

in Chapter 7.

10

Chapter 2

Related Works

There has been a lot of recent research on the difficulties that come with deploying UAVs

while taking into account a number of other factors. For instance, optimizing response time

and bandwidth efficiency [19], maximizing ground radio coverage [20], enhancing coverage

performance efficiency while minimizing transmission power [24], maximizing the system

throughput [26], improving spectral efficiency [30], optimizing the quality of experience

(QoE) [31]. Next, we provide a brief introduction to these aspects.

2.1 Optimal placement of static UAVs

Earlier studies have focused on the deployment of fixed-position UAVs in a number of scenar-

ios, including both single-UAV and multi-UAV configurations. In [19], authors introduced

an evolutionary algorithm for disaster areas, optimizing the terrestrial and UAV base station

positions to reduce their count, enhance response times, and ensure sufficient bandwidth.

In [20], an analytical method is introduced to adjust the height of the UAV for enhanced

wireless communication in remote or disaster-affected areas by maximizing ground radio

coverage. The letter [21] suggests an effective 3D placement technique for UAV-BSs that

optimizes the connected ground user’s number while minimizing the UAV’s transmission

power. In [22], an optimal UAV deployment strategy is suggested for high-speed wireless

networks that increase the number of served high priority GNs. The main objective of these

studies is to address the problem of developing a single UAV in order to increase its coverage.

However, as the need for wireless connectivity grows, it becomes more and more important

to investigate the deployment of multiple UAVs while trying to achieve even wider cover-

age and improve the efficiency of wireless networks. In [23], the challenge of establishing

11

Chapter 2. Related Works

wireless connectivity in infrastructure-limited terrestrial networks is addressed using mo-

bile base stations (MBSs) mounted on UAVs, aiming to ensure communication coverage for

distributed ground terminals (GTs) by minimizing MBS count through a polynomial-time

spiral arrangement algorithm. In [24], the efficient placement of UAVs as wireless base sta-

tions is investigated to improve ground user coverage where downlink coverage probability

is used as a function of antenna gain and UAV height. A novel framework utilizing circular

packing theory is suggested for optimizing the UAV’s 3D locations, aiming to enhance cov-

erage performance while reducing transmit power. The paper [25] focuses on enhancing 5G

and beyond 5G network performance by strategically placing multiple UAV-BSs in 3D space

to optimize user coverage while accounting for various QoS requirements through heuristic

algorithms. For high-rate wireless communication systems, the paper in [26] suggests a

3-D multi-UAV deployment strategy in an iterative way. The goal is to maximize system

throughput while considering co-channel interference and QoS requirements. The above-

mentioned studies fail to consider the multiple UAVs’ high level of mobility and flexible

movement design.

2.2 Optimal placement of mobile UAVs

The paper [27] proposes a novel cyclical multiple-access method using a base station-

equipped mobile UAV to enhance wireless connectivity and communication quality for dis-

tributed GTs through scheduled interactions. In the paper [28], the author presents a mobile

relaying technique using high-speed UAVs to enhance communication between a source and

destination by optimizing the trajectory and power allocation of the UAV iteratively. How-

ever, the above-mentioned studies considered a single UAV and designed a simple trajectory

for it. The study in [29] focuses on energy-efficient UAV-to-GT communication, proposing a

circular trajectory with the center position at GT, optimizing the UAV’s trajectory to find a

balance between communication throughput and energy consumption. However, this paper

focuses on optimizing the speed and flight radius of a single UAV to achieve an optimal

circular trajectory.

2.3 Optimal placement of UAVs using RL techniques

In recent decades, the application of machine learning, especially reinforcement learning,

has gained significant attention for solving UAV deployment problems by enabling adap-

12

Chapter 2. Related Works

tive and optimized operations in dynamic environments. The paper [30] uses BS-equipped

UAVs to enhance cellular network capacity during high-traffic scenarios in 5G networks and

optimize the 3D UAV-BS locations based on user requirements to maximize spectral ef-

ficiency. In [31], a novel framework addressing UAV deployment and movement for QoE

optimization is introduced, incorporating genetic algorithm-based cell division, Q-learning-

based deployment, and movement strategies to enhance cumulative user satisfaction. These

papers concentrate on improving the positions of UAVs in a multi-UAV scenario, with a fo-

cus on communication-related issues. Additionally, the UAV-assisted MEC system has been

explored by investigating the flexible movement of UAVs in [32], [33]. Using a cooperative

multi-agent DRL framework, paper [32] investigates collaborative task offloading in a multi-

UAV multi-EC MEC system, optimizing trajectories, communication, and computation to

reduce delays and energy consumption for execution. The paper [33] introduces a flying

MEC (F-MEC) architecture that offloads tasks to UAVs, aiming to achieve energy efficiency

with DRL and convex optimization-based trajectory control techniques.

2.4 Minimizing Latency and Energy Consumption for AR/VR applications

Recently, there has been a growing interest in using MEC to enhance and support AR/VR

applications. The article [44] addresses the challenges of ultralow delay and high energy

consumption in IoT-based AR applications, proposing an intelligent task offloading and

resource allocation algorithm using a multiagent deep deterministic policy gradient (MAD-

DPG) framework in dynamic MEC environments. In a multi-user wireless network intended

for AR applications, the paper [45] focuses on applying MEC in 5G for Ultra Reliable Low La-

tency Communication (URLLC) applications. It addresses the joint optimization of resource

allocation and task offloading to minimize energy consumption for user terminals, utilizing a

deep reinforcement learning algorithm known as multi-agent deep deterministic policy gradi-

ent (MADDPG). A MEC model is introduced in [46] for VR applications in 5G, addressing

limitations in device resources. It proposes an efficient multi-player, multi-task computation

offloading model, formulated as an integer optimization problem to minimize network la-

tency and energy consumption. A wireless VR-enabled medical treatment (WVMT) system

is proposed in [47], merging VR with the Internet of Medical Things (IoMT) and emphasiz-

ing multiaccess edge computing (MEC). To address computation efficiency and security, it

introduces a blockchain-enabled task offloading scheme for VR viewport rendering tasks to

edge access points (EAPs). A collective reinforcement learning (CRL) algorithm dynamically

13

Chapter 2. Related Works

allocates resources, enhancing VR QoE. The paper [48] explores MEC as an efficient solution

for delivering VR videos over wireless networks. It introduces a communications-constrained

MEC framework that optimizes communication resource consumption by utilizing computa-

tion and caching resources on the mobile VR device. The proposed task scheduling strategy

aims to minimize communication resource consumption under a delay constraint, considering

tradeoffs among communication, computing, and caching.

In the above-mentioned location optimization studies, the primary objective is to opti-

mize the horizontal location and altitude of UAVs, while the concept of ellipsoidal movement

for UAVs remains unexplored. To address this gap, our research explores the potential of

UAVs to dynamically adjust their trajectories in ellipsoidal paths, thereby enhancing the

connection between MDs and UAVs. Each MD may have multiple tasks rather than just

one because of the variance in task offloading request rates. Furthermore, we have developed

a multi-objective framework aimed at minimizing the weighted sum of total transmission la-

tency and energy consumption that differs from a single-objective perspective. We use user

positions taken from the Geolife trajectory dataset rather than random user placements.

This method offers precise location data, which enhances the optimization of ellipsoidal

trajectories for UAVs, bringing them closer to real-world scenarios.

14

Chapter 3

Background

3.1 Optimization

Optimization techniques are encountered in wide range of applications, including engineering

[49] and manufacturing [50], operations research and logistics [51], and finance and economics

[52]. The aim of optimization is to identify the optimal solution for a problem, taking into

account a predefined set of constraints. In the context of computer science, this often entails

finding the solution that minimizes resource usage, such as time or memory.

The main characteristics of optimization problems:

� Objective function: A mathematical formula is used to determine the performance,

value or cost related to a specific set of variables. The optimization problem requires

either maximization or minimization of this function.

� Decision Variables: They are the input variables that need to be controlled to have

an impact on the result. The optimal solution can be found via the optimization

algorithm by determining the values of these variables.

� Constraints: Constraints denote conditions that restrict the acceptable values of de-

cision variables and must be met by the solution. There are two types of constraints:

equality constraints and inequality constraints.

� Feasible Region: The set of all decision variable values that are feasible and satisfy

the constraints is known as the feasible area. It represents the area in which the best

solution will be found by the optimization method.

15

Chapter 3. Background

� Optimal Solution: The set of decision variable values that either maximizes or min-

imizes the objective function while satisfying all constraints constitutes the optimal

solution. It is possible to have multiple acceptable solutions in some cases.

The general form of an optimization problem can be expressed as:

Maximize 𝑓(x) (3.1)

Subject to 𝑔𝑖(x) ≤ 0, 𝑖 = 1, 2, . . . ,𝑚 (3.2)

ℎ𝑗(x) = 0, 𝑗 = 1, 2, . . . , 𝑝 (3.3)

𝑥𝑖 variables, 𝑖 = 1, 2, . . . , 𝑛 (3.4)

Here, equation (3.1) represents the objective function. Equation (3.2) represents a set

of inequality constraints. Each inequality constraint with the form 𝑔𝑖(𝑥) ≤ 0 specifies

a requirement that the solution 𝑥 must meet. Equation (3.3) represents a set of equality

constraints. The optimization problem’s decision variables are represented by equation (3.4).

To optimize the objective function, we need to determine these values.

3.1.1 Linear Optimization

The soviet mathematician Leonid Kantorovich and the american economist Wassily Leontief

made the first significant attempts to apply the linear programming method in the fields of

manufacturing schedules and economics, respectively, in the late 1930s. However, their work

was ignored for many years. Linear programming was widely utilized during World War II

to manage transportation, scheduling, and resource allocation subject to limitations like

cost and availability. With the advent of the simplex approach by american mathematician

George Dantzig in 1947, which significantly simplified the solution of linear programming

problems and contributed significantly to the method’s acceptance.

It’s a strategy for solving problems when the objective function and the constraints are

linear functions of the decision variables. Equalities or inequalities may be used in the con-

straint equations. Decision variables, an objective function, constraints, and non-negative

restrictions are all components of a linear optimization problem.

16

Chapter 3. Background

Maximize 2𝑥+ 3𝑦 (3.5)

Subject to 𝑥+ 𝑦 ≤ 5 (3.6)

2𝑥+ 3𝑦 ≤ 12 (3.7)

𝑥, 𝑦 ≥ 0 (3.8)

Here, equation (3.5) is the objective of the optimization problem. Equation (3.6) and

(3.7) represent a set of inequality constraints. These constraints specify the requirements

that the solution (x, y) must meet. Equation (3.8) indicate that the decision variables 𝑥

and 𝑦 must be non-negative.

3.1.2 Integer Linear Optimization

Integer linear programming is a branch of mathematical optimization that is also known

as integer linear optimization, or ILP for short. The objective function and constraints

maintain linearity in ILP, but one distinguishing feature is that only integer values are

allowed for decision variables. ILP essentially seeks to identify an optimal solution inside

a specified problem domain, where some variables are constrained to integer values, often

non-negative integers.

Maximize cTx (3.9)

Subject to 𝐴x ≤ b (3.10)

x ≥ 0 (3.11)

x ∈ Z𝑛 (3.12)

Here, equation (3.9) is the objective function that need to be maximized. Equation (3.10)

represents a set of inequality constraints that need to be satisfied by solution x. Equation

(3.11) indicate that the decision variables 𝑥 must be non-negative. Equation (3.12) indicate

that the decision variables x can only have integer values.

17

Chapter 3. Background

3.1.3 Mixed-Integer Nonlinear Optimization

Making discrete decisions while taking into account nonlinear system dynamics that affect

the final design or plan’s quality is required in a variety of optimal decision-making scenarios

in scientific, engineering, and public sector contexts. Mixed-integer nonlinear programming

(MINLP) problems involve the difficult task of maximizing discrete variable sets while taking

care of the complexities of controlling nonlinear functions. The nonlinear programming

(NLP) and mixed-integer linear programming (MILP) are both subsets of MINLP, which is

one of the most comprehensive modeling approaches in optimization.

Minimize 𝑓(𝑥) (3.13)

Subject to 𝑐(𝑥) ≤ 0 (3.14)

𝑥 ∈ 𝑋 (3.15)

𝑥𝑖 ∈ Z, ∀𝑖 ∈ 𝐼 (3.16)

Here, equation (3.13) is the objective function that need to be minimized. Equation

(3.14) represents a set of inequality constraints that need to be satisfied by solution x.

Equation (3.15) states that the decision variables x must be a part of the set X. Equation

(3.16) imply that either all or part of the decision-making variables, 𝑥𝑖, must have integer

values.

3.2 Optimization Algorithms

In the real world, we frequently have to deal with limitation resources, time constraints, and

limited financial resources. Therefore, using optimization techniques is always necessary

to ensure the greatest possible allocation of these priceless assets. Additionally, selecting

appropriate optimization methods requires careful consideration in order to solve particular

problems effectively. But for engineers, coming up with optimization strategies can be a

difficult task because of the inherent complexity of optimization difficulties.

Numerous approaches that come within the stochastic or deterministic categories have

been used to handle optimization problems [53]. Deterministic algorithms consistently pro-

vide the same output with no sign of randomness when given the same input. The downhill

and hill climbing algorithms are two instances of deterministic algorithms. While using the

18

Chapter 3. Background

same input, stochastic algorithms, on the other hand, incorporate a random component and

often produce different results each time they are used.

The two subcategories of stochastic algorithms are heuristics and meta-heuristics. To

discover solutions, heuristics are specialized approaches that depend on a process of trial

and error. An example of a heuristic algorithm is the nearest neighbor method. Contrarily,

meta-heuristics, which are an improvement above heuristics [54], integrate randomization

with local search methods. The genetic algorithm is a noteworthy example of a meta-

heuristic that was inspired by a natural process.

Next we will discuss the genetic algorithm which is used in this work to find the center

position, size and shape of the ellipsoidal trajectory of UAV-MEC server to compare the

result with DETO.

3.2.1 Genetic Algorithm

The Genetic Algorithm (GA) has been used to solve a variety of practical problems in

the fields of design, optimization, and problem-solving. J. Holland originally proposed this

population-based method, which is based on the ideas guiding the evolution of biological

systems. A GA’s framework includes the following steps in the process:

� Selection: Parents are selected from the population depending on their fitness, which

is strongly related to the particular optimization problem.

� Crossover: By transferring genetic information between the chosen parent solutions,

new offspring are created.

� Mutation: Newly generated offspring go through mutations, where randomly chosen

genes are changed, which encourages diversity and exploration.

Each individual or solution is represented as a chromosome in a GA, frequently encoded as a

string in binary or decimal form. The iterative process comprises choosing parents, produc-

ing offspring through crossover and mutation, and keeping the fittest offspring depending

on their fitness. The selection process for the next generation is governed by the "survival

of the fittest" principle.

19

Chapter 3. Background

3.3 Reinforcement Learning

A computational method for comprehending and automating goal-directed learning and

decision-making is called reinforcement learning (RL). By putting a high focus on an agent’s

capacity to learn directly from its interactions with the environment, without the necessity

for model-perfect supervision, it sets itself apart from other computational techniques. RL,

in our opinion, is the first area to genuinely address the computing difficulties that come from

learning from interactions with the environment in order to accomplish long-term objectives.

The interaction between a learning agent and its environment is defined by a formal

framework in reinforcement learning in terms of states, actions, and rewards. This framework

aims to offer a straightforward method of expressing key aspects of the artificial intelligence

challenge. A sense of cause and effect, a sense of ambiguity and nondeterminism, and the

presence of clear goals are some of these characteristics.

Most RL techniques rely on the ideas of value and value functions as their main compo-

nents. In order to efficiently search the space of policies, the value functions are essential. RL

techniques use value functions to set them apart from evolutionary techniques that search

in policy space directly and are led by scalar assessments of entire policies.

The mathematical framework called the Markov Decision Process (MDP) is used to

characterize an environment in RL. The four tuples that make up MDP are (𝑆,𝐴,𝑅, 𝑃).

Where, 𝑆 denotes the state set in the environment. At each time step 𝑡, state 𝑆𝑡 is observed

by the agent, where 𝑆𝑡 ∈ 𝑆. 𝐴 denotes the set of possible actions for the agent. The agent

determines what action to take at each time step 𝑡 based on the received state 𝑆𝑡, where

𝐴𝑡 ∈ 𝐴(𝑆𝑡). 𝐴(𝑆𝑡) denotes a set of potential actions in the state 𝑆𝑡. 𝑅 denotes the expected

reward that will be obtained as a result of taking action 𝐴𝑡 to move from state 𝑆𝑡 to state

𝑆𝑡+1. 𝑃 represents the transition probability that at time step 𝑡 while taking action 𝐴𝑡 = 𝑎

staying at state 𝑆𝑡 = 𝑠 will result to state 𝑆𝑡+1 = 𝑠′ in the next time step 𝑡+ 1 is given by:

𝑃 (𝑠′ | 𝑠, 𝑎) = Pr(𝑆𝑡+1 = 𝑠′ | 𝑆𝑡 = 𝑠,𝐴𝑡 = 𝑎) (3.17)

3.3.1 Q Learning

One of the traditional RL is the Q-learning algorithm [55] that uses model-free RL to

determine the value of a given action in a given state. It can handle issues with stochastic

20

Chapter 3. Background

transitions and rewards without the need for modifications because it does not require a

model of the environment. Chris Watkins first mentioned Q-Learning in his Ph.D. thesis

at Cambridge University (1989). The method was created as a solution to the problem of

RL, where a decision-making agent learns by interaction with its environment. Watkins’

research builds on earlier work in control theory and dynamic programming.

Even though initially, Q-learning was used in the fields of process control, chemical

process, industrial process automatic control, and in the field of airplane control [56–58].

Currently, Q-learning is mostly utilized in network management to improve routing and

reception processing in network communication [59]. The development of AlphaGo has

sparked intense game theory research [60]. Trial and error reinforcement learning shares

several traits with the characteristics of the human learning process. As a result, Q-learning

is excelling in the robotics industry. Particularly in drones, humanoid robotics, and au-

tonomous vehicles [61].

The classic expression for optimal Q-value function is :

𝑄*(𝑠, 𝑎) = E[𝑟 + 𝛾 ·max
𝑎′

𝑄*(𝑠′, 𝑎′)] (3.18)

This means that the total return from state and action is equal to the sum of the immediate

reward and the discounted reward obtained by employing optimal strategy. Here, 𝛾 denotes

the discount factor which is used to account for the decreased value of future reward in

comparison to immediate reward. This is because future rewards are frequently considered

to be less significant than immediate rewards, hence they need to be discounted. However,

Q-learning mainly involves applying the Bellman optimality equation to iteratively update

the Q-values.

𝑄𝑖+1(𝑠, 𝑎) = E
[︂
𝑟 + 𝛾max

𝑎′
𝑄𝑖(𝑠

′, 𝑎′)

]︂
(3.19)

It is seen that 𝑄𝑖 converges to 𝑄* when 𝑖 → ∞. Q-learning uses greedy policy 𝑎 =

𝑚𝑎𝑥𝑎𝑄(𝑠, 𝑎; 𝜃) for selecting actions based on the most recent Q-value estimations.

3.3.2 Deep Q Learning

Q-learning is a simple and powerful algorithm that maintains a table to store each com-

bination of state and action and has limited capacity for storing information. Thus, it is

21

Chapter 3. Background

impracticable to describe the action-value function (Q-function) as a table with values for

each combination of state and action in many real-world scenarios. This is due to the fact

that the state and action spaces can be huge or even continuous, making it impossible to

store and compute values for all potential state-action pairs. Furthermore, this approach

cannot be applied to unseen states since the agent must visit each state and carry out each

action in order to update each state-action pair. Although under some circumstances Q-

Learning is guaranteed to converge to an ideal policy, in reality convergence may be delayed,

especially in complex contexts. Deep-Mind [62] introduces DQN to overcome this issue by

utilizing function approximation through neural network (NN) to estimate the Q-values for

individual state-action combinations. The state is provided as the input, and the Q-value

for every action that could be taken is created as the output. The difference of Q-learning

and deep Q-learning presented in Figure 3-1

Figure 3-1: The difference of Q-learning and deep Q-learning

22

Chapter 4

System Model and Problem

Formulation

4.1 System Model

We consider a square region consisting of a set of MDs, represented by D = {1, 2, 3, . . . ,𝑀},

and a set of UAVs, denoted by U = {1, 2, 3, . . . , 𝑁}. Other notations used in the system

model are in Table 4.1.

We assume the current location of MDs is known, and each MD has computation-

intensive tasks to execute. The MDs themselves, however, are unable to execute these

computation-intensive tasks locally because of limited resources in processing power, mem-

ory, or energy. To address this, UAVs are utilized to enhance the delivery of MEC services

to ground MDs, allowing them to use more powerful computing resources for efficient task

execution. Each MD 𝑖 has task request rate 𝜆i (𝜆min ≤ 𝜆𝑖 ≤ 𝜆max), and the size of the

input data for each task is denoted 𝑙i (𝑙min ≤ 𝑙𝑖 ≤ 𝑙max), where 𝜆min, 𝜆max are the minimum

and maximum task request values, and 𝑙min, 𝑙max are the minimum and maximum task data

sizes. MDs transfer all their computational task requests to UAV-MEC servers for execu-

tion. The UAV-MEC servers hover over a target area in an elliptical pattern while providing

services to the connected MDs. In particular, to prevent trajectories from colliding, a careful

deployment plan is essential. We choose each UAV-MEC server’s initial center position for

the ellipsoidal trajectory from the cluster center. Thus, a specific sub-area within the total

coverage region is allocated to each UAV, which helps in providing MEC services to the

ground MDs located in that specific sub-area in an efficient manner.

23

Chapter 4. System Model and Problem Formulation

Table 4.1: List Of Notations

Notation Description

𝑀,D Number and set of MDs

𝑁,U Number and set of UAVs

𝐴𝑖,𝑗 User association between the 𝑖th MD and the 𝑗th UAV-MEC server

𝜆𝑖 Task request rate of MD 𝑖

𝑙𝑖 Input data size (in byte) of each task of MD 𝑖

𝜆𝑚𝑖𝑛, 𝜆𝑚𝑎𝑥 Minimal, maximal values of task request

𝑙𝑚𝑖𝑛, 𝑙𝑚𝑎𝑥 Minimal, maximal values for the task data size

[𝑥𝑖, 𝑦𝑖, 0] Coordinates of the 𝑖th MD

[𝑥𝑗(𝑡), 𝑦𝑗(𝑡), ℎ] Coordinates of the 𝑗th UAV-MEC server

𝑇 Cycle period of UAV-MEC server’s ellipsoidal trajectory

𝐶𝑥,𝑗 X-coordinate center of the 𝑗th UAV-MEC server’s ellipsoidal path

𝐶𝑦,𝑗 Y-coordinate center of the 𝑗th UAV-MEC server’s ellipsoidal path

𝑅𝑥,𝑗 Major radius of the 𝑗th UAV-MEC server’s ellipsoidal path

𝑅𝑦,𝑗 Minor radius of the 𝑗th UAV-MEC server’s ellipsoidal path

𝜃𝑗 Rotation angle in the 𝑗th UAV-MEC server’s ellipsoidal path

𝑟𝑖,𝑗 Ground distance

𝑑𝑖,𝑗(𝑡) 3D distance between MD 𝑖 and UAV-MEC server 𝑗

𝑃𝐿𝐿𝑜𝑆 Path loss of line-of-sight link

𝑃𝐿𝑁𝐿𝑜𝑆 Path loss of non-line-of-sight link

𝑃 (𝐿𝑜𝑆) Probability of line-of-sight link

𝑃 (𝑁𝐿𝑜𝑆) Probability of non-line-of-sight link

𝑎, 𝑏 Propagation environment constants

𝑐 Speed of light

𝑓 Carrier frequency

𝜂LoS, 𝜂NLoS Additional loss for LoS and NLoS propagation modes

𝜔 Elevation angle between MD and UAV-MEC server

𝑃𝐿𝑖,𝑗(𝑡) Path loss between MD 𝑖 and UAV-MEC server 𝑗

ℎ Height of the UAV-MEC server

𝑃𝑡 Transmit power of the MD

𝜎2 Noise power

𝐵 Channel bandwidth

𝑆𝑁𝑅𝑖,𝑗(𝑡) Signal-to-noise ratio between MD 𝑖 and UAV-MEC server 𝑗

𝑅𝑖,𝑗 Average data transmission rate

𝑇 𝑇𝑟𝑎𝑛𝑠
𝑖,𝑗 Data transmission latency between MD 𝑖 and UAV-MEC server 𝑗

𝐸𝑇𝑟𝑎𝑛𝑠
𝑖,𝑗 Energy consumption for transferring data from MD 𝑖 to UAV-MEC server 𝑗

𝑇 𝑡𝑜𝑡𝑎𝑙
𝑗 Total data transmission latency of MDs connected to UAV-MEC server 𝑗

𝐸𝑡𝑜𝑡𝑎𝑙
𝑗 Total transmission energy consumption of MDs connected to UAV-MEC server 𝑗 for offloading task request per-second

𝑈𝑗 Weighted sum of transmission latency and transmission energy consumption

𝜌 Relative weights of transmission latency and transmission energy consumption of MDs connected to UAV-MEC server 𝑗

Additionally, each MD can establish a connection with one UAV-MEC server at a time

to offload its task request. Then, one can have

𝐴𝑖𝑗 ∈ {0, 1}, ∀𝑖 ∈M, ∀𝑗 ∈ 𝑁. (4.1)

24

Chapter 4. System Model and Problem Formulation

where, 𝐴𝑖𝑗 = 1 implies the 𝑖th MD is associated with the 𝑗th UAV; otherwise, 𝐴𝑖𝑗 = 0.

4.1.1 Equations of the UAVs Ellipsoidal Movement

On the horizontal plane, an ellipse’s equation, according to [63], can be presented as

(𝑥− 𝐶𝑥)
2

𝑅2
𝑥

+
(𝑦 − 𝐶𝑦)

2

𝑅2
𝑦

= 1. (4.2)

where the ellipse’s center is located at (𝐶𝑥, 𝐶𝑦); 𝑅𝑥 and 𝑅𝑦, respectively, are the radii of the

𝑋 and 𝑌 axes. If the ellipse rotates at a particular angle, 𝜃, the equation can be written as

((𝑥− 𝐶𝑥) cos(𝜃) + (𝑦 − 𝐶𝑦) sin(𝜃))
2

𝑅2
𝑥

+
((𝑥− 𝐶𝑥) sin(𝜃)− (𝑦 − 𝐶𝑦) cos(𝜃))

2

𝑅2
𝑦

= 1.

(4.3)

Equation (4.3) can be written as a parametric equation of a rotated ellipse as follows

𝑥(𝛿) = 𝐶𝑥 +𝑅𝑥 cos(𝛿) cos(𝜃)−𝑅𝑦 sin(𝛿) sin(𝜃),

𝑦(𝛿) = 𝐶𝑦 +𝑅𝑥 cos(𝛿) sin(𝜃) +𝑅𝑦 sin(𝛿) cos(𝜃).
(4.4)

This parametric equation is used to calculate the UAV’s X and Y location points on the

rotated ellipsoidal path using parameter 𝛿. Specifically, for any given time 𝑡, 𝛿(𝑡) = 2𝜋
𝑇 (𝑡)

calculates the UAV’s position along the ellipsoidal path [64], where 2𝜋 and 𝑇 represent the

complete circumference of the ellipse and the total time for UAV to complete one cycle over

the ellipse, respectively.

Figure 4-1: The xy-plane position of MDs and a UAV with an ellipsoidal trajectory.

In our considered scenario, we assume the 𝑗th UAV-MEC server following an ellipsoidal

trajectory on the horizontal plane with major radius 𝑅𝑥,𝑗 and minor radius 𝑅𝑦,𝑗 , as well as

25

Chapter 4. System Model and Problem Formulation

rotation angle 𝜃𝑗 (Figure 4-1). The center position of this ellipsoidal trajectory is represented

by (𝐶𝑥,𝑗 , 𝐶𝑦,𝑗). The UAV-MEC server maintains a constant altitude ℎ while flying, similar

to [23,65]. Within cycle period 𝑇 , the UAV-MEC server completes one cycle of this ellipsoidal

trajectory in order to assist the associated MDs. We partition cycle period 𝑇 into 𝑃 equally-

sized time intervals. Thus, in each time slot 𝑡, the coordinates of the 𝑗th UAV-MEC server

are denoted [𝑥𝑗(𝑡), 𝑦𝑗(𝑡), ℎ], where 𝑥𝑗(𝑡), 𝑦𝑗(𝑡), and ℎ represent the 𝑋,𝑌, and 𝑍 coordinates,

respectively, of UAV-MEC server 𝑗 in time slot 𝑡 along the ellipsoidal path. By using

equation (4.4), the 𝑋,𝑌 location of the 𝑗th UAV-MEC server in time slot 𝑡 can be written

as

𝑥𝑗(𝑡) = 𝐶𝑥,𝑗 +𝑅𝑥,𝑗 cos

(︂
2𝜋

𝑇
𝑡

)︂
cos(𝜃)

−𝑅𝑦,𝑗 sin

(︂
2𝜋

𝑇
𝑡

)︂
sin(𝜃),

𝑦𝑗(𝑡) = 𝐶𝑦,𝑗 +𝑅𝑥,𝑗 cos

(︂
2𝜋

𝑇
𝑡

)︂
sin(𝜃)

+𝑅𝑦,𝑗 sin

(︂
2𝜋

𝑇
𝑡

)︂
cos(𝜃).

(4.5)

4.1.2 Air-to-ground Path Loss Model

Now, if the 𝑖th MD wants to offload its task to the 𝑗th UAV-MEC server, where the position

of MD 𝑖 is denoted (𝑥𝑖, 𝑦𝑖, 0) in the 3D coordinate system, then the ground distance between

MD 𝑖 and UAV-MEC server 𝑗 in time slot t is denoted 𝑟𝑖,𝑗(𝑡). While the UAV-MEC server

moves along the ellipsoidal path, the 3D distance between MD 𝑖 and UAV-MEC server 𝑗 in

time slot t is expressed as

𝑑𝑖,𝑗(𝑡) =
√︁
(𝑥𝑖 − 𝑥𝑗(𝑡))2 + (𝑦𝑖 − 𝑦𝑗(𝑡))2 + ℎ2. (4.6)

The wireless communications model between the UAV-MEC server and the ground MDs

is constructed based on line-of-sight (LoS) and non-line-of-sight (NLoS) link propagation

modes from which the air-to-ground path loss model is derived. From [66] and [67], the

mathematical equations for the path loss of the LoS and NLoS propagation modes can be

expressed as follows

𝑃𝐿LoS = 20 log 𝑑𝑖,𝑗(𝑡) + 20 log 𝑓 + 20 log
4𝜋

𝑐
+ 𝜂LoS,

𝑃𝐿NLoS = 20 log 𝑑𝑖,𝑗(𝑡) + 20 log 𝑓 + 20 log
4𝜋

𝑐
+ 𝜂NLoS,

(4.7)

26

Chapter 4. System Model and Problem Formulation

where 𝑐 represents the light’s propagation speed, and 𝑓 represents the carrier frequency;

𝜂LoS and 𝜂NLoS are the environment factors specific to average the additional path losses for

LoS and NLoS propagation modes, respectively. However, according to the International

Telecommunication Union (ITU) guidelines for radio transmissions, the following parameters

are essential for figuring out the geometric probability of LoS transmission in an urban

setting:

� 𝛼 represents the portion of the total land area occupied by buildings.

� 𝛽 quantifies the average density of buildings per unit area, measured in terms of the

number of buildings per square kilometer.

� 𝛾 is a scale parameter that illustrates the distribution of building heights using the

Rayleigh probability density function.

Using these parameters, the LoS probability equation between MD 𝑖 and UAV-MEC

server 𝑗 can be represented as

𝑃 (LoS) =
𝑚∏︁

𝑛=0

⎛⎜⎝1− exp

⎛⎜⎝−
(︁
ℎj − (𝑛+ 1

2)
(ℎj−ℎi)
(𝑚+1)

)︁2

2𝛾2

⎞⎟⎠
⎞⎟⎠ , (4.8)

with

𝑚 = ⌊(ℎj − ℎi)𝑡𝑎𝑛𝜃
√︀

𝛼𝛽 − 1⌋, (4.9)

where the height of the transmitter (the UAV-MEC server) and the receiver (the MD) are

denoted ℎ𝑗 and ℎ𝑖, respectively. It is important to mention that the system’s frequency has

no effect on the geometric LoS formula, and this formula can be represented by using the

simple modified sigmoid function (S-curve), which significantly simplifies the calculation of

LoS probability.

Moreover, the probability function for the LoS link using the S-curve can be represented

as

𝑃 (LoS) =
1

1 + 𝑎 exp(−𝑏(𝜔 − 𝑎))
, (4.10)

where the propagation environment determines constants a and b, which represent vari-

ous scenarios, including suburban, urban, dense urban, and high-rise urban zones; 𝜔 =

arctan(ℎ
𝑟𝑖,𝑗(𝑡)

) is the elevation angle between MD 𝑖 and UAV-MEC server 𝑗 in time slot 𝑡

along the ellipsoidal trajectory. The probability function for establishing the NLoS link is

27

Chapter 4. System Model and Problem Formulation

then

𝑃 (NLoS) = 1− 𝑃 (LoS). (4.11)

Therefore, the probabilistic mean path loss of the system in time slot t can be expressed

as

𝑃𝐿𝑖,𝑗(𝑡)) = 𝑃 (LoS)× 𝑃𝐿LoS + 𝑃 (NLoS)× 𝑃𝐿NLoS. (4.12)

Now, using equations (4.7), (4.10), and (4.11) in (4.12), and by applying basic algebraic

operations we have the following [66,68]:

𝑃𝐿𝑖,𝑗(𝑡) =
𝜂LoS − 𝜂NLoS

1 + 𝑎 exp
(︁
−𝑏

(︁
arctan

(︁
ℎ

𝑟𝑖,𝑗(𝑡)

)︁
− 𝑎

)︁)︁
+ 10 log(𝑑𝑖,𝑗(𝑡)

2) + 20 log(𝑓) + 20 log

(︂
4𝜋

𝑐

)︂
+ 𝜂NLoS,

(4.13)

where 𝑟𝑖,𝑗(𝑡) =
√︁

(𝑥𝑖 − 𝑥𝑗(𝑡))
2 + (𝑦𝑖 − 𝑦𝑗(𝑡))

2. In our scenario, we assume the transmit

power of each MD is the same. Thus, the signal-to-noise ratio between MD 𝑖 and UAV-

MEC server 𝑗 in time slot 𝑡 is

𝑆𝑁𝑅𝑖,𝑗(𝑡) =
𝑃𝑖

𝑃𝐿𝑖,𝑗(𝑡)× 𝜎2
, (4.14)

where 𝑃𝑖 is the transmit power of MD 𝑖, and 𝜎2 is noise power. The ground-to-air (G2A)

data transmission rate between MD 𝑖 and UAV-MEC server 𝑗 in time slot 𝑡 is

𝑅𝑖,𝑗(𝑡) = 𝐵 log2(1 + SNR𝑖,𝑗(𝑡)). (4.15)

The average data transmission rate for MD 𝑖 throughout cycle period T is then defined

as

𝑅𝑖,𝑗 =
1

𝑃

𝑃∑︁
𝑡=1

𝑅𝑖,𝑗(𝑡). (4.16)

Assume that all task requests coming from MD 𝑖, which is connected to UAV-MEC server

𝑗 based on maximum throughput, are offloaded through the G2A channel. Thus, the G2A

data transmission latency, 𝑇 𝑇𝑟𝑎𝑛𝑠
𝑖,𝑗 , between MD 𝑖 and UAV-MEC server 𝑗 is determined by

the task’s data size, 𝑙𝑖, and the rate at which the data are transmitted, 𝑅𝑖,𝑗 . Then, 𝑇
𝑇𝑟𝑎𝑛𝑠
𝑖,𝑗

28

Chapter 4. System Model and Problem Formulation

can be stated as

𝑇 𝑇𝑟𝑎𝑛𝑠
𝑖,𝑗 =

𝑙𝑖
𝑅𝑖,𝑗

. (4.17)

Therefore, total data transmission latency experienced by the MDs connected to UAV-

MEC server 𝑗 for offloading task requests per second can be obtained as follows

𝑇 𝑡𝑜𝑡𝑎𝑙
𝑗 =

𝑀∑︁
𝑖=1

𝐴𝑖,𝑗𝜆𝑖𝑇
𝑇𝑟𝑎𝑛
𝑖,𝑗 , (4.18)

where 𝜆𝑖 is the task offload request rate of MD 𝑖.

The energy consumption for task transmission between MD 𝑖 and UAV-MEC server 𝑗

can be obtained as follows

𝐸𝑇𝑟𝑎𝑛
𝑖,𝑗 = 𝑃𝑖𝑇

𝑇𝑟𝑎𝑛
𝑖,𝑗 . (4.19)

The total transmission energy consumption of all MDs connected to UAV-MEC server

𝑗 for offloading task requests per second is

𝐸𝑡𝑜𝑡𝑎𝑙
𝑗 =

𝑀∑︁
𝑖=1

𝐴𝑖,𝑗𝜆𝑖𝐸
𝑇𝑟𝑎𝑛
𝑖,𝑗 . (4.20)

4.2 Problem Formulation

The aim of this article is to minimize total transmission latency and total transmission

energy consumption of MDs. Thus, the function can be written as

𝑈𝑗 = 𝜌𝑇 total
𝑗 + (1− 𝜌)𝐸total

𝑗 , (4.21)

where 𝜌 ∈ [0, 1] is a coefficient that is used to define the relative weight of transmission

latency and transmission energy consumption based on the nature of the application. Then,

the optimization problem can be expressed as follows

min
𝐶𝑥,𝑗 ,𝐶𝑦,𝑗 ,

𝑅𝑥,𝑗 ,𝑅𝑦,𝑗 ,𝜃𝑗

𝑁∑︁
𝑗=1

𝑈𝑗 , (4.22)

s.t.
𝑁∑︁
𝑗=1

𝐴𝑖,𝑗 = 1, ∀𝑖 ∈𝑀, (4.23)

𝑋min ≤ 𝐶𝑥,𝑗 ≤ 𝑋max, ∀𝑗 ∈ 𝑁, (4.24)

29

Chapter 4. System Model and Problem Formulation

𝑌min ≤ 𝐶𝑦,𝑗 ≤ 𝑌max, ∀𝑗 ∈ 𝑁, (4.25)

𝑅min ≤ 𝑅𝑥,𝑗 ≤ 𝑅max, ∀𝑗 ∈ 𝑁, (4.26)

𝑅min ≤ 𝑅𝑦,𝑗 ≤ 𝑅max, ∀𝑗 ∈ 𝑁, (4.27)

𝜃min ≤ 𝜃𝑗 ≤ 𝜃max, ∀𝑗 ∈ 𝑁, (4.28)

𝑅𝑖,𝑗 ≥ 𝑅th, (4.29)

𝑇 tran
𝑖,𝑗 ≤ 𝑇th, (4.30)

𝐸tran
𝑖,𝑗 ≤ 𝐸th, (4.31)

where equation (4.23) indicates one MD can connect to one UAV-MEC server at a time

to offload its task. Equations (4.24) and (4.25) indicate the horizontal and vertical center

position deployment constraints for the UAV-MEC server’s ellipsoidal trajectory. Equations

(4.26), (4.27), and (4.28) are the constraints for the major radius, minor radius, and rotation

angle, respectively, which define the size and shape of the ellipsoidal trajectory. Constraint

(4.29) indicates that the data transmission rate should be higher than the predefined thresh-

old value to ensure the QoS for each MD. Equation (4.30) is the constraint for transmission

latency, and (4.31) is the constraint for transmission energy consumption of each MD, which

has to be less than the threshold value.

To address the problem formulated above, we propose a DQN-based solution in the next

section to obtain nearly optimal results utilizing environmental knowledge.

30

Chapter 5

Algorithm

In this section, the proposed DQN-based ellipsoidal trajectory optimization (DETO) algo-

rithm is discussed in detail, with a focus on the formulation of the state, action, and reward

design aimed at addressing the optimization problem presented in Equation (4.22).

5.1 Markov Decision Process Formulation

Generally, RL problems can be represented as instances of MDP [69], in which the actions

taken in the present state determine the future state. Therefore, the process of optimizing the

center position, major radius, minor radius, and rotation angle of the ellipsoidal trajectories

of UAV-MEC servers to minimize total transmission latency and total transmission energy

consumption of MDs can be formulated as an MDP with tuple < 𝑆,𝐴,𝑅 >. At each time

step t, the agent observes a state 𝑠 ∈ 𝑆, selects an action 𝑎 ∈ 𝐴, transitions to the future

state 𝑠′, and obtains a reward 𝑟 ∈ 𝑅. The design of state, action, and reward are presented

as follows.

State: It consists of positional parameters of each UAV’s ellipsoidal trajectory.

𝑆 = {𝐶𝑥,𝑗 , 𝐶𝑦,𝑗 , 𝑅𝑥,𝑗 , 𝑅𝑦,𝑗 , 𝜃𝑗 ,∀𝑗 ∈ 𝑁}. (5.1)

where 𝐶𝑥,𝑗 , 𝐶𝑦,𝑗 , 𝑅𝑥,𝑗 , 𝑅𝑦,𝑗 , and 𝜃𝑗 denote the x-coordinate center, y-coordinate center, x-

coordinate radius or major radius, y-coordinate radius or minor radius and rotation angle

of the ellipsoidal trajectory of UAV-MEC server 𝑗, receptively.

Action: An action involves one of the following: moving the center position horizontally

or vertically in a positive or negative direction, incrementing or decrementing the major or

minor radius, changing the rotation angle to either clockwise or anticlockwise, or keeping

31

Chapter 5. Algorithm

the current state unchanged.

Reward: An effective reward design acts as a map, directing the learning agent in the

direction of the desired result. It gives the agent important feedback on the effectiveness of

its actions. Thus, to effectively solve the center position, size, and shape of the ellipsoidal

trajectories of the UAV-MEC servers, we have designed our reward function with the help

of our objective function, which is defined as

𝑟 =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
1

𝜂1Φ
, if objective decreases

in current state,

1
𝜂2Φ

, otherwise,

(5.2)

where 𝜂1, 𝜂2 are constants. The values of 𝜂1, 𝜂2 are both within the range (0,1) and 𝜂2 > 𝜂1,

and Φ represents the system objective in Equation(4.22).

5.2 DQN-based Ellipsoidal Trajectory Optimization

Considering the large state space and high dimensional action space in our UAV-assisted

MEC system, we employ the DQN framework to address the MDP problem discussed earlier,

called DQN-based ellipsoidal trajectory optimization (DETO). The framework is depicted

in Figure 5-1 and consists of two NNs (the Q-network and the target Q-network) and a

memory dataset to store the experiences.

Figure 5-1: The DETO framework.

Each network has multiple layers that are connected to each other to correlate the state

and action. The input of the NN is used to represent the current state of the environment

and the probability assigned to each possible action is represented by the output of the

networks. The memory dataset is depicted as a queue-like data structure.

32

Chapter 5. Algorithm

Algorithm 1 DQN based ellipsoidal trajectory optimization (DETO)

Input: Initial center position, radius, rotation angle of the ellipsoidal trajectory of each

UAV-MEC server

Output: Optimal center position, radius, rotation angle of the ellipsoidal trajectory to

minimize the system objective

1: for simulation = 1 to 𝑁 do → 𝑁 : Total simulation number

2: Initialize memory dataset 𝐸 with capability 𝐵

3: Initialize the 𝑄-network’s parameter values 𝜃

4: Initialize the target 𝑄-network’s parameter values 𝜃− ← 𝜃

5: for episode = 1 to 𝐿 do → 𝐿 : Total episode number

6: Initial state

7: for 𝑡 = 1 to 𝑇 do → 𝑇 : Max length of episode

8: Current state 𝑠𝑡

9: Select an action according to 𝜖−greedy algorithm

10: Perform action 𝑎𝑡 and observe the next state 𝑠𝑡+1

11: Compute the association of MDs with the UAV-MEC server

12: Obtain reward 𝑟𝑡 using (5.2)

13: Store current experience (𝑠𝑡, 𝑎𝑡, 𝑟𝑡, 𝑠𝑡+1) in 𝐸

14: Randomly sampling a batch of experiences (𝑠𝑗 , 𝑎𝑗 , 𝑟𝑗 , 𝑠𝑗+1) from 𝐸

15: Compute target 𝑄-value for the next state using target 𝑄-network

16: Apply a gradient descent step with regard to the network parameter

values 𝜃 to reduce the squared difference between target 𝑄-value and

current 𝑄-value using (5.3)
17: Periodically, reset the target 𝑄-network’s parameter values from the

𝑄-network: 𝜃− ← 𝜃
18: Set 𝑠𝑡 = 𝑠𝑡+1

19: end for

20: end for

21: Test the model and save the results

22: end for

23: choose the best result

The agent creates new transitions by interacting with the environment and stores them

in memory. When the memory reaches its limit, it begins to remove the earliest transitions

33

Chapter 5. Algorithm

to make way for the newest ones. Therefore, the most recent transitions are kept in memory

while removing the oldest ones, which primarily helps in tracking the agent’s most recent

interactions with the environment.

The DETO training steps are presented in Algorithm 1. At the beginning of each

simulation during the learning process, a number of elements, including the capacity of the

memory dataset and the parameters of both the Q-network and the target network, are

initialized. For the NN learning process, these parameter values serve as starting points.

This initialization is performed through lines 2, 3, and 4 of the algorithm. Note that the

DQN uses a dual-network strategy to estimate the current Q-value and target Q-value, where

both Q-network and target Q-network have the same neural architecture. However, these

networks have a different set of parameter values to make these estimations.

Each training episode begins with the agent starting from an initial state, and each

episode runs for a given number of steps (lines 5, 6, and 7). The initial deployment positions

for each UAV-MEC server are determined using the K-means clustering technique and are

integrated into the initial state information. In each step of the training episode, the NN

receives the current state (line 8) as an input value, and it returns the Q-values of every

action. The agent then selects an action using an epsilon greedy algorithm (line 9).

Due to the lack of background knowledge about the environment, the agent emphasizes

exploration at first. To do this, it occasionally selects random actions under the guidance

of a probability parameter, 𝜖. With the aid of this exploratory strategy, the agent discovers

the dynamics of the environment, gathers important data, and stays away from locally

optimal solutions. The agent eventually reduces the use of random actions as it becomes

more familiar with the environment. This reduction acts as a switch towards exploitation,

forcing the agent to choose actions that work best. This adjustment aids the agent in finding

the ideal balance between utilizing what it already determined as best and attempting new

things, enabling it to get the best results over time by combining both previously successful

strategies and new information.

The agent takes action to change the center position, length of a radius, or rotation

angle of the ellipsoidal path to determine the position, size, and shape of the ellipse. By

performing the above actions, it observes the next state (line 10). This state transition leads

to a change in the UAV-MEC server’s position. Consequently, the associations between MDs

and UAV-MEC servers also change. The association between each MD and UAV-MEC server

is determined based on throughput. In particular, for each MD, the UAV-MEC server that

34

Chapter 5. Algorithm

yields the highest throughput is selected. Subsequently, after computing the association

between MDs and the UAV-MEC server, the agent obtains the reward (lines 11, 12).

To make the learning process stable and to enhance sample effectiveness, the agent stores

each transition that includes state, action, reward, and the next state in memory dataset

𝐸 (line 13). When training Q-network parameters, a batch of transitions from the memory

dataset is randomly chosen by the agent (line 14). This sampling process is used to break

the correlation between consecutive transitions, ensuring the training data are sufficiently

diverse, which aids the network’s ability to acquire useful weights that can effectively handle

a variety of data values.

During training, the aim is to reduce the gap between the target Q-network’s output,

𝑟 + 𝛾max𝑎′ 𝑄(𝑠′, 𝑎′; 𝜃𝑖−1), and the Q-network’s output, 𝑄(𝑠, 𝑎; 𝜃𝑖), which is achieved by

utilizing the mean squared error (MSE) loss function (lines 15, 16):

𝐿(𝜃𝑖) = E[𝑟 + 𝛾max
𝑎′

𝑄(𝑠′, 𝑎′; 𝜃𝑖−1)−𝑄(𝑠, 𝑎; 𝜃𝑖)
2]. (5.3)

The parameter values of the Q-network are updated using the Adam optimizer with an

initial learning rate of 0.001. Then, the parameter values from the Q-network are copied

periodically to the target Q-network (line 17). At the end of the training, we test the model

and save the results with optimized parameters for the ellipsoidal trajectory (lines 20-21).

Finally, from the outcomes of multiple simulations, we select the best result (lines 22-23).

35

Chapter 6

Performance Evaluation

The performance of the proposed DETO is evaluated by conducting simulations under dif-

ferent parameters and compared against the performance of GA and greedy algorithms.

In this section, we first present the experimental settings and performance metrics. Then,

training efficiency of the DETO scheme and the descriptions of the compared algorithms are

presented. Finally, the performance results under different scenarios are explained in detail.

6.1 Experimental settings

We analyze the efficiency of our suggested DETO approach in a UAV-enabled MEC network

by conducting simulations. A sub-urban area is considered to simulate the deployment of

UAV-MEC servers for 300 MDs distributed within three distinct hotspots. The K-means

clustering technique is used to determine the initial center position for each UAV-MEC

server based on the user distribution provided and the number of deployed UAV-MEC

servers. The initial values of the major radius, minor radius, and the rotation angle for

ellipsoidal movement of each UAV are randomly chosen within the ranges [60, 200] m and

[0∘, 360∘], respectively. The value of 𝜌 is set to 0.5, meaning that both transmission latency

and transmission energy consumption are equally important. Table 6.1 summarizes the rest

of the simulation parameters utilized in our experiments, with default values denoted in

bold.

The Geolife mobility dataset [43] is used to determine the MDs’ locations. The dataset

contains GPS traces of 182 users in Beijing, China, which were collected during a five-year

period by Microsoft Research Asia from April 2007 to August 2012. Our simulation covers

a crowded region of 1000 × 1000 𝑚2 area in the city. The MD locations are then chosen

36

Chapter 6. Performance Evaluation

from the users’ GPS points within the specified area by considering the time frame 12 pm

to 1 pm during the year 2008.

Table 6.1: Experimental settings

Notation Description Value Unit

Size of the area - 1000x1000 m2

Number of MDs 𝑀 {150, 200, 250,300, 350} -

Number of UAVs 𝑁 {1, 2,3, 4} -

Task offload request rate 𝜆 [0.1, 1] task/s

Task size 𝑙 [1, 10] MB

Height of UAV ℎ 100 [14, 70] m

Range of major radius 𝑅𝑥 [60, 200] [65, 71] m

Range of minor radius 𝑅𝑦 [60, 200] m

Range of rotation angle 𝜃 [0, 360] ∘

Path loss parameter 𝑎 9.61 -

Path loss parameter 𝑏 0.16 -

Path loss parameter 𝜂LoS 1 -

Path loss parameter 𝜂NLoS 20 -

Channel bandwidth 𝐵 20 MHz

Transmit power of MD 𝑃𝑡 20 dBm

Noise power 𝜎2 −100 dBm

The carrier frequency 𝑓 2 GHz

The speed of light 𝑐 299792458 -

weight 𝜌 0.5 -

For the DETO framework’s neural network structures, we use two hidden layers, each

with 64 neurons. These hidden layers have ReLU activation functions, whereas the output

layer has a linear activation function. Table 6.2 represents the DETO framework’s main

hyperparameter representation, which is used to train the model. From five simulation

runs, we select the best result, and then we calculate the average of the three best results

from a total of 15 simulation runs to provide a more representative and fair evaluation. Four

performance metrics are considered for evaluating the results:

� System objective: The System objective is the sum of total transmission latency and

total transmission energy consumption of MDs associated with each UAV.

𝑁∑︁
𝑗=1

𝑈𝑗 , (6.1)

37

Chapter 6. Performance Evaluation

where

𝑈𝑗 = 𝜌𝑇 total
𝑗 + (1− 𝜌)𝐸total

𝑗 , (6.2)

𝜌 ∈ [0, 1] is a coefficient that is used to define the relative weight of transmission

latency and transmission energy consumption based on the nature of the application.

� Total transmission Latency: The total transmission latency is the sum of the data

transmission latency of each MD. The total transmission latency presented as

𝑁∑︁
𝑗=1

𝑀∑︁
𝑖=1

𝐴𝑖,𝑗𝜆𝑖𝑇
𝑇𝑟𝑎𝑛
𝑖,𝑗 , (6.3)

where 𝜆𝑖 is the task offload request rate of MD 𝑖, 𝐴𝑖𝑗 = 1 implies that 𝑖th MD is

associated to 𝑗th UAV to offload it’s task request, 𝑇 𝑇𝑟𝑎𝑛
𝑖,𝑗 is the data transmission

latency between MD 𝑖 and UAV-MEC server 𝑗.

� Total transmission energy consumption: The total transmission energy consumption

is the sum of the data transmission energy consumption of each MD. The total trans-

mission energy consumption presented as

𝑁∑︁
𝑗=1

𝑀∑︁
𝑖=1

𝐴𝑖,𝑗𝜆𝑖𝐸
𝑇𝑟𝑎𝑛
𝑖,𝑗 , (6.4)

where 𝐸𝑇𝑟𝑎𝑛
𝑖,𝑗 is the data transmission energy consumption between MD 𝑖 and UAV-

MEC server 𝑗.

� Total Throughput: The total throughput is the sum of the average data transmission

rate of each MD. The total throughput presented as

𝑁∑︁
𝑗=1

𝑀∑︁
𝑖=1

𝑅𝑖,𝑗 . (6.5)

38

Chapter 6. Performance Evaluation

Table 6.2: Hyperparameters of the DETO Model

Parameter Value

Number of episodes 100

Time steps 80

Learning rate 0.001

Discount factor 0.95

𝜖 with starting value 1

𝜖 with final value 0.1

Epsilon decay .9997

Memory size 2500

Batch size 32

Optimizer Adam optimizer

6.2 Training Efficiency of the DETO Scheme

In this subsection, we examine the effectiveness of the DETO optimization method’s train-

ing. DETO’s training progress is shown in Fig. 6-1. As the number of training episodes

increases, we can see that the total number of rewards continues to rise progressively from

the beginning. With a total of 100 episodes, total rewards experience a notably significant

increase after the 40th episode. This occurs because the agent initially explores new po-

sitions at random using the 𝜖 probability, and these new positions may not yield optimal

performance. Moreover, experience replay memory initially has fewer feasible solutions.

However, as the neural networks begin training, experience replay memory gathers more

useful solutions. Thus, UAVs are able to execute actions iteratively and can learn from

mistakes to increase the reward, which ultimately leads to a better system objective. Even

though the curve shows fluctuations and lacks convergence, it continually moves upward.

In Fig. 6-2 and Fig. 6-3, we plot the UAVs’ ellipsoidal trajectories and the correspond-

ing rewards during the algorithm’s iterative operations after the end of the DETO model’s

training, respectively. With advancement of the learning process, UAVs gradually optimize

39

Chapter 6. Performance Evaluation

their ellipsoidal movements, minimizing transmission latency and energy consumption. The

distribution of MDs and the deployment positions for UAV ellipsoidal movements are shown

in Fig. 6-2. Fig. 6-3 illustrates the system’s improvement over time as the reward increases

in each step. Remarkably, within the first 25 steps, the reward stabilizes and stays rela-

tively constant. This implies that after an adequate number of steps, the system achieves a

balanced state to reduce the system’s overall transmission delay and energy consumption in

providing MEC services to the MDs with maximum throughput.

Figure 6-1: Training curve of DETO.

Figure 6-2: Deployment positions of UAVs ellipsoidal movement.

40

Chapter 6. Performance Evaluation

Figure 6-3: Reward during the algorithm’s iterative operations.

6.3 Description of the Compared Algorithms

The proposed DETOmethod is compared with a GA solution and a greedy solution describes

below.

� GA-based Ellipsoidal Trajectory Optimization (GAETO): A rank-based genetic algo-

rithm is employed to find a solution for ellipsoidal trajectory optimization, where each

solution is a vector representation of real numbers. The initial population is gener-

ated randomly, and the fitness function is calculated using the reciprocal value of the

system objective for each individual solution. Lower fitness values are given to higher

ranks and have a higher chance of being selected as parents. Then, new solutions are

generated by applying crossover and mutation, and the best solution is recorded. This

procedure repeats for a given number of generations.

� Greedy: In this setup, each UAV’s center position is chosen from the cluster center.

The major radius of each UAV is equal to one-half the distance along the x-axis

between its center and its farthest associated user, while the minor radius is equal to

one-half the distance along the y-axis between its center and its farthest associated

user. The rotation angle is set to 0∘.

41

Chapter 6. Performance Evaluation

6.4 Performance Comparison between DETO and Other Baselines

In this section, the performance of the DETO method is compared with a GA solution and

a greedy solution under various conditions, including different numbers of MDs, different

numbers of task request rates, and different numbers of UAVs.

6.4.1 Effects of Different Numbers of MDs

(a) (b)

(c) (d)

Figure 6-4: Effects of different numbers of MDs: (a) effects on the system objective, (b) ef-
fects on the total transmission latency, (c) effects on total transmission energy consumption,
and (d) effects on total throughput.

42

Chapter 6. Performance Evaluation

Fig. 6-4 shows the system objective, total transmission latency, total transmission energy

consumption, and total throughput of the three methods. With an increase in the number

of MDs, all four figures show an increasing trend. This occurs because when the MDs

increase in number, the tasks that need to be offloaded also increase, which results in higher

system objectives. Additionally, as the number of MDs increases, there is a change in their

distribution. This can cause the distance between MDs and UAV-MEC servers to increase,

which leads to longer latency and more energy consumption during transmissions, further

contributing to the rise in the system objective.

From Fig. 6-4(a), we see that the system objective increases gradually when the MDs

increase in number from 150 to 200, from 200 to 250, from 250 to 300, and from 300 to

350, respectively, and DETO performs better than the other two algorithms, achieving a

lower system objective. For example, the value of the system objective with DETO is 0.82

when the number of MDs is 300. On the other hand, the objective values from GAETO

and the greedy approach are 0.83 and 0.84, respectively. Moreover, the gap between the

system objectives increases with the increase in MDs, and the gap is especially wider when

MDs number 350 because more tasks need to be offloaded, and GAETO and greedy provide

suboptimal solutions.

From Fig. 6-4(b) and Fig. 6-4(c), it can be observed that both total transmission latency

and total transmission energy consumption for all three algorithms experience a relatively

sharp increase as the number of MDs increases from 150 to 200 and from 200 to 250. This

increase occurs due to the increased task requests associated with the growing number of

MDs, resulting in longer transmission latency and greater transmission energy consumption.

However, the rise is slightly slower when MDs increase from 250 to 300. This is because

when the number of MDs is 300, the majority of the users have a task request rate in

the 0.1 to 0.5 range. Having lower task requests results in lower transmission latency and

transmission energy consumption. It again follows a sharp increase with higher task requests

when MDs increase from 300 to 350. DETO’s performance is always better than GAETO

and the greedy algorithm. For example, when the number of MDs is 300, total transmission

latency with DETO is 63.76 s, which is 1.37% and 2.99% lower than GAETO and the greedy

algorithms, respectively.

Fig. 6-4(d) illustrates the effect of the different numbers of MDs on total throughput

of the system. With an increase in the number of MDs, total throughput experiences a

sharp rise. This occurs because the channel bandwidth for each MD is assumed to be fixed.

43

Chapter 6. Performance Evaluation

Therefore, when the number of MDs increases, the system’s total throughput also increases.

In terms of DETO, total throughput increases by 31.39%, 24.80%, 20.27%, and 17.09% when

MDs increase in number from 150 to 200, from 200 to 250, from 250 to 300, and from 300

to 350, respectively. Moreover, the performance of DETO is 4.33%, 3.92%, 3.87%, 3.51%,

and 4.33% higher than the greedy approach for all numbers of MDs.

6.4.2 Effects of Different Numbers of Task Request

(a) (b)

(c) (d)

Figure 6-5: Effects of different numbers of task requests: (a) effects on the system objec-
tive, (b) effects on the total transmission latency, (c) effects on total transmission energy
consumption, and (d) effects on total throughput.

44

Chapter 6. Performance Evaluation

Fig. 6-5 shows the effects of varying numbers of task requests. With the increasing number

of task requests, the total task size concurrently expands. Consequently, more data bits

need to be offloaded to UAV-MEC servers from the MDs. When MDs transmit a large

volume of data bits to the UAV-MEC servers, it leads to higher transmission latency and

increased energy consumption. Therefore, the system objective, total transmission latency,

and total transmission energy consumption shown in Fig. 6-5(a), Fig. 6-5(b), and Fig. 6-5(c),

respectively, demonstrate an increase consistent with the growth in task requests. In Fig. 6-

5(a), it is observed that DETO always performs better than the GA and greedy approaches,

obtaining a lower system objective across different task request ranges, whereas the system

objective obtained by the greedy algorithm is the highest among them. For example, when

the number of task requests is in the range of 0.6 to 1, the system objectives obtained by

DETO and GAETO are 0.737 and 0.751, respectively, while the system objective for the

greedy approach is 0.765.

The displayed curves in Fig. 6-5(b) and Fig. 6-5(c) show a steady and gradual increase

as the number of task requests increased. This is a result of the growing need to offload

more tasks, which requires more time and energy for transmission. For example, in Fig. 6-

5(b), transmission latency obtained by DETO increases from 231.17 s to 328.66 s when

task request changes from the [1.6-2] range to the [2-3] range. In comparison, GAETO

increases from 234.49 s to 332.45 s, and the greedy approach increases from 240.19 s to

340.33 s, respectively. Similarly, in Fig. 6-5(c), transmission energy consumption increases

for DETO, GAETO, and the greedy approach, ranging from 23.11 J to 32.86 J, 23.44 J to

33.24 J and 24.01 J to 34.03 J, respectively.

Fig. 6-5(d) illustrates the system’s total throughput, with DETO and GA showing a

slight up-and-down trend, while greedy remains unchanged. This is because throughput

is influenced by the positions of MDs and the positions of the UAVs along the ellipsoidal

paths. Throughput follows an increasing or decreasing trend when the number of MDs

increases or decreases. However, in this scenario, the positions remain unchanged for a

fixed number of MDs, even though the number of task requests varies. Thus, the solutions

obtained by DETO and GAETO show slight fluctuations in total throughput. Notably,

the DETO-based approach consistently shows higher throughput than GAETO and greedy.

Moreover, the results imply that using the NN to approximate the Q-values enables the

DQN-based solution to achieve better results for the considered problem. By maximizing

the total reward and locally optimizing the DQN result, the agent can learn a strategy to

45

Chapter 6. Performance Evaluation

identify the ellipsoidal trajectory’s parameters that provide a lower system objective. On

the other hand, GA-based solutions partially depend on random processes, which may result

in early convergence if genetic diversity is lost, resulting in suboptimal solutions. Moreover,

because of the large solution space, the GA produces a considerable number of infeasible

solutions in each iteration, whereas greedy uses fixed parameters to solve the considered

problem. Therefore, finding a good solution is hard using GA and greedy approaches.

6.4.3 Effects of Different Numbers of UAVs

The performance of DETO is evaluated across a range of UAV counts, varying from one to

four, by considering the system objective, total latency, total transmission energy consump-

tion, and total throughput. Fig. 6-6(a) illustrates a decrease in the system objective as the

number of UAVs rises. As UAVs increase in number from one to two, then to three, and to

four, the system objective of DETO decreases by 7.60%, 13.13%, and 4.53%, respectively.

Similarly, GAETO decreases by 6.60%, 13.27%, and 4.60%, respectively, while the greedy

approach records reductions of 5.97%, 13.21%, and 4.88%, respectively. Additionally, at

the relevant UAV count intervals, DETO consistently outperforms the greedy technique by

2.33%, 4.03%, 3.94%, and 3.58%, respectively.

For different numbers of UAVs, Fig. 6-6(b) and Fig. 6-6(c) compare the total transmis-

sion latency and transmission energy consumption for all algorithms; significantly, DETO

performs better than the alternatives. Transmission latency and transmission energy con-

sumption of MDs tend to reduce as the number of UAVs rises because increased accessibility

of UAVs enables more efficient task offloading. The average distance between MDs and UAVs

reduces as the number of UAVs rises. Due to the shorter travel distance, data transfer takes

less time and energy, resulting in reduced latency and lower energy consumption for MDs.

For example, when the number of UAVs increases from three to four, transmission latency of

DETO, GAETO, and greedy decreases from 73.16 s to 69.84 s, from 74.53 s to 71.09 s, and

from 76.16 s to 72.44 s, respectively. Similarly, transmission energy consumption of DETO,

GAETO, and greedy decreases from 7.31 J to 6.98 J, from 7.45 J to 7.10 J, and from 7.61

J to 7.24 J, respectively.

46

Chapter 6. Performance Evaluation

(a) (b)

(c) (d)

Figure 6-6: Effects of different numbers of UAVs: (a) effects on the system objective, (b) ef-
fects on the total transmission latency, (c) effects on total transmission energy consumption,
and (d) effects on total throughput.

As the number of UAVs increases, Fig. 6-6(d) illustrates the corresponding growth in

total throughput. This increase is because data transmission speeds can be boosted by

reducing the distance between sending and receiving points with more UAVs. With the rise

of UAVs, the performance of DETO improved by 17.02%, 21.84%, and 5.03%, respectively.

Notably, the degree of improvement is slightly lower when the number of UAVs changes

from three to four. This happens because the distances between MDs and UAVs do not

change noticeably when there are three UAVs in the environment compared to when there

47

Chapter 6. Performance Evaluation

are four UAVs. The DETO solution achieves higher throughput compared to GAETO and

the greedy approach with the increasing number of UAVs. For example, total throughput of

DETO is 2.27% and 4.36% higher than that of GAETO and greedy approaches, respectively,

with four UAVs.

48

Chapter 7

Concluding Remarks

In this article, we explored a multi-UAV-assisted MEC system to provide MEC services

within a festival area, serving MDs that have delay-sensitive and computation-intensive

AR/VR applications with diverse task offloading requests. We formulated an optimization

problem with the objective of minimizing the weighted sum of total transmission latency and

total transmission energy consumption of MDs. This was achieved by optimizing the center

position, major radius, minor radius, and rotation angle of the UAV’s ellipsoidal trajectory

to determine the position, size, and shape of the ellipsoidal movement. A DRL framework

called DETO has been developed to address the challenges associated with a large state

space and high dimensional action space while considering constraints aimed at throughput

maximization, as well as transmission latency and transmission energy consumption mini-

mization. Two other approaches were used to compare the performance of DETO in diverse

situations, including different numbers of MDs, different numbers of task request rates, and

different numbers of UAVs. Results from simulations illustrated that the proposed DETO

method performed better than the compared algorithms due to its ability to learn from

experiences and progressively improve on solutions.

For future work, we aim to enhance the existing framework by considering additional

optimizing variables, including the height of the UAV, taking into account the dynamic

mobility of MDs within the festival area. In addition to optimizing task transmission latency

and energy consumption, we will extend our objectives, to include the minimization of the

total task completion time (including task transmission and processing time when offloaded

to the UAV) and the overall system’s energy consumption. We plan to apply a more advanced

RL method and to investigate the effect of varying 𝜌 on the system’s objective.

49

Bibliography

[1] T.-Y. Kan, Y. Chiang, and H.-Y. Wei, “Task offloading and resource allocation in

mobile-edge computing system,” in 2018 27th wireless and optical communication con-

ference (WOCC). IEEE, 2018, pp. 1–4.

[2] I. A. Elgendy, S. Meshoul, and M. Hammad, “Joint task offloading, resource allocation,

and load-balancing optimization in multi-uav-aided mec systems,” Applied Sciences,

vol. 13, no. 4, p. 2625, 2023.

[3] P. Asghari, A. M. Rahmani, and H. H. S. Javadi, “Internet of things applications: A

systematic review,” Computer Networks, vol. 148, pp. 241–261, 2019.

[4] A. Paramonov, A. Muthanna, O. I. Aboulola, I. A. Elgendy, R. Alharbey, E. Tonkikh,

and A. Koucheryavy, “Beyond 5g network architecture study: fractal properties of access

network,” Applied Sciences, vol. 10, no. 20, p. 7191, 2020.

[5] F. Z. Fagroud, L. Ajallouda, E. H. B. Lahmar, H. Toumi, A. Zellou, and S. El Filali,

“A brief survey on internet of things (iot),” in International Conference on Digital

Technologies and Applications. Springer, 2021, pp. 335–344.

[6] Y. G. Kim, J. Kong, and S. W. Chung, “A survey on recent os-level energy management

techniques for mobile processing units,” IEEE Transactions on Parallel and Distributed

Systems, vol. 29, no. 10, pp. 2388–2401, 2018.

[7] Y. C. Hu, M. Patel, D. Sabella, N. Sprecher, and V. Young, “Mobile edge computing—a

key technology towards 5g,” ETSI white paper, vol. 11, no. 11, pp. 1–16, 2015.

[8] Y. Mao, C. You, J. Zhang, K. Huang, and K. B. Letaief, “A survey on mobile edge com-

puting: The communication perspective,” IEEE communications surveys & tutorials,

vol. 19, no. 4, pp. 2322–2358, 2017.

50

Bibliography

[9] N. Abbas, Y. Zhang, A. Taherkordi, and T. Skeie, “Mobile edge computing: A survey,”

IEEE Internet of Things Journal, vol. 5, no. 1, pp. 450–465, 2017.

[10] H. Djigal, J. Xu, L. Liu, and Y. Zhang, “Machine and deep learning for resource allo-

cation in multi-access edge computing: A survey,” IEEE Communications Surveys &

Tutorials, 2022.

[11] J. Ren, D. Zhang, S. He, Y. Zhang, and T. Li, “A survey on end-edge-cloud orchestrated

network computing paradigms: Transparent computing, mobile edge computing, fog

computing, and cloudlet,” ACM Computing Surveys (CSUR), vol. 52, no. 6, pp. 1–36,

2019.

[12] J. Yang, Q. Yuan, S. Chen, H. He, X. Jiang, and X. Tan, “Cooperative task offloading

for mobile edge computing based on multi-agent deep reinforcement learning,” IEEE

Transactions on Network and Service Management, 2023.

[13] Z. Zhou, J. Feng, L. Tan, Y. He, and J. Gong, “An air-ground integration approach

for mobile edge computing in iot,” IEEE Communications Magazine, vol. 56, no. 8, pp.

40–47, 2018.

[14] Z. Yu, Y. Gong, S. Gong, and Y. Guo, “Joint task offloading and resource allocation in

uav-enabled mobile edge computing,” IEEE Internet of Things Journal, vol. 7, no. 4,

pp. 3147–3159, 2020.

[15] J. Xia, P. Wang, B. Li, and Z. Fei, “Intelligent task offloading and collaborative compu-

tation in multi-uav-enabled mobile edge computing,” China Communications, vol. 19,

no. 4, pp. 244–256, 2022.

[16] G. Wu, Y. Miao, Y. Zhang, and A. Barnawi, “Energy efficient for uav-enabled mo-

bile edge computing networks: Intelligent task prediction and offloading,” Computer

Communications, vol. 150, pp. 556–562, 2020.

[17] W.-T. Li, M. Zhao, Y.-H. Wu, J.-J. Yu, L.-Y. Bao, H. Yang, and D. Liu, “Collaborative

offloading for uav-enabled time-sensitive mec networks,” EURASIP Journal on Wireless

Communications and Networking, vol. 2021, pp. 1–17, 2021.

[18] J. Tian, D. Wang, H. Zhang, and D. Wu, “Service satisfaction-oriented task offloading

and uav scheduling in uav-enabled mec networks,” IEEE Transactions on Wireless

Communications, 2023.

51

Bibliography

[19] J. Košmerl and A. Vilhar, “Base stations placement optimization in wireless networks for

emergency communications,” in 2014 IEEE international conference on communications

workshops (ICC). IEEE, 2014, pp. 200–205.

[20] A. Al-Hourani, S. Kandeepan, and S. Lardner, “Optimal lap altitude for maximum

coverage,” IEEE Wireless Communications Letters, vol. 3, no. 6, pp. 569–572, 2014.

[21] M. Alzenad, A. El-Keyi, F. Lagum, and H. Yanikomeroglu, “3-d placement of an un-

manned aerial vehicle base station (uav-bs) for energy-efficient maximal coverage,”

IEEE Wireless Communications Letters, vol. 6, no. 4, pp. 434–437, 2017.

[22] I. Moon, L. T. Dung, and T. Kim, “Optimal 3d placement of uav-bs for maximum

coverage subject to user priorities and distributions,” Electronics, vol. 11, no. 7, p.

1036, 2022.

[23] J. Lyu, Y. Zeng, R. Zhang, and T. J. Lim, “Placement optimization of uav-mounted

mobile base stations,” IEEE Communications Letters, vol. 21, no. 3, pp. 604–607, 2016.

[24] M. Mozaffari, W. Saad, M. Bennis, and M. Debbah, “Efficient deployment of multiple

unmanned aerial vehicles for optimal wireless coverage,” IEEE Communications Letters,

vol. 20, no. 8, pp. 1647–1650, 2016.

[25] N. Adam, C. Tapparello, W. Heinzelman, and H. Yanikomeroglu, “Placement opti-

mization of multiple uav base stations,” in 2021 IEEE Wireless Communications and

Networking Conference (WCNC). IEEE, 2021, pp. 1–7.

[26] I. Valiulahi and C. Masouros, “Multi-uav deployment for throughput maximization in

the presence of co-channel interference,” IEEE Internet of Things Journal, vol. 8, no. 5,

pp. 3605–3618, 2020.

[27] J. Lyu, Y. Zeng, and R. Zhang, “Cyclical multiple access in uav-aided communications:

A throughput-delay tradeoff,” IEEE Wireless Communications Letters, vol. 5, no. 6,

pp. 600–603, 2016.

[28] Y. Zeng, R. Zhang, and T. J. Lim, “Throughput maximization for uav-enabled mobile

relaying systems,” IEEE Transactions on communications, vol. 64, no. 12, pp. 4983–

4996, 2016.

52

Bibliography

[29] Y. Zeng and R. Zhang, “Energy-efficient uav communication with trajectory optimiza-

tion,” IEEE Transactions on wireless communications, vol. 16, no. 6, pp. 3747–3760,

2017.

[30] P. Yu, J. Guo, Y. Huo, X. Shi, J. Wu, and Y. Ding, “Three-dimensional aerial base

station location for sudden traffic with deep reinforcement learning in 5g mmwave

networks,” International Journal of Distributed Sensor Networks, vol. 16, no. 5, p.

1550147720926374, 2020.

[31] X. Liu, Y. Liu, and Y. Chen, “Reinforcement learning in multiple-uav networks: De-

ployment and movement design,” IEEE Transactions on Vehicular Technology, vol. 68,

no. 8, pp. 8036–8049, 2019.

[32] N. Zhao, Z. Ye, Y. Pei, Y.-C. Liang, and D. Niyato, “Multi-agent deep reinforcement

learning for task offloading in uav-assisted mobile edge computing,” IEEE Transactions

on Wireless Communications, vol. 21, no. 9, pp. 6949–6960, 2022.

[33] L. Wang, K. Wang, C. Pan, W. Xu, N. Aslam, and A. Nallanathan, “Deep reinforcement

learning based dynamic trajectory control for uav-assisted mobile edge computing,”

IEEE Transactions on Mobile Computing, vol. 21, no. 10, pp. 3536–3550, 2021.

[34] Y. Wang, Z.-Y. Ru, K. Wang, and P.-Q. Huang, “Joint deployment and task scheduling

optimization for large-scale mobile users in multi-uav-enabled mobile edge computing,”

IEEE transactions on cybernetics, vol. 50, no. 9, pp. 3984–3997, 2019.

[35] B. Kar, W. Yahya, Y.-D. Lin, and A. Ali, “Offloading using traditional optimization

and machine learning in federated cloud-edge-fog systems: A survey,” IEEE Commu-

nications Surveys & Tutorials, 2023.

[36] X. Lyu, H. Tian, L. Jiang, A. Vinel, S. Maharjan, S. Gjessing, and Y. Zhang, “Selective

offloading in mobile edge computing for the green internet of things,” IEEE network,

vol. 32, no. 1, pp. 54–60, 2018.

[37] P. Shu, F. Liu, H. Jin, M. Chen, F. Wen, Y. Qu, and B. Li, “etime: Energy-efficient

transmission between cloud and mobile devices,” in 2013 Proceedings IEEE INFOCOM.

IEEE, 2013, pp. 195–199.

53

Bibliography

[38] Y. Wang, X. Lin, and M. Pedram, “A nested two stage game-based optimization frame-

work in mobile cloud computing system,” in 2013 IEEE Seventh International Sympo-

sium on Service-Oriented System Engineering. IEEE, 2013, pp. 494–502.

[39] J. Wang, C. Jiang, H. Zhang, Y. Ren, K.-C. Chen, and L. Hanzo, “Thirty years of ma-

chine learning: The road to pareto-optimal wireless networks,” IEEE Communications

Surveys & Tutorials, vol. 22, no. 3, pp. 1472–1514, 2020.

[40] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” nature, vol. 521, no. 7553, pp.

436–444, 2015.

[41] R. S. Sutton, A. G. Barto et al., “Introduction to reinforcement learning. vol. 135,”

1998.

[42] S. Akter, T.-N. Dao, and S. Yoon, “Time-constrained task allocation and worker routing

in mobile crowd-sensing using a decomposition technique and deep q-learning,” IEEE

Access, vol. 9, pp. 95 808–95 822, 2021.

[43] Y. Zheng, X. Xie, W.-Y. Ma et al., “Geolife: A collaborative social networking service

among user, location and trajectory.” IEEE Data Eng. Bull., vol. 33, no. 2, pp. 32–39,

2010.

[44] X. Chen and G. Liu, “Energy-efficient task offloading and resource allocation via deep

reinforcement learning for augmented reality in mobile edge networks,” IEEE Internet

of Things Journal, vol. 8, no. 13, pp. 10 843–10 856, 2021.

[45] ——, “Joint optimization of task offloading and resource allocation via deep reinforce-

ment learning for augmented reality in mobile edge network,” in 2020 IEEE Interna-

tional Conference on Edge Computing (EDGE). IEEE, 2020, pp. 76–82.

[46] A. Alshahrani, I. A. Elgendy, A. Muthanna, A. M. Alghamdi, and A. Alshamrani,

“Efficient multi-player computation offloading for vr edge-cloud computing systems,”

Applied Sciences, vol. 10, no. 16, p. 5515, 2020.

[47] P. Lin, Q. Song, F. R. Yu, D. Wang, and L. Guo, “Task offloading for wireless vr-enabled

medical treatment with blockchain security using collective reinforcement learning,”

IEEE Internet of Things Journal, vol. 8, no. 21, pp. 15 749–15 761, 2021.

54

Bibliography

[48] X. Yang, Z. Chen, K. Li, Y. Sun, N. Liu, W. Xie, and Y. Zhao, “Communication-

constrained mobile edge computing systems for wireless virtual reality: Scheduling and

tradeoff,” IEEE Access, vol. 6, pp. 16 665–16 677, 2018.

[49] W. Stadler, Multicriteria Optimization in Engineering and in the Sciences. Springer

Science & Business Media, 1988, vol. 37.

[50] R. V. Rao, Advanced modeling and optimization of manufacturing processes: interna-

tional research and development. Springer, 2011.

[51] A. Sbihi and R. W. Eglese, “Combinatorial optimization and green logistics,” Annals of

Operations Research, vol. 175, pp. 159–175, 2010.

[52] A. Ponsich, A. L. Jaimes, and C. A. C. Coello, “A survey on multiobjective evolutionary

algorithms for the solution of the portfolio optimization problem and other finance and

economics applications,” IEEE transactions on evolutionary computation, vol. 17, no. 3,

pp. 321–344, 2012.

[53] M. Agarwal and G. M. S. Srivastava, “A cuckoo search algorithm-based task scheduling

in cloud computing,” in Advances in Computer and Computational Sciences: Proceed-

ings of ICCCCS 2016, Volume 2. Springer, 2018, pp. 293–299.

[54] X.-S. Yang, Nature-inspired metaheuristic algorithms. Luniver press, 2010.

[55] C. J. Watkins and P. Dayan, “Q-learning,” Machine learning, vol. 8, pp. 279–292, 1992.

[56] E. Pan, P. Petsagkourakis, M. Mowbray, D. Zhang, and A. del Rio-Chanona, “Con-

strained q-learning for batch process optimization,” IFAC-PapersOnLine, vol. 54, no. 3,

pp. 492–497, 2021.

[57] C. A. Coker, Motor learning and control for practitioners. Routledge, 2021.

[58] D. J. Richter, L. Natonski, X. Shen, and R. A. Calix, “Attitude control for fixed-wing

aircraft using q-learning,” in International Conference on Intelligent Human Computer

Interaction. Springer, 2021, pp. 647–658.

[59] R. Maivizhi and P. Yogesh, “Q-learning based routing for in-network aggregation in

wireless sensor networks,” Wireless Networks, vol. 27, pp. 2231–2250, 2021.

55

Bibliography

[60] W. Park, S. Kim, K. L. Kim, and J. Kim, “Alphago’s decision making,” Journal of

Applied Logics—IFCoLog Journal of Logics and their Applications, vol. 6, no. 1, 2019.

[61] J. Zhang, “Ai based algorithms of path planning, navigation and control for mobile

ground robots and uavs,” arXiv preprint arXiv:2110.00910, 2021.

[62] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G. Bellemare, A. Graves,

M. Riedmiller, A. K. Fidjeland, G. Ostrovski et al., “Human-level control through deep

reinforcement learning,” nature, vol. 518, no. 7540, pp. 529–533, 2015.

[63] L. M. Belmonte, A. S. García, R. Morales, J. L. de la Vara, F. López de la Rosa,

and A. Fernández-Caballero, “Feeling of safety and comfort towards a socially assistive

unmanned aerial vehicle that monitors people in a virtual home,” Sensors, vol. 21, no. 3,

p. 908, 2021.

[64] Y. Chen, N. Li, X. Zhong, and W. Xie, “Joint trajectory and scheduling optimization

for the mobile uav aerial base station: a fairness version,” Applied Sciences, vol. 9,

no. 15, p. 3101, 2019.

[65] X. Chen, Z. Yang, N. Zhao, Y. Chen, J. Wang, Z. Ding, and F. R. Yu, “Secure trans-

mission via power allocation in noma-uav networks with circular trajectory,” IEEE

Transactions on Vehicular Technology, vol. 69, no. 9, pp. 10 033–10 045, 2020.

[66] A. Al-Hourani, S. Kandeepan, and S. Lardner, “Optimal lap altitude for maximum

coverage,” IEEE Wireless Communications Letters, vol. 3, no. 6, pp. 569–572, 2014.

[67] A. Al-Hourani, S. Kandeepan, and A. Jamalipour, “Modeling air-to-ground path loss

for low altitude platforms in urban environments,” in 2014 IEEE global communications

conference. IEEE, 2014, pp. 2898–2904.

[68] X. Li, L. Zhou, Y. Sun, and B. Ulziinyam, “Multi-task offloading scheme for uav-

enabled fog computing networks,” EURASIP Journal on Wireless Communications and

Networking, vol. 2020, pp. 1–16, 2020.

[69] M. L. Puterman, “Markov decision processes,” Handbooks in operations research and

management science, vol. 2, pp. 331–434, 1990.

56

Bibliography

[70] L. Lyu, F. Zeng, Z. Xiao, C. Zhang, H. Jiang, and V. Havyarimana, “Computation bits

maximization in uav-enabled mobile-edge computing system,” IEEE Internet of Things

Journal, vol. 9, no. 13, pp. 10 640–10 651, 2021.

[71] J. Zhang, Y. Zeng, and R. Zhang, “Spectrum and energy efficiency maximization in uav-

enabled mobile relaying,” in 2017 IEEE International Conference on Communications

(ICC). IEEE, 2017, pp. 1–6.

57

	목차
	1 Introduction 7
	1.1 Mobile Edge Computing 7
	1.2 Deployment of UAV enabled MEC servers 8
	1.3 Motivation 8
	1.4 Dissertation Organization 10
	2 Related Works 11
	2.1 Optimal placement of static UAVs 11
	2.2 Optimal placement of mobile UAVs 12
	2.3 Optimal placement of UAVs using RL techniques 12
	2.4 Minimizing Latency and Energy Consumption for AR/VR applications 13
	3 Background 15
	3.1 Optimization 15
	3.1.1 Linear Optimization 16
	3.1.2 Integer Linear Optimization 17
	3.1.3 Mixed-Integer Nonlinear Optimization 18
	3.2 Optimization Algorithms 18
	3.2.1 Genetic Algorithm 19
	3.3 Reinforcement Learning 20
	3.3.1 Q Learning 20
	3.3.2 Deep Q Learning 21
	4 System Model and Problem Formulation 23
	4.1 System Model 23
	4.1.1 Equations of the UAVs Ellipsoidal Movement 25
	4.1.2 Air-to-ground Path Loss Model 26
	4.2 Problem Formulation 29
	5 Algorithm 31
	5.1 Markov Decision Process Formulation 31
	5.2 DQN-based Ellipsoidal Trajectory Optimization 32
	6 Performance Evaluation 36
	6.1 Experimental settings 36
	6.2 Training Efficiency of the DETO Scheme 39
	6.3 Description of the Compared Algorithms 41
	6.4 Performance Comparison between DETO and Other Baselines 42
	6.4.1 Effects of Different Numbers of MDs 42
	6.4.2 Effects of Different Numbers of Task Request 44
	6.4.3 Effects of Different Numbers of UAVs 46
	7 Concluding Remarks 49
	Bibliography 50

