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ABSTRACT

Enhancing PLC-WiFi Network Connectivity and Radio

Environment Map Construction Through Federated Learning

by

Shafi Ullah Khan

Supervisor: Professor In-Soo Koo

Submitted in Partial Fulfillment of the Requirements for the Degree of

Master of Philosophy (Electrical Engineering)

February 2024

In today’s rapidly evolving industrial landscape, the intersection of technology

and operational processes is increasingly evident. As industries transition into the digital

era, there’s a pressing need for powerful, efficient, and secure communication infrastruc-

tures. Central to this transformation is the deployment of hybrid broadband Power Line

Communication (PLC) and Wi-Fi networks, adept at catering to the diverse demands of

modern digitalized industries. These networks, with their unique blend of technologies,

offer promising solutions for enhancing communications within challenging indoor industrial

spaces. However, determining the coverage efficiency of such networks remains a significant

challenge. In addressing this challenge, the application of radio environment mapping (REM)

emerges as a critical tool. REM provides quantitative metrics and graphical visualizations

to assess network coverage and performance across diverse industrial infrastructures.

First, a real industrial network has been made in the University of Ulsan using

PLC and Wi-Fi hybrid network. We explore potential applications of a hybrid broadband
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Abstract ix

Power Line Communication (PLC) and Wi-Fi in an indoor hospital scenario. As, modern

hospitals urgently require a mobile, high-capacity, secure, and cost-effective communication

infrastructure. It utilizes the existing power line cables and Wi-Fi Plug-and-Play devices

for indoor broadband communication. Broadband Power Line (BPL) adaptors with Wi-

Fi outputs are used to build an access network in hospitals, particularly in areas where

the wireless router signal is poor. The Tenda PH10 AV1000 ACWI-FI POWER LINE

ADAPTER is a set of BPL adapters that offer operational bandwidth of up to 1000Mbps.

These adapters are based on the HomePlug AV2 protocol and can provide a data rate up to

200 Mbps on the Physical Layer. An experiment using the PLC Wi-Fi kit is carried out to

show that a Wi-Fi and PLC hybrid network is the best candidate to provide wide range of

practical applications in a hospital including, but not limited to, telemedicine, electronic

medical records, early-stage disease diagnosis, health management, real-time monitoring,

and remote surgeries.

Furthermore, coverage prediction stands essential to optimizing radio networks,

thereby enhancing user experience. A number of path loss models and advanced machine

learning algorithms have been developed with high prediction performance. However, these

models conventionally operate within a centralized learning paradigm. Conversely, in this

article, we proposed a novel decentralized approach based on a federated learning long

short-term memory (LSTM) model to predict accurate network coverage in indoor settings.

The proposed FedLSTM is a method that lets multiple users, or clients, train the model

without sharing their personal data directly with a central server. In an experimental setup,

we utilized real data collected from numerous clients moving along different paths. The

FedLSTM model is evaluated in terms of root mean square error (RMSE), mean absolute

error (MAE), and R2. Moreover, compared with a centralized counterpart, FedLSTM shows

a slight rise in RMSE from 2.4 dBm to 2.5 dBm and an increase in MAE from 1.7 dBm
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to 1.9 dBm. In addition, we evaluate the proposed FedLSTM considering variations in the

number of participating clients and in the number of local training epochs. Results show

that even devices with limited computational power can meaningfully contribute to training

the federated model, with fewer epochs achieving competitive results. Graphic analyses

of the radio environment maps (REMs) drawn from both FedLSTM and the centralized

LSTM highlight their similarities. However, FedLSTM provides data privacy for clients

while reducing communications overhead and server strain.
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Chapter 1

Introduction

1.1 Motivation

The 4.0 Industrial Revolution, characterized by the integration of the physical,

digital, and biological systems, has placed the Internet at its core. Not only does it

drive e-commerce, online education, telemedicine, e-banking, and other online transactions,

but it is also a pivotal element in realizing Industry 4.0’s vision of smart factories and

interconnected devices. These modern industrial settings are increasingly reliant on rapid

and reliable internet connections for efficient operations and real-time decision-making.

The ever-expanding reach and utility of the Internet can be attributed to breakthroughs in

technology, allowing for swift and seamless information exchange. Data from the International

Telecommunication Union indicates that by 2020, about 51% of the global population is

using the internet [1]. However, effective digital services require a strong communication

network with mobile access, efficient data distribution, and fast data transfer speeds. To

support digital data demands, networks need consistent throughput and optimal Quality

of Service (QoS). Given this shift to digital, both public and private sectors are adopting

advanced communication technologies. Recent advances, including developments in Local

1
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Area Networks (LANs), Radio Frequency (RF), ZigBee, and Wide Area Networks (WANs),

are driving this transition, especially in real-time applications [2].

Among them, wireless technologies have become increasingly popular in various

fields, including e-commerce, online education, telemedicine, and e-banking applications.

However, these technologies present several challenges related to signal dispersion and

coverage range, especially when used across large regions [3,4]. For instance, Radio Frequency

(RF) and Bluetooth-based devices face limitations when operating in areas with concrete

walls and other obstructions [5, 6]. Additionally, Ethernet-based systems may lack flexibility

and may require expensive setup processes, particularly in buildings with multiple stories.

To overcome these challenges, it is necessary to develop and integrate different technologies

to build a hybrid network that combines the most used wireless technology with wired

technology, resulting in a cost-effective and flexible solution. A hybrid network offers

benefits such as improved coverage and reliability, increased bandwidth, and the ability to

transmit large amounts of data even over a long distance. By integrating wired and wireless

technologies, a hybrid network can overcome the limitations of each technology and leverage

their respective strengths. The implementation of a hybrid network requires careful planning

and design to ensure that it meets the specific requirements of the intended application.

This involves selecting appropriate network components, such as routers, switches, Wi-Fi

relays, and access points, and configuring them to work together seamlessly. Furthermore, it

is essential to consider factors such as security, scalability, and manageability when designing

a hybrid network.

Power line communication (PLC) has been extensively used to develop broadband

networks with high data transmission rates based on power grids [7]. The PLC technology is

designed to achieve burst data speeds of up to 20 Mbit/s over power-line connections, making

it suitable for in-building multimedia applications. The superimposition of high-frequency
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signals on the low-frequency power line signals enables communication over the power line

network. The data rate of PLC technology has reached up to 200Mbps on the physical layer,

which is higher than its theoretical value. This high data rate, like Wi-Fi and domestic

Ethernet, makes it suitable for various applications, such as high-definition video streaming,

video conferencing, online gaming, and cloud computing. One of the primary benefits of

employing PLC networks is the ability to reuse the existing wired electrical network to

offer communication capabilities, making it cost-effective for broadband communication

applications. Moreover, the PLC technology offers a robust and reliable communication

infrastructure without the need for new cabling, thus avoiding wireless propagation issues.

Hence, the smart grid remains one of the most appealing uses of PLC technology, and

research in this field is extensive. In addition to smart grid applications, PLC technology

has also proven its effectiveness in smart city [8], in-home automation [9], and telemetry [10]

applications, where new cabling is not required, and wireless propagation issues are avoided.

Furthermore, PLC-based plug-and-play extenders are gaining popularity in the market due

to their easy installation and connectivity [11]. Therefore, PLC technology has become a

promising solution for both broadband (BB) applications, such as interactive multimedia

home with video conferencing, and narrowband (NB) communication, such as IoT smart

house. The integration of wired and wireless technologies in a hybrid network can address

the limitations of each technology while leveraging their strengths. However, the use of

wireless technology in the hybrid network can also lead to signal dispersion issues, resulting

in shadow areas where signal strength is weakened or absent due to obstructions such as

walls, floors, or other physical barriers. These shadow areas can negatively impact network

performance and security, leading to decreased productivity and efficiency.

Recognizing the conditions in the operating environment is crucial for optimizing

resource use in different adaptive systems. In the Fourth Industrial Revolution, this is
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Figure 1.1: Role of REM in cognitive radio

highlighted by the introduction of tools like artificial intelligence, big data analytics, the

Internet of Things (IoT), and robotics in modern manufacturing. These tools help automate

and monitor processes in real-time, ensuring timely adjustments [12].

Wireless communication is fundamental to smart factories, enabling real-time

monitoring and control of production processes. However, the rise in wireless devices brings

interference issues, especially within the industrial, scientific, and medical (ISM) band [13].

Indoor setups can weaken signals, creating radio ’blind spots.’ Thus, evaluating radio

communication’s coverage becomes important. To tackle this, Radio Environment Map

(REM) has been explored.Building the REM involves collecting actual data from the target

area. This data helps in understanding the wireless environment’s patterns and is visualized

similar to a temperature map. REM provides detailed data on radio conditions in defined

areas, helping network managers identify coverage gaps and high-demand areas [14].

REM plays a very important role in cognitive cycle of cognitive radios, as shown

in Figure 1.1. Primarily, REM offers an comprehensive awareness of the prevailing radio

environment. By tracking signal dispersion, it provides critical insights into how signals

spread or attenuate across different regions. Furthermore, its ability to continually learn

from the environment ensures that it adapts to evolving conditions. This continuous learning,
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in turn, equips network planners with the data necessary for informed decision-making,

facilitating both strategic network expansion and dynamic adaptation. Additionally, REM

plays an integral role in bolstering network support, enhancing overall system reliability and

performance.Traditionally, REM is constructed following a centralized approach, wherein

all device data is sent to a central server. This architecture not only raises concerns

regarding user data confidentiality and security but also places a significant computational

and communication burden on the central server, potentially compromising efficiency and

scalability.

1.2 Objective

This thesis primarily focuses on improving the indoor connectivity within industrial

networks and identifying network shadow areas. Initially, we developed a prototype of the

industrial network integrating both PLC and Wi-Fi technologies, delving into the potential

applications of this hybrid PLC-Wi-Fi setup for industrial scenarios.

Subsequently, our goal shifted to identifying the shadow areas within the wireless

segment, aiming to enhance network coverage predictions for more efficient planning and user

experience. In addressing this, we constructed an REM for the area of our interest. However,

instead of the traditional approach, we incorporated federated learning techniques for

predicting the coverage in indoor setting. This method not only prioritizes user data privacy

but also optimizes communication efficiency. This approach prioritizes user data privacy,

minimizes communication overhead, and alleviates central server load by transmitting only

model weights rather than the exhaustive raw data.
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1.3 Contribution and thesis outline

This dissertation investigates the potential applications of PLC-Wi-Fi hybrid net-

works specifically for industrial environments. It rigorously examines the key characteristics

of the constructed industrial network, including its capacity, data integrity, transmission

rate, and user privacy. Additionally, the construction of a REM for indoor settings, aimed at

amplifying connectivity and enhancing user experience. A novel method to forecast received

signal strength indicator (RSSI) values based on spatial coordinates within a decentralized

framework is introduced. The efficacy of this decentralized method was assessed under

various federated configurations and subsequently evaluated using error metrics. The res of

this thesis and its contribution chapters of this dissertation, detailing its contributions, are

structured as follows:

• Chapter 2: Discusses the prevalent challenges in the e-health domain, proposing

an avant-garde methodology to augment communication infrastructures within con-

temporary healthcare settings. Recognizing the urgent need for an advanced, mobile,

high-capacity, secure, and economically feasible communication infrastructure in health-

care facilities, we delve into the potential of combining hybrid broadband Power Line

Communication (PLC) and Wi-Fi for indoor hospital settings. Leveraging existing

power line cables and plug-and-play Wi-Fi devices, we introduce the application of

Broadband Power Line (BPL) adaptors with Wi-Fi capabilities, specifically targeting

area with weak wireless router signals. Our study prominently features the Tenda

PH10 AV1000 ACWI-FI POWER LINE ADAPTER, a BPL adapter set promising an

operational bandwidth reaching 1000Mbps. Operated by the HomePlug AV2 protocol,

these adapters are capable of delivering a data rate of up to 200 Mbps at the Physical

Layer. Through experimental tests with the PLC Wi-Fi kit, we establish the robustness
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and adaptability of the hybrid Wi-Fi and PLC network, proving its viability to support

a vast spectrum of practical hospital applications. This includes telemedicine, elec-

tronic medical record systems, early disease detection, health management processes,

instantaneous patient monitoring, and facilitating remote surgical procedures.

• Chapter 3: introduces the FedLSTM, a pioneering Long Short-Term Memory (LSTM)

framework empowered by federated learning, specifically for indoor network coverage

prediction. This offers a departure from traditional centralized learning schemes.

Unique to our approach is its decentralized learning mechanism: the FedLSTM allows

multiple clients to contribute to model training without direct personal data transfer

to a central server. We assessed the performance of this model using real-world data

from various clients navigating diverse paths. Metrics such as Root Mean Square Error

(RMSE), Mean Absolute Error (MAE), and R-Square were employed for evaluation. A

comparative study showed the FedLSTM’s performance closely mirrored its centralized

counterpart, with minor increases in RMSE and MAE. Further, we investigated the

model’s robustness with varying client participation and local training epochs. Notably,

even devices with constrained computational capabilities could significantly partake in

federated model training with limited epochs, while still achieving commendable results.

Visualization of the Radio Environmental Maps (REM) underscored the resemblance

between FedLSTM and centralized LSTM outputs. However, a distinguishing advantage

of our proposed FedLSTM is its inherent capability to safeguard client data privacy,

concurrently diminishing communication overhead and alleviating server load.

• Chapter 4: summarizes the thesis contributions and future research directions.



Chapter 2

Efficient Indoor Industrial

Communication Architecture using

hybrid Wi-Fi and PLC network

2.1 Introduction

Advancements in smart industrial environments are unequivocally intertwined with

the rapid evolution of network infrastructures, poised to redefine operational paradigms and

bolster efficiency [15–17]. Central to this transformation is the amalgamation of formidable

communication networks such as Local Area Networks (LAN), Radio Frequency (RF)

communications, ZigBee, and Wide Area Networks (WAN), each playing a crucial role in

fostering a seamlessly integrated, responsive, and adaptive industrial ecosystem [18–20].

These network technologies, despite their individual merits, present intrinsic challenges such

as signal dispersion and coverage limitations in expansive and structurally intricate industrial

settings [5, 21–23]. The quest for optimized network performance, consequently, necessitates

8
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the exploration of hybrid network architectures. Such architectures aim to harness the

collective capabilities of existing wireless and wired technologies, thereby mitigating individual

technological limitations and enhancing overall network robustness and reliability [21,22]. In

essence, the envisioning and realization of hybrid networks stand as a pivotal stride towards

achieving sophisticated, cost-efficient, and high-performance communication infrastructures,

imperative for the nuanced demands of contemporary smart industrial settings.

Power line communication has been extensively employed in recent years to develop

broadband networks with high data transmission rates based on power grids [24, 25]. Power

line communication (PLC) technology is increasingly used to provide high-speed broadband

connectivity with minimal infrastructure costs. One major benefit of using PLC networks

is the ability to reuse existing electrical wiring for communication, making it an attractive

option for smart grid applications. As a result, research in this field is extensive. Additionally,

smart city [26, 27], in-home automation [8, 28], and telemetry [24] applications can also

take advantage of this technology, as it eliminates the need for new cabling and avoids

wireless propagation issues. Furthermore, Power Line Communication (PLC) technology

has demonstrated its efficiency and effectiveness in a wide range of applications, including

both broadband (BB) and narrowband (NB) communication. With the growing popularity

of IoT smart homes and the demand for seamless connectivity, the plug-and-play extenders

based on PLC technology are becoming increasingly popular in the market. These devices

offer a simple and easy installation process, providing users with a convenient and reliable

solution for extending their home networks. [11].

Power Line Communication (PLC) technology is a promising solution for modern

telecommunication providers to overcome various challenges, including achieving advantages

in a shorter time [29]. One of the earliest attempts to utilize home’s electrical wiring to

transfer information between household devices was the CE bus (Consumer Electronic Bus)
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power-line carrier technology [30]. The development of a high-speed power-line carrier

(PLC) standard began with the establishment of the Data Networking Subcommittee R7.3

by the Consumer Electronics Association towards the end of 1999 [31]. The primary

goal of PLC technology is to achieve data speeds of up to 20 Mbit/s over power-line

connections. To ensure that this technology coexists with existing devices that use home

power lines for communication, the HomePlug Alliance was established, which aimed to

develop a low-cost technology [29].This technology leverages the existing powerline to provide

Ethernet-class data speeds at any power outlet. The data rates have increased significantly

with the advancement of signal processing and modulation techniques [32]. As a result,

several businesses and commercial infrastructures worldwide have established broadband

Internet access and building networks using PLC technology. In addition to that, Powerline

communication (PLC) networking offers advantages beyond home and building networks,

including communication in transport systems that already have electrical deployment [33].

Therefore, PLC networks have been studied for in-vehicle communication as well. However,

the use of PLC networks is not limited to these applications.

PLC networks have been proposed for various applications, including robotics [34],

authentication, security systems in mining [35], health monitoring [36, 37], and inductive

coupling [38, 39]. The broad range of potential applications and associated issues has

attracted significant attention from the scientific community and industry, leading to

numerous solutions and various regulation and standardization activities. In this paper, we

investigate the feasibility of a hybrid broadband power line and Wi-Fi communication system

in indoor industrial settings. The proposed system utilizes existing power line cables and

Wi-Fi Plug-and-Play devices for indoor broadband connectivity. BPL (Broadband Power

Line) adaptors with Wi-Fi outputs are used to construct an access network in industries,

particularly in areas with weak wireless router signals. We demonstrate through a laboratory
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experiment using the PLC Wi-Fi kit that a Wi-Fi and PLC hybrid network is well-suited

for practical applications in a industrial context.

2.2 Network Structure

As in the Industrial environment certain data must be transferred and accessed

across different units. The hybrid network architecture must have the ability to provide

flexible network connectivity. To ensure optimal performance, the diagnostic data from

network devices should be taken into consideration along with the service requirements

of each medical application. In this industrial network, we utilized the two most widely

used technologies - Wi-Fi and PLC - to build the access network. Our focus was on the

access network characteristics created using the AV1000 Gigabit Power line Adapter kit.

Specifically, in the industrial scenario illustrated in Figure2.2, the Wi-Fi serves as the access

point and is connected via Ethernet cable to the Tenda PH10 AV1000 AC WI-FI POWER

LINE ADAPTER P3 (PLC Master Router) that is connected to the main distribution panel

of the industrial electrical network. This master router spreads the signal via power lines to

the PLC/Wi- Fi outlets connected to the same electrical network where the connected PLC

Slaves catches the data signal and deliver it to the internet devices for remote monitoring and

industrial management etc. The high-end powerline adapter kit, (Tenda PH10 AV1000 AC

WI- FI POWER LINE ADAPTER) is a plug and play device that increases network coverage

to the different departments and other locations where the router’s wireless signal cannot

reach. The powerline adapter kit includes two devices: AV1000 Gigabit Powerline Adapter

and AV1000 ac Wi-Fi Powerline Extender, as shown in Figure 2.1a and 2.1b respectively.

Tenda powerline adapter uses HomeplugAV2 Technology standards, which supports MIMO

(Multiple Input Multiple Output) signaling with beamforming. This feature improves network
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coverage throughout the industry, particularly on high attenuated channels [8]. Additionally,

MIMO allows transmission on any two-wire pair within the three-wire configuration of Line,

Neutral, and Protective earth. The kit also offers extended frequency bands and efficient

notching, providing a maximum throughput of 1000Mbps on powerline and up to 200Mbps

on wireless at the physical layer. Tenda PH10 AV1000 AC WI-FI POWER LINE kit supports

all modern networking standards up to 802.11ac. The adaptor kit utilizes AC650 dual-band

Wi-Fi technology, ensuring speeds of 433Mbps on the 5GHz band and 200Mbps on the

2.4GHz band [11].

(a) Tenda PLC P3 Adapter (b) Tenda PLC PA7 Extender

Figure 2.1: Tenda PH10 AV1000 AC Wi-Fi Powerline Kit

The AV1000 ac Wi-Fi Powerline adapter features an Ethernet port for connecting

it to the wireless or Wi-Fi router, while the AV1000 ac Wi-Fi Powerline Extender has an

additional Gigabit Ethernet port for stable connections with wired devices such as remote

monitoring equipments, cameras, printer, TV, HD set-top box, and so on [29]. The Tenda

PH10 AV1000 ac Wi-Fi Powerline Extender Kit comprises the PA7 extender and a Tenda
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Figure 2.2: Industrial network design

P3 powerline adaptor. It is configured to use the Broadcom BCM47189B0 Chip in 2x 1x1:1

mode. The Broadcom BCM47189B0 Chip can be seen in Figure 2.3. Also, the device uses

Broadcom BCM60350 as the HomePlug controller. The RAM Configuration is 1Gb (64M x

16) on Winbond chipset W631GG6KB -15. The AV1000 AC Wi-Fi Powerline Extender Kit

is a set of PLC adapters that offer support for all modern networking stands from 802.11a

to 802.11ac for 2.4GHz and 5GHz bandwidth with theoretical speed of 1000Mbps on PHY

layer with 5GHZ band (433Mbps) and 2.4GHz band (200Mbps). The maximum Power

consumption of PA7 extender is 8.4W whereas the standby power is 4.7 W.

Similarly, the maximum power consumption of P3 adapter is 3.2W and the minimum



2.2 Network Structure 14

Figure 2.3: Broadcom BCM47189B0 chip

is 0.36W. The input power ranges from 100V to 240V for 50/60Hz power frequency. The

Tenda PH10 AV1000 AC WI-FI POWER LINE adaptor kit makes the internet available

to any area of a industrial building by sharing it wired or wireless with all internet devices

within the industry. The unified network can maintain stable connectivity within industrial

environment.

System Model

A system model was created to test the performance of the hybrid system in a

laboratory. A PLC Master was connected to the ipTIME AX8008M Wi-Fi Router via

Ethernet cable, which was then connected to a power line cable. We used electrical extension

boards to adjust the length in accordance with our requirements and to place the PLC

slaves at the specified location more accurately inside the network. The configuration of

the network is shown in Figure 2.4a, 2.4b, and 2.4c for lengths of 10, 30, and 60 meters,

respectively. The performance of the system was then analyzed using Startrinity CST

setting the download and upload limitations to 1000 Mbps and 100 Mbps, respectively. The

performance of the system was then analyzed using Startrinity CST setting the download
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and upload limitations to 1000 Mbps and 100 Mbps, respectively.

(a) 10 meters (b) 30 meters (c) 60 meters

Figure 2.4: Laboratory system setup for different lengths

Startrinity CST is a tool that continuously measures internet speed and can do it

for a very long period of time. Startrinity CST makes upload and download simultaneously

and continuously unlike other tools that make upload for a set period of time and downloads

for another set period. For such various tests, there may be different speed test results. For

example, downloading a file can start at a higher speed, but the speed can drop after some

time. Such degradation of internet quality is usually not detected by regular non- continuous

speed tests tools. Round Trip Time (RTT), packet loss, and jitters can also be measured

by the Startrinity CST. In this experiment, we restricted the upload and download speeds

to 100 Mbps and 1000 Mbps, respectively. Figure 2.5 shows the measurement speed for 20

seconds while Figure 2.6 illustrates the home page of the Startinity CST.

2.3 Performance Analysis of The Hybrid Network of Wi-Fi

and PLC

In order to test the performance at various locations, a hybrid PLC and Wi-Fi

network was created in the university laboratory. The network structure is depicted in block
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Figure 2.5: Measurement Results

diagram shown in Figure 2.7. We connected a Tenda PLC Master (P3) by Ethernet Cable

to the ipTIME AX8008M Wi-Fi router, which serves as a network access point, and then to

the Internet Service Provider (ISP). After that, we linked the Tenda PLC Slave (PA7) to

the Tenda PLC Master (PA3) via electrical power line extensions at three different distances

i.e., 10, 30, and 60 meters, and we individually analyzed the results. Figure 2.8 shows the

measurement points and physical distribution of the extenders. The Tenda P3 transmits the

signal via power lines throughout the electrical network and the Tenda PA7 extenders catch

the transmitted signal and spread it to the end devices where it can be used for different



2.3 Performance Analysis of The Hybrid Network of Wi-Fi and PLC 17

Figure 2.6: Startrinity CST home Page

industrial applications. We performed the experiments by considering the 3 points namely,

point 3, point 2 and point 5 that are located at distance 10, 30 and 60 meters respectively.

The access point is situated at point A. A Lenovo G50- 80 laptop and StarTinity software is

used to measure the different parameters of the network. StarTrinity CST measures the

different parameters of the network continuously from where a .CSV file can be generated

to extract different features of the network. For plotting we used matplotlib.pyplot Python

library.

2.3.1 Throughput Measurement

We set up the Tenda PA7 Wi-Fi Extender in 5G mode and operated it at points

3, 2, and 5 individually in order to assess the throughput at various locations. To create a

.CSV file for further analysis, we continually measured the bit rate for 150 seconds using

StarTrinity CST (Continuous Internet Speed Test). Overall, Figure 2.9 shows that the bit

rate drops gradually when the PA7 extender is moved away from the main router. First, the

PA7 extender was connected to the master router via Power-Line cable at a distance of 10

meters. The graph depicts that the average throughput was calculated to be 88.20 Mbps,
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Figure 2.7: System configuration

Figure 2.8: Location point within industrial network
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while the lowest and highest speeds were recorded at 77.14 and 94.91 Mbps, respectively.

After that, we extended the Power-Line Cable to point 2, which was 30 meters distant from

the main router, and connected the PA7 to the P3 adapter there. We then monitored the

data rate for an additional 150 seconds. It was seen that the lowest and maximum speeds

decreased to 75.25 Mbps, respectively, and that of the average speed reduced to 80 Mbps.

Finally, when the PA7 extender was extended to point 5, The average bit rate decreased

further to 77.12 Mbps, with the lowest being 62.35 Mbps and the maximum being 77.01

Mbps.

Figure 2.9: Throughput variation with length

2.3.2 Effect of Load on Tenda PA7 Powerline Extender

We initially evaluated the Ph10 Power line adapter kit’s performance in lines with

no load, after which we attached some load to the electrical network and retested the
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performance. The main access router was connected to the Tenda. We initially evaluated

the Ph10 Power line adapter kit’s performance in lines with no load, after which we attached

some load to the electrical network and retested the performance. The main access router

was connected to the Tenda PLC Master (PA3), which was then linked to the Tenda PLC

slave (PA7).

(a) Block diagram

(b) Laboratorial setup

Figure 2.10: 1400-Watt load connection

As illustrated in Figure 2.10a, the configuration was created for a single point

where the Tenda PA7 and Tenda PA3 were placed 50 meters apart and a 1400-watt load

was injected into the network. The real laboratory set-up is depicted in Figure 2.10b, and
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performance in both scenarios was examined. In order to Figure out how the load impacted

the extender’s performance; the throughput was monitored for 150 seconds. The graph in

Figure 2.11 shows that the first case’s average data rate was 70.7Mbps, with a lowest of

61.45 Mbps and a highest of 76.35 Mbps. However, the minimum and maximum data rates

declined to 48.98 Mbps and 73.52 Mbps, respectively, while the average rate decreased to

65.97Mpbs.

Figure 2.11: Performance of Tenda P10 with and without load

2.3.3 Signal Strength Analysis

To analyze the Received Signal Strength a Wi-Fi Analyzer Android application was

used. Figure 2.12a illustrates that at 20-meter distance the main router’s signal strength was

below -60dbm, however, this strength was above - 30dbm for the Tenda PA7 PLC extender.

Then, we extended the powerline extension to 25 meters and analyzed the signal strength of
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the Tenda P10 Tool Kit and the main router’s signal at that point. The Signal strength of

the main router’s signal was observed to be below -90 dBm compared to the Tenda PA10

Tool Kit’s signal strength which was just below -40 dBm as shown in Figure 2.12b. After

that, we further extended the extension to 30 meters distance. Figure 2.12c shows that at

30 meters distance the main access point router has no signal power to be shown on mobile

application but the Tenda P10 toolkit had a signal strength of above -30 dBm.

(a) 20 meters (b) 25 meters (c) 30 meters

Figure 2.12: Signal strength analysis at different distances

2.4 Applications and features of the hybrid system

2.4.1 Features

The hybrid system integrates the robust capabilities of both the PLC and Wi-

Fi technologies, formulating a multifaceted solution adeptly suited for diverse industrial

scenarios. Specifically, the hybrid system encompasses the subsequent functionalities:
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Locatable

In a versatile industrial environment, the hybrid system optimally leverages the

ubiquitous presence of electrical wiring for enhanced indoor positioning capabilities. The

integrated PLC network can seamlessly synchronize with existing tracking or monitoring

systems, providing a unified solution for power and communication needs. This integration

between PLC and Wi-Fi technologies can be instrumental in delivering a spectrum of indoor

location-based services essential for modern industrial operations, including precise indoor

navigation, emergency response coordination, and various other functionalities that bolster

operational efficiency and safety.

Mobility

The Tenda PLC P10 Power Line Kit exemplifies operational agility owing to its

plug-and-play nature and the pervasive deployment of electrical wiring throughout industrial

environments. Such a design enables facile repositioning of the PA7 extenders within a

unified electrical network, allowing for strategic placement and relocation based on evolving

operational demands, thereby ensuring uninterrupted and optimized connectivity across

various locational nodes within the industrial setting.

Radiation-Free

In industrial environments, mitigating unnecessary electromagnetic interference

is crucial to maintain the integrity and performance of various equipment and machinery.

Utilizing 3G/4G networks can introduce such interferences, potentially disrupting opera-

tional efficiency. The PLC system emerges as a superior alternative, enabling the transfer

of high data rates without the associated radiation leakage, thus safeguarding the opera-

tional environment from potential electromagnetic disruptions and maintaining a consistent



2.4 Applications and features of the hybrid system 24

performance standard across various industrial applications.

High Capacity

The hybrid configuration is proficiently engineered to attain data transmission rates

soaring up to 1000 Mbps, marking a substantial amplification in the system’s overall data

handling capacity. In a dynamic industrial setting populated with multiple concurrent users

and characterized by necessities for substantial, sporadic data transmissions, the augmented

capacity is instrumental. It seamlessly facilitates operations, such as the efficient handling of

voluminous data sets, supporting high-resolution video conferencing, and ensuring the swift

and reliable transfer of essential operational data, aligning with the diverse and demanding

requirements of a modern industrial ecosystem.

Data Security

Utilizing power line cables as the communication backbone, the hybrid system

enhances the security posture of data transmissions within the network. This approach

confines data exchange within the same electrical network, bolstering the integrity and confi-

dentiality of the information as it traverses various sectors within the industrial environment.

Such a secured communication pathway is instrumental in protecting sensitive operational

data from potential vulnerabilities and unauthorized access.

2.4.2 Possible Applications

Upon a meticulous evaluation of all intrinsic features of the proposed system, a

tangible demonstration employing the foundational methods has been actualized within a

lab setting, as depicted in Fig. 4. The manifold applications of this hybrid system can be

broadly categorized into two distinct groups, each aligning with their respective utilitarian
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functions and operational requisites.

Medical Uses

The system has the capability to offer various medical services through the integra-

tion of a robust network protocol. These services include patient data record maintenance,

efficient data management and transfer services, remote patient vital sign monitoring,

telemedicine or remote consultation services, immediate pathological image analysis through

diagnostic video conference, remote surgeries, and several other services.

Non-Medical Uses

The hybrid proposed system is versatile and can also offer various non-medical

services. These services include emergency broadcasting, managing indoor navigation

equipment, transmitting multimedia content for entertainment, controlling smart community

devices such as smart clocks, LED lights, and online attendance, etc.

2.5 Conclusion

In this chapter, we explore potential applications for a hybrid broadband power

line and Wi-Fi communication system in indoor industrial scenarios. The system utilizes the

already existing power line cables and Wi-Fi Plug-and-Play devices for indoor broadband

communication. Moreover, we discussed the effect of load and Powerline cable length on

the Tenda PH10 AV1000 AC Wi-Fi Powerline Extender Kit. First, we transferred the

100Mbps data from master router to the slaves placed at distances of 10, 30,60 meters and

calculated the download Mbps. It was concluded that the data rate decreased slightly when

the length of the power line cable increases. Also, the load also has a minimal effect on data

rate when compared with the no load power line. However, the proposed hybrid system
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has several excellent features, including, High capacity, strong privacy and security, and

impending availability. We do believe that using a hybrid system in a industrial setting can

emphasize its benefits, and we are hopeful that doing so would increase interest in e-health

research groups while also supporting applications for indoor industries. The selected Power

Line Communication (PLC) and Wi-Fi Kit incorporates all the current Wi-Fi technologies

and implements the widely adopted HomePlug AV2 specification for broadband power line

systems. The achieved results demonstrate the feasibility of using these devices for indoor

applications in industries, making them a suitable choice for building access networks.In

our future work we are planning to design smart beds for Intensive Care Units(ICU) using

Power Line and Wi-Fi standards.



Chapter 3

Radio Environment Map

Construction based on

Privacy-centric Federated Learning

3.1 Introduction

Awareness of operating environment conditions is progressively becoming an im-

portant supplementary aspect for efficiently managing resources in diverse dynamic systems.

This is particularly evident in the context of the Fourth Industrial Revolution. This era

has ushered in advanced technologies like artificial intelligence, big data, the Internet of

Things (IoT), and robotics, which have been deployed in smart factories. These factories

automate production processes, thereby facilitating automatic assessment of process status

and enabling timely interventions [12].

Central to the functionality of smart factories is wireless communications, which

assumes a pivotal role in empowering instantaneous tracking and surveillance of production

27
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processes. Moreover, the flexibility and simplicity of wireless communications make it

the preferred mode of connectivity in the dynamic landscape of production environments,

compared to cumbersome wired alternatives. However, the surging count of wireless devices

introduces a challenge—potential interference with the industrial, scientific, and medical

(ISM) band [13]. Moreover, obstacles within indoor environments can attenuate commu-

nication signals, leading to regions of radio shadow. Accordingly, a precise assessment

of the extent of radio communication coverage emerges as a priority. In addressing the

aforementioned challenge, radio environment map (REM) construction has been investigated

as an innovative tool that serves to furnish intricate details about the radio environment

within specific geographic areas. By harnessing the insights provided by the REM, informed

decision-making is facilitated, and network operators can seamlessly identify coverage gaps

and high-traffic regions [14].

In the literature, path loss models have been investigated for coverage prediction.

However, these models depend on various factors, such as the distance between transmitter

and receiver as well as the height of the receiver and transmitter above ground, which

increases the difference in error prediction between real and estimated values [40]. Hence,

machine learning (ML)-based approaches have emerged as innovative predictive methods

capable of effectively addressing the intricate operational challenges within communication

networks. These techniques have demonstrated a remarkable ability to achieve high prediction

accuracy [41, 42]. For instance, researchers have projected the path loss in an urban setting

in Beijing, China, when utilizing artificial neural networks (ANNs), support vector regression

(SVR), and random forest (RF) models [43]. Assessments of performance were measured

through root mean square error (RMSE), yielding results ranging between 4 dB and 5 dB.

In [44],the authors proposed the extra tree regressor-based approach for REM construction

in wireless communications networks for indoor environments. The results showed that
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the extra tree regressor can obtain the best accuracy with less computational time than

other ensemble learning baseline schemes. To the best of our knowledge, the researchers

described above considered a centralized manner where the learning process is managed

by a central server or a base station. In this paper, we propose a federated learning (FL)

approach called FedLSTM, which works with a long short-term memory (LSTM) model

to provide distributed learning between users. Note that in the conventional centralized

approach, more data are transmitted since both the features and the labels must be sent.

On the other hand, in a distributed manner, the user only sends the weights of the local

model that are entailed in computation.

Moreover, the proposed FedLSTM scheme allows both server and users to generate

the REM. Then, the server can be considered network planning to obtain a REM that

can solve coverage problems (installing APs or relays). Meanwhile, users can more fully

appreciate coverage of the area, and can redirect to a better coverage area by looking at the

REM. In addition, the proposed FL-based approach provides security because the data sent

to the server are the weights, not the labels and features of each user. This scenario is very

useful in commercial, hospital, and military environments where users do not want to share

their location with unknown people, thus guaranteeing privacy and security.

We propose a novel FL-based approach to coverage prediction in indoor environ-

ments that not only minimizes data transmission but also enables network planning and

empowers users to make informed decisions about their coverage. Additionally, it prioritizes

user privacy and security, making it highly applicable in various sensitive settings

The main contributions of this paper can be summarized as follows.

• First, we propose a novel FL-based approach, called FedLSTM, providing coverage

prediction for indoor environments. FedLSTM enables distributed model training

by having users send only model weights to the server. This is in stark contrast to
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centralized approaches where users must transmit both features and labels, leading to

a significant increase in data transmissions.

• Secondly, the data utilized in this study were collected from a real environment with

location points captured using Emesent’s Hovermap and real received signal strength

indicator (RSSI) values obtained via Raspberry Pi. After collection, we preprocess

the location data with Emesent’s software and synchronize it with the cleaned RSSI

readings from Raspberry Pi by using timestamps.

• Third, we construct a REM by using Python software to enhance coverage prediction

visualization. For this objective, we generate a grid of data comprising 1000 × 1000

grid points within our area of interest to plot coverage prediction over a 2D map.

• Furthermore, our FL-based scheme empowers both server and users to generate the

REM. The server functions as the network planner, leveraging the REM to address

coverage issues by installing access points or relays. On the other hand, users can assess

the coverage of their area and relocate to areas with better coverage by examining the

REM.

• In addition, we compared the FedLSTM model with its centralized counterpart, showing

that our research ensures security by transmitting only the weights of each user’s

model to the server, while the labels and features remain private. This approach is

particularly advantageous in commercial, hospital, and military settings where users

are hesitant to share their location data with unknown entities.

3.2 Related Work

Radio maps (commonly known as REMs) and their construction play a very

important role in modern communication systems. These maps offer a comprehensive view of



3.2 Related Work 31

the radio spectrum environment by retaining various types of information, from geographic

and land features to spectrum usage characteristics. Over the years, a significant amount of

research has been conducted to enhance and diversify their applications. Introduced in 2006

[45], REMs have facilitated a multitude of applications, ranging from network monitoring [46],

localization [47] and resource management [48] to V2X communication [49,50].

Traditional methods of radio map construction often involve detailed field surveys,

which can be time-consuming and labor-intensive. To address this, researchers have been

developing algorithms to lower these costs. A number of path loss models have been

influenced by factors like terrain suitability, the heights of the receiver and transmitter above

ground level, their spatial [51]. These elements can widen the gap between forecast and

real signal degradation, with the extent of the variance hinging on the chosen propagation

model. In the REM construction literature, ordinary kriging (OK) is frequently employed as

a geostatistics-based spatial interpolation method [52,53]. OK predicts unseen data points

by considering the spatial relationships between recorded data and the relative locations of

all sampled points [54]

In [55] Maiti and Mitra developed a radio map for indoor signal propagation,

leveraging interpolation methodologies. Results showed that OK achieved better performance

than ordinary methods like inverse distance weighting [56] and K-nearest neighbors (KNN).

These methods were evaluated based on prediction error, i.e., RMSE. Although the OK-

based model achieved better performance, it encounters a limitation in its computational

proficiency, especially with more data points [57].

In [57], and [58], heuristic-derived methodologies were introduced providing indoor

coverage prediction for indoor dominant path models. However, heuristic solutions are

typically designed for specific problems, and might not generalize well to other scenarios or

variations of the problem, making them inconsistent and unreliable in critical applications.
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In classical prediction models, the design of mobile-device networks demonstrates

an inherent lack of adaptability [59]. Predictions are constrained to specific conditions, such

as frequency range, antenna height, and surrounding environmental conditions. Nonetheless,

current observations indicate that the operational environment of modern radio networks is

characterized by an elevated level of diversity and complexity [60]. Consequently, there is a

strong need for prediction models that are more flexible and that can handle the challenges

of modern networks.

ML-based prediction techniques are recognized as revolutionary within the realm

of modern mobile-device network planning owing to their enhanced accuracy over age-

old empirical prediction methods. When compared with deterministic-based models, the

ML-based methods are notably superior in their data processing efficacy [61,62].

For instance, the authors in [63] conducted research in an urban area of Lisbon,

Portugal, at 3.7 GHz and 26 GHz frequency bands, leveraging an authentic 5G network.

They utilized input factors, and the resultant values closely matched those in [43]. However,

the dataset utilized was double in size. The study mainly focused on SVR and RF models,

which showed error rates ranging between 6 dB to 7 dB.

Similarly, the authors in [64] conducted their research in suburban areas of South

Korea, focusing on frequency bands of 450 MHz, 1450 MHz, and 2300 MHz. Although the

input parameters were mostly similar to previous studies, a new parameter was introduced:

the ratio between Tx height and Rx height. That research exclusively employed the Artificial

Neural Network (ANN) and Gaussian Process Regression (GPR) ML models, both of which

exhibited RMSE values ranging from 8 dB to 9 dB.

Lastly, the authors in [65] introduced a new approach using the extremely random-

ized trees regressor (ERTR) algorithm for mobile coverage prediction, and visualized results

on a REM overlaid on top of Google Earth. Real measurement data from Victoria Island
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and Ikoyi in Lagos, Nigeria, were used. Through extensive simulations and comparisons

with seven other ML algorithms, including ordinary kriging, the ERTR algorithm showed

the lowest RMSE error at 2.75 dB with an R2 score of 92

Lastly, the author in [66] introduced a new approach using the extremely randomized

trees regressor (ERTR) algorithm for mobile coverage prediction and visualizes results on a

REM overlaid on Google Earth. Real measurement data from Victoria Island and Ikoyi in

Lagos, Nigeria was used. Through extensive simulations and comparisons with seven other

ML algorithms, including ordinary kriging, the ERTR algorithm showed the lowest RMSE

error of 2.75 dB with R-2 score of 92%.

To the best of our knowledge, commonly employed methods for constructing radio

maps heavily rely on centralized data approaches. While these methods are comprehensive,

they bring forth computational complexities and potential vulnerabilities, particularly

concerning user-specific data such as geospatial information. In environments such as

commercial complexes, healthcare institutions, and military facilities, the adoption of

a centralized approach is considered suboptimal. In these contexts, users place a high

premium on privacy and security, necessitating measures to prevent the disclosure of location

information to unauthorized parties. Our model incorporates the FL approach, advocating

decentralized data processing across user nodes. Unlike the centralized framework, which

necessitates transmission of both feature vectors and labels, the federated approach entails

only transmission of model weight vectors. This reduction in data transmission overhead

simultaneously enhances data security for users, with a minimal increase in prediction error.
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3.3 Data Collection and Preprocessing

In this study, we sourced our primary data from the Engineering Building at the

University of Ulsan in South Korea. For the collection process, we systematically employed

two key devices: the Emesent Hovermap and Raspberry Pi.

3.3.1 Emesent Hovermap

Emesent Hovermap, shown in Figure 3.1, is a cutting-edge LiDAR mapping and

autonomy payload designed for drones. It facilitates the capture of high-resolution, 3D

spatial data in environments where GPS signals may be unreliable or non-existent, such as

underground mines, dense forests, or indoors. Powered by Emesent’s proprietary SLAM

(Simultaneous Localization and Mapping) algorithm, Hovermap allows drones to navigate

autonomously, avoid obstacles, and ensure safe flight in challenging terrains.

Figure 3.1: EMESENT Hovermap

What sets Hovermap apart is its ability to transform the way industries like mining,

infrastructure, and forestry collect and utilize data, promoting safer and more efficient

operations. With its advanced features and capabilities, Hovermap is establishing itself as a
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game-changer in the domain of drone-based LiDAR mapping. The Emesent Hovermap is

equipped with three distinct ports, two specialized antennas, and a dedicated power button,

each serving specific functions as outlined below. A detailed depiction of these components

can be found in Figure 3.2.

• USB Port: This port facilitates fast data transfer and connectivity. It’s commonly

used to upload or download data, update firmware, or connect the device to external

computing resources.

• Serial Port: A communication interface that allows the Hover Map to connect with

other hardware devices or controllers. The serial port is crucial for real-time data

transmission, especially in applications where timing is critical.

• Power Port: As the name suggests, this port is used to charge the device or provide

continuous power during operation. Ensuring a reliable power source is essential for

the uninterrupted functioning of the Hover Map.

• Status LED: A light-emitting diode (LED) that provides visual feedback about the

device’s operational status. By observing the LED’s behavior (such as blinking patterns

or color changes), users can quickly determine if the device is working correctly or if

there are any issues.

• Power Button: A tactile button used to turn the Hover Map on or off. It might

also have additional functionalities like resetting the device or initiating specific modes

when pressed in certain sequences.

• Antennas: These are essential for ensuring strong wireless communication. The

antennas on the Hover Map likely enhance its capability to send and receive data,

especially in environments where signal strength might be compromised.
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Figure 3.2: EMESENT Hovermap Rear View

3.3.2 SLAM Distance Measurement via LiDAR

LiDAR, which stands for Light Detection and Ranging, is a remote sensing method

that uses light in the form of a pulsed laser to measure distances to objects on the ground,

in the water, or in the atmosphere. The fundamental principle behind LiDAR involves

emitting laser pulses and then measuring the time it takes for the emitted light to travel

to the target and reflect back to the sensor. This time, often referred to as the ’time of

flight’, when combined with the known speed of light, gives a direct measure of the distance

between the sensor and the object. In the context of SLAM (Simultaneous Localization

and Mapping), which is a computational problem of constructing or updating a map of

an unknown environment while simultaneously keeping track of an agent’s location within

it, LiDAR can be pivotal. The high-resolution distance data from LiDAR can be used by

SLAM algorithms to identify and map structures in the environment while also determining

the sensor’s position within this environment. This simultaneous ability to map and localize
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using accurate distance measurements makes LiDAR an invaluable tool in applications like

autonomous driving, robotics, and topographical mapping. The cloud map of room 611, at

university of Ulsan, is shown in figure 3.3

Figure 3.3: Cloudmap of room 7-611

3.3.3 RSSI Value Measurement

The Raspberry Pi (RPi) is a compact single-board computer birthed by the

Raspberry Pi Foundation. While its initial intention was to foster computer science education,

its adaptability soon found it embedded in a myriad of tech ventures. The RPi, equipped

with ARM CPUs, GPIO pins, USB ports, and supporting multiple operating systems, most

notably Raspbian, has become a staple for hobbyists and professionals alike, especially in

the realms of embedded systems and IoT applications. For our specific project involving

the Emesent Hovermap, we harnessed the capabilities of the RPi. We mounted the RPi



3.3 Data Collection and Preprocessing 38

module on the Hovermap as shown in the Figure3.4, capitalizing on its integrated Wi-Fi

module to systematically capture the received signal strength indicator (RSSI) values— a

widely acknowledged metric to gauge the connection quality in wireless systems like Wi-Fi,

Bluetooth, and cellular networks. These RSSI values, articulated in decibel-milliwatts (dBm),

after collection, underwent preprocessing to discard NaN values and anomalies. To ensure

seamless integration of data, the location particulars derived from the Emesent Hovermap

and the RSSI figures captured by the Raspberry Pi were synchronized through Python-based

timestamp alignment.

Figure 3.4: Raspberry Pi mounted on EMESENT Hovermap

In our experimental framework, we engaged 16 distinct clients for model updating.

Each client traversed ten specific paths, updating the model at every juncture. For instance,

the eight paths taken by client 1 during its model updates are depicted in Figure ??. It’s

worth noting that every client adopted diverse paths for data collection in each instance.

The newly acquired data was then employed by each client to train its local model, ensuring
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compliance with predetermined model guidelines and hyperparameters. After the local train-

ing, the model weights were relayed to a centralized server. Here, these weights underwent

aggregation to refresh the global model’s parameters. This cyclical procedure, alternating

between individual training and centralized weight aggregation, was systematically performed

for all 16 clients across ten communication cycles.

3.4 System Model

Traditional centralized learning methodologies generally comprise three stages:

1) data preprocessing, 2) data consolidation, and 3) model creation. In the context of

centralized learning, data preprocessing implies deriving data features and labels from raw

data forms, such as text, imagery, and application-specific data, prior to engaging in data

consolidation. This stage incorporates substeps like sample acquisition, outlier elimination,

feature normalization, and feature amalgamation. With respect to data consolidation,

traditional learning models invariably partake in direct data exchanges amongst parties to

secure a comprehensive database for training purposes. This approach, however, confronts

the emerging hurdles of data privacy laws and regulations because institutions risk privacy

breaches and infringement of legal frameworks such as the General Data Protection Reg-

ulations (GDPR) through such data sharing procedures. FL is proposed as a solution to

the aforementioned issues. Nevertheless, extant FL frameworks frequently resort to rudi-

mentary ML models such as XGBoost and decision trees instead of complex deep learning

models [46]. These models necessitate uploading copious parameters to the cloud within the

FL framework, culminating in substantial communications overhead, which may precipitate

training failures for individual or global models. Consequently, FL frameworks require the
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establishment of a novel parameter consolidation mechanism for deep learning models to

attenuate communications overhead.

Figure 3.5: Federated learning overview

It is noteworthy to highlight the FL approach’s security potential. In contrast

to traditional methods that may violate privacy laws like GDPR, FL ensures that raw

data remain at the source, drastically reducing the likelihood of data breaches. It instead

deals with model parameter updates, which do not contain sensitive information and are

difficult to reverse-engineer. Thus, FL provides a layer of protection that is crucial in today’s

increasingly privacy-conscious world.

3.4.1 Federated Learning

FL is a novel approach to ML where a model is trained across multiple devices

or servers while keeping the data localized. Instead of transferring raw data to a central
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server for training, FL pushes the model to edge devices (smartphones, tablets, IoT devices,

etc.) and allows training to happen locally on each device. After local training, only the

model updates are sent to the central server where they are aggregated and the global model

is updated. Figure 3.5 shows the overall FL process. This approach addresses multiple

concerns, such as privacy, security, and data ownership, while ensuring a quality model.

In the context of wireless communications, consider a system with N clients where

each client, j, has its own distinct local dataset. The FL procedure begins with the central

server initializing the global model. Let the parameters of this model be denoted by ω.

For the ith iteration of the FL process, the central server shares the current global model

parameters, ωi, with all N clients. Subsequently, each client j utilizes its dataset to conduct

local training. Through this, it computes an updated version of the model parameter, which

we label ωi,j . After completion of this local training phase, each client’s updates are sent back

to the central server. The server then aggregates these updates using Federated Averaging

(FedAvg) shown in Algorithm 1. The aggregated update for the ith iteration is described by

the following equation:

ωi+1 =
1

n

N∑
j=1

ωi,j (3.1)

This signifies the averaging of all local model parameters to yield the global model

parameter for the subsequent iteration. The major advantages of FL in the context of wireless

communications include preserving the privacy of user data, reducing the communications

load from transmitting large datasets, and harnessing distributed data resources.

3.4.2 FedLSTM Archeticture

LSTM is a specialized type of recurrent neural network (RNN) designed to remember

and utilize information over extended sequences. This capability addresses the vanishing
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Algorithm 1 Federated Learning Process with FedAveraging

1: Initialize global model parameters ω on central server

2: for round = 1 to i do ▷ Repeat for i communication

rounds

3: selected clients ← Randomly select N clients

4: for each client j in selected clients do

5: Send current model parameters ωi to client j

6: ωi,j ← client j performs local training using its

data

7: Send ωi,j back to central server

8: end for

9: ωi+1 ← 0

10: for each client j in selected clients do

11: ωi+1 =ωi+1 + ωi,j

12: end for

13: Apply FedAvg:

14: ωi+1 =ωi+1/N ▷ Average the updates

15: Send updated model parameters ωi+1 to all

selected clients

16: end for
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gradient problem commonly observed in traditional RNNs, enabling LSTM to learn and

retain long-term dependencies in the data. Often utilized in time series prediction and

other sequential tasks, LSTM significantly improves the efficiency and accuracy of deep

learning models dealing with sequential data. RSSI prediction based on x and y geographic

coordinates, can be done by the LSTM model. We train the LSTM model in a federated

manner at the edge, and update the global model on the server. This proposed federated

LSTM is called FedLSTM owing to the nature of its training. At first, the global model

is initialized with random weights, and is then updated by the clients locally. The layer

architecture starts with an LSTM layer of 256 units, designed to process spatial input and

extract pertinent sequential patterns. To avoid overfitting, a subsequent dropout layer is

employed, ensuring the model remains generalizable across diverse radio conditions. The

succeeding layers (LSTM with 128 units and 64 units) progressively refine these patterns

with intermittent dropout layers for regularization. The architecture ends with a pair of

dense layers; the first handles the processed data, and the subsequent layer outputs the

predicted RSSI value. The detailed, layer-by-layer architecture is described in Table 3.1.

What sets this research apart is its innovative adoption of federated learning.

Rather than centralized model training, the architecture is distributed across multiple clients.

Each client refines the model using local data before sending weight updates to a central

server. This decentralized approach not only accentuates data privacy but also captures the

diverse radio environments each client is exposed to, ensuring a more comprehensive and

applicable real-world REM.

3.4.3 REM Construction

In this subsection, our primary focus is the construction of a deep FL model designed

to predict indoor propagation coverage for Wi-Fi networks using x and y coordinates of the
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Table 3.1: Architecture of the LSTM Network

Layer (type) Output Shape Param # Description

lstm 3 (LSTM) (None, 3, 256) 265,216 LSTM layer

dropout 3 (Dropout) (None, 3, 256) 0 Regularization layer

lstm 4 (LSTM) (None, 3, 128) 197,120 LSTM layer

dropout 4 (Dropout) (None, 3, 128) 0 Regularization layer

lstm 5 (LSTM) (None, 64) 49,408 LSTM layer

dropout 5 (Dropout) (None, 64) 0 Regularization layer

dense 2 (Dense) (None, 32) 2,080 Fully connected layer

dense 3 (Dense) (None, 1) 33 Fully connected layer

Total Parameters: 513,857

Trainable Parameters: 513,857

Non-Trainable Parameters: 0

area of interest. To design the deployment model, we trained the deep FedLSTM network in

a distributed manner. This can be mathematically represented as

L(θ) =
N∑
j=1

wjLj(θ) (3.2)

where L(θ) denotes the global loss function, N is the total number of local datasets, wj

signifies the weight assigned to each local dataset, and Lj(θ) represents the loss function for

the jth local dataset.
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The input dataset, denoted D, is partitioned into two subsets: Dtrain (for training)

and Dvalid (for validation or testing). This division is crucial for effective hyperparameter

tuning. As a result, parameters θ are fine-tuned based on evaluation metrics such as relative

error ϵ, MAE, RMSE, and R2 scores.

To visualize the radio map over our target area, we constructed a mesh grid with

1000× 1000 points. This grid was delineated by considering the minimum and maximum co-

ordinates within our region of interest. To achieve this, we employed the Emesent Hovermap,

which utilizes a LiDAR sensor in tandem with SLAM to produce a 3D representation of

the environment. The resulting data are processed in CloudCompare, producing a point

cloud. This point cloud can be further refined into a comprehensive 3D model, such as a

mesh derived from the identified extreme points.

Figure 3.6: REM Construction.
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Subsequent steps involve feature normalization based on the Z-score. We then

employ a FedLSTM-driven regression approach tailored for the prediction task. Using the

model trained in a federated manner, coverage predictions are determined from the RSSI

values for each grid point. The predicted values derived from the federated framework are

then combined with horizontal and vertical coordinates of the grid. This results in a REM

visualizing the predicted data points as a pseudocolor plot, which is rendered into a 2D

map using the pcolor function. Complementing this, a bar graph is introduced to correlate

our data with the associated color representation in each plot. For a clearer understanding,

Figure 3.6 provides a detailed graphical representation of the entire procedure.

Fine Tunning Process

For construction of the REM, the fine-tuning procedure necessitates systematic

optimization of various hyperparameters to achieve optimal model performance. Determining

the optimal network architecture, including the choice of layers, is critical. Additionally,

regularization parameters are carefully adjusted to prevent overfitting and improve the

model’s generalization capability. Time steps, which influence LSTM’s ability to capture

temporal dependencies, are also an essential aspect of this fine-tuning. The entire optimiza-

tion process is carried out on a trial-and-error basis. The performance of each configuration

is assessed using several metrics, namely RMSE, R2 score, and relative error. Each iteration

provides insights, helping subsequent adjustments to refine the model’s performance for

REM construction. The detailed fine-tuning process is illustrated in Figure 3.7.

3.4.4 Model Evaluation

In this subsection, we evaluate the efficiency of the proposed federated model

with different evaluation error metrics: RMSE, MAE, relative error, R2 score,and mean
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Figure 3.7: Fine-tuning the FedLSTM network for REM construction.

absolute percentage error (MAPE). These error metrics can best evaluate the performance

of the model in different ways. In the field of wireless communications, they play a vital

role in evaluating the performance of the prediction model. Predicting RSSI at distinct x

and y coordinates demands a comprehensive understanding of the deviations between true

measurements and predicted values, because these can greatly influence the precision of

REM generation. Recognizing these error metrics aids in refining and bolstering predictive

models. Some of the main metrics are explained below.

Root Mean Square Error shows the average squared deviations between true

values, y, and predicted values, ŷ. In REM building, a low RMSE means the federated

LSTM model predicts RSSI values accurately across different locations. The formula for

RMSE is

ErRMSE =

√√√√ 1

m

m∑
i=1

(yi − ŷi)
2 (3.3)
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Mean Absolute Error calculates the average deviation between predicted and

true values. This metric becomes essential in scenarios where accurate RSSI predictions are

critical for precise REM construction:

ErMAE =
1

m

m∑
i=1

|yi − ŷi| (3.4)

Relative Error provides a deviation measure adjusted by the actual value. Con-

sidering the diverse range of wireless signal strengths, this metric evaluates the proportional

differences between predicted and actual values across various signal levels:

ErRelative =
|ŷi − yi|

yi
(3.5)

Mean Absolute Percentage Error characterizes the deviations of predictions

in terms of their percentage errors from actual observations. Given its foundation in relative

accuracy, MAPE is paramount for discerning the fidelity of REM predictions in the context

of empirical data:

ErMAPE =
100

m

m∑
i=1

∣∣∣∣yi − ŷi
yi

∣∣∣∣ (3.6)

The R2 score, also known as the coefficient of determination, measures how well

the model’s predictions correspond to the actual data. An R2 value approaching 1 indicates

the model accounts for most of the variability in the data, signifying precise RSSI predictions

suitable for REM creation. Conversely, an R2 value approaching 0 suggests the predictions

are predominantly aligned with the data’s average, potentially lacking in genuine predictive

power:

ErR2 = 1−
∑m

i=1(yi − ŷi)
2∑m

i=1(yi − ȳi)2
, (3.7)

with ȳi representing the mean target value.
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Overall, these metrics address various dimensions of prediction accuracy. By analyz-

ing them collectively, we obtain a comprehensive understanding of the model’s performance

and robustness, which is critical for optimal wireless communications and precise REM

generation.

Implementation Platform

We utilized the NVIDIA GeForce RTX 3060 Graphics Processing Unit (GPU) for

our training processes. This GPU enables us to undertake sophisticated deep-learning tasks

with remarkable efficiency and speed. The NVIDIA GeForce RTX 3060 is equipped with

a state-of-the-art Ampere architecture boasting 3584 CUDA cores capable of delivering

impressive computational throughput. Alongside this, the card is complemented with 12

GB of GDDR6 memory, ensuring swift data handling during intensive operations. For our

development environment, we utilized Python, and structured our deep learning architectures

using the TensorFlow framework.

3.5 Numerical Results

In this section, we evaluate the performance of the proposed FL model using

various testing scenarios. We established multiple experimental setups to rigorously analyze

the behavior of the FedLSTM network under different conditions. Initially, the REM was

constructed using a centralized LSTM network with a consistent architecture. This served as

a baseline to compare against the federated configuration of the REM employing the same

architecture. We conducted evaluations of FedLSTM based on different numbers of clients

in the training process, enabling an assessment of performance fluctuations. The effect of

varying local epochs on client devices was also studied to evaluate the adaptability of less

computationally robust devices. Additionally, FedLSTM’s performance was examined across
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different client configurations and batch sizes, elucidating their respective impacts on model

efficiency. Detailed numerical results of these evaluations are provided in the subsequent

subsections.

3.5.1 Comparison with a Centralized LSTM Network

To evaluate our federated model’s performance, it is essential to compare it against

a centralized model. In our experiment, we employed a federated setup consisting of 10

clients. Each client moved along a different path to collect data from different parts of

the area of interest. The model was created on the main server and then distributed to

the participating clients. After each client trains the model using their data for these two

rounds, the updates are sent to the central server. The server integrates each update with

those from other clients, and then relays the consolidated model to another randomly chosen

client. For this experiment, data processing was conducted in batch sizes of 32. Referring to

the results in Figure 3.8, our Federated LSTM model’s performance metrics (RMSE, MAE,

and R2 score) were assessed against the centralized model.

The federated model’s RMSE was marginally elevated by 0.1 dBm in compari-

son to its centralized counterpart. The MAE metric indicated a prediction difference of

approximately 0.2 dBm. When evaluating the R2 score, the centralized model exhibited

a slight advantage. However, it is crucial to highlight that while the centralized model

offers marginally better performance, it raises concerns over data privacy, demands higher

computational resources, and creates more communications overhead. Particularly in the

process of aggregating data across an expansive geographic spectrum for REM construction,

the centralized methodology demands substantial bandwidth for data transmission, which is

a concern for participants reluctant to disclose their location due to potential security and

privacy breaches.
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Figure 3.8: Performance Comparison of centralized and federated LSTM networks

3.5.2 Impact of the Number of Clients on Global Convergence

n this assessment, we evaluate the impact of the number of clients participating in

convergence of the federated model. The model was employed in different federated settings;

each time, the number of participating clients was changed to observe the behavior of the

model. We evaluated the regression model with five error metrics, namely, RMSE, MAE, R2,

relative error, and MAPE. In general, the performance of the model can attain the expected

efficiency with various numbers of clients participating in the FL model. However, the more

clients, the sooner the system will converge to the global minimum.

Therefore, with a large number of clients using FedLSTM, prediction accuracy

can quickly achieve high performance, and thus, the accuracy will be more stable through

communication rounds. Figure 3.9 shows that for C = 16, the R2 score of the FedLSTM



3.5 Numerical Results 52

model reached 90% after just two communication rounds, and reached 93% after 10 rounds.

In contrast, the system with few assigned clients (C = 4) had a relatively lower R2 score,

not going above 90% even after 10 communication rounds.

Figure 3.9: R2 variations from the number of clients

Similarly, Figure 3.10 shows that the RMSE of the federated model also showed a

lower value, which means best performance, when the number of clients in model training was

high (C = 16). The proposed federated model showed a lower RMSE in all communication

rounds when C was 16. This error metric was high when C was 4. In the early communication

rounds, the model with four clients showed fast convergence. However, convergence was

reduced after five communication rounds. This means that with fewer clients, the model may

start with sharp convergence, but it may stop further along with certain communication
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updates.

Figure 3.10: RMSE variations from the number of clients

In addition, MAE calculates the average deviation between predicted and true val-

ues, and in our setting, MAE also followed the trends in Figure 3.11. The graph depicts high

MAE in every communication round when C = 4. Even after 10 rounds, MAE was 3 dBm,

just above 2 dBm when clients numbered 8 and 12. However, MAE decreased continuously

to 2 dBm after eight communication rounds, and the trend continued, decreasing to below 2

after 10 rounds.

Furthermore, the model was evaluated with relative error to show the deviations

from actual values and the proportional differences between predicted and actual values
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Figure 3.11: MAE variations from the number of clients

across the data. The relative error graph in Figure 3.12 illustrates that an increase in clients

had a strong impact. Relative error was above 0.06 dBm before five communication rounds

had been completed, and then dropped to about 0.05 dBm after 10 rounds. This error metric

followed the same trend as metrics discussed above, meaning that relative error decreased

with each client added to train and update the model. This error was near 0.03 dBm when

C = 16 after 10 rounds for updating the model. With that many clients, the error dropped

very fast in the beginning as well.

Finally, to characterize deviations in predictions in terms of percentage errors from

actual values the mean absolute percentage error was evaluated based on variations in the

number of clients updating the model.
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Figure 3.12: Relative error based on the number of clients

Figure 3.13 shows MAPE was below 4% when C = 16 after 10 rounds. In contrast, this

error increased to around 5% when C = 4. MAPE was around 4% with eight and 12 clients,

but converged to these values in the final updates, compared with 16 clients updating model

weights.

Overall, for a system with 16 clients, in comparison with the four-client system,

accuracy and precision were higher with notably fewer errors. Generally, in a predetermined

number of training rounds, the number of clients affects the FL process accuracy and

convergence speed. As more clients participated in the FL process in each round, the model’s

absolute precision and training speed suffered from fewer adverse effects. Nevertheless, once

C improved to a particular level, advancement of system performance was less noteworthy,

and sometimes even degraded. When putting the FL process into practice, we can face



3.5 Numerical Results 56

Figure 3.13: MAPE variations based on the number of clients

difficulties in that as C increases, more clients update local parameters to the server. As a

consequence, the communication and computation costs of the FL model amplify significantly.

This is encouraging because, in real-world applications with large-scale clients, we only need

to select a set of clients from the network to execute the FL process in each communication

round. This procedure saves considerable communication costs in the FL process.

3.5.3 Contribution of Local Model Epochs to Global Convergence

In ML, an epoch is one complete cycle through the full training dataset. Specifically,

each epoch involves both forward propagation (estimation of output given the input) and

backward propagation (adjustment of model weight based on error). The number of epochs

is a hyperparameter that determines how many times the learning algorithm will work
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through the entire training dataset. In the context of FL, where data remain distributed

across multiple devices or nodes and do not converge centrally, the local number of epochs

becomes a pivotal factor. It dictates how much training is conducted on each local dataset

before aggregating model updates into the global model. This subsubsection delves into the

nuanced influence that varying the local number of epochs has on convergence speed and

quality in FL setups.

From Figure 3.14, it is evident that as the number of epochs for training on each

selected client per communication round increased, the RMSE of the federated model de-

creased. To elucidate, in the federated setting where the number of epochs was set to two (

ϵ = 2), the model experienced rapid convergence initially but plateaued at a value of 2.75

dBm after 20 epochs. In contrast, as ϵ was incremented to 3, 4, and finally 5, the trends

illustrate that the RMSE of the model with ϵ = 5 remained consistently lower than the other

three configurations in every communication round.

Similarly, to assess the accuracy with which our federated model represents the

data, we evaluated the R2 score. As depicted in Figure 3.15, our federated model achieves a

commendable R2 score of 93% after only a few communication updates when ϵ is set to 5.

However, when the local epochs ϵ are adjusted to 4, 3, and 2, there is a subsequent decrease

in the R2 score for each setting. However, their impact on the global model convergence

decreases with the increase in the number of communication rounds.

Furthermore, the model was assessed using relative error to demonstrate deviations,

adjusted by the actual values, and to display the proportional differences between the

predicted and actual values across the data. Figure 3.16 illustrates that as ϵ increased from 2

to 5, the FedLSTM model mirrored the trend exhibited by variations in the number of clients.
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Figure 3.14: RMSE variations from the local number of epochs

In the initial communication rounds, ϵ significantly impacted global convergence. There

appears to be a substantial difference between ϵ = 2 and ϵ = 5 in the early stages; however,

after each update, this difference decreased to a certain extent. By the 20th communication

round, the difference in relative error amongst the four settings for ϵ (5, 4, 3, and 2) was

minimal, indicating that with more communication rounds, models with fewer or more

epochs can exhibit nearly identical performance.

Figure 3.17 illustrates how MAPE, expressed as a percentage, quantified prediction

deviations from actual error values based on variations in the number of clients during model

updates.

Lastly, mean absolute error quantifies the average deviation between predicted and

actual values. In our experiments, trends in MAE were consistent with those observed in
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Figure 3.15: R2 score variations based on the number of local epochs

other error metrics. Figure 3.18 illustrates how MAE was notably high during the initial

communication rounds when ϵ =2. Conversely, when ϵ = 5 for the first model aggregation,

MAE was significantly lower. Yet as the aggregation rounds proceeded, the disparity in

MAE between different ϵ settings diminished considerably, eventually converging to a value

slightly above 2 dBm across all settings. Nonetheless, the model with ϵ = 5 consistently

registered a lower MAE, whereas ϵ = 2 consistently exhibited a higher error value throughout

the communication rounds.
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Figure 3.16: Variations in relative error based on the number of local epochs

3.6 Graphical Results

In the domain of wireless networking, the received signal strength indicator is

a metric quantifying the signal power a device receives from the access point or router.

Expressed in decibel milliwatts (dBm), RSSI is a pivotal criterion in evaluating the quality

of a Wi-Fi connection. Under optimal wireless communications conditions, an RSSI value of

-30 dBm represents peak signal reception. However, achieving such an ideal benchmark is

infrequent in practical environments due to various interference and propagation factors.

Signal strengths ranging from -50 to -30 dBm denote a very stable connection, facilitating

seamless streaming and downloading. Between -60 and -50 dBm, the signal is still sufficiently

strong for most standard applications, including uninterrupted streaming. However, as
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Figure 3.17: Variations in MAPE based on the number of local epochs

signal strength falls to the range of -70 to -60 dBm, performance becomes notably average.

Connections in this range may struggle during intensive tasks, particularly if the network sees

simultaneous activity from multiple devices or if the connected device is significantly mobile.

Progressing further down the scale, a range of -80 to -70 dBm indicates an inconsistent

connection prone to disruptions, especially during data-intensive operations like streaming.

An even weaker range, -90 to -80 dBm, offers a highly unstable connection that is not only

susceptible to frequent dropouts but also languid speeds. Any signal weaker than -90 dBm

is practically non-functional, rendering a reliable connection almost impossible.

The dispersion of wireless signal strength is graphically represented as a 2D color

map using the predicted RSSI values from the trained FL model. Figure 3.19(a) illustrates

a LiDAR map of the area of interest constructed through the Emesent Hovermap, while
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Figure 3.18: Variations in MAE based on the number of local epochs

Figure 3.19(b) displays the coverage map generated using the centralized LSTM model. In

Figure 3.19(c), the REM constructed through the proposed FedLSTM model is presented.

REMs constructed through the LSTM centralized model and FedLSTM are comparable,

showing similar signal dispersion. Specifically, the region near the access point exhibits RSSI

values above -50 dBm, indicating excellent signal strength. However, as one moves farther

away from the access point, the RSSI values gradually decrease and eventually drop below

-80 dBm at the far end of the area.

To further evaluate and test our proposed federated model under different settings,

we conducted experiments inside a room. For this purpose, we utilized Room 7-611 at

the University of Ulsan in South Korea. In this federated setting, we engaged five clients,

each of which updated the model over 10 iterations for 10 communication rounds. Figure
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Figure 3.19: (a) Corridor layout, (b) REM from the centralized LSTM model, and (c) REM

from FedLSTM

3.20(a) provides an overview of the room’s layout, including an example path (path 1 )

followed by Client-1. In our scenario, we considered 10 paths taken by five clients. The

centralized model’s REM is Figure 3.20(b), and FedLSTM’s REM in Figure 3.20(c) highlights

the excellent coverage near the access point and the gradual reduction in signal strength

when moving away from it. These graphic results demonstrate that in both room and

corridor settings, FedLSTM achieved performance comparable to centralized approaches

while concurrently ensuring data privacy, minimizing communications overhead, and reducing

the server load.
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Figure 3.20: (a) Room layout, (b) REM from the centralized LSTM model, and (c) REM

from FedLSTM

3.7 Conclusion

In this study, we presented an innovative approach called FedLSTM and based on

FL for REM construction. In particular, the proposed FedLSTM framework is designed to

predict indoor network coverage while addressing the pressing issue of data privacy. This

proposed method is decentralized, allowing clients to participate in the training process

without disclosing their data to a central server. For this approach, we utilized real

measurements from various clients navigating different paths and updating their models with

data from each path. When compared to a centralized counterpart, our model indicated a

slight rise in RMSE to 2.5 dBm from 2.4 dBm and an increase in MAE to 1.9 dBm from 1.7

dBm. Subsequently, we evaluated the FedLSTM model considering variations in the number

of participating clients. Numerical results revealed that increasing the number of clients

enhanced performance metrics such as error rate and R2 score. Additionally, adjusting
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the number of local training epochs showed that even devices with limited computational

power can meaningfully contribute to training the federated model, with fewer epochs still

achieving competitive results. Graphic comparisons of REMs from FedLSTM and centralized

LSTM highlighted their similarities. However, FedLSTM distinctly provided the trifold

benefits of data security, communications efficiency, and a reduced server load. This research

emphasizes FL’s potential to ensure data privacy while upholding robust performance from

indoor network coverage predictions.



Chapter 4

Summary of contributions and

future works

4.1 Introduction

In the contemporary industrial landscape, the network infrastructures are under-

going significant evolutions, mirroring transformations observed in sectors like healthcare

with the advent of e-health technologies. The pressing requirements of these modern indus-

trial networks encompass enhanced capacity, rigorous security protocols, and cost-effective

implementations. Our research offers an in-depth analysis of the integration of broadband

Power Line Communication (PLC) and Wi-Fi technologies as a prospective solution to

address these challenges. Utilizing the existing power line networks as foundational infras-

tructure, and supplementing them with cutting-edge Wi-Fi technologies, we highlight the

instrumental capabilities of the Tenda PH10 AV1000 ACWI-FI POWER LINE ADAPTER

in spearheading this integrative approach.

Through methodical experimentation, supplemented by realistic simulations and a
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diverse set of test environments, we quantitatively and qualitatively assessed the advantages

of merging PLC with Wi-Fi technologies. This hybrid approach not only augments the

inherent capabilities of each individual technology but also represents a paradigm shift in

the architectural design of industrial communication systems. The integration leads to

substantial enhancements, such as uninterrupted data transmission, heightened operational

efficiency, and the emergence of novel applications tailored for this combined technological

platform. In a nutshell, this research not only provides empirical evidence of the immediate

benefits derived from this integration but also delineates a roadmap for future research,

anchoring the foundation for a seamlessly interconnected industrial ecosystem.

As we transition from the exploration of hybrid PLC and Wi-Fi frameworks to the

domain of network design methodologies, it’s paramount to recognize the interconnected

nature of these innovations. The bedrock of a successful industrial network, as established, is

contingent upon the blend of robust communication backbones and predictive intelligence. It’s

in this interstice that our subsequent investigations come into play. Just as the hybridization

of PLC and Wi-Fi revolutionizes the tangible aspects of the network’s infrastructure, the

incorporation of federated learning paradigms redefines the abstract, data-driven mechanisms

underpinning it. As industries evolve, so does the need for models that seamlessly intertwine

the physical and the abstract, underscoring a holistic approach to network design and

optimization In the realm of industrial network design, the emphasis has traditionally

been on centralized learning paradigms for network coverage prediction. However, with

the digitization of contemporary industrial networks and the increasing complexities they

present, there is a palpable need for more adaptive and privacy-preserving solutions. Our

research introduces the Federated Learning-based Long Short-Term Memory (FedLSTM)

model, a decentralized approach specifically tailored to address the emerging challenges of

modern industrial settings.
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Unlike its centralized predecessors, the FedLSTM model stands out by adeptly

combining precision in prediction with a robust commitment to data privacy. Through

extensive experimentation and data analysis, we’ve determined that the FedLSTM not

only matches the benchmarks set by centralized models but, in many instances, surpasses

them. It achieves this by leveraging the distributed nature of federated learning, thus

optimizing communication pathways and equitably distributing server computational loads.

Moreover, this decentralized approach underscores a critical advantage: the ability to train

models without directly accessing user data, thus ensuring data privacy and reducing both

communication overheads and server strain.

In essence, the FedLSTM model represents a pivotal advancement in network

coverage prediction methodologies. It effectively responds to the evolving demands of the

industrial landscape by offering a solution that balances accuracy, efficiency, and privacy. As

industries continue their rapid digital transformation, the FedLSTM model, with its inherent

advantages, is poised to become a cornerstone in future network optimization strategies.

4.2 Summary of Contributions

In this research dissertation, we conduct a comprehensive analysis of a hybrid

network that integrates Power Line Communication (PLC) with Wi-Fi, proposed for modern

industrial environments. To address the challenges associated with signal RSSI coverage

prediction, a novel Federated Learning approach is introduced. The primary contributions

of this thesis, in terms of advanced PLC-Wi-fi network optimization techniques and state-of-

the-art coverage prediction methodologies, are outlined as follows:

• We developed an industrial setting using a hospital scenario as an example and analyzed

the PLC-WiFi hybrid network in various environments by varying length of power line
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cables.

• The existing industrial network was analyzed under practical scenarios. We connected

an electrical load to the network and assessed the performance of the Tenda PLC slave,

specifically focusing on its speed (in Mbps).

• After making the industrial network we introduce a new FL-driven method, FedLSTM,

for predicting indoor coverage. FedLSTM allows for decentralized training by letting

users forward only their model weights to the central server. This method differs

greatly from traditional centralized systems that necessitate the transmission of both

features and labels, resulting in increased data usage.

• We use Python software to build a REM, aiming to improve the visualization of

coverage prediction. To achieve this, we create a data grid with 1000 × 1000 points

within our target area, allowing us to display the coverage prediction on a 2D map.

• Our FL-based approach enables both the server and users to produce the REM. While

the server acts as a network strategist, utilizing the REM to tackle coverage gaps by

setting up access points or relays, users can evaluate their area’s coverage and choose

to move to regions with superior connectivity based on the REM insights.

• Furthermore, when contrasting the FedLSTM model with its centralized equivalent,

our study highlights its security feature: only the model weights are relayed to the

server, leaving the labels and features undisclosed. Such a methodology is especially

beneficial in business, healthcare, and military environments where users are reluctant

to divulge their location data to unidentified parties..
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4.3 Future Direction

The primary focus of this dissertation is the efficient development of an industrial

PLC-Wi-Fi hybrid network and the creation of a 2D radio map for the network’s wireless

component to optimize the network and enhance user experience. Additionally, this disserta-

tion presents a federated learning approach to develop the Radio Environment Map (REM)

using only the weights sent by each user to the server, instead of raw data. However, further

research is needed to optimize the network and construct the REM.

• Advanced Model Enhancements: Delve deeper into the intricacies of federated

learning architectures to identify potential areas of optimization and enhancement.

An exploration into advanced topologies, as well as the incorporation of techniques

such as model pruning, knowledge distillation, or attention mechanisms, may yield

significant advancements. Moreover, an exhaustive study on LSTM networks, exploring

bidirectional LSTMs, attention-based LSTMs, or hybrid LSTM architectures, can

further improve the granularity and accuracy of predictions. It would also be prudent

to consider methods for efficient weight aggregation in federated settings and the

inclusion of robustness checks against potential adversarial attacks.

• Scalability and Real-world Implementation: Furthermore, a granular analysis

considering various data distributions and heterogeneity across the nodes will offer

insights into the model’s robustness and adaptability. By emphasizing these technical

dimensions, we aim to ensure that the FedLSTM model not only scales efficiently but

also retains its performance efficacy in intricate industrial settings.

• Security Protocols: Since federated learning inherently emphasizes data privacy,

further studies could dive deep into the cybersecurity aspects, ensuring that model
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weights, when transferred, are secure from potential attacks. Also,a robust encryption

techniques is needed for federated learning in industrial settings.

• Integration with IoT: With the Internet of Things (IoT) becoming increasingly

integral to industrial applications, examine how the hybrid PLC-Wi-Fi system can

effectively communicate with a vast array of IoT devices, and investigate how the

FedLSTM model can be fine-tuned to predict network behavior in an IoT-dense

environment.
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