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Abstract

Load Balancing in 5G mmWave small
cells for Integrated Access and Backhaul

by

TRAN QUANG HUY

Supervised By: Professor Sungoh Kwon

Submitted in Partial Fulfillment of the Requirements for the degree of

Master of Science

Millimeter wave (mmWave) communication is a promising technique for keeping

up with the exponential growth of next-generation networks, such as 5G, 5G advanced,

and beyond future networks. To utilize the mmWave spectrum, these networks need a

dense deployment of base stations (BSs) but it leads to high costs in wired infrastructure.

Therefore, IAB has emerged as a cost-effective and flexible solution because it uses the

multi-hop wireless backhaul to the core network via macro BS. However, multi-hop trans-

mission and spectrum sharing between access and backhaul links cause an unbalanced

vi



load across BSs in the IAB network.

In this thesis, we investigate the unbalanced load problem in the IAB network and

propose a graph-based scheduling algorithm that increases the network throughput and

achieves load distribution effectively. In the proposed algorithm, the weight of the graph is

represented as the cost of the link between two BSs and is defined to reflect the cell load and

link capacity. By utilizing the weight, we apply maximum weight-matching in graph opti-

mization to estimate the forthcoming load and adjust the network transmission schedule,

thereby achieving load balancing within the network. To validate the effectiveness of our

proposed algorithm, we compare it with other algorithms in various environments through

simulations. The results indicate that the proposed algorithm not only distributes the load

across small cells more evenly but also low packet loss, increases network throughput, and

improves the quality of experience at UEs.

Keywords: 5G mmWave, Integrated access and backhaul, Load balancing, Scheduling,

Graph Theory
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Chapter 1

Introduction

1.1 Current States, Evolutions of 5G System and IAB

Network

Nowadays, the next generation of mobile broadband, 5G, has been commercially deployed

in its early stages and has delivered significantly higher throughput than its predecessors,

namely the fourth generation (4G) or Long-Term Evolution (LTE), and its variants, such

as LTE-Advanced. The promised data rates can reach up to 10 Gbps [1], [2]. However,

due to the COVID-19 pandemic, mobile data traffic with higher data rates and quality of

service (QoS) has exponentially increased. The total global mobile data traffic is expected

to reach 325 exabytes per month in 2028, more than six times the amount in 2021 [3], [4].

Consequently, mobile networks need to prepare for massive traffic growth over the upcom-

ing years, driven by the increasing number of devices and advancements in information

and communications technologies (ICT) applications.

To meet the increasing demand for data traffic, the introduction of network densifi-
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cation with small cells has become crucial in fifth-generation (5G) networks, advanced

5G, and 6G [5], [6], [7], [8], [9]. Another key component driving 5G and 6G is millimeter

wave(mmWave) communication, which offers substantial bandwidth and faster transmis-

sion speeds [10], [11]. However, a significant obstacle is the cost associated with establishing

the necessary infrastructure for connecting the extensive number of base stations (BSs) to

the core network via wired connections. This expense becomes particularly evident when

considering the growing density of BSs. In order to address this challenge and fulfill the

requirements, network densification in 5G and 6G wireless networks involves deploying

numerous base stations of different types, resulting in more resource blocks per unit area.

To support backhauling in the network, various wired and wireless technologies have

been developed [12]. Traditionally, wired backhaul has been predominantly used in urban

and suburban areas with high data traffic, while wireless backhaul, such as satellite [13],

microwave radio [14], or free space optical [15] links, have been employed in locations

where deploying wired connections proves costly. It is worth noting that fiber optic tech-

nology offers high data rates, supporting several Gbps for long-haul transmissions [16].

However, the deployment of fiber optic networks entails significant capital expenditure

costs, primarily attributed to trenching and digging, which not only increase installation

times but also contribute to the overall expenses. Additionally, in certain cases, obtaining

permissions for trenching may not be granted, particularly in metropolitan areas.

In ultra-dense networks with many BSs, wireless backhaul is a promising solution

when compared with the other backhaul alternatives because of its financial efficiency, as

well as its ability to provide better flexibility and mobility [17]. Due to this, mmWave-

based wireless backhauling is considered an attractive replacement for fiber optic, which

provides similar data rates with lower cost and simpler deployment effort. Hence, the 3rd
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Generation Partnership Project (3GPP) promotes a new multi-hop wireless architecture,

named Integrated Access and Backhaul (IAB), where part of the radio resources can be

utilized for both access and backhaul network [18], [19]. This architecture has attracted

considerable interest in both industry and academia for 5G, 5G advanced, and 6G network

[20], [21], [22], [23]. The IAB approach involves deploying multiple relay BSs, referred to as

IAB nodes, within the coverage area of a macro BS known as the IAB donor. These IAB

nodes form a wireless backhaul network that facilitates packet forwarding between the IAB

donor and user equipment (UE) [18]. The primary objective of IAB is to replace expensive

backhaul technologies with a more flexible wireless backhaul solution that utilizes the

existing spectrum. Furthermore, this approach enables the provision of normal cellular

services within the same node, adding to its versatility. Figure.1.1 illustrates a use case of

5G expansion for dense networks using IAB.

In the context of 5G New Radio (NR), Integrated Access and Backhaul (IAB) is ex-

pected to achieve greater success, primarily due to the availability of massive bandwidth

in the mmWave spectrum. The limited propagation range of mmWave access further rein-

forces the need for densified deployments, where IAB serves as a key enabler. Additionally,

NR incorporates advanced beamforming capabilities and multiple-input-multiple-output

(MIMO) techniques, which help mitigate cross-link interference between access and back-

haul links. However, the multi-hop nature of the IAB network poses challenges in terms

of traffic management and control [24], [25]. When only a small portion of the access and

backhaul is scheduled for transmission most of the time, it can lead to various issues such

as high latency, low throughput, and congestion in BSs. These problems significantly hin-

der the advantages offered by the mmWave spectrum. Therefore, efficient scheduling and

resource allocation strategies are crucial to achieve high QoS at the user equipment (UE)
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Figure 1.1: Expansion of 5G with IAB.

and maximize the overall performance of the IAB network [17], [24].

1.2 Scheduling and Related Works

Scheduling in wireless networks refers to the process of allocating and managing commu-

nication resources, such as bandwidth, or packet, among multiple users or devices within

the network. It involves determining when and how users can transmit and receive data

over the shared wireless medium. Wireless networks face various challenges due to lim-

ited resources, interference, and the shared nature of the wireless medium. Scheduling

plays a crucial role in optimizing the utilization of these resources, improving network

performance, and ensuring fair access for all users. It aims to maximize the overall system

capacity, minimize delays, enhance throughput, and provide QoS guarantees. To achieve

such a goal, all kinds of scheduling algorithms have been proposed to align with different

network scenarios and purposes.

The IAB architecture is a relatively new research area, and thus, only a few works have
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been recently studied. A joint resource allocation between backhaul and access links in time

division duplexing (TDD), decomposing it into power and per-link sub-channel allocation

was studied [26]. Considering small-cell grouping and resource slicing, a novel algorithm

was proposed for rate balancing as well as improving network performance. The authors

in [27] provided primitive research on the feasibility of IAB networks as part of a cellular

network solution using mmWave communication. They demonstrated that cellular net-

work systems employing IAB and mmWave transmissions require fewer fiber connections

to achieve baseline performance, promising high cost-efficiency and ease of deployment

for 5G cellular network systems. This investigation was extended in [28], evaluating the

performance gains achieved through the use of IAB and non-IAB under different UE rates

using joint fixed resource allocation and cost deployment. In [29], the authors explored

the bandwidth partition scenarios between the access and backhaul side of the network

to derive the downlink rate coverage in one-hop transmission. They studied two strategies

(fixed partition and proportional partition) and proved that the proportional partition

strategy provided a more load-balanced coverage rate than the fixed partition strategy.

Their research was extended by considering a blockage model in the model and proposed

an analysis to balance the rate in the network [30]. The authors in [31] concentrated solely

on the access link in scheduling, proposing the minimum throughput algorithm needed

to satisfy the QoS at UE. However, their works only considered one hop and ignored the

backhaul, potentially leading to congestion due to overload in the relay BS.

Several studies have investigated resource allocation in multi-hop transmission within

the context of the IAB network. In one study, the author assumed zero interference between

any pair of links and proposed optimal scheduling to maximize fairness in link capacity

[32]. They extended their research by considering the Quality of Experience (QoE) at UE

5



in the model, where UE satisfaction is the satisfied UE with the data rate required. An

edge coloring scheduling in the backhaul link was proposed to maximize UE satisfaction

in the IAB network. Utility maximization in multi-hop transmission has been addressed in

[33], [34], [35] and [36]. For example, one study explored joint path selection and scheduling

problems as a network utility maximization subject to queue stability and satisfy delay

requirements at UE [33]. The work in [34] examined joint power allocation and interference

constraints to maximize the data rate at the UE. Additionally, resource allocation based on

different constraints is studied to achieve maximum efficiency [35]. On the other hand, the

authors in [36] investigated queue flow in a spanning tree graph, proposing a backpressure-

based approach to achieve queue stability and introducing a linear algorithm for maximum

flow [36]. However, these works generally focused on fixed flows and ignored awareness of

both network congestion and the link capacity that reduces the UEs’ satisfaction.

1.3 Research Necessities

The introduction of the IAB network in 3GPP Release 16 has sparked significant inter-

est in various research studies. However, the adoption of a multi-hop topology in IAB

networks has presented several challenges in terms of scheduling and resource allocation.

Given incoming traffic from the IAB donor to UEs through multiple IAB nodes, the use

of IAB networks has drastically changed the cellular network model from direct connec-

tions between base stations and users to indirect connections via relay stations. This shift

highlights the importance of examining the behavior of IAB networks in light of this net-

work model transformation. Additionally, it is crucial to investigate efficient scheduling

mechanisms that enable effective connectivity between stations and users within the IAB
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Figure 1.2: Illustration of the proposed load balancing with 1 donor and 3 IAB nodes with
1 user

networks.

To overcome the inefficiency of scheduling, we study load balancing through scheduling

in the IAB network. Load balancing is the process of distributing network traffic or work-

load evenly across multiple BSs to achieve higher efficiency for utilizing network resources

and ensure efficient delivery of data to wireless devices. Figure 1.2 shows an illustration of

our example of balancing a load with one IAB donor and three IAB nodes from scheduling

in a single time slot. Each node maintains a queue length for each destination, whether

in access or backhaul. For example, the IAB donor 0 has three queues in backhaul to

other IAB nodes: q(0,1), q(0,2), q(0,3). IAB node 1 has two queues in backhaul to IAB node

2 and 3 (q(1,2), q(1,3)), and one queue serving to UEs q(1,UE). IAB node 2 has one queue in

backhaul to IAB node 3 q(2,3), and one queue serving to UEs q(2,UE). IAB node 3 has only

one queue to serve UEs q(3,UE). During the unit time slot, both the IAB donor and IAB

node 2 exhibit the highest load compared to the other nodes. As a result, the IAB donor

selects a scheduling set where it transmits to IAB node 1 in the backhaul, IAB node 2

transmits to the UE in access, and IAB node 2 further transmits to IAB node 3 in the
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backhaul.

The 3GPP considers two topologies for the IAB network for scheduling: the spanning

tree and the directed acyclic graph (DAG). A spanning tree is a subgraph of a connected

graph that includes all the vertices of the original graph and forms a tree, while a DAG is a

directed graph that does not contain any directed cycles. In this network, we opt to adapt

the DAG topology because the spanning tree has limited connections, which restricts the

flexibility of the IAB network.

This thesis introduces a novel graph-based load-balancing algorithm designed specif-

ically for the IAB network in mmWave communication. Our approach involves modeling

the scheduling problem of the 5G mmWave IAB network using a DAG. In order to capture

the costs within the graph theory, we consider both the queue length and the capacity of

BSs in the network. Our algorithm considers the anticipated load of each BS and applies

a maximum weighted matching scheduling algorithm to target overloaded cells in both

the access and backhaul link. The algorithm estimates the forthcoming load of each BS

and targets overloaded cells in both access and backhaul. By redistributing the load from

overloaded cells to neighboring cells and user equipment (UE), it minimizes the overall

load and ensures load balance throughout the network. To evaluate the performance of

our proposed algorithm, we conduct simulations in diverse environments and compare the

results with several existing approaches. The simulation outcomes clearly demonstrate the

effectiveness of our algorithm in achieving load balance. Our algorithm outperforms other

schemes in terms of average throughput, packet drop rate, and QoE for the user, thereby

confirming its superiority and viability. For consistency, we employ the notation that the

BS connected to the core network using a wired connection is referred to as the IAB

donor, while the relay BS, which establishes a wireless connection with the IAB donor or

8



neighboring relay BS, is referred to as the IAB node.

1.4 Thesis Organization and Contributions

The thesis is divided into six chapters which are described in the following:

Chapter I: this current chapter represents a brief introduction to 5G, 5G advanced,

6G, the IAB network, scheduling and load balancing, related works, research questions,

and contributions to this study.

Chapter II: we describe the system model from the IAB network.

Chapter III: we present the measurement of the load in the model and formulate the

load balancing problem in the IAB network.

Chapter IV: we provide the proposed algorithm to solve the problem formulation.

Chapter V: we conduct the simulation of the proposed algorithm and compare it

with previous works in various environments.

Chapter VI: Finally, the conclusion and future work are described in this chapter.
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Chapter 2

IAB network and System model

2.1 IAB Network and In-band Communication

We consider a multi-hop downlink mmWave IAB network consisting of one IAB donor

and N IAB nodes. The network starts with a graph where the IAB donor node has a

wired connection to the core network, and IAB nodes communicate wirelessly with the

core network via the IAB donor. The IAB node establishes links with neighboring nodes

in the backhaul connection and serves UEs in the access link. Fig. 2.1 shows an example

IAB network architecture with one IAB donor 0 and five IAB nodes from 1 to 5. A solid

arrow represents the backhaul link from transmitting node to receiving node and dashed

arrows represent access links from a node to the UEs.

The IAB network has flexible transmitter-receiver relationships. The transmitter can

be the IAB donor or the IAB node, while the receiver can be either the UEs or the recipient

IAB node. In-band backhauling communication operates in a half-duplex scheme where

the node can only transmit or receive in a given time slot. In a single time slot, if the
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Figure 2.1: An example of IAB network topology

node is decided as a transmitter, that node can transmit data to one neighbor node in the

backhaul and to UEs in the access link using frequency-division multiple access (FDMA)

[37].

2.2 System model

Downlink IAB network G is composed of four elements (N ,U , E,Q). N is the set of nodes,

including IAB donor 0 and N IAB nodes numbered 1 to N . U comprises all UEs in the

network, such that U = {U1, U2, ..., UN}, where Ui is a set of UEs for IAB node i. E is

the set of directed edges, where (i, j) defines a wireless link from node i ∈ N to node
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j ∈ N\{0, i}. Q = {{Q(i,j)}, Q(i,Ui)} is the set of queues in which Q(i,j) is the queue of

edge (i, j) for the backhaul link and Q(i,Ui) is the queue for the access link of node i.

Additionally, each queue has a buffer for packet queueing with a maximum queue length

of qmax. If the length of the queue reaches the maximum queue length qmax, any incoming

packets are discarded, resulting in dropped packets.

The IAB node is equipped with an antenna array for directional beamforming, which

enables high array gain and transmission of constant power density over a bandwidth

B. All nodes have M RF chains and conduct beamforming to downlink simultaneously

up to M . In mmWave frequencies, beamforming significantly reduces interference be-

tween concurrent links owing to the short communication range and directional proper-

ties. Therefore, we assume that there is no interference between concurrent links, and the

signal-to-noise ratio (SNR) is defined as explained in [38]

η(i,j) =
p(i,j)

N0
, (2.1)

where p(i,j) is the power received at node j from node i and N0 is noise power. Conse-

quently, link capacity is divided into two components (the backhaul link and the access

link) with restrictions that are not exceeded by the number of supporting RF chains [39].

To define the link capacity on both links, we consider bandwidth allocation for access link

and backhaul link based on the demand by UEs or a neighbor node. Bandwidth allocation

for the backhaul link is

B(i,j) = B
q(i,j)

q(i,j) + q(i,Ui)
, (2.2)

and bandwidth allocation for the access link is

B(i,Ui) = B
q(i,Ui)

q(i,j) + q(i,Ui)
. (2.3)
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The link capacity from node i to node j for the backhaul link is determined as

c(i,j) = B(i,j)log2(1 + η(i,j)), i ∈ N , j ∈ N\{0, i}, (2.4)

and for the access link, it is

c(i,Ui) =
∑
u∈Ui

B(i,Ui)log2(1 + η(i,Ui)), i ∈ N\{0}. (2.5)

The link capacity at node i is calculated with

ci = c(i,j) + c(i,Ui). (2.6)

In a time slot t, node i transmits packets to node j in the backhaul link with the

number of delivered packets, which is defined as

r(i,j)(t) =
c(i,j)(t)∆t

p
, (2.7)

where ∆t is the time slot duration and p is the packet size as specified in [40], [41].

Similarly, the number of delivered packets to UEs at node i in the access link is

r(i,Ui)(t) =
c(i,Ui)(t)∆t

p
. (2.8)

The number of packets transmitted from node i to node j in the backhaul link is

µ(i,j)(t) = min(q(i,j)(t), r(i,j)(t)), (2.9)

and for the access link, the number of packets transmitted to UEs at node i is expressed

as

µ(i,Ui)(t) = min(q(i,u)(t), r(i,Ui)(t)). (2.10)

The total number of packets transmitted by node i is

µi(t) = µ(i,j)(t) + µ(i,Ui)(t). (2.11)
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Chapter 3

Problem Formulation

Our objective in this paper is to balance the unevenly distributed load of the whole

network. In the IAB network, the mobility and data demand from UEs and the randomness

of the network topology lead to some nodes having a high load while others have a small

load The result is network congestion at some high-load nodes and low quality of service

(QoS) for the UEs. To optimize performance of the network through load balancing, we

use the sum of queue length for both backhaul and access links as a measure of node load.

For a given time slot t, qi(t) is the load of node i in time slot t, and the average load of

all nodes in the network at the time slot t is defined as

q(t) =
1

N

∑
i∈N

qi(t),

with standard deviation of the load on the network in time slot t expressed as

σq(t) =

√∑
i∈N |qi(t)− q(t)|2

N
.

In each time slot t, the donor sets up a schedule set, S, for resource allocation in the

IAB network. For schedule set S, one node acts as transmitter or receiver (excluding the
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donor, which only works as a transmitter or does nothing). If one node is the transmitter,

it can transmit not only to one neighbor node but also to UEs under that node’s coverage.

Hence, when node i is scheduled to transmit to node j, queue length q(i,j) in time slot

t+ 1 is defined as

q(i,j)(t+ 1) = max
(
q(i,j)(t)− µ(i,j)(t), 0

)
, (3.1)

where µ(i,j)(t) is the number of packets transmitted from node i to node j at time t.

Similarly, for the access link being served, queue length q(i,Ui) for node i is computed as

q(i,Ui)(t+ 1) = max
(
q(i,Ui)(t)− µ(i,Ui)(t), 0

)
, (3.2)

where µ(i,Ui)(t) is the number of packets transmitted to UEs at node i at time t. Then,

the load on node i in time slot t+ 1 is

qi(t+ 1) = q(i,j)(t) + q(i,Ui)(t). (3.3)

To balance an unevenly distributed load for the whole network, we formulate the problem

of load balancing as reducing the standard deviation

min
S

σq(t+ 1), (3.4)

s.t. 0 ≤ qi(t+ 1) ≤ qmax, ∀i ∈ N

where qmax is the maximum queue length for each node.

The associations from the IAB donor to the IAB node, or from the IAB node to neigh-

boring IAB nodes and UEs in the IAB network can be modeled using a bipartite graph.

The bipartite graph Gb consists of two sets of nodes (a source set N and a destination

set V ) with the set of edges Eb connecting the source set to the destination set. A semi-

matching in Gb is a set of edges, M ⊆ Eb, such that no two edges in M share a common
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node. In other words, if a node on an edge is chosen for semi-matching, that node is not

chosen again. The weight for a semi-matching is the sum of weights w(e) for edges e in

semi-matching ∑
w(e), e ∈M,

where weight w(e) is a cost metric of edge e. Finding a semi-matching M that has the

highest possible total weight maximizes the fairness of the chosen edge in the graph, which

means minimum variance of the loads [42]. Hence, to solve the IAB network load problem,

we need to utilize semi-matching from the bipartite graph.

In the IAB network, we modeled graph G as a bipartite graph, Gb = (N , V, Eb) , where

N is the set of nodes and V is the set of nodes such that V = N\{0}. Each edge (i, j) in

edge set Eb is a directional connection from node i ∈ N to node j ∈ N\{0}. The weight

for a connection from node i to node j in Gb is defined for each time slot t as

ω(i,j)(t) =


min(q(i,j)(t), r(i,j)(t)), for i ̸= j (3.5)

0, for i = j (3.6)

and the weight from node i to UEs under that node’s coverage in each time slot t is

ω(i,Ui)(t) = min(q(i,Ui)(t), r(i,Ui)(t)). (3.7)

When scheduling for resource allocation in the IAB network, each node considers both

access and backhaul links. To emphasize the selection of a node’s role, we define weight

W(i,j)(t) of each edge by adding the weight for the access link and backhaul link

W(i,j)(t) = ω(i,Ui)(t) + ω(i,j)(t). (3.8)

Following the semi-matching problem, we define semi-matching as a set of edges S ⊂ Eb

such that no two edges in S share a common node. Edge (i, j) ∈ S is referred to as
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a matching edge, whereas edge (i, j) /∈ S is a non-matching edge. Under the bipartite

graph for the IAB network, we find a set of matching edges, which have the largest total

maximum weight. Therefore, the problem of reducing the standard deviation in (3.4) can

be reformulated as finding a semi-matching S ⊆ Eb that has the maximal total weight

from a graph Gb.

max
∑

(i,j)∈S,S⊂Eb

W(i,j),
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Chapter 4

Proposed Algorithm

This section presents an algorithm for load balancing in 5G IAB small-cell mmWave

networks, which adapts to the network load status via maximum weight matching. Starting

with a downlink IAB network graph as shown in Fig. 4.1a, we model the IAB network as

network graph G including a set of nodes, N , a family of UEs, U , a set of directed edge,

E, and a set of queues, Q. The proposed algorithm calculates the directional link capacity

from (2.4) and (2.5). The directional bipartite weight graph (Algorithm 2) models the

bipartite graph from network graph G and computes the weight of each edge based on the

load distribution of the whole network. Then, maximum weighted scheduling (Algorithm

3) constructs the resource allocation from the directional bipartite weight graph based

on maximum weighted matching. Algorithm 1 summarizes the main algorithms and the

details of the other two algorithms are described in the following subsections.
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(a) An example IAB network

(b) The IAB network graph

Figure 4.1: Modeled the IAB network as a network graph

Algorithm 1 Overall Algorithm

1: Input the IAB network as graph G including (N ,U , E,Q)
2: Calculate link capacity of node i, j where i ∈ N , j ∈ N\{0, i} ∪ U
3: Directional bipartite weight graph (Algorithm 2)
4: Resource allocation from directional bipartite weight graph using maximum weight

matching (Algorithm 3)

4.1 The Directional Bipartite Weight Graph

For a directional bipartite weight graph, the algorithm models the bipartite graph from

network graph G and calculates the weight ω based on queue lengths and the link capacity

for each pair of nodes in backhaul link or from a node to UEs on the access link. The

weight serves as the metric for measuring the IAB network load. Algorithm 2 summarizes

the directional bipartite weight graph.

First, the Algorithm 2 initializes a set of edge Eb, which is the same as E and is used to

create a directional bipartite graph. At each node i ∈ N\{0}, the algorithm adds the edge
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Algorithm 2 Directional Bipartite Weight Graph

1: Eb ← E
2: for each node i ∈ N\{0} do
3: Eb ← Eb ∪ (i, i)
4: end for
5: for each edge (i, j) ∈ Eb do
6: if i ̸= j then
7: ω(i,j)(t)← min(q(i,j)(t), r(i,j)(t))
8: else
9: ω(i,i)(t)← 0

10: ω(i,Ui)(t)← min(q(i,Ui)(t), r(i,Ui)(t))
11: end if
12: end for

(i, i) to set Eb. Then, the algorithm employs a loop for each edge (i, j) ∈ Eb and assigns

the weight to the access link and the backhaul link based on the specific conditions. If

node i is not equal to node j, the weight ω(i,j) for the backhaul link is computed using

(3.5). On the other hand, the algorithm calculates the weight ω(i,j) for the backhaul link

by using (3.6) and the weight ω(i,Ui) for access link to UE by using (3.7).

Fig.4.2a shows a bipartite graph derived from Fig.4.1b, where nodes on the left side

establish directional links with nodes or UEs on the right side. All the left-side nodes are

the transmitters, while all the right-side nodes and UEs are the receivers. Then, Fig. 4.2b

illustrates a directional bipartite weight graph in which each directional link has weight

ω to specify the load from the node on the left side to the node or UEs on the right side.

4.2 Maximum Weighted Scheduling

The maximum weighted scheduling algorithm (Algorithm 3) is designed to determine

resource allocation from the directional bipartite weight graph (Algorithm 2) via maximum

total weighted matching.
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(a) Bipartite graph of the IAB network (b) Directional bipartite weight graph

Figure 4.2: The IAB network modeled using a directional bipartite weight graph

First, the Algorithm initializes an empty weight matching schedule set S and a can-

didate set of edge E′ that can be added to S. Before deciding the node’s responsibility

as transmitter or receiver for resource allocation in the IAB network, we calculate a new

weight, W(i,j)(t), for each edge (i, j) in the set of edges E′ by adding the weights of the

access link and backhaul link used in (3.8). For example, from Fig.4.2b, weight W(1,3) is

ω(1,3) + ω(1,U1) = 7 + 3 = 10. Then, we employ a while loop on E′ in which the algorithm

stops if E′ is an empty set.

From line 7 to line 13, the algorithm checks each potential direction (m, l) ∈ E′, where

(m, l) represents a candidate edge to add to the matching schedule set S. In other words,

the algorithm selects the highest W(m,l)(t) and adds edge (m, l) to S as a matching for

resource allocation. Then, all the direction links originating from m and l are removed in
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the set E′

E′ = E′\(m, ·)\(l, ·), (4.1)

where (m, ·) and (l, ·) denote all directional links from nodes m and l, respectively. The

algorithm continues to find an (m, l) that pairs with the highest weight until E′ is empty.

The result is the schedule set S to allocate resources using maximum total weighted

matching.

Fig.4.3 illustrates the maximum weighted scheduling algorithm for the directional bi-

partite weight graph in Fig.4.2b. In the first iteration in Fig.4.3a, the algorithm finds

highest weight W(0,1) (solid line arrow) among those weights and then adds (0, 1) to S.

All directional links from IAB donor 0 and IAB node 1 (the dashed arrow) are consid-

ered for removal. After the first iteration, there are three remaining directional links (the

dotted arrow), including IAB node 2 to IAB virtual node 2 and IAB node 3 with serving

UEs. Another is IAB node 3 serving UEs under node 3’s coverage, as shown in Fig.4.3b.

Fig.4.3c shows the next iteration, the algorithm chooses directional links from IAB node

2 to IAB node 3 and to UEs under IAB node 2’s coverage because of the highest weight,

and then adds (2, 3) with (2, U2) to S. Then, the links from IAB node 2 to virtual node 2

and from IAB node 3 to UEs are removed. Finally, there is no directional link to find and

the algorithm stops with the resource allocation S = {(0, 1), (2, U2), (2, 3)} in Fig.4.3d.

Fig. 4.4 demonstrates the final resource allocation including three transmitter-receiver

pairs. One transmitter-receiver pair is from the donor node 0 to IAB node 1 and one

transmitter-receiver pair is from IAB node 2 to IAB node 3 with UEs beneath the IAB

node 2.
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Algorithm 3 Maximum Weighted Scheduling (MWS)

1: S ← ∅
2: E′ ← Eb

3: for (i, j) ∈ E′ do
4: W(i,j)(t)← ω(i,j)(t) + ω(i,Ui)(t)
5: end for
6: while E′ ̸= ∅ do
7: for (m, l) ∈ E′ do
8: Choose the highest W(m,l)(t)
9: S ← S ∪ (m, l)

10: Remove all direction links from m and l as in (4.1)
11: end for
12: end while
13: Return S
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(a) Finding first weighted match-
ing

(b) Bipartite graph after removing
all directions from first matching

(c) Finding second weighted
matching

(d) Final bipartite graph of maxi-
mum total weighted matching for
resource allocation

Figure 4.3: The maximum weighted scheduling process
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Figure 4.4: The schedule for resource allocation: S = {0→ 1; 2→ 3; 2→ U2}
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Chapter 5

Simulation and Result Analysis

In this chapter, we describe the simulation parameters of the network with various en-

vironments. After that, we discuss the result between our proposed algorithm and other

algorithms in each environment.

Table 5.1: Simulation parameter

Parameter Value

Number of nodes (include
IAB donor node)

6

Carrier frequency 28 GHz

Bandwidth 1 GHz

Transmission power 30 dBm

Directivity gain 30 dB

Number of RF chains 8

Node’s buffer maximum 100

Random blockage 0.2 - 0.4
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5.1 Simulation Parameters

To evaluate the performance of the proposed algorithm, we simulated the mmWave IAB

network specified in [37] consisting of an IAB donor and five IAB nodes with transmission

power of 30 dBm. The distance between two nodes for backhaul was set in a uniform

range between 80 and 200 m, while the distance between nodes and UEs ranged between

0 and 50 m. The simulation operated at a frequency of 28 GHz with 1 GHz bandwidth.

The path loss was given by [38]

PL(d) [dB] = α+ β10 log10(d) + ξ, (5.1)

where d is the distance in meters, with α and β are set to 61.4 and 2, respectively. Log-

normal shadowing ξ follows the normal distribution of mean 0 and variance 5.8. The link

capacity was computed using the Shannon capacity formula in (2.4) and (2.5), assuming

that each node is equipped with eight RF chains for beamforming and has a directivity

gain of 30 dB. We consider the blockage, where the probability of blockage ranges from

0.2 to 0.4 depending on the distance between a node and a UE since mmWave signals are

highly sensitive to blockages, according to [43]

Pblock(d) = 1− e`2λrd,

where d is the distance between the node and the UE. Table 5.1 shows the simulation

parameters.

We explored the performance of the proposed MWS algorithm in three different envi-

ronments. The first environment involved 30 static UEs deployed uniformly according to

the 3GPP IAB report. The second environment involves load variations in the network.

Finally, we considered an environment where 30 UEs moved around in the network using
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the freeway mobility model (FMM) [44]. These environments allowed us to evaluate the

performance of our algorithm under different network conditions and mobility patterns

of UEs. We compared the MWS algorithm with the MaxMinThroughput algorithm in

the self-backhaul mmWave, maximizing the minimum throughput for UEs [31]. The other

comparison is the Backpressure algorithm, which maximizes the backlog queues [36]. For

comparison metrics, we used the standard deviation, packets dropped, average throughput,

and quality of experience of UEs.

5.2 Impact of static UE on network performance

To identify the impact of the proposed algorithm and previous algorithms in the static

environment, we simulated the network operation in 10,000 time slots with UEs requiring

a data rate of 2 Mbps. We investigated the performance in two aspects: load balancing

and QoE for UEs. For load balancing, we used queue status in a specific time slot and

standard deviation to express load distribution in the network. The standard deviation σq

is defined as

σq =

√∑
i∈N |qi − q|2

N
.

where qi is the load of node i, q is average load in the network and N is total number of

nodes. The lower σq value shows that all nodes are evenly distributed, while the higher σq

indicates all nodes are imbalanced. For assessing the QoE of the UEs, we considered the

number of packets dropped over 3,000 packets being sent per time slot, which is derived

Pdrop
∆
=

∑
i∈N

ϕi(t),

where ϕi(t) is the number of packets dropped at node i in time slot t. Other metrics to

assess were the average throughput during the simulation and the percentage of satisfied
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(c) t = 10000

Figure 5.1: Queue status in the network

UEs, which is the number of UEs getting required data from the serving node over the

total number of UEs. The average throughput is computed as

R
∆
=

∑
i∈U

∑
τ∈[t,t+T ) γi(τ)

T
,
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Figure 5.2: Standard deviation

where γi(τ) represents the number of bits received at time τ by the i-th UE. The percentage

of satisfied UEs at node i is calculated as

θpct
∆
=

θi
|Ui|
· 100,

where θi and |Ui| are the number of satisfied UEs and the total number of UEs at node i,

respectively.

Fig. 5.1 indicates that the load among the nodes becomes more evenly distributed over

time. Starting with the same initial load in all three algorithms, as shown in Fig. 5.1a, the

overloaded nodes released some of their load to the underloaded neighboring nodes in the

backhaul link and to UEs in the access link under our MWS algorithm. As a consequence,

the load across the nodes in the network became more balanced. The figure shows that the

gap between the maximum node’s queue length and the minimum node’s queue length,

from the starting time to the ending time, was reduced from 30 to 5, respectively. This

reduction leads to lower variance in the loads among nodes in the network. As a result,

Fig. 5.2 shows that the proposed algorithm achieved the lowest load variance compared
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Figure 5.3: Performance under 3GPP constraints

to other algorithms, resulting in a more balanced load distribution in each time slot.

While balancing loads, the QoE of UEs may be affected. In the Backpressure and

MaxMinThroughput algorithms, overloaded nodes were unable to allocate the required

resources to neighboring nodes and to UEs due to a shortage of resources, while under-

loaded nodes remained underutilized. On the other hand, the MWS algorithm distributed
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the load from overloaded nodes to underloaded nodes and to UEs. This allowed the nodes

to fully allocate the required resources on both access and backhaul links, resulting in a

low number of dropped packets, as shown in Fig. 5.3a. Furthermore, the proposed algo-

rithm increased network throughput and achieved a higher percentage of satisfied UEs,

as depicted in Figs. 5.3b and 5.3c, respectively. As a result, not only did the network

throughput increase, but UE satisfaction also improved compared to other algorithms.

5.3 Impact of Network Load Variations

In this subsection, we studied the load variations of the network under two conditions:

various numbers of UEs and different data rate requirements of UEs. To investigate how

the network load affects the IAB network, the number of UEs varied from 10 to 60 while

keeping the data rate of each UE constant at 2 Mbps. For different data rate requirements

of UEs, 20 UEs were uniformly deployed in the network and varied their rates from 0.5

to 5 Mbps. We simulated 10,000 time slots under both conditions. For each condition, 10

simulations were considered with a 95% confidence interval.

Fig. 5.4 illustrates the performance of the three algorithms as the number of UEs var-

ied. Fig. 5.4a shows that the proposed algorithm had a better standard deviation balance

than the other algorithms under all network load conditions. Figs. 5.4b and 5.4c show the

average throughput and the percentage of satisfied UEs, respectively, as the number of

UEs increased. In scenarios with a small number of UEs, the MWS algorithm effectively

balanced the load with little impact on throughput. However, as traffic increased, our

proposed algorithm attained higher throughput and a higher percentage of satisfied UEs

than the other algorithms. Moreover, the proposed system achieved a 11% higher satis-
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Figure 5.4: Performance based on the number of UEs

faction rate in QoE user satisfaction and a smaller narrow confidence interval in standard

deviation and average throughput than previous algorithms.

We also investigated how the performance of the three algorithms was affected by

different data rate requirements for the UEs. As shown in Fig.5.5a, the proposed algorithm

effectively balanced the load compared to the other algorithms. Fig. 5.5b depicts the
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Figure 5.5: Performance based on UE data rate requirements

average throughput in the network. In low- and moderate-traffic load situations where

most small cells remain underloaded, all algorithms balanced the load well. Even when

the traffic load is high, the proposed algorithm performed better than the others with low

variation in confidence intervals and achieved a satisfaction rate more than 14% higher in

terms of the percentage of satisfied UEs, as shown in Fig. 5.5c.
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Figure 5.6: Random freeway mobility model

5.4 Impact of User Mobility Model

In practice, mobile users may have different mobility directions and speeds, which can

affect the performance of the MWS algorithm. Therefore, to examine the randomness of

mobility in a real environment, we consider the freeway mobility model (FMM) to simulate

UE mobility [44]. The FMM simulates the movement of users on roads. Fig. 5.6 illustrates

a uniform deployment of nodes with circular coverage around each node on the map. The

IAB donor is depicted as an X; squares indicate the IAB node. The dashed lines represent

links between each node, whereas solid lines represent random mobility in the UEs. 30

UEs are uniformly deployed and randomly move on the road with a uniform speed ranging

from 1 m/s to 10 m/s and select random directions at the intersection.

Fig. 5.7 illustrates the performance of the proposed algorithm in relation to user mo-

bility. Due to higher user mobility, frequent changes in UE topology and handovers lead to

greater load fluctuations among the nodes, as shown in Fig. 5.7a. However, our MWS algo-

rithm has fewer fluctuations in standard deviation than the others. Furthermore, Fig. 5.7b

shows that our proposed algorithm achieved higher average throughput in the network.

Similarly, our algorithm ensures higher QoE for UEs compared to the other algorithms,
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Figure 5.7: Performance in the UEs mobility

as depicted in Fig. 5.7c. The proposed algorithm achieves 100% user satisfaction, while

the MaxMinThroughtput and Backpressure algorithms only satisfied QoS requirements of

85.95%, 72.95% of the UEs in the network, respectively.
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Figure 5.8: Performance based under heterogeneous network

5.5 Impact of Heterogeneous Network

To verify the correctness and assess the performance of the proposed algorithm in a het-

erogeneous network, we simulated environment in Section V-D and separated the trans-

mission power in access and backhaul of each node. The transmission range was a uniform
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range between 23 and 26 dBm for serving UEs in access link, while the transmission range

in backhaul link ranged between 31 and 35 dBm. Following [45], we consider the Rician

fading model in LOS links for access links by modifying (5.1).

PL(d) [dB] = α+ β10 log10(d) + ξ + ϵ,

where ϵ is Rician fading set as 13 dB.

Fig. 5.8 illustrates the performance of the proposed algorithm in the heterogeneous net-

work. Due to irregular node deployment, higher user mobility and fading, frequent changes

in UE topology within the environment result in more load fluctuations among the nodes

and variations in the received signal strength of UEs. However, our MWS algorithm out-

performed other algorithms in standard deviation and average network throughput, as

depicted in Figs. 5.8a and 5.8b, respectively. Similarly, Fig. 5.8c shows that our algorithm

ensured higher QoE for UEs, where the proposed algorithm achieved a greater increase of

18.9% and 33.6% than MaxMinThroughtput and Backpressure algorithms in user satis-

faction, respectively. Figs. 5.8a, 5.8b, and 5.8c clarify that the proposed algorithm is more

robust than the others in the heterogeneous network.
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Chapter 6

Conclusion

IAB technology offers a flexible solution for reducing deployment costs by facilitating wire-

less backhaul and streamlining architecture. It is characterized by the extensive reuse of

functions and interfaces initially defined for the access link and the backhaul link. Addi-

tionally, IAB relaying holds the promise of delivering both increased throughput, QoE,

and extended coverage, especially in 5G, 5G advanced, and 6G. While recent literature has

explored resource allocation, the unbalanced load in the IAB network remains uncertain.

In this thesis, we proposed a graph-based algorithm for load balancing in small-cell

IAB networks. Mobility of UEs and randomness of the network topology led to imbalanced

load distributions across the cells, resulting in degraded network performance in through-

put and QoS for UEs. We considered the sum of queues on both access and backhaul

links as a metric to measure the load and emphasized load balancing in link scheduling

by minimizing the load variance. To address the load-balancing problem, we modeled

the network as a directional bipartite graph. The algorithm calculated weight as a cost

metric in the network graph based on the current load and the link capacity of the BSs.
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By finding the semi-matching of the maximum weight, the algorithm constructed flexible

scheduling for resource allocation in overloaded nodes to release packets to neighboring

nodes and UEs under their coverage. Our work demonstrated that the proposed algorithm

effectively balanced loads, reduced dropped packets, achieved high average throughput,

and ensured satisfactory QoE for UEs in three environments (static, load variations, mo-

bility, and heterogeneous scenarios) better than other algorithms. Furthermore, the pro-

posed algorithm allocated sufficient resources to all UEs, ensuring that 100% the UEs

achieved their required data rate, while MaxMinThroughput and Backpressure only sat-

isfied 85.95%, 72.95% of the UEs.
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