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Fig. 10   Active Window Polar Histograms [8]
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   1.4.2.3 
             2D 

      primary polar histogram . 
          . voxel

. 

Fig. 16      [12]

   VFH+        . [11]



- 12 -

  ∆ ∆  ∆ ∆

  ∆ ∆  ∆ ∆
          (1.8)

                       (1.9)

           . f
   t .

 

           (1.10)

 

            (1.11)

               .

 

           (1.12)

            (1.13) 

     elevation angle     euclidean distance 
       .

   cos            (1.14)

  


arctan


          (1.15)

              
    . [12]

  1.4.2.4 2D Binary Polar Histogram
        2D primary polar histogram 2D binary polar 

       histogram . 2 threshold , 
      1,          0, voxel
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. 

   

 













if    

   

if    

   

    




          (1.16)

          . 

     1.4.2.5 
         2D binary polar histogram

          . 
       2D binary polar histogram window window 

     0 . 

Fig. 17 Moving window of the fifth stage [12] 

          window (Fig. 17 ) 
         elevation angle azimuth angle 180

         . window window
         . 

        . weight . weight 
          . weight . 

  ∆ ∆


 ∆            (1.17)

              3 weight . weight
  target angle         v

   . weight rotation of robot       v . 
           weight . 

       . 
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  1.4.3 3DVFH* 
       VFH* Ulrich Borenstein . [14] VFH* 

          . 
         Fig. 18 VFH+ 

           A, B . A
           , B p C . 

        50% B . VFH+ A* 
         . 

      VFH* B .

Fig. 18       [17]

 

       3DVFH* 2D VFH* 3D 
     . [15] 3DVFH* Fig. 19 . 
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Fig. 19 3DVFH* algorithm 

        3DVFH* cost function . cost function
       . cost function 4 cost 

   parameter yaw_cost, pitch_cost, velocity_cost obstacle_cost
  heuristic cost . 

Fig. 20   A* cost function

       heuristic cost . cost parts
          k . pitch angle yaw angle

  pitch angle elevation angle, yaw angle azimuth angle . [16]
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Fig. 21 visualization of cost terms [15]

         yaw_cost yaw .

cos   ×   
          (1.18)

         pitch_cost pitch . 

cos   ×   
          (1.19)

        velocity_cost normalized position
         . velocity cost 
  .

cos   × 


∙          (1.20)

    obstacle_cost 1.21 .       
   ,     distance value inflection point .

cos  × ×


          (1.21)

             (1.22)

        1.23 .

cos  cos cos cos cos          (1.23)

           cost function
  heuristic cost .
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 2. 

 2.1 

  2.1.1 
            

             2 , 
              
         . 

   Fig. 22 . 
 

Fig. 22    

        . 
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Fig. 23      
 

          2m×2m×5m 
        (L×W×H) . 2m, 3m 

 .

Fig. 24       

         20m×1m×10m(L×W×H) 
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 . 

Fig. 25       2

             2
      . 1m×1m×20m 

   (L×W×H) , 6m .
        waypoint node parameter

        . Fig. 26
 . obstacle_cost_parameter, pitch_cost_parameter, yaw_cost_ 

       parameter, velocity_cost_parameter 
   .
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Fig. 26 dynamic_reconfigure node parameter

   2.1.2 
            2 , 

          . 
      Fig. 27 Fig. 28 .

Fig. 27        ( )
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Fig. 28          ( )
 

      . 

Fig. 29      
 
            

        . 6m , 38m . 
      15m , 5m/s . 
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      Fig. 30 

             . 
           . 

     3m , 5m/s . 

      Fig. 31 

            . 
          10m, 8m . 3m , 
   5m/s . 
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      Fig. 32 

            . 
         . 
    3m , 5m/s . 

    2.1.3 
         Mission mode Offboard mode , 

        Fig. 33 . 
    (High-level) Jetson Xavier NX (Low-level) Pixhawk

     . (Low-level) Pixhawk(PX4)
         (High-level) 
     Jetson Xavier NX Robot Operation System (ROS)
.
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    Fig. 33 

 2.2 

      2.2.1 

       2.2.1.1 
        obstacle_cost_parameter . 

          , 
            . 

         
          . 3m , 

   . 1.5 . 
          yaw_cost_parameter 

  pitch_cost_parameter 25, velocity_cost_parameter 49000, obstacle_cost 
    _parameter 1.5 . 
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Fig. 34 yaw_cost_parameter = 1 Fig. 35 yaw_cost_parameter = 5

Fig. 36 yaw_cost_parameter = 10 Fig. 37 yaw_cost_parameter = 19

         yaw_cost_parameter
        . 1 , 

         . 19
   . 

         velocity_cost_parameter 
     yaw_cost_ parameter velocity_cost_parameter 1000

   . 
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Fig. 38 yaw_cost_parameter = 1  Fig. 39 yaw_cost_parameter = 5

Fig. 40 yaw_cost_parameter = 10 Fig. 41 yaw_cost_parameter = 19 

         velocity_cost_parameter 1000
      . 49000 , 1000

  . 
          pitch_cost_parameter 

  yaw_cost_parameter 5, obstacle_cost_parameter 1.5, velocity_cost_ 
    parameter 1000 .
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Fig. 42 pitch_cost_parameter = 25 Fig. 43 pitch_cost_parameter = 5

         pitch_cost_parameter . 
        pitch_cost_parameter

         .

      2.2.1.2 
         yaw_cost_parameter 

         . 
  . obstacle_cost_parameter 1.5, pitch_cost_parameter 

25, velocity_cost_parameter 49000 . 

Fig. 44 yaw_cost_parameter = 1 Fig. 45 yaw_cost_parameter = 5
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Fig. 46 yaw_cost_parameter = 10 Fig. 47 yaw_cost_parameter = 19

          yaw_cost_parameter
       . 1 , 

         . 19
         . 

  .
         velocity_cost_parameter 

       . . 
  obstacle_cost_parameter 1.5, pitch_cost_parameter 25, yaw_ 

cost_parameter 5 .

Fig. 48 velocity_cost_parameter = 14000 Fig. 49 velocity_cost_parameter = 49000

         velocity_cost_parameter
       . 14000 , 
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       14000 .
         obstacle_cost_parameter 

 . yaw_cost_parameter 5, pitch_cost_parameter 25, velocity_ 
    cost_parameter 14000 obstacle_cost_parameter

 . 

Fig. 50 obstacle_cost_parameter = 1.5 Fig. 51 obstacle_cost_parameter = 5 

         obstacle_cost_parameter 
        . pitch_cost_ 

     parameter 5 . 

Fig. 52 obstacle_cost_parameter = 1.5 Fig. 53 obstacle_cost_parameter = 5

          obstacle_cost_parameter 1.5
  .



- 30 -

 
       2.2.1.3 2

      obstacle_cost_parameter 2.5, pitch_cost_parameter 
   25, velocity_cost_parameter 49000 yaw_cost_parameter

  .

Fig. 54 yaw_cost_parameter = 1 Fig. 55 yaw_cost_parameter = 5

Fig. 56 yaw_cost_parameter = 10 Fig. 57 yaw_cost_parameter = 19

     .
       obstacle_cost_parameter , 

        , 
   .

         pitch_cost_parameter pitch 
         , . 
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       . 
         yaw_cost_parameter yaw 

        , , 2 
     . 

      velocity_cost_parameter path smoothness , 
       , 

       .
 

     2.2.2 

     2.2.2.1 
             2

    . pitch_cost_parameter 25, yaw_cost_parameter
   5, velocity_cost_parameter 25000, obstacle_cost_parameter 2.5

        . 2 , mission 
         mode . 

.

      Fig. 58 
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      Fig. 59 

           ( ) 
            . 

         . 
         , 

         , 
   .

       2.2.2.2 
          . 

  pitch_cost_parameter 25, yaw_cost_parameter 5, velocity_cost_parameter
     25000, obstacle_cost_parameter 5 . offboard mode

        . .
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    Fig. 60 

     Fig. 61 , 

           
      . obstacle_cost_parameter 5 , 

          . 
         . 

         . , 
              

. 
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      2.2.2.3 
         . pitch_ 

   cost_parameter 25, yaw_cost_parameter 5, velocity_cost_parameter
    25000, obstacle_cost_parameter 5 . offboard mode

 .

   Fig. 62 

             
        . , RGB-D 

          . 
          RGB-D 

 .

      2.2.2.4 
         . pitch_ 

   cost_parameter 25, yaw_cost_parameter 5, velocity_cost_parameter
    25000, obstacle_cost_parameter 5 . offboard mode

 .
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    Fig. 63 

            
         . 

     .

       2.2.3 

        . pitch_cost_parameter 25, yaw 
   _cost_parameter 3, obstacle_cost_parameter 2, velocity_cost_parameter

       1000 . pitch_cost_parameter 25, yaw 
  _cost_parameter 3, obstacle_cost_parameter 2, velocity_cost_parameter 

       12000 . 25m .

     2.2.3.1 1
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   Fig. 64 1    Fig. 65 1
 

           1 35 , 
       41 . 

     2.2.3.2 3

   Fig. 66 3    Fig. 67 3

           3 28 , 
       34 . 

            1 3
         . 1

         , cost . 
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            . 3 180 1

           . 
            . 

          . 
       Jetson Xavier NX , cpu 

           , cpu
         . 

  . 
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 4. 

 
              

        . 
    Gazebo       

         , 
      . Gazebo node parameter 

        , node parameter 
         . 

       node parameter , 
  . 

            Intel 
        RGB-D . 

         . RGB-D 
          

       .
            
          . 

            
          . 3DVFH* 

         PC , . 1
           

          , 
      cost .

          RGB-D 3 180
     . Gazebo . 

           RGB-D 3 1
         . 3

           , PC CPU 2
         RGB-D 

      . .
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A Study on Obstacle Avoidance Algorithm 
of Multi-Copter Drone using an RGB-D 

Camera

Yonggil Kwon

Department of Mechanical and Aerospace Engineering
University of Ulsan, Korea

ABSTRACT

 As a basic study of drone's obstacle avoidance algorithm, 3DVFH* obstacle 

avoidance and path generation algorithms were analyzed and verified using PX4 

open source and Depth camera. The obstacle avoidance algorithm was analyzed 

by configuring a Gazbo simulation environment, and the obstacle avoidance 

algorithm was verified through outdoor flight tests. In the Gazbo simulation, 

various flight environments such as an environment with complicated obstacles 

and an environment with a long wall were configured to analyze the change in 

avoidance performance through the combination of parameters related to the 

avoidance path, and flight tests were performed by creating an environment 

similar to the simulation environment in outdoor flight. Stable avoidance and 

path creation were achieved in most obstacles, but no obstacles were detected 

and could not be avoided in light-reflective materials or thin branches due to 

the limitations of the RGB-D camera used in the experiment. To improve the 

performance of the obstacle avoidance algorithm, an experiment was conducted 

using three RGB-D cameras in the simulation, and it showed faster avoidance 

and path generation ability than one camera.
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