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Abstract in English

Lithium-ion batteries have been widely utilized in various applications such as portable electronic
devices, electric vehicles, and large-scale energy storage systems in recent years. However, the
increasing demand in the energy market has led to a growing necessity for the development of next-
generation lithium-ion batteries with higher energy densities. Among various alternative anode
materials, silicon (Si) has recently gained attention. Silicon boasts a theoretical capacity of 4200 mAh
g, which is more than ten times higher than the widely used graphite. However, silicon experiences a
significant threefold expansion in volume during the charging process, leading to electrode damage or
the detachment of active material, resulting in reduced durability and electrochemical performance of
lithium-ion batteries. To address these issues, various studies are underway, including the development
of Si/C composites to suppress volume expansion or coating silicon surfaces with various carbon
nanomaterials. In this study, to address the aforementioned drawbacks, a physically and structurally
stable Si/C/rGO granular structure composite was manufactured using ball milling and spray drying
techniques. Testing this composite as the anode material in lithium-ion batteries demonstrated excellent

electrochemical characteristics and remarkable stability according to charge/discharge cycle test.

Keywords: Lithium ion battery, Silicon, Anode materials, Spray drying
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CHAPTER 1. Introduction

1.1. Lithium-ion Batteries

Fossil fuel-based vehicles contribute to environmental issues through air pollution and greenhouse
gas emissions, necessitating a response to address these challenges. As an alternative solution to these
environmental problems, electric vehicles have emerged. Electric cars, by not relying on fossil fuels,
can reduce air pollution and greenhouse gas emissions, gaining recognition as an eco-friendly mode of
transportation. [1,2]

In addition, the lithium-ion battery, a core component of electric vehicles, possesses various
advantages. Firstly, it boasts excellent energy density, enabling electric cars to exhibit high performance
and cover longer distances, coupled with a high cycle stability that extends its lifespan. The rapid
charging and discharging capabilities enhance the efficiency of electric vehicles, while the use of
environmentally friendly materials helps reduce the overall environmental impact. Moreover, the
relative affordability of lithium and advancements in recycling technologies contribute to improving
the economic viability of electric vehicles [3].

The combined effects of these features highlight the role of electric vehicles and lithium-ion batteries
in promoting sustainable mobility and environmental conservation. By reducing dependence on fossil
fuels and offering an environmentally friendly alternative, electric vehicles and lithium-ion batteries
play a crucial role in addressing air pollution and climate change in contemporary society.

In recent years, lithium-ion batteries (LIBs) have become predominant in various power applications,
such as portable electronic devices, electric vehicles (EVs), and large-scale storage systems, owing to
their notable features like high capacity, extended lifespan, and environmental friendliness. However,
due to the escalating energy market demands, there is an urgent need to create the next generation of
LIBs with increased energy and power densities. Traditional anode materials like graphite are
insufficient in meeting the demands for significantly higher energy/power densities and prolonged cycle

life due to their limited theoretical capacity (372 mAh g') and low energy density (~150 Wh kg™) [4].
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Figure 1. US Electric vehicle sales forecast, 2021-2030 (Source : EVAdoption)
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1.2. Anode materials of Lithium-ion Matteries

Over an extended period, researchers have been dedicated to developing advanced anode materials
characterized by high abundance, low cost, and excellent lithium-ion storage properties. Various anode
materials for LIBs have been explored, including Li4Ti5O12, transition metal oxides (MnO, Nb205,
NiO, etc.), transition metal sulfides (Ni2S3, MoS2, VS2, etc.), and alloys (Sb, Sn). Among these, silicon
(Si) has recently gained increasing attention as one of the most promising alternatives to graphite.

The maximum theoretical capacity of silicon is 4200 mAh g, which is 10 times that of graphite.
This is attributed to the ability of a single silicon atom to bond with approximately four lithium ions
(Lia.sSi). Additionally, silicon exhibits a lithiation potential for Li/Li+ of 0.4 V, higher than that of
graphite (approximately 0.05 V), which inhibits the formation of lithium plating and dendrites [6].

A significant aspect is that silicon holds the second-largest storage capacity on Earth, exceeding 28%
of the Earth's total mass. It is widely available in nature in various forms such as mineral silicates, solar
panels, rice husks, straw, bamboo stalks, and sugarcane. Most of these mentioned resources are
challenging to recycle with high added value or low environmental pollution. Therefore, developing
strategies to harness silicon resources in energy storage systems holds substantial value for advanced
electrodes in next-generation lithium-ion batteries and environmentally friendly sustainable
development.

Regrettably, significant challenges continue to impede the commercial viability of silicon (Si). Si
undergoes substantial volume expansion during lithiation, a phenomenon verified through imaging
techniques and the documentation of various Li—Si phases. This volumetric expansion imposes
increased stress on the Si, leading to the generation of Si powder. Furthermore, the expansion prompts
the displacement of conductive material from the surface of the active material, resulting in diminished
electrochemical performance [7,8].

In the initial lithiation process, a solid electrolyte interphase (SEI) forms on the surface of the silicon
electrode through the electrolyte's decomposition. While SEI facilitates lithium-ion conduction, it
impedes electron flow, thereby constraining electrolyte consumption and enhancing the cycling
performance of the lithium-ion battery. The electrochemical efficacy of lithium-ion batteries is notably
contingent on the quality of the SEI. However, due to Si's volume expansion, the organic components
in the electrolyte decompose, leading to the formation of an unstable SEI. This precarious SEI is prone
to rupture and reform on the Si surface, perpetually consuming significant amounts of lithium ions,
diminishing the initial Coulombic efficiency (ICE), and ultimately depleting the electrolyte. Beyond the
challenges arising during cycling, Si poses additional hurdles as a semiconductor material with poor

conductivity in a metastable structure [9,10].
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1.3. Research Strategy

To overcome the well-known drawbacks of silicon-based anode materials, extensive research has
been conducted, focusing on special structural designs such as core-shell, porous, and yolk-shell
structures. Additionally, silicon-based composite materials have been fabricated, contributing to a
significant enhancement of electrochemical performance.

One of the most promising strategies for practical application involves synthesizing silicon/carbon
composite anode materials with a well-designed structure [13]. Introducing a carbon phase is believed
to improve the electronic conductivity of the composite and accommodate the substantial volume
changes of silicon during lithium insertion/extraction processes. Given graphene's superior electrical
conductivity, various hybrid nanomaterials combining graphene with active materials have been
fabricated and utilized as electrodes for lithium-ion batteries (LIBs) [14]. Furthermore, numerous well-
designed Si/graphene nanocomposites have demonstrated enhanced electrochemical performance.
However, many of these composites exhibit low initial Coulombic efficiency due to the large specific
surface area of graphene and the direct contact between Si and the electrolyte [15]. And the practical
application of nano-sized silicon-based composite materials has been delayed due to low tap density
and inadequate scalability. Therefore, there is a need for silicon-based composites with fine design and
scalable synthetic processes, equipped with expressive carbon anode materials as an alternative. ball
milling represents another critical procedure in shaping nanostructures and refining materials into
smaller particle sizes. Ball milling serves as a valuable technique, inducing collisions and friction in
materials to reduce particle size, amplify surface area, and improve electrochemical performance. This
technology is actively explored in the realms of nanotechnology and energy storage materials [16].
Moreover, the spray drying technique, known for its high production efficiency, has been widely
employed in the industrial production of catalysts and pharmaceutical carriers. Significant efforts have

been directed towards the synthesis of Si-based composites through the spray drying process [17].
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CHAPTER 2. Experimental

2.1. Preparation of Si/C/rGO Composite

100mg of silicon (~100 nm Si powder), 363mg of graphene oxide, 37mg of dextrose, and 200ml of DI
water were mixed using a high-energy ball mill at 300rpm, 1 hour. Following this, the solution was
stirred with a magnetic bar at 300rpm while being fed into a spray dryer with an inlet temperature of
180 degrees. The dried samples were then subjected to thermal reduction at 800 degrees for 2 hours in
a nitrogen condition using a vacuum oven to yield Si/C/rGO composite. As a comparison, the
preparation of the physical mixing composite and ball milled composite is similar to that of the
Si/C/rGO composite but without the process of ball milling and spray drying. Also, To determine the
optimal weight percentage of silicon in the composite, silicon samples were synthesized at 10%

intervals from 10% to 40%.

2.2. Electrode Fabrication

The slurry consisted of a uniform blend of anode material powder, carbon black, styrene-butadiene
rubber(SBR) binder and carboxymethyl cellulose(CMC) 1wt% solution binder that was dissolved in
DI water. The weight ratio of active material, conductive additive, and binder was 60:20:20. The
electrodes were fabricated by slurry casting on copper foil with a coater, which was then dried for 12hr

at 70°C. After drying, a roll press was used to compress the electrode and current collector together.

2.3. Half Coin Cell Assembly

An argon-filled glovebox was used to fabricate CR-2032 size coin cells. The coin cell was composed
of lithium metal as the counter electrode, a polyethylene membrane as the separator, and an organic
electrolyte. The electrolyte was a mixture of lithium hexafluorophosphate (1.15M LiPF6) dissolved in
a mixture of solvent ethylene carbonate (EC), fluoroethylene carbonate (FEC), propylene carbonate
(PC), diethyl carbonate (DEC), and ethyl methyl carbonate (EMC) in a volume ratio of 20:10:5:40:25.

Each coin-half cell was allowed to rest for one day before undergoing electrochemical tests.

1



2.4. Characterization

The Field emission scanning electron microscope (FE-SEM) were acquired on the JSM-7600 (JEOL).
The high-resolution transmission electron microscope (HRTEM) images were acquired on JEM-2100F
(JEOL). X-ray diffraction patterns (XRD) of the samples were acquired by the ULTIMA 4 (Rigaku) at
10-80° with a scanning rate 0.02°/sec. To verify the functional groups in samples were measured by
Raman spectroscopy (RAMAN). Thermogravimetric analysis(TGA) were conducted to confirm the

silicon content.

2.5. Electrochemical Performance

A battery performance evaluation system (WonATech Co., Ltd, WBCS3000) was used to test the
electrochemical performance including cyclic voltammetry(CV) within a voltage window of 0.005-1.5
V vs. Li/Li*. The cycling test, conducted to evaluate the lifespan characteristics of the battery, used
current densities of 0.1 and 0.5C. The rate capability test, aimed at examining the battery's high-rate
performance, utilized current densities ranging from 0.1 to 5C. Using an electrochemical analyzer
(BioLogic Science Instrument, VSP), electrochemical impedance spectroscopy (EIS) tests were
performed. The EIS test was conducted to investigate the electrochemical resistance of the cells based

on their equivalent circuit models.
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CHAPTER 3. Results and Discussion

3.1. FE-SEM/EDS Analysis

In the case of PM (Physical Mixing), the SEM analysis revealed that, through the use of sinki, a
physical mixing method, the silicon covers the surface of the graphene oxide sheet. However, when
stirring is carried out using a ball mill, it was observed that silicon particles are embedded in the
graphene oxide sheet, indicating that the graphene sheet encapsulates the silicon, physically inhibiting
expansion. For the sample prepared using spray drying, the particle structure was modified into a
spherical shape, and this spherical structure contributes to stability during expansion/contraction.
Furthermore, through EDS analysis, it was confirmed that in the case of the spray-dried sample, a
successful synthesis of a spherical structure composed of silicon and reduced graphene oxide was

achieved.
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Figure 8. FE-SEM images of Physically mixed(PM)

14



Figure 9. FE-SEM images of Ball milled(BM)
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Figure 10. FE-SEM images of Spray dried Si/C/rGO
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Figure 11. FE-SEM EDS mapping of Spray dried Si/C/rGO with elements as Si, C, and O
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3.2. FE-TEM/EDS Analysis

TEM/EDS analysis revealed that in the ball-milled sample, the presence of silicon embedded in
graphene oxide sheets was more distinct. This suggests that, unlike conventional physical mixing
methods, graphene more efficiently contacts the silicon surface. In the Si/C/rGO sample, it was
observed that nano silicon particles were wrapped in thin graphene sheets, and this was further
confirmed by EDS. STEM analysis showed the outermost layer of the sample to consist of graphene

sheets, followed by carbon layers, and the presence of silicon (111) crystal structure.

18
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Figure 12. FE-TEM images of BM
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Figure 13. FE-TEM images of Spray dried Si/C/rGO
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Figure 14. FE-TEM EDS mapping of Spray dried Si/C/rGO with elements as Si, C, and O

21
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Figure 16. FE-TEM EDS high magnification mapping images of Spray dried Si/C/rGO with elements
as Si, C, O, and Si with C
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3.3. XRD Analysis
The XRD results display the XRD patterns of Si, rGO, BM, and Si/C/rGO. There is no significant
difference between the spectra, and sharp diffraction peaks corresponding to crystalline silicon and the

rGO (002) peak appear in the XRD patterns of BM and Si/C/rGO.

24
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3.4. Raman Analysis

The Raman results show the Raman spectra of Si, BM, and Si/C/rGO. The spectra exhibit sharp peaks
at around 510 cm™, associated with the characteristic signals of crystalline silicon in all three spectra
[18]. The Raman spectra of BM and Si/C/rGO show characteristic peaks of graphene at approximately

1350 (D peak) and 1580 (G peak) [19]. This indicates the stable formation of a composite of silicon and
rGO.

26
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3.5. Electrochemical Performance
3.5.1. Cyclic Voltammetry Analysis

The Si/C/rGO anode was measured from 0.005 to 1.5 V at a scan rate of 0.1 mV/s. The peak observed
in the first cycle between 0.3 and 0.8 V, disappearing in subsequent cycles, is mainly attributed to the
formation of the Solid Electrolyte Interface (SEI) layer's nonflammable nature[20,21]. The strong peak
at 0.01 V during the initial discharge process corresponds to the lithiation of crystalline silicon, and
subsequent delithiation processes occurred at 0.31 V and 0.51 V. The peaks at 0.17 V during discharge
and at 0.33 V and 0.54 V during charge in the following cycles are interpreted as the repetitive
lithiation/delithiation processes of amorphous silicon. Peaks corresponding to the lithiation/delithiation
processes of carbon and graphene, however, are obscured by intense peaks corresponding to the

alloying/dealloying process of silicon[22,23,24].

28
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3.5.2. Cycling test

The cycle test results indicate that the PM sample exhibits capacity changes similar to pure silicon due
to structural instability. On the other hand, the BM sample shows a tendency for stability up to 100
cycles as silicon particles are embedded in the rGO sheet, suppressing the volume expansion of silicon.
However, it exhibits an initial capacity loss, likely attributed to physical damage during the ball milling
process, leading to increased resistance.

In contrast, the Si/C/rGO sample demonstrates excellent initial capacity in all samples. However, Si-
30 and Si-40 show reduced stability due to excessively high silicon content. Therefore, Si-20, with 20wt%
silicon using both ball milling and a spray dryer, shows the best performance. The Si-20 sample exhibits
approximately 65% capacity retention after 250 cycles. This trend is consistent in a full cell with NCM
622 ata 1.1 N/P ratio.

30
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3.5.3. Rate Capability

Rate capability results show a similar trend to the cycle test outcomes. In the case of the PM sample,
it fails to provide initial 0.1C capacity recovery after charging up to 5C. The BM sample exhibits
excellent capacity recovery but shows a lower initial capacity compared to the same silicon content. In

contrast, the Si-20 sample demonstrates both outstanding initial capacity and capacity recovery.
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Figure 24. Rate capability of PM, BM, and Si-20
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3.5.4. Electrochemical Impedance Spectroscopy analysis

EIS (Electrochemical Impedance Spectroscopy) analysis revealed that the resistance of the BM sample
increased compared to the PM and Si-20 samples. This is expected to be due to physical damage during
the ball mill process. The PM sample also showed an increase in resistance after the formation of the
Solid Electrolyte Interphase (SEI) layer, although not to the extent of the BM sample. In contrast, for
the Si-20 sample with adjusted silicon content, a very low resistance value of 5.96 ohms was measured,

which is significantly lower when compared to other samples.
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Resistance, R (Q)

Sample
RS RSEI Rct Rtotal
Si-20 1.26 1.57 3.13 5.96
PM 1.54 1.14 5.76 8.44
BM 1.12 6.52 7.34 14.98

Table 1. EIS results of PM, BM, and Si-20
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3.6. After Cycle Microscopic Analysis
3.6.1. FE-SEM Analysis

To assess the stability of the anode material, the electrode surfaces before and after 50 cycles were
compared using SEM. In the case of the pure silicon electrode, significant damage with large cracks
was observed when comparing before and after charge/discharge tests. For the BM sample, although
not as extensive as the pure silicon case, some cracks were evident despite appearing stable in the initial
cycle test results. However, in the case of the Si-20 sample in this study, stability without visible
cracking was confirmed even after 50 cycles, distinguishing it from other samples. Additionally, after
100 cycles, ion milling was employed to measure the cross-sectional volume expansion. The material
thickness of the electrode before the cycle test was 24 micrometers, whereas after the cycle test, it
increased to 32 micrometers. This result, compared with the theoretical volume expansion rate of
300%][], signifies the successful inhibition of volume expansion, forming a stable electrode with a

spherical silicon-graphene oxide structure.
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Figure 26. FE-SEM images of Pure Si electrode (a) before and (b) after 50 cycle test

41



Y \'

o

Figure 27. FE—SM images of BM electrode (a) befor and (b) after 50 cycle test
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Figure 28. FE-SEM images of Si-20 electrode (a) before and (b) after 50 cycle test
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Figure 29. FE-SEM cross-section images of Si-20 electrode (a) before and (b) after 100 cycle test
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3.6.2. FE-TEM/EDS Analysis

After 100 cycles, TEM analysis of the sample revealed that, despite the breakage of silicon within
the graphene layers, the externally coated carbon and graphene layers maintained the particle
structure. Through this observation, it can be confirmed that the spherical structure is maintained

stably even after charge and discharge cycles.
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Figure 30. FE-TEM and EDS mapping images of Si-20 after 100 cycle test

with elements as Si, C, and O
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CHAPTER 4. Conclusion

Successfully synthesized Si/C/rGO particle structure composites using ball milling and spray drying
methods, it was confirmed through SEM, TEM, and various analysis techniques that a Si/C/rGO
composite with a structure where carbon and rGO encapsulate silicon in a spherical form was formed.
In cycle test results, the Si-20 sample maintained its capacity without a decrease, and approximately
65% capacity retention was observed after 250 cycles. When comparing physically mixed, ball-milled,
and spray-dried samples, it was noted that using only the ball milling method provided physical stability
by embedding silicon particles in graphene oxide sheets, but an increase in internal resistance was
observed. However, the issue of increased resistance due to ball milling was successfully addressed by
combining it with spray drying, maintaining stability. This is attributed to the deformed spherical
structure by the spray dryer method. The electrode produced using this method showed no cracks on
the electrode after cycle testing, as confirmed by SEM, and exhibited a volume expansion rate of 140%
compared to the theoretical expansion rate of 300%. Additionally, TEM measurements verified the

preservation of the electrode structure even after cycle test.
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