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Abstract

The experimental realization of silicene and germanene opens a new avenue for exploring
two-dimensional (2D) configurations of non-layered bulk materials. Previously, it was be-
lieved that monolayer forms were possible only for layered materials such as graphite, hexag-
onal boron nitride, and transition metal dichalcogenides, collectively known as Van der Waals
(vdW) materials. In vdW materials, atoms within a layer are connected through chemical
bonds, and the layers are attached via weak long-range vdW forces. In contrast, bulk mate-
rials have nearly isotropic bond strength in all directions, lacking a preferred cleavage plane
as in layered materials, allowing the construction of various 2D layers from non-layered bulk
materials. It often results in high surface reconstruction and the potential transition to new
phases without corresponding bulk counterparts.

However, the search for the ground state among various possible initial structures for den-
sity functional theory (DFT) relaxations remains a challenge, especially for materials with
polymorphic behavior such as CdxTey and GexSy. The ground-state phase of a material is sig-
nificant due to its high possibility in experimental preparation. This thesis focuses on finding
ground-state structures in the variable composition of 2D Cd-Te and Ge-S, exhibiting polymor-
phic characteristics. To address this complexity, the highly successful genetic algorithm-based
code, USPEX, in conjunction with VASP for total energy calculations, is employed to predict
low-energy phases. The results reveal CdTe as the ground state, with CdTe2 being 8 meV/atom
higher than the convex hull. For Ge-S, novel 2D structures of Ge2S, GeS, and GeS2 are iden-
tified, all exhibiting significantly lower formation energy than previously reported ones. The
dynamic, elastic, and thermal stability of these low-energy structures are rigorously confirmed
through state-of-the-art first principles methods.

This research emphasizes on the electronic structure of low-energy phases of 2D Cd-Te,
crucial for solar cell applications, and the lattice thermal conductivity of 2D Ge-S, essential
for thermoelectric device applications. Our analysis demonstrates the robust nature of the
direct band structure of CdTe and the ultralow lattice thermal conductivity of GeS, making
it promising for thermoelectric applications. Notably, the ground state structure of 2D GeS2

exhibits giant anisotropic lattice thermal conductivity, surpassing that of other 2D materials.
Detailed discussions on underlying mechanisms, including phonon group velocity, phonon



v

lifetimes, weighted phase space for three-phonon scattering, and Güneisen parameter, shed
light on the ultralow and anisotropic lattice thermal conductivity observed in 2D GeS and
GeS2, respectively.
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Chapter 1

Introduction

1.1 Polymorphism in crystals

Polymorphism, the ability of a material to exist in different crystal structures, is a subject of
great interest and significance in materials science. In elemental solids, the different crystal
forms are referred to as allotropes, and in compound solids, they are known as polymorphs.
For example, carbon exhibits various allotropes [3]. Diamond and graphite are well-known
examples due to their contrasting properties: diamond is renowned for its hardness, while
graphite is soft. These distinct properties arise from their crystal structures, illustrated in figs.
1.1(a & b). Graphite has a layered structure where consecutive layers are held together by
weak Van der Waal’s forces, making it soft and slippery. In contrast, diamond features a
non-layered bulk structure, making it the hardest natural material.

Similarly, compound materials like cadmium telluride (CdTe) can exist in different struc-
tures. The cubic and hexagonal structures, shown in figs. 1.1(c & d), are well-studied exam-
ples. Polymorphism stems from the various arrangements and bonding of atoms or molecules
within a crystal lattice, resulting in distinct crystal structures with varying physical and chemi-
cal properties. The existence of multiple crystal structures for a given material offers a diverse
range of material properties and applications.

The discovery and understanding of polymorphism in three-dimensional (3D) crystals
have been extensively studied and well-established. Factors such as temperature, pressure,
and composition can induce phase transitions between different crystal structures [4]. These
phase transitions often lead to remarkable changes in material properties, including electrical
conductivity, optical properties, mechanical strength, and thermal conductivity. Consequently,
polymorphic materials have found applications in various fields, including electronics, catal-
ysis, and thermoelectric devices.
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(a) Diamond (b) Graphite

Figure 1.1: Structures of carbon allotropes (a) Diamond, (b) Graphite, and CdTe polymorphs
(c) cubic, and (d) hexagonal
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1.2 Polymorphism in two-dimensional (2D) materials

In recent years, the emergence of two-dimensional (2D) materials has expanded the scope of
polymorphism studies beyond 3D crystals. These 2D materials, composed of a single layer or
a few layers of atoms, exhibit unique properties due to their reduced dimensionality. Graphene
[5, 6], the well-known 2D material composed of carbon atoms arranged in a hexagonal lattice,
sparked tremendous interest in the field. Since then, researchers have explored a diverse range
of 2D materials, including transition metal dichalcogenides (TMDs), phosphorene, hexagonal
boron nitride, and many more.

Similar to their 3D counterparts, 2D materials can exhibit polymorphism, although with
distinct characteristics. For monolayers whose bulk counterpart is layered, these polymorphs
often result from various stacking, buckling, and bending of the single layer. However, in the
case of monolayers of non-layered bulk materials, such as CdTe, the structures of these poly-
morphs could be vastly different from each other due to the absence of a preferred cleavage
plane. For example, we show four polymorphs of 2D CdTe in fig. 1.2, i.e., single-layer flat and
buckled and bilayer low and high-buckled structures from the literature [7–9]. Additionally, a
2D CdTe with a unit cell of 8 atoms has also been reported [10].

The constraints imposed by reduced dimensionality and surface reconstruction can lead to
different crystal structures and arrangements of atoms within the 2D plane. These variations
in structure result in distinct electronic, optical, and mechanical properties. For example, the
direct band gap of monolayer MoS2 becomes indirect with increasing thickness [11]. Con-
sequently, understanding and characterizing polymorphism in 2D materials are crucial for
tailoring their properties for specific applications.

1.3 Ground-state structure

The structure within the configuration space with the lowest total energy is referred to as the
ground state of that material, while those with higher energies are considered meta-stable
structures. The importance of the ground state lies in the fact that every natural system aims
to minimize its energy. Consequently, the likelihood of a material existing in its ground-
state structure is higher compared to a meta-stable state. However, claiming a structure to
be the ground state of a material is subjective. This means that the energy of the alleged
ground-state structures is compared with various structures in the configuration space. Total
energy calculation codes depend on the initially provided structure. If the initial structure is
significantly different from the global minimum, there is a high probability of getting trapped
in local energy minima. To accurately determine the ground state of a material, a wide range
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(a) 1L (flat) (b) 1L (buckeld)

(c) 2L (low-buckled) (d) 2L (high-buckled)

Top-view

Side-view

Top-view

Side-view

Figure 1.2: Two-dimensional CdTe polymorphs found in the literature. The dashed lines mark
the unit cell in each case.
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of initial structures with varying numbers of atoms in the unit cell should be considered.

1.4 Significance of evolutionary algorithms

The prediction of global minimum energy structure in 2D materials are challenging tasks
due to the complex configuration space and the presence of local minima in energy landscape.
The configuration space illustrates the different arrangements of atoms within a material. Typ-
ically, it’s a high-dimensional 3N space, where N represents the number of atoms in the unit
cell. This intricate nature poses challenges, especially when dealing with polymorphic and
non-layered bulk materials like CdTe and GeS, where a preferred cleavage plane is absent.
Identifying the ground-state configuration becomes exceptionally challenging in such cases.
Employing strategic search methods becomes crucial to navigate this complexity and find the
most stable arrangement and other feasible configurations in these materials. Recently, evolu-
tionary algorithms have emerged as powerful tools for efficiently exploring this configuration
space and identifying global-minimum energy polymorphs.

Evolutionary algorithms are inspired by biological evolution and mimic the process of nat-
ural selection and genetic variation. These algorithms employ a population of candidate struc-
tures, subject them to evolutionary operators such as mutation and crossover, and iteratively
refine the population towards more favorable solutions. The use of evolutionary algorithms
enables efficient exploration of the configuration space, significantly increasing the chances
of discovering novel and stable polymorphs.

The incorporation of evolutionary algorithms in the prediction of 2D material polymorphs
offers several advantages. Firstly, they can efficiently sample a wide range of structural pos-
sibilities, enabling the discovery of polymorphs that may have been overlooked using tradi-
tional methods. Secondly, these algorithms can guide the search towards global-minimum
energy structures, thereby providing more accurate predictions of the most stable polymorphs.
Thirdly, evolutionary algorithms allow for the exploration of composition-structure-property
relationships, aiding in the design and optimization of materials with tailored properties.

1.5 Why CdTe and GeS?

Silicon, a widely used material in solar cells, faces limitations in efficiency due to its indi-
rect band gap. It has led the search for alternative materials, with Cadmium Telluride (CdTe)
gaining significant attention due to its favorable direct band gap of 1.45 eV. The demand for
two-dimensional (2D) materials has surged following the successful isolation of graphene and
other metal chalcogenides, making it imperative to fabricate a 2D sheet of CdTe experimen-
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tally. Although there have been reports on the synthesis of CdTe nanoplatelets and nanorods,
the elusive 2D form has yet to be realized. On the theoretical front, density functional theory
(DFT) studies have unveiled the monolayer of CdTe in various forms, including flat single-
layer hexagonal, bilayer hexagonal, and buckled configurations. However, a significant gap
in the literature pertains to the absence of investigations into ground-state structure, which
holds more practical relevance for experimentalists. Moreover, understanding the influence
of strain and thickness, which are ubiquitous factors in experimental preparation, on the elec-
tronic structure remains a critical area of research. By addressing these crucial aspects, we
can not only enhance our fundamental understanding but also pave the way for the practical
utilization of 2D CdTe in emerging technologies.

The conversion of waste heat into useful electrical energy is a critical pursuit, addressing
both the global energy crisis and environmental sustainability. The figure of merit, ZT , serves
as a vital metric for quantifying the efficiency of material in this conversion process and is
directly related to the Seebeck coefficient while being inversely proportional to thermal con-
ductivity. Consequently, there is a growing demand for semiconductors exhibiting ultralow
lattice thermal conductivities. In this context, 2D materials emerge as a promising avenue for
enhancing thermal transport properties. Among these materials, 2D IV-VI compounds have
captured the research community’s attention. For instance, the 2D orthorhombic structure
of GeS has demonstrated a higher Seebeck coefficient and low lattice thermal conductivity.
However, the non-layered, low-energy bulk structure of GeS hints at the possibility of other
2D configurations beyond the orthorhombic phase. Surprisingly, a comprehensive investiga-
tion into the ground-state structure of 2D GeS is absent in the literature.

Slack’s theory suggests that materials exhibiting high average atomic mass with weak
bonds tend to have low lattice thermal conductivity, which is advantageous for heat-to-electricity
conversion. We’re interested in a group of 2D materials, MxXy (M=Cd/Ge, X=S/Te), that in-
clude heavy metals. These materials may possess remarkably low lattice thermal conductivity,
but their thermal transport properties remain largely unexplored in the literature. Investigating
these properties could unlock promising options for efficient heat-to-electrical conversion.

1.6 Phonon transport in 2D materials

Phonon transport in 2D materials is crucial for a comprehensive understanding of their thermal
properties and potential for thermoelectric applications. Phonons, the quantized vibrations of
the crystal lattice, are the primary heat carriers in semiconducting materials. The study of
phonon transport involves investigating the propagation, scattering, and thermal conductivity
of phonons in 2D materials.
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Phonon transport in 2D materials is influenced by various factors, including the material’s
crystal structure, phonon dispersion relations, and phonon-phonon scattering mechanisms.
The unique 2D nature of these materials introduces additional considerations, such as the pres-
ence of edge states and the impact of substrate interactions. The band gap in semiconducting
2D materials further affects the phonon transport properties, as phonons with energies close
to the band gap can exhibit reduced scattering rates and contribute significantly to thermal
conductivity.

Understanding the phonon transport characteristics in polymorphic structures of 2D mate-
rials allows for the optimization of thermal management strategies and the design of thermo-
electric devices. Additionally, it provides insights into the interplay between electronic and
thermal properties in 2D materials and facilitates the exploration of their potential for energy
conversion and heat dissipation applications.

1.7 Research objectives

Building upon the aforementioned concepts and considerations, the research objectives of this
thesis are as follows:

1. To employ evolutionary algorithms in conjunction with stability analysis techniques to
predict polymorphic structures in 2D materials, specifically focusing on CdxTey, GexSy.

2. To investigate the structural stability, including dynamical, thermal, and mechanical
stability, of the identified low-energy structures by state-of-the-art first-principles methods.

3. To study the electronic properties, including energy band structures and density of
states, of the low-energy structures for their implications in potential applications.

4. To explore the phonon transport characteristics in low-energy structures of 2D materials,
due to the semiconducting nature of the predicted monolayers.

5. To assess the effects of thickness and strain on the electronic structure of CdTe, CdTe2,
which are ubiquitous during synthesis.

1.8 Significance of the study

The comprehensive investigation of polymorphism, stability, electronic structure, and phonon
transport in 2D materials contributes to the advancement of fundamental knowledge and paves
the way for the design and optimization of materials with tailored properties. The prediction of
low-energy polymorphs, incorporating stability analysis, enhances the discovery of stable and
viable structures, expanding the design space for 2D materials. Understanding the electronic
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structure and phonon transport properties enables the rational design of materials for diverse
electronic, optoelectronic, and thermoelectric applications.

1.9 Thesis outline

In order to achieve the research objectives outlined earlier, this thesis is structured as follows:
Chapter 2 offers a comprehensive theoretical foundation, providing essential insights into

the computational methodologies utilized for generating and analyzing the results presented
in this thesis.

Chapter 3 delves into a detailed exploration of the outcomes related to 2D CdTe and CdTe2.
While focusing on these materials, we briefly touch upon meta-stable structures such as CdTe4

and Cd3Te2.
Chapter 4 offers an in-depth investigation into the prediction of low-energy structures

within 2D GexSy compounds. It primarily concentrates on the lattice thermal conductivity
of these low-energy structures, shedding light on their unique characteristics.

In Chapter 5, we provide a comprehensive summary of our findings and their implications.
Furthermore, we outline the direction for future studies, offering an outlook on the exciting
possibilities that lie ahead.



Chapter 2

Theoretical background and
computational methods

In this chapter, the background of density functional theory (DFT) and the key computational
methods utilized in the thesis are presented. The discussion commences by addressing the
complex many-body problem and its three essential approximations. Following this, the ap-
plication of density functional theory as a solution to this intricate problem is explained.

2.1 Atomic scale interactions

At a microscopic level, all materials consist of molecules or atoms, comprising nuclei and
electrons. The way these components change over time and space can be described using the
Schrödinger wave equation:

Ĥy = ih̄
∂y
∂y

(2.1)

where the Hamiltonian Ĥ can be represented as follow:
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In this context, the subscript denoted by small letters signifies electrons, while capital
letters represents nuclei. For instance, the mass and position of i

th electron as mi, ri and I
th

nucleus with mI , rI. Since the Hamiltonian (Ĥ) in eq. 2.2 is not dependent of time, the wave
function y can be expressed as y({ri}, t) = fE({ri}, t)e�iEt . Consequently, the Schrödinger
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wave equation simplifies as:
Ĥy = Ey (2.3)

where E stands for the total energy of the system. Moreover, due to the significant mass
difference between the nucleus and electron, the kinetic energy of the nuclei term can be dis-
regarded. By employing this approximation (known as Born-Oppenheimer’s approximation
[12]), the Hamiltonian can be simplified to depict a system where the motion of the nuclei is
considered static or frozen as:
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In this expression, the final term remains constant for a specific structure, given the known
positions and charges of the nuclei. Consequently, an electron-only Hamiltonian can be de-
rived as:
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This Hamiltonian consists of three parts: T̂e (electron kinetic energy), V̂ext(external poten-
tial energy due to stationary nuclei), and V̂ee (Coulomb repulsion between electrons). Electron
masses vary due to relativistic effects at high speeds, but this complexity is often simplified.
Accurately calculating V̂ee requires a many-body wave function with 3N variables, making
exact calculations impossible for systems with more than two electrons.

Initially, the problem was tackled by Hartree, who averaged electron interactions, allow-
ing each electron to respond to the effective potential generated by the other N-1 electrons.
This simplified the problem, representing each electron solely through the electron density
distribution of the remaining electrons, regardless of their exact positions. This approach re-
duced the complex many-body electron wave function into a product of individual electron
wave functions, from which the single electron Hamiltonian equations were derived through
the variational principle.

However, the Fermionic nature of electrons posed a challenge due to the Pauli exclu-
sion principle. To address this, the Hartree-Fock formalism was introduced, representing the
many-body wave function in a Slater determinantal form. Although this was an improvement,
it introduced an additional potential (exchange potential) into the resulting Hamiltonian equa-
tion. While effective for small systems, these methods lacked accuracy, primarily due to the
neglect of electron correlation effects.

Both the Hartree and Hartree-Fock methods relied on wave functions, demanding substan-
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tial computational resources, particularly for large systems. Constructing the wave function
for an N-electron system necessitated 4N variables, leading to a significant increase in com-
plexity with a growing number of electrons. In response, a density functional-based approach
emerged, gaining popularity in computational studies of condensed matter physics and chem-
istry. Unlike wave function-based methods, this approach focused on the degree of freedom
of electron density, involving only four variables (three spatial and one spin variable) in an
N-electron system. This made it far more manageable for larger systems.

2.2 Density functional theory (DFT)

2.2.1 Principles of DFT: Hohenberg-Kohn theorems

Density Functional Theory (DFT) operates on the principle that a system’s characteristics can
be exclusively defined by its ground state density [13, 14], denoted as n0(r). This fundamental
concept, established by Hohenberg and Kohn [15] in 1964, represents a pivotal breakthrough.
It introduces a precise theory for interacting many-body systems, grounded in two fundamental
principles.

Firstly, in a system composed of equivalent Fermi particles, disregarding spins, the ground
state energy is solely dictated by the particle density distribution function, r(r). Thus, it’s
feasible to entirely describe a system without delving into its wavefunctions or spin densities.

Secondly, the energy function E[r] achieves its minimum value precisely when r corre-
sponds to the ground state, with E[r]min representing the ground state energy. This principle,
integral to density functional theory, serves as a variational approach, providing a method for
employing variational methods to tackle specific problems. The Hohenberg-Kohn formalism
emphasizes that the particle density function r stands as the pivotal variable defining a many-
body system’s ground state properties. The variation in the energy functional E[r] offers a
means to identify a system’s ground state accurately.

In summary, as per the Hohenberg and Kohn theorem, both the ground state energy and
particle density function can be ascertained by minimizing:

E[r]⌘
Z

druext(r) +< y|T +U |y >, (2.6)

Here, uext(r) represents the external potential energy at position r, while T signifies the
kinetic energy of electrons, and U denotes the interaction energy between electrons. The term
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< y|T +U |y > in eq. 2.6 can be written as:

< y|T +U |y >= T [r]+ 1
2

Z
drdr,

r(r)r(r0)
|r� r0|| {z }

JH

+Encl[r], (2.7)

The first two terms on the right side of eq. 2.7 represent the functions for electron kinetic
energy and Coulomb interactions among electrons (Hartree term), respectively. The third
term, Encl[r], incorporate the non-classical factors such as self-interaction, exchange, and
correlation effects. Minimizing the energy functional E[r(r)] allows for the determination of
the ground state density distribution and the total energy corresponding to it. However, while
the external potential and the Hartree terms in eq. 2.7 are known, the precise forms of the
other terms still require determination.

2.2.2 Kohn-Sham (KS) DFT

To address the unknown terms in the Hohenberg-Kohn equation, W. Kohn and L. J. Sham
[16] introduced a practical solution. The Kohn-Sham formalism involves replacing the kinetic
energy (T ) and non-classical term (Encl) of the many-body system with a sum of the exact ki-
netic energy of a non-interacting system (Ts) possessing the same charge density distribution,
and an exchange-correlation term EXC. This modification results in

T [r(r)]+ JH [r(r)]+Encl[r(r)] = Ts[r(r)]+ JH [r(r)+EXC[r(r)] (2.8)

The Ts[r(r)] term can be expressed as a functional of the individual electron Kohn-Sham
orbitals as:

Ts[r(r)] =� h̄
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Therefore, the system’s energy functional can be expressed as

EKS[r(r)] = Ts[r(r)]+ JH [r(r)]+Vext [r(r)]+EXC[r(r)]. (2.10)

In this approach, Ts and JH describe the electron distribution and apply universally to
all systems. The unique electronic properties of different structures stem from their distinct
external potentials (Vext). Although the exchange-correlation term remains undefined (next
section), we can deduce the system’s ground state energy form by employing the Hohenberg-
Kohn theorem, that minimizing the energy functional gives the ground state of the system.
This minimization process gives rise to the Kohn-Sham equation, which resembles the Schrödinger
equation.
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HKS(r)yi(r) =
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where
VKS(r) =Vext(r)+VH(r)+VXC(r), (2.12)

in which the Hartree and exchange-correlation potentials are written as

VH =
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dr2 (2.13)
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. (2.14)

Subsequently, the electron density distribution of the system’s ground state can be calcu-
lated as follows:

r(r) =
occ

Â
i=1

|yi(r)|2. (2.15)

Next, the total energy can be determined by summing the energy values of the occupied
eigenstates.

Now, the only remaining term in the eq. 2.15 is the exchange-correlation term EXC[r(r)],
for which several efficient approximations have been introduced.

2.3 Density functionals approximations

2.3.1 Local density approximation

Utilizing the Hohenberg-Kohn-Sham equation, the many-body system can be evaluated through
a single-particle model. However, it is pivotal to choose an effective EXC[r(r)] term for
accurate calculations. Several approximations have been proposed to determine a suitable
EXC[r(r)], with one widely used method being the local density approximation (LDA) intro-
duced by W. Kohn and L. J. Sham [16]. This approach essentially involves approximating the
exchange-correlation functional of electrons by considering that of the uniform electron gas.

EXC(r) =
Z

drr(r)eXC[r(r)] (2.16)

The corresponding exchange-correlation potential is given as:

VXC[r(r)] =
dEXC[r]

dr
=

d

dr(r)
(r(r)eXC[r(r)]) (2.17)
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It is possible to obtain eXC for a uniform electron gas with various r , and then determine
r(r) using interpolation. The exchange-correlation term can be split into the exchange term
eX and the correlation term eC. Dirac defined the exchange term eX as follows:

eX(r) =�3
4
[
3r
p
]1/3 (2.18)

However, there is no analytical solution for the correlation part. Typically, it is parameter-
ized based on Quantum Monte Carlo simulations results.

When compared to experimental results, LDA often faces issues like overestimating bind-
ing energy and underestimating bond length and bandgap. This is especially problematic in
systems with uneven electron density, such as transition metal oxide systems, where LDA’s
performance weakens due to the interdependence of exchange-correlation energy on electron
densities across positions.

2.3.2 Generalized-gradient approximation

A frequently applied enhancement to LDA involves expanding the exchange-correlation en-
ergy density beyond local electron density to include neighboring spaces [15]. This improve-
ment incorporates the electron density gradient, resulting in a first-order correction to the
exchange-correlation energy density.

EXC[r] =
Z

dreXC[r(r), |—r(r)|]. (2.19)

Several methods based on Generalized Gradient Approximation (GGA) have been intro-
duced, including approaches like Perdew-Wang (PW91) [17], Perdew-Burke-Ernzerhof (PBE)
[18, 19], and others.

2.3.3 Hybrid density functional

As the exchange-correlation terms in LDA and GGA lack precision, properties like bond
lengths and energy band gaps often deviate significantly from experimental findings. To en-
hance accuracy, hybrid functional methods, pioneered by A. Beck [20], have been introduced.
These methods utilize a hybrid exchange-correlation energy functional, typically combining
Hartree-Fock exchange E

H

X
with LDA or GGA exchange-correlation energy functionals. Var-

ious hybrid functional methods, including B3LYP , PBE0 [21, 22], etc., have been proposed.
In this study, a Heyd-Scuseria-Ernzerhof (HSE) [23] exchange-correlation functional is em-
ployed for accurate band structures.
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2.4 Applying KS equation to periodic crystals

2.4.1 Plane wave basis

The mentioned equations are applicable to systems with a finite number of electrons, like
molecules and atoms. However, crystal systems have an infinite number of electrons. In solid
crystal systems, the periodic nature allows the equations to have periodic boundary conditions,
simplifying and enabling the solution of the KS equations. In a periodic crystal characterized
by a lattice translational vector R, the effective potential VKS complies:

VKS(r+R) =VKS(r). (2.20)

The KS wave function adheres to the following boundary condition:

yl,k(r+R) = e
ik·ryl,k(r), (2.21)

y(l, r) = e
ik·rwl,k(r), (2.22)

wl,k(r) = wl,k(r+R) (2.23)

Here, k, l represent the Bloch wave vector and the band index, yl,k(r), wl,k(r) stands for
the Bloch wave function and the periodic function, respectively.

Achieving an accurate representation of the wave function necessitates a thorough and
inclusive basis set that encompasses all regions within the crystal. Different approximations
are utilized in various basis sets, such as linearized augmented plane waves (LAPW), linear
combination of atomic orbitals (LCAO), and plane waves (PW). In this section, our focus is
solely on introducing the PW approximation. The periodic wave function can be expressed as
Fourier series:

wl,k = Â
G

cl,Ge
iG·r, (2.24)

Where G denotes the reciprocal lattice vector, satisfying the condition G · r = 2pm, where
m is an integer. The cl,G represents the expansion coefficient for plane waves. As a result, the
KS orbitals can be represented as a linear combination of the complete PW basis set as:

yl,k(r) = Â
G

cl,k(G)⇥ 1p
W

e
i(k+G)·r, (2.25)

Here, cl,k stands for the expansion coefficient for the basis set, while 1/
p

W ( with W is volume)
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as the normalization factor. The KS equation can be formulated as follows:

✓
� h̄

2

2me

—2 +VKS(r)
◆

yl,k = el,kyl,k(r) (2.26)

Upon multiplication with e
�i(k+G0)·ron the left side and subsequent integration over r, we

obtain:

Â
G0

✓
� h̄

2

2me

|k+G|2dG0G +VKS(G�G0)

◆
cl,k(G) = el,kcl,k(G). (2.27)

In this equation, the effective potential energy VKS is expressed through Fourier transforms,
and the kinetic energy by diagonal components. By diagonalizing the Hamiltonian matrix
Hk+G,k+G0 the equation can be solved.

The computational size is determined by selecting a cutoff energy

Ecuto f f =
h̄

2

2me

|k+Gmax|2 (2.28)

Obtaining a meaningful solution involves considering both valence and core electrons,
but this can be computationally expensive. Thus, the pseudopotential approximations are
introduced.

2.4.2 Pseudopotentials

In a crystal, the core electrons are tightly bound to the nuclei. Their interaction with the sur-
rounding crystalline environment is weak, allowing us to merge the core electron potential
with the nuclear Coulomb potential. This combination reduces the number of electrons that
require computation and leads to the creation of a pseudopotential. This technique is known
as the Frozen-Core Approximation. The pseudowavefunction corresponding to the pseudopo-
tential can be represented in the form plane waves (PW).

2.4.3 Projector augmented wave method

The DFT results in this thesis uses Vienna Ab initio Simulation Package (VASP) [24, 25],
which is based on the projector augmented wave (PAW) method [26, 27]. It was introduced
by Blöchl, and is based on pseudopotential approach considering all-electron. This method
divides the space into two distinct regions: the augmented (core) region and the outer region.
The core region behave as spheres around each nucleus, is less system-dependent and less
significant. On the other hand, the outer region is crucial for studying solid properties. The
PAW method adopts a strategy of splitting the wavefunction into two components: one within
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the augmented area and the other in the outer region. These two wavefunctions are smoothly
connected at the interface of the two regions.

2.5 Hellmann-Feynman force

In a DFT calculation aiming to find the local energy minimum for a given structure, one can
calculate the first derivative of the energy surface, which represents the force. At the local
minimum, this first derivative of the energy surface must be precisely zero. The force acting
on atom i can be determined through the first derivative of the energy (E) with respect to its
position Ri.

Fi =� ∂E

∂Ri

, (2.29)

where
E =

hy|H|yi
hy|yi = hy|H|yi. (2.30)

substituting E in eq. 2.30 and using H|yi= E|yi, we get

Fi =�hy|∂H

∂Ri

|yi�E(
∂ hy|yi

∂Ri

) =�hy|∂H

∂Ri

|yi. (2.31)

Eq. 2.31 represents the Hellmann-Feynman forces. During a geometry optimization, the
Hellmann-Feynman force acting on each atom in a structure must meet the given convergence
criteria.

2.6 Electron localization function

The Electron Localization Function (ELF) serves as a scalar field in three-dimensional space,
offering a straightforward measure of electron localization in atomic and molecular systems
[28]. This method proves highly effective in analyzing electron spatial distribution within ma-
terials, providing insights into bond types and arrangements. ELF alone has demonstrated its
ability to identify bonds and lone pairs in molecules and solids [29–31], making it invaluable
in characterizing material properties. The ELF is defined as follows:

ELF(r) =
1

1+c(r)
(2.32)

where c(r) represents the ratio of electron localization D(r) to uniform electron density Dh(r):

c(r) = D(r)

Dh(r)
(2.33)
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D(r) and Dh(r) can be computed from Hartree-Fock or Kohn-Sham orbitals yi(r) and
electron density re(r) as:

D(r) =
1
2 Â |—yi(r)|2 �

1
8
|—re(r)|

re(r)
, (2.34)

Dh(r) =
3

10
(3p2)2/3re(r)

5/3 (2.35)

The ELF(r) can have to the values in range 0 to 1, with 1 corresponds to complete local-
ization of electron.

2.7 Evolutionary search method

Crystal structure prediction, as defined by A. Le Bails [32], strives to anticipate a crystal struc-
ture before it is confirmed through chemical synthesis or discovered naturally. This facet of
crystallography revolves around deducing structures solely through theoretical means, free-
ing the process from experimental dependencies. Although methods like X-ray diffraction or
neutron scattering are frequently utilized, they face challenges, particularly in the realm of 2D
materials. Issues such as sample purity, the intensity of light sources, and associated costs fre-
quently complicate the direct experimental determination of a material’s structure. In theory,
the key factor determining a structure’s potential stability is its total energy. While it’s often
challenging to confirm a structure as the lowest energy state, we can assess its stability by
comparing it with numerous other available structures.

Numerous methods have been devised for structure prediction, among which the evolu-
tionary algorithm stands out as highly efficient. Its application has markedly decreased the
need for experimental structural information in theoretical investigations of 2D materials [33–
35]. Consequently, theoretical results have gained enhanced reliability and credibility in the
scientific community.

The steps involved in an evolutionary structure search utilizing the USPEX code [36–38]
are illustrated in figure 2.1

1. The first generation is created using the crystal symmetries and the input given as con-
stant/variable chemical composition, maximum and minimum number of atoms in the
unit cell, and the vacuum thickness (specifically for 2D materials).

2. These initial structures undergo relaxation using DFT codes such as VASP. Follow-
ing complete geometry optimization, one obtains the structures at local energy minima
along with their respective energies.
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3. In step 2, the low-energy structures will serve as seed structures for the next genera-
tion, whereas additional structures are created through heredity, mutation, and random
process. To achieve the ground state which has lowest-energy, structures with lower
energies of previous generation have a greater likelihood as parent structures.

4. Continue iterating the loop from step 2 until the convergence criteria is met. Conver-
gence is achieved when the lowest energy structures remain unchanged across multiple
generations. The structure displaying the absolute minimum energy is identified as the
global minimum structure in the search process.

The heredity operator in step 3 involves dividing the unit cell into multiple segments and sub-
sequently assembling these segments to create a new structure. The mutation operator entails
exchanging the chemical composition among distinct structural components. The search can
be speed up by giving some known structure (if available) as seed. Furthermore, the num-
ber of the structures in the first generation should be larger (around twice) than subsequent
generations to increase the probability of finding the global minimum.

2.8 Lattice vibration in solids

In materials like dielectric and semiconducting materials, heat is transferred through the vi-
brational movments of atoms, which are interconnected by interatomic forces. Figure 2.2(a)
illustrates the interatomic potential U as a function of the interatomic distance r between two
atoms. The force interaction between these atoms can be derived from the first derivative of
U with respect to r as [1]:

F =
�dU

dr
(2.36)

When two atoms are at a distance, they experience an attractive force because of the attrac-
tion between one atom’s electrons and the nucleus of the other. However, as they get closer,
they repel each other due to the overlap of atomic orbitals. The position at which the potential
is at its minimum is termed the equilibrium position. Moreover, the motion of each atom is
influenced by its neighboring atoms through these interatomic potentials.

A simplified model of these interactions in a crystal resembles a mass-spring system, as
depicted in fig. 2.2(b). In such a setup, the vibration of a single atom can propagate throughout
the entire system by generating lattice waves. The transmission of sound in a solid occurs due
to these long-wavelength lattice waves. When one side of the solid is heated, atoms near the
hot side exhibit larger vibrational amplitudes. These vibrations are then transmitted to atoms
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Figure 2.1: Flowchart of USPEX search for low-energy structures
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Figure 2.2: (a) Schematic for interatomic potential (b) spring-mass system representing atoms
connected in solids [1]

on the opposite side through the propagation and interaction of lattice waves. These lattice
waves are referred to as phonons and possess energy given by:

E = h̄w (2.37)

where w represents the frequency of the phonon, and h̄ is the reduced Plank constant.

2.9 Thermal conduction in solids

J. Fourier introduced a fundamental concept in heat transfer known as Fourier’s law of heat
conduction [1], which describes the heat flux (~Q) in response to a temperature gradient (—T )
within a material. The law is mathematically expressed as

~Q =�k—T (2.38)

where —= ∂
∂x

x̂+ ∂
∂y

ŷ+ ∂
∂ z

ẑ represents the gradient operator, and x̂, ŷ, and ẑ are unit vectors.
Here, k = ke +kl denotes the thermal conductivity, which comprises both electronic (ke) and
lattice (kl) thermal conductivity components. This thesis primarily focuses on lattice thermal
conductivity, especially in the context of 2D semiconducting materials.

The negative sign in eq. 2.38 indicates the direction of heat flow, moving from regions of
high temperature to those of low temperature. While in bulk materials, k becomes a second-
rank tensor, it is crucial to note that Fourier’s law, while applicable at a macroscopic level,
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faces violations in the domain of 2D materials due to the influence of quantum size effects
[39]. Moreover, this law lacks detailed explanations for the intricate microscopic processes
governing heat transport. To delve deeper into the mechanisms of heat transfer through lattice
vibration, exploring the phonon picture becomes essential.

2.9.1 Boltzmann transport equation BTE

The Boltzmann transport equation (BTE) is a specialized approximation of the general Liou-
ville transport equation, which governs the motion of the N-particle system in the phase space
(r(n), p(n)) with distribution function f

(N)(r(n), p(n)) [1]. Mathematically, it is represented as:

∂ f
(N)

∂ t
+

n

Â
i=1

ṙ
(i)⇥ ∂ f

(N)

∂ r(i)
+

n

Â
i=1

ṗ
(i)⇥ ∂ f

(N)

∂ p(i)
= 0 (2.39)

with ṗ = ∂ p/∂ t and ṙ = ∂ r/∂ t.
Solving eq. 2.39 practically is infeasible due to the vast number of variables involved;

for instance, one mole of a substance contains 6⇥ 1023 particles, resulting in an enormous
number of variables of 6⇥ 6⇥ 1023, which include three variables for space and momentum
each. To mitigate this complexity, one approach is to consider a single particle and average
over the remaining N � 1 particles in the system. This simplification is valid for dilute gases
and transforms eq. 2.39 into the form:

∂ f

∂ t
+

dr
dt

·—r f +
dp
dt

·—p f =�(
∂ f

∂ t
)c (2.40)

In this equation, the subscripts on — represent the space and momentum gradient opera-
tors. The term on the right side of eq. 2.40 accounts for the collision of the single particle
under consideration, now external to the N � 1 particles. This equation, known as the gen-
eral Boltzmann transport equation [40–42], finds application in systems with dilute particle
densities such as electrons and phonons.

2.9.2 Phonon BTE

In the absence of a temperature gradient, phonons move randomly in all directions within the
lattice, and their distribution can be represented by the Bose-Einstein function f0 as:

f0(wl ) =
1

e

h̄wl
kBT �1

(2.41)

where kB is the Boltzmann constant.
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When a temperature gradient —T is applied to the material, the phonon distribution fl
deviates from the equilibrium distribution f0. In the case of phonons, with no external force
involved, the third term on the right-hand side of eq. 2.40 is omitted. Furthermore, for steady-
state conditions (constant over time), it can be simplified as:

d fl
dt

=
∂ fl
∂ t

����
d

+
∂ fl
∂ t

����
c

= 0, (2.42)

In this equation, the subscript l on w represents both the wavevector q and branch index v

of the phonon, i.e., l ⌘ (v,q). Eq. 2.42 is the Phonon Boltzmann Transport Equation (PBTE),
where the first term is the diffusion term. The name diffusion is due to the fact that in the
temperature gradient, heat flows from regions of high to low temperature through a diffusion
process. This term can be expressed in a more detailed form as:

∂ fl
∂ t

����
d

=�vl · ∂ fl
∂T

⇥ ∂T

∂ r
=�—T ·vl

∂ fl
∂T

, (2.43)

The second term ∂ fl/∂ t|c in eq. 2.42 encompasses various phonon scattering processes
depending on the specific system, including three-phonon scattering, boundary interactions,
and impurity scattering.

2.9.3 Solving PBTE

In a more practical form, especially under small temperature gradients, eq. 2.42 can be lin-
earized. The distribution function fl of the eq. 2.42 can be expanded to the first order as
[2]:

fl = f0(wl )+gl , (2.44)

in which
gl =�Fl ·—T

∂ f0

∂T
, (2.45)

where Fl should be calculated to find gl and fl from eqs. 2.45 and 2.44. In the case
of pure single crystal, where the only source of phonon-phonon scattering exists, Fl can be
expressed as:

Fl = t0
l (vl +Dl ), (2.46)

where t0
l represents the single-mode (l ) phonon lifetime computed by first-order pertur-

bation theory, also known as single mode relaxation time approximation (SMRTA). In other
words, if Dl = 0, eq. 2.46 provides the SMRTA solution for PBTE. The full iterative solution
of PBTE calculates t0

l and Dl using the following relations:
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Dl =
1
N

+

Â
l 0l 00

G+
ll 0l 00(xll 00Fl 00 �xll 0Fl 0)

+
1
N

�
Â

l 0l 00

1
2

G�
ll 0l 00(xll 00Fl 00 +xll 0Fl 0)

+
1
N

Â
l 0

Gll 0xll 0Fl 0 ,

(2.47)

1
t0

l
=

1
N

✓ +

Â
l 0l 00

G+
ll 0l 00+

�
Â

l 0l 00

1
2

G�
ll 0l 00 +Â

l 0
Gll 0

◆
, (2.48)

where N = Nx+Ny+Nz represents the G-centered regular q-points grid for discretizing the
first Brillouin zone, and xll 0 = wl 0/wl . The density of the q-point grid must be optimized
for each system because the calculated lattice thermal conductivity can vary significantly with
different grid spacings. This issue will be discussed in more detail in Chapter 4. The symbols
G±

ll 0l 00 in eqs. 2.47 and 2.48 denotes the rates of three-phonon scattering processes, given as:

G+
ll 0l 00 =

h̄p
4

f0(wl 0)� f0(wl 00)

wl wl 0wl 00

����V
+
ll 0l 00

����
2
d (wl +wl 0 �wl 00) (2.49)

G�
ll 0l 00 =

h̄p
4

f0(wl 0)+ f0(wl 00)+1
wl wl 0wl 00

����V
�
ll 0l 00

����
2
d (wl �wl 0 �wl 00) (2.50)

Eqs. 2.49 and 2.50 describes the absorption and emission processes of three-phonons
[41, 43] with modes l , l 0, and l 00. The Dirac delta function d signifies energy conservation,
such as when to phonons with frequencies wl and wl 0 combine into one with frequency wl 00 ,
i.e., wl +wl 0 = wl 00 , as shown in fig. 2.3(a). Similarly, in emission process, two phonons
with frequencies wl 0 and wl 00 are produced from a single phonon wl , i.e., wl = wl 0 +wl 00 ,
as shown in fig. 2.3(b). Momentum conservation must be followed in these three-phonon
inelastic scattering processes, represented as:

q00 = q±q0+G (2.51)

where G is the reciprocal lattice vector. If G = 0, then q00 = q± q0 represents the normal
three-phonon process, where the resulting phonon moment stays within the same Brillioun
zone, as shown in fig. 2.3(c). However, the three-phonon process with G 6= 0 in eq. 2.51,
called umklapp process, leads to phonon with momentum extending outside the first BZ. The
reciprocal lattice vector G is used to map it back within the first BZ, as shown in in fig. 2.3(d).

In eqs. 2.49 and 2.50, G±
ll 0l 00 represents the elements of the scattering matrix, calculated
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Figure 2.3: The diagram illustrates the processes involved in three-phonon scattering: (a)
absorption, (b) emission, (c) normal process, and (d) umklapp process. The shaded regions in
(c) and (d) represent the first Brillouin zone, highlighting the fundamental unit in the reciprocal
lattice where these processes occur.
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from the anharmonic interatomic force constants Fabg
i jk

using the following relation:
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Here (i, j, k) and (a, b , g) denote atoms and Cartesian coordinates, respectively. The
summation of i includes only the unit cell, while ( j,k) ranges over the entire system. ep,q

represents the normalized eigenfunctions of the phonon involved in the scattering processes
(e.g., e

a
l (i) represents the a component of the eigenfunction at the ith atom with mode l ).

The third term in eq. 2.48 accounts for scattering from isotopes disorder present in the
material and can be expressed as:

Gll 0 =
pw2

2 Â
ieu.c

g(i)

����e
⇤
l · el 0(i)

����
2
d (wl �wl 0) (2.53)

with

g(i) = Â
s

fs(i)


1� Ms(i)

M̄(i)

�2
(2.54)

In these equations, Ms(i) denotes the mass of isotope s of the ith atom, and 0 < fs(i)  1
represents its relative frequency of occurrence. M̄ = Â

s

fs(i)Ms(i) is the average atomic mass.

2.9.4 Lattice thermal conductivity

In semiconductors and insulators, most of the heat transfer occurs through lattice vibrations,
also known as phonons. The heat flux ~Q due to a temperature gradient —T can be analyzed
from the perspective of phonons using the following mathematical formulation:

~Q = Â
s


1
V

Â
qx

Â
qy

Â
qy

h̄w fl vl

�
(2.55)

where s denotes the polarization. Eq. 2.55 can be expressed in integral form as:

~Q = Â
s

Z
h̄w fl vl

dq
(2p)3 (2.56)

Therefore, the lattice thermal conductivity tensor kab
l

in the form of Fl , determined
through eq. 2.46, can be written as [2]:

kab
l

=
1

kBT 2V N
Â
l

f0( f0 +1)(h̄wl )
2
v

a
l F

b
l (2.57)
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Figure 2.4: Illustration of monolayer thickness (d) and effective thickness (de f f ).

Here, v
a
l represents the a component of the group velocity of the l mode phonon.

In eq. 2.57, V represents the volume of the unit cell. Specifically, for monolayers, which
are the primary focus of this thesis, this volume includes the vacuum space usually introduced
to prevent interactions between repeated images caused by periodic boundary conditions in
DFT calculations. Consequently, the concept of effective thickness de f f is employed to scale
the calculated lattice thermal conductivity for 2D materials. It’s essential to note that this
effective thickness de f f differs from the actual thickness d of the monolayer. In fig 2.4, the
thickness is simply the vertical distance between the top and bottom atoms of the monolayer.
On the other hand, the effective thickness refers to the vertical distance between the consecu-
tive layers of the corresponding bulk phase.

While alternative methods exist for determining the effective thickness of a monolayer,
for example, by adding the Van der Waals radii of the top and bottom atoms to the layer’s
thickness, our approach involves using the vertical distance between consecutive layers in the
out-of-plane direction of the corresponding bulk material as the effective thickness. It’s worth
mentioning that in some of our predicted 2D materials, we determine the bulk counterpart by
removing the vacuum and identifying the most favorable stacking arrangement for the layers
after full DFT relaxation.

In this thesis, the ShengBTE code [2, 44] was utilized to calculate lattice thermal conduc-
tivity iteratively, finding Fl with initial values of F0

l = t0
l vl , known as SMRTA values. Within

the ShengBTE code, parameters like f0, w , and vl are computed from harmonic interatomic
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Figure 2.5: Flowchart of lattice thermal conductivity calculation using ShengBTE code [2].

force constants (IFCs), while Fl , detailed in equations (2.46-2.50), is phonon scattering de-
pendent and employs the anharmonic IFCs.

The computational workflow of the ShengBTE code is outlined in fig. 2.5.
The initial step involves obtaining the optimized structure of the material, a process facili-

tated by any DFT implemented code. In this thesis, VASP was utilized for this purpose.
The second phase encompasses determining the harmonic properties, achieved through

phonopy, as well as the anharmonic properties utilizing the thirdorder.py script. Addition-
ally, Born effective charges and the dielectric constant are computed via density functional
perturbation theory (DFPT).

With all these prerequisites in hand, one can proceed to solve the phonon Boltzmann trans-
port equation (PBTE) using the ShengBTE code. This step yields essential information about
lattice thermal conductivity and associated processes, including group velocity, phase-space
volume for three-phonon scattering, and the Grüneisen parameter (which will be discussed in
detail later).
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2.10 Inter atomic force constants (IFCs)

Presently, there are two first-principles methods employed to determine the force constants:
the linear response method and the finite displacement method. The finite displacement
method relies on the concept that when atoms are slightly displaced from their equilibrium
positions, the total energy of the structure can be expanded in Taylor’s series as follows:
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where E0 is the total energy of the system at equilibrium position of atoms, displacement of
the ith atom along a direction is denoted by u

a
i

and the nth order inter atomic force constants
(IFCs) by F.

2.10.1 Harmonic IFCs

In the context of minor displacements and within the harmonic approximation [45], the motion
equation for atom j within the lth unit-cell can be expressed as follows:

m j

∂ 2

∂ t2 u
a
jl
(t) =�Â

j0l0
b

Fab
jl; j0l0u

b
j0l0(t) (2.60)

Here the mass of atom j is denoted by m j. Applying the Blöch theorem, a plane-wave
atomic displacement can serve as the solution for eq. 2.60,

u jl(t) =
1

p
m j

Â
q,p

cl e j,l exp

✓
i(q.r jl �wl t)

◆
, (2.61)

where, cl represents the transformed coordinate, r jl stands for the equilibrium position
vector, and e j,l represents the polarization vector of atom j. It’s important to note that l
includes both a polarization and wavevector as before. By utilizing eqs 2.60 and 2.61, the
following eigenvalue equation can be derived:

w2
l el = D(q)el (2.62)
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where D(q) stands for the dynamical matrix. In the context of an n-atom unit cell, D(q) is
a Hermitian matrix with dimensions of 3n⇥3n, and its individual elements can be express as
[46]:

D(q)3( j�1)+a,3( j
0�1)+b =

1
p

m jm j0
Â
l0

Fab
j0; j0l0exp

✓
iq · (r jl � r j0)

◆
, (2.63)

In this context, the summation encompasses all unit cells within the system. Additionally,
the indices a and b take the values of 1 for the x-direction, 2 for the y-direction, and 3 for the
z-direction.

The vibrational frequencies of phonons (denoted as wl ) are derived from the square roots
of the eigenvalues of the matrix D(q). The corresponding eigenvectors, which have a length of
3⇥n, represent the polarization vectors of the phonons (also known as phonon mode shapes).
These vectors are normalized in such a way that

e
T

l · e?l = 1 (2.64)

2.10.2 Anharmonic IFCs

In the harmonic approximation discussed earlier, there is no interaction between different
phonon modes [47, 48], leading to infinite phonon lifetime and thus lattice thermal conductiv-
ity of the system. This model also fails to explain experimental observations such as thermal
expansion [43]. However, including higher-order terms (beyond quadratic) in eq. 2.58 can
address these issues. For instance, considering third-order terms in the Taylor series of the
potential energy allows for the occurrence of three-phonon scattering processes, explaining
these phenomena.

The calculation of three-phonon scattering needed the third-order IFCs as input in eq. 2.52,
which is can be calculated using finite difference method [2, 44]:
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(2.65)

Considering the supercell method and Eq. 2.65 the third-order IFCs can be written as:
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In this context, F
l
k

represents the force experienced by atom k in the direction g , where
atoms i and j are perturbed from their equilibrium positions by a small displacement h along
the directions a and b .



Chapter 3

Electronic structures of low-energy
two-dimensional CdxTey

3.1 Low-dimensional CdTe phases

The optimum and direct band gap of 1.45 eV, high absorption coefficient, easy synthesis pro-
cesses at low temperatures compared to crystalline silicon (c-Si), and more superior properties
of Cadmium Telluride (CdTe) make it an essential material in the thin-film solar cell technol-
ogy and solar devices based on CdTe are called CdTe photovoltaics (PV) [49]. Recently,
CdCl2-activated CdTe-PV has achieved a record laboratory efficiency of 22.2%, reported in
Ref. [50], with its underlying mechanism explained by Hatton [51], and has shown the capac-
ity for more improvement than c-Si, whose indirect band gap puts limits on efficiency. Besides
these advantages, CdTe-PV has passed through various critical issues like toxicity, low melting
point, and scarcity of Te on the earth. Studies related to environmental effects [52, 53] proved
that CdTe is a stable material and is not carcinogenic like Cd. The low melting temperature
of CdTe (i.e., 1050 �C), which limits its use to domestic appliances, is successfully extended
to a higher temperature by encapsulation of molten glass [54]. However, the Tellurium (Te)
scarcity in the earth’s crust is still a problem of future concern. This issue can be solved to a
greater extent by the thickness reduction of CdTe-PV, which will reduce the cost due to low
Te consumption and simultaneously meet with the miniaturization of future devices.

The study of CdTe at reduced dimensions attracts more researchers’ interest due to its
superior properties. For example, Adam [55] synthesized high-quality CdTe nanocrystals
(quantum dots and rods) with the one-pot synthesis from the CdO precursor. Further de-
velopment in this direction was done in experimental work by Ithurria et al. [56], in which
they prepared nanoplatelets of CdTe as thin as four layers. Recently, the nanorods of CdTe
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possessing excellent photon up-conversion (from red to blue), which has potential for appli-
cations in photocatalysis and bioimaging, are fabricated [57]. Apart from the nanocrystals
(quantum dots, nanorods, nanoplatelets) of CdTe, the progress in the experimental realization
of the two-dimensional (2D) form is missing. After the successful exfoliation of graphene [58]
and transition metal dichalcogenides [11], researchers thought that syntheses of monolayers
are possible only for those materials whose bulk is layered. But the prediction of germanene
and silicene [59] compelled the experimentalists to change their thinking. Interestingly, both
were grown successfully in the laboratory, followed by more novel methods for preparing 2D
materials of non-layered bulk materials like zinc chalcogenides [60], lead sulfide [61], and
molybdenum nitride [62]. Therefore, it is possible to synthesize the monolayer CdTe either
with existing techniques or minor modifications. In such a scenario, the DFT prediction of
novel phases and their properties can be an efficient tool, as in the case of germanene and
silicene [59]. Therefore, the DFT predictions for 2D CdTe can provide enough motivation and
guidance for experimentalists.

In the line of the DFT study, Wang [63] noted that the freestanding graphene-like struc-
ture of monolayer CdTe is unstable and stabilizes when grown on a graphene substrate and
possesses the potential for water splitting. Zhou [64] noticed a similar instability in the free-
standing hexagonal single-layer structure of CdTe. Interestingly, they revealed that the total
energy has an odd/even dependency (i.e., even layers are lower in total energy than an odd
number of layers) and have no imaginary frequencies in the phonon spectra of even layers.
Surprisingly, CdS is shown to be stable in all respects in the same freestanding hexagonal
planar structure with excellent visible photocatalytic properties [65]. This dynamic stability
of freestanding honeycomb monolayer CdS is ambiguous because it contradicts the results of
other first-principles studies [7, 63]. However, this dynamical instability is removed success-
fully by applying a 2% biaxial tensile strain [8]. In a DFT study, Iyikanat [10] pointed out that
2D CdTe stabilizes in a primitive cell of 8 atoms with a robust (not affected by the external
strain) direct band gap of 1.42eV (GGA) instead of planar and bilayer, which consists of 2
and 4 atoms in their primitive unit cells, respectively. A comparative study [9] of 2D CdTe in
different configurations like single-layer (planar and buckled) and bilayer buckled (a-CdTe)
has shown the higher stability of the latter one compared with the former. Similar buckled
structures for other cadmium chalcogenides (i.e., CdS and CdSe) are confirmed to be stable
with excellent water-splitting properties [66].

A natural and worthy question is: how many polymorphs and stoichiometric ratios are
possibly stable in the CdTe system? A quick answer to this is: manually, it is hard and
sometimes impossible to check all the possible symmetries and stoichiometries in a system.
Therefore, to accomplish this goal, various evolutionary algorithms [37, 67–69] are written
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by researchers in which USPEX attracts tremendous interest from the condensed matter com-
munity due to its high success rate. Hence, in this work, we choose the USPEX to explore a
variable compositional-phase diagram of the Cd-Te system. In this study, we benefited from
the USPEX to find not only the stable (i.e., energetically most favorable) structures of different
compositions but also the metastable phases, which sometimes possess unprecedented prop-
erties compared to the stable ones. The resultant structures consist of the buckled bilayer [66]
and hexagonal bilayer [64] structures of CdTe, validating our search process, along with the
other novel phases of CdTex (i.e., CdTe2 and CdTe4). Furthermore, the modulation of elec-
tronic properties with thickness and external strain is investigated for consideration in future
devices.

3.2 Computational details

To explore the low-energy structures in the variable-compositional phase diagram of CdxTey

(with x + y  8), the evolutionary algorithm employed in USPEX [37, 70], coupled with
Vienna Ab Initio Simulation Package (VASP) [25] for structural relaxation, is used. The
projector-augmented wave (PAW) [26] framework is considered for total energy calculations.
The generalized gradient approximation (GGA) [19] is adopted to treat the exchange-correlation
interactions of electrons. The parameters in the input file of USPEX are; 60 for the total num-
ber of generations, 200 structures in the first generation, 80 in the subsequent generations, and
the thickness of the 2D layer is allowed to expand up to 4 Å. The search for low-energy struc-
tures in all populations is accelerated by considering a coarse G-centered k-mesh for Brillouin
zone integrations and cutoff energy of 400 eV for plane-wave basis set in structural relaxations.
To ensure accuracy, the structures at low-energy facets of the phase diagram are fully relaxed
again with a denser k-mesh of spacing 2p⇥0.02 Å-1, higher cutoff energy of 500 eV, force
convergence of 0.001 eV/Å, and the energy convergence of 10�8 eV. The optimal in-plane lat-
tice constants are obtained from the total energy as a function of the lattice constant, as shown
in Fig. 2.1. The calculations of electronic structures are performed on sufficiently high k-mesh
of 2p⇥0.01 Å-1, as shown in Fig. 3.2 by convergence test. For the slab model, a vacuum of 23
Å is created in the out-of-plane direction, and the zero damping method of Grimme (DFT-D3)
[71] is used for the van der Waals corrections. The phonon band structures are determined
using the Phonopy code [72] based on the finite difference method by considering supercells
of 3⇥3⇥1 for Cd4Te and Cd3Te2, 5⇥5⇥1, 4⇥4⇥1, 4⇥7⇥1, 3⇥3⇥3 for CdTe, CdTe2,
CdTe4, and bulk-CdTe, respectively. The ab initio molecular dynamics (AIMD) simulations
are performed with the NVT ensemble using the Nosé-Hoover thermostat [73] at a step size of
1 fs and a total time of 10 ps at temperatures of 300, 600, and 900 K. Supercells consisting of
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total atoms 80 for Cd3Te2, 144 for CdTe, 150 for CdTe2, and 120 for CdTe4 are considered for
AIMD simulations. The elastic constants are determined using the finite differences method.
The band structures are calculated with both PBE and the Heyd-Scuseria-Ernzerhof hybrid
(HSE06) [23] functionals.
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Figure 3.1: Total energy per unit cell as a function of in-plane lattice constants is plotted for
(a) CdTe, (b) CdTe2, (c) Cd3Te2, (d, e) CdTe4, and (f) Cd3Te4 in their two-dimensional con-
figurations. The solid circles represent DFT data, and the line is the fitting of the Murnaghan
equation of state. The solid red circle represents the optimum lattice constant in each figure.



3.3 Results and discussion 51

1.05

1.06

1.07

1.08

0.01 0.02 0.03 0.04 0.05 0.06

E
g 

(e
V

)

k−mesh (2π×Å−1)

CdTe
CdTe2
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unit 2p ⇥Å�1 for 2D CdTe and CdTe2. The 0.01 is the optimum k-mesh, evident from a
negligible variation in the band gap beyond it.

3.3 Results and discussion

3.3.1 Structure prediction

Enthalpy H, the approximate Gibbs free energy at 0 K of a system, is defined as; H =U +PV

with U , P, and V representing the internal energy, pressure, and volume, respectively. The
thermodynamic stability of any system against its constituents depends on their formation of
enthalpies 4H. Specifically for 2D CdxTey, 4H is given as 4H = HCdxTey

� xHCd � yHTe,
where HCd and HTe are the enthalpies of the lowest possible 2D configurations of elemental
cadmium and tellurium as shown in Figs. 2.1(a, e). Fig. 2.1(c) depicts the normalized 4H (in
eV/atom) for various compositions and polymorphs of the 2D CdxTey system at zero temper-
ature and pressure. Conceptually, all the structures with positive DH means located above the
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line connecting elemental 2D Cd and Te are unstable. While those structures having negative
4H can either be stable or metastable [34] against Cd and Te. In this regard, numerous poly-
morphs of different stoichiometric ratios have negative 4H, but here we consider the lowest
energy ones only. In Fig. 2.1(c), they are indicated with colors (solid circles) like magenta,
red, dark blue, cyan, gray, black, yellow, and gold for Cd, Cd4Te, Cd3Te2, CdTe, Cd3Te4,
CdTe2, CdTe4, and Te, respectively. The 2D CdTe is located at the global minimum of the
convex hull and has the same structure as predicted previously in the DFT study [9]. Further
analysis found its buckled polymorph [64] at 41 meV/atom above the ground state. These
positions of different polymorphs on the convex hull show their relative thermodynamic sta-
bility, which plays a crucial role in their experimental viability. The lowest energy structure of
CdTe2 [See Fig. 2.1(d)] is marginally stable as it occupies the position of 6 meV/atom above
the convex hull. This observation contradicts the results in a recent report [74], showing it
on the convex hull, which might result from their consideration of the insufficient number of
structures and generations in the search process. The search for low-energy phases of variable
composition strongly depends on the population size, especially in the first generation. There-
fore, we consider 200 structures in the first generation and 80 in the subsequent generations.
Sometimes the study of metastable structures has tremendous importance because of their su-
perior properties and synthesis feasibility, such as optimization of the growth conditions or
destabilizing the stable phases by charge transfer like in the case of TMDCs [75, 76]. The 2D
metastable structures of CdTe4, Cd3Te4, Cd4Te, and Cd3Te2 are respectively 48, 62, 68, and
79 in units meV/atom above the convex hull (See Fig. 3.4 for details).

γ
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Figure 3.4: Top and side views of the 2D structures predicted by USPEX in this work, i.e., (a)
Cd3Te2, (b) Cd3Te4, (c) CdTe4, and (d) Cd4Te. The (red) dashed lines represent the unit cell
in each case.
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Figure 3.3: The top and side views of structures of compositions lying on the convex hull
for (a) elemental 2D cadmium, (b) 2D CdTe, (d) 2D CdTe2, and (e) elemental 2D tellurium,
with the dash lines showing the unit cell in each case. (c) The formation of enthalpies for
all 2D binary structures from the evolutionary search of USPEX with various stoichiometries
between Cd (magenta) and Te (gold color), whereas those occupying the lowest energy facets,
are indicated with different colors: i.e., Cd4Te (red), Cd3Te2 (dark blue), CdTe (cyan), Cd3Te4
(gray), CdTe2 (black), and CdTe4 (yellow).

3.3.2 Stability screening

In the previous section, we screened the energetically most favorable structures of various
compositions in the CdxTey system. These structures can be strong candidates for experi-
mentally accessible phases if they pass successfully through state-of-art filters of dynamical,
thermal, and mechanical stabilities [77].

3.3.2.1 Phonon

Figs. 3.5(b, c) show the phonon dispersion spectra of the energetically most favorable mono-
layers CdTe and CdTe2, respectively. Additionally, Fig. 3.5(a) depicts the phonon band struc-
ture of the bulk CdTe (wurtzite structure, space group P63mc). Phonon band structures of
some of the low-energy CdxTey are shown in Fig. 3.6. The absence of imaginary frequencies
in the phonon spectra, except for Cd4Te in Fig. 3.6(d), confirms their dynamical stabilities.
A common observation from phonon spectra of all these structures is that the highest fre-
quencies are lower than 6 THz due to the heavy masses of Cd and Te atoms. The gap in the
optical branch that divides it into low and high energy areas is 0.9 and 0.41 in the unit of THz
for monolayer CdTe and CdTe2, respectively. The overlap between low-energy optical and
acoustic phonon branches results in high acoustic-optical interaction near the Brillouin zone
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Figure 3.5: Phonon dispersion curves for (a) bulk CdTe, (b) monolayer CdTe, and (c) mono-
layer CdTe2 along the high symmetry k points in the first Brillouin zones.

center in CdTe and along the X-M path in monolayer CdTe2, which makes them potential
thermoelectric materials [78].
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Figure 3.6: Phonon band structures in the first Brillouin zone of single-layer (a) Cd3Te2, (b)
Cd3Te4, (c) CdTe4, and (d) Cd4Te. The presence of negative frequencies in phonon spectra of
single-layer Cd4Te shows its dynamical instability.

3.3.2.2 Ab initio molecular dynamics

Fig. 3.7(a, b) shows the AIMD simulation results at 300 K for monolayers CdTe and CdTe2,
respectively. The system’s total energy rises initially and then oscillates about its average value
in eV/unit-cell of nearly -9.75 for CdTe and -16.0 for CdTe2. The absence of any sharp drop
or rise in the total energy shows their thermodynamic stability at 300 K. Similarly, the tem-
perature of the systems oscillates about 300 K, the input temperature for AIMD simulations.
The structures of monolayer CdTe and CdTe2, after a time of 10 ps of AIMD simulations, are
shown as insets in Figs. 3.7(a, b). It depicts that although the atoms of the lattice are oscillating
about their equilibrium positions but resulting in no bond breaking or phase transformations
that confirm their thermodynamic stability. Further, we perform AIMD calculations at 600
and 900 K to check thermodynamic stability at higher temperatures. The results shown in Fig.
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3.8 indicate the stability of monolayer CdTe at 600 and 900 K, while CdTe2 is unstable at 900
K, evident from the broken bonds in the inset of Fig. 3.8(d). For other predicted meta-stable
structures, i.e., Cd3Te2 and CdTe4, the results are shown in Fig. 3.9. Both structures show
thermodynamic stability at 300 K, as evident from the absence of any broken bonds and drop
in energy and temperature profiles. At 600 K, however, Fig. 3.9(d) shows broken bonds in the
final structure. Thus the monolayer CdTe4 is thermodynamically unstable at 600 K.
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Figure 3.8: Total energy per unit cell and temperature profiles using ab initio molecular dy-
namics simulations at temperature of (a) 600 K, (b) 900 K for monolayer CdTe and (c) 600K,
(d) 900 K for CdTe2. The inset in each case shows the final structure from top and side views
after 10 ps.
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Figure 3.7: Total energy per unit cell and temperature profiles using AIMD simulations at
300 K for monolayer (a) CdTe and (b) CdTe2. The insets show the top and side views of the
simulated structures after 10 ps.
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Figure 3.9: Total energy per unit cell and temperature profiles using ab initio molecular dy-
namics simulations at temperatures of (a, b) 300 K and 600 K for Cd3Te2 and (c, d) 300 K
and 600 K for monolayer CdTe4, respectively. The inset in each case shows the final structure
(supercells of 4⇥4⇥1 for Cd3Te2 and 4⇥6⇥1 for CdTe4) after 10 ps. In the case of CdTe4

at 600 K, the AIMD calculations diverge.

3.3.2.3 Elastic constants

To confirm the elastic stability of all low-energy CdxTey structures, their elastic constants are
determined and tabulated in Table 3.1. The elastic stability criteria for 2D structures are given
in Ref. [79]. Trigonal structures of monolayer CdTe and Cd3Te2 satisfy the elastic stability
criteria C11 > 0, C66 > 0, and C11 >|C12 |. The squared structure monolayer CdTe2 satisfies the
elastic stability criteria C11 > 0, C66 > 0, and C11 ⇥C22 >C

2
12. Similarly, monolayer Cd3Te4

and CdTe4 with oblique structures satisfy the elastic stability criteria C11 > 0, C11⇥C22 >C
2
12,

and det | Ci j |> 0; with i, j = 1,2,6. Hence, all the structures in Table 3.1 are mechanically
stable.

3.3.3 Structural analyses

The lowest energy monolayer CdTe has a trigonal structure with space group P3m1, as shown
in Fig. 3.10(a). Its side view shows the two-layer configuration. To avoid confusion with
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Table 3.1: Lattice parameters and elastic constants of low-energy CdxTey structures

Composition Lattice parameters Elastic constants (N/m)
a (Å) b (Å) g C11 C22 C12 C66 C16 C26

CdTe 4.63 4.63 120� 38.28 38.28 16.44 10.92 ... ...
CdTe2 5.94 5.94 90� 16.83 16.89 4.12 5.30 ... ...
Cd3Te2 6.14 6.14 120� 11.58 11.47 �1.24 6.42 ... ...
CdTe4 6.57 4.31 109.15� 24.43 23.07 4.98 8.89 �3.72 3.17
Cd3Te4 6.12 6.12 93.21� 19.71 19.69 11.32 15.72 �4.67 �4.72

bilayers in the later section, we name them upper and lower sublayers. These sublayers have
AB stacking, where each Te atom in the upper sublayer is located right on top of the Cd atom in
the lower sublayer. Its bulk counterpart, shown in Fig. 3.12(a), is a stable hexagonal structure
(space group P63mc) with a = b = 4.61 Å and c = 7.57 Å agrees well with experimental
values a = b = 4.57 Å and c = 7.47 Å [80]. For a better comparison between bulk and 2D
structures of CdTe, we show them together in Fig. 3.12(a,b). The in-plane lattice constant
expands by 0.016 Å in 2D compared to the bulk. The out-of-plane Te-Cd-Te bond angle f is
109.73�, and the in-plane angle q is 109.21�. The former increases to 109.98� while the latter
decreases to 108.96� in the 2D CdTe. There are two types of Cd-Te bonds in 2D CdTe [see
Table 3.2], with the in-plane distance shorter by 0.223 Å compared to the out-of-plane, while
in the corresponding bulk structure, this difference is as smaller as 0.004 Å. The buckling
height denoted by h in Fig. 3.10(a) has a value of 0.97 Å and is slightly larger than 0.95 Å as
of bulk. The Te atoms of the upper sublayer in 2D CdTe buckle upward in contrast to the bulk
structure, where they buckle downward relative to the Cd atoms. As a result, the Cd atom of
the upper sublayer comes closer to the Te of the lower sublayer to make a bond of the same
length of 3.07 Å as the Cd atom of the lower sublayer with the Te of the upper sublayer. Thus
in the 2D CdTe structure, each Cd and Te complete their four coordinations by making bonds
with the four Te/Cd atoms in which three belong to the same (001) plane and the fourth one
to the upper/lower sublayer, alternatively [see Fig. 3.12(a,b) for details]. The completion of
four coordinations of Cd in 2D CdTe is crucial for its stability because it is otherwise unstable
in the single layer (planar and buckled), where Cd cannot complete its fourth coordination
[10, 63].

Fig. 3.10(b) shows the top view of the primitive unit cell of squared 2D CdTe2 with space
group P421m which further consists of wrinkled pentagons of unequal side lengths. The side-
view shows that 2D CdTe2 consists of three constituent sublayers: the Cd sublayer sandwiches
between two Te sublayers with a buckling height of 1.79 Å. The Te-Cd-Te bond angle in the in-
plane is 102.06� and in the out-of-plane is 113.28�. 2D CdS2 has a similar structure, recently
reported in an article [66]. Each Cd atom makes four bonds with neighboring Te atoms: two
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with each Te sublayer. However, Te makes three bonds: two with Cd atoms and one with
the Te atom. This atomic configuration is different than the one cleaved from its bulk. Fig.
3.13 compares the bulk-cleaved and our predicted 2D structures of CdTe2. Bulk CdTe2 has
a cubic structure (space group Pa3) with a = 7.19 Å which is in good agreement with the
previous report [81] see Fig. 3.13(a). The cleaved monolayer CdTe2 shown in Fig. 3.13(b)
has a structure similar to that of monolayer PdSe2 [82], which is dynamically unstable. The
side-views of Fig. 3.13(b, c) depict the difference in the Te arrangement of cleaved and our
predicted 2D CdTe2; the Te-Te bond formed between upper and lower sublayers in the cleaved
monolayer but in the same sublayer in our case.

In addition to the crystal structures, the electron localization function (ELF) mapped in
(001) and (100) planes are shown in Fig. 3.10(a, b) for bond analysis of the 2D CdTe and
CdTe2, respectively. The ELF of CdTe shows electrons localization around the Te atoms which
means that the electrons transfer from Cd to Te to make a predominant ionic Cd-Te bond.
Because in a covalent bond, electrons localize in the midway regions of the bonded atoms. The
Bader charge analysis of 2D CdTe, given in Table 3.2, supports the ionic-dominant character
of the Cd-Te bond. The lower electronegative Cd atom donates 0.5 electronic charges to the
higher electronegative Te atoms. Similarly, the Cd-Te bond of 2D CdTe2 has a predominant
ionic character because electrons localize on Te atoms, as shown by ELF plots. However,
the Te-Te bond of either the upper or lower sublayer is covalent-dominant because electrons
localize comparatively in the middle region of the Te-Te bond, which is evident from the ELF
plot in the (100) plane. Also, the Bader charge analysis of CdTe2 shows that 0.45 electronic
charge transfers from the Cd atom to the four Te atoms. The covalent character of the Te-Te
bond might be the reason for the stability of structures with an excess ratio of Te atoms (i.e.,
CdTe2 and CdTe4).

We consider the AA stacking configuration for the bilayer CdTe similar to its bulk counter-
part. However, for 2D CdTe2, the bulk analog does not exist or has a different crystal structure.
The different crystal structures of monolayers and the corresponding bulk analogs are noted
previously in other materials like borophene [83], 1T phase of MoS2 [84], and 2D-SiS [85].
Therefore, various stackings for bilayer CdTe2 are possible. We show three configurations
called AA, AB, and AB0 stackings in Fig. 3.11. In AA stacking, the top layer is the replica
of the bottom layer. The AB stacking is obtained by rotating the top layer of AA stacking
by 180� about the y-axis. Finally, the AB0 stacking is obtained by translating the top layer
of AB stacking along the x-direction by a/2, where a is the lattice constant of 2D CdTe2.
The separation distance in AA stacking is shorter than AB and AB0 due to the intervention
between the lower Te-sublayer of the top layer and the upper Te-sublayer of the bottom layer.
The repulsion between nearest Te-atoms in AB stacking increases the separation distance. As
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Figure 3.10: The top and side view of the 2D structures (dashed lines indicate primitive unit
cell) along with their electron localization function (ELF) maps (in the plane of Cd and Te
atoms) for (a) CdTe and (b) CdTe2. The buckling height is denoted by h. The multicolor bar
(left side) scales the value of ELF, where zero value (blue) means no localized electrons while
one value (red) corresponds to completely localized electrons.

a result, the total energy of the system rises. However, in the AB0 configuration, the nearest
Te-atoms of the top and bottom layers displace in the (001) plan and decrease the separation
distance and the system’s total energy. Thus, the AB0 configuration is the most favorable and
will be considered in further study.

The primitive unit cell of 2D Cd3Te2 has a hexagonal structure with a = b = 6.11 Å and
g of 120�, where the Cd atomic layer is sandwiched by the Te atoms. Each Cd makes four
bonds, two with other Cd in the same ab plane and two with the Te atoms (one from above
and another from below) [see Fig. 3.4(b) for more details]. The Cd-Te bond in Cd3Te2 has
an ionic character, while the Cd-Cd bond has a covalent character as the electrons localized
in the central region of the bond [see Fig. 3.14(a)]. As a general trend, with the increase of
Te ratio in the CdxTey system, Te atoms tend to shear their electron and result in meta-stable
structures such as CdTe4, whose lattice parameters and Bader charge analysis are respectively
given in the Tables. 3.1 and 3.2, and the electron localization function is plotted in Fig. 3.14.



3.3 Results and discussion 62

AA AB AB′(a) (b) (c)
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-2.601 eV/atom-2.609 eV/atom -2.801 eV/atom

Figure 3.11: Three configurations of bilayer 2D CdTe2 stacking are (a) AA stacking, (b) AB
stacking, and (c) AB0 stacking. The symbol "# represents the upside-down rotation of the top
layer in (a) relative to the bottom layer. The horizontal arrow in (c) denotes the a/2 shift of the
top layer of (b) along the x-direction relative to the bottom layer. The calculated total energy
per atom for each configuration is listed. After relaxations, the separation distances between
Cd sublayers of the top and bottom layer along the z-direction are shown. The magenta and
blue spheres represent the Cd atom of the bottom and top layers, whereas the gold color
denotes the Te atom.
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Table 3.2: This table shows the bond lengths and Bader charges on all atoms in the predicted
stable monolayers. The positive and negative values of Bader charges show the gain and loss
of electrons, e.g., -0.5/+0.5 for Cd/Te in CdTe implies that 0.5 electrons have transferred from
Cd to Te. The vertical/horizontal double-headed arrows (l / $) denote the out-of/in-plane
bond lengths, respectively.

Composition Bond length (Å) Bader charges (| e |)
dCd�Te dTe�Te Cd1 Cd2 Te1 Te2 Te3 Te4

CdTe 2.843 $
3.066 l ... �0.5 �0.5 0.5 0.5 ... ...

CdTe2 2.855 2.770 �0.45 �0.45 0.18 0.27 0.23 0.22
Cd3Te2 2.817 ... �0.31 �0.33 0.49 0.49 ... ...

CdTe4
3.068 $
2.884 l 2.810 �0.47 ... 0.27 �0.13 0.22 0.11

Vacuum (20 Å)
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Figure 3.12: (a) The structure of Bulk CdTe in the wurtzite phase, where the dashed box
outlines the primitive unit-cell. (b) The structure of the predicted 2D layer of CdTe by USPEX
in this work. The magnitudes of bond lengths and buckling heights are in Å.
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Figure 3.13: (a) The energetically favorable bulk structure of CdTe2 and its dynamical stability
is shown by its phonon spectra. The cleavage plane (001) is indicated by the green color. (b)
The top and side views of exfoliated monolayer from the bulk CdTe2, where the negative
frequencies in its phonon spectra show the dynamic instability. (c) The top and side views of
the stable monolayer CdTe2 predicted in this work. The dashed box in (a) and squares in (b
and c) outline the primitive unit cells.
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Figure 3.14: This figure shows the electron localization function (ELF) in crystal planes (001)
and (100) of single-layer Cd3Te2 and CdTe4. The multi-color bar (left side) scales the value
of ELF, where zero and one value correspond to no localization and complete localization of
electrons, respectively.

3.3.4 Electronic structure

Fig. 3.15(a) depicts the electronic structure (i.e., band structure and atom-projected density of
states) of CdTe in its single layer (SL), bilayer (BL), trilayer (TL), and bulk configurations.
For an accurate determination of the band gap, the band structure calculated using hybrid
functional (HSE06) is also shown as PBE functional underestimates it. Contrary to transition
metal dichalcogenides (TMDCs), which switch from the direct to indirect band gap when its
thickness changes from SL to BL [86], CdTe retains its direct band gap in all forms, i.e., SL,
BL, TL, and bulk. The robustness of the direct band gap towards the thickness of a sheet is an
excellent property because controlling the thickness to exactly SL throughout the entire area of
a wafer-scale sheet is a challenging task [6, 87]. The underestimation of the band gap by PBE
compare to HSE06 functional is evident, although the topologies of band structures remain the
same. Both, valence band maxima (VBM) and conduction band minima (CBM), are located
at the Brillouin zone center, i.e., G(0,0,0) point in 2D and retain their position in reciprocal
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space in BL, TL, and even in bulk. The dispersion near G (i.e., K�G�M) is symmetric in
both VBM and CBM. The PBE/HSE06 band gap of 2D CdTe is 1.070/1.919, which drops to
0.940/1.748, 0.931/1.719, and 0.751/1.599 (in eV) for BL, TL, and bulk, respectively. Our
calculated HSE06 band gap of 1.599 eV of bulk CdTe is in good agreement with the available
experimental value of 1.60 eV [80]. A similar decrease in band gap with the thickness is ob-
served in other TMDCs, metal chalcogenides, and other layered materials, which is attributed
to the quantum confinement effect along the z-axis in two-dimensional material and the di-
electric screening in bulk cases. The robust direct band gap in the CdTe system is due to the
high dispersion in the band structures near the band edges, while in the case of TMDCs, the
less dispersive band edges change their positions with the variation of thickness of the sheet.
The PDOS in the lower panel of Fig. 3.15(a) shows the dominant contributions of Te p-orbital
with minor contributions from p and d orbitals of the Cd atom to VBM. The CBM is domi-
nantly contributed by Cd s orbital along with weak contributions from Te s and p orbitals. The
absence of high overlapping of the orbitals of Cd with Te atoms in PDOS indicates the ionic
character of the Cd-Te bond, which is consistent with our bond character analysis (electron
localization function + Bader charges) in the previous section. The higher density of states in
VBM compared to CBM is due to the smaller dispersion in the band structure of the former
compared to the latter.

In Fig. 3.15(b), we show the electronic structures of the newly predicted two-dimensional
CdTe2 in its SL, BL, and TL structures. It has an indirect band gap of 1.080/1.792, 1.053/1.758,
and 0.982/1.70 in the unit of eV calculated with PBE/HSE functionals for SL, BL, and TL,
respectively. The fundamental band gap decreases by 27/24 meV with PBE/HSE06 with in-
creasing thickness from SL to BL of CdTe2, which is much lower than the decrease of 130/171
meV in the case of CdTe. This smaller decrease is due to the weak interlayer interaction of
CdTe2 compared to CdTe. Further increase in thickness from BL to TL suppresses the band
gap (PBE/HSE06) by 71/58 meV for CdTe2 and 9/29 meV for CdTe. Furthermore, the VBM
is located at the high symmetry point M(0.5,0.5,0), whereas CBM is at the midway in the
M�G k-path. They retain their positions against the thickness variation from SL to TL. Both
VBM and CBM contributed from the Te-p orbital. Similar to CdTe, there is slight overlapping
among the orbitals of Cd and Te atoms near the band edges in SL CdTe2, reflecting the ionic
bond character of Cd-Te. One can see a second minimum at symmetric point X(0.5,0,0) in the
conduction band by 220 meV above the CBM in SL, which comes closer to CBM in the case
of BL CdTe2.
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Figure 3.15: Electronic band structure calculated with PBE and HSE06 functionals and the
corresponding PBE atom-projected density of states (PDOS) of Cd and Te atoms for (a) CdTe
in its single-layer (SL), bilayer (BL), trilayer (TL), and bulk (b) CdTe2 in its single-layer (SL),
bilayer (BL), and trilayer (TL). The zero in the energy axis is denoted by the horizontal broken
line, whereas the valence band maximum (VBM) sets to it. The band edges, i.e., VBM and
CBM, are highlighted with solid green circles. The fundamental band gaps (in eV) with PBE
and HSE06 are mentioned in each case.
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Figure 3.16: Electronic band structure calculated with PBE and HSE06 functionals and the
corresponding PBE atom-projected density of states (PDOS) of Cd and Te atoms for single-
layer (a) Cd3Te2 and (b) CdTe4. The zero in the energy axis is indicated by the horizontal
dashed line, which is set at the valence band maximum (VBM). The band edges (i.e., VBM
and CBM) are highlighted with solid green circles, and the fundamental band gaps (PBE and
HSE06) are mentioned.

We define the strain as e = a�a0
a0

, where a0 and a are un-strained and strained lattice con-
stants, respectively. Its negative value corresponds to a compressive strain and a positive value
to a tensile strain. One of the weak points of monolayer TMDCs is the sensitive direct band gap
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to external deformations, such that less than ±3% of external strain makes it an indirect band
gap semiconductor [88]. Synthesis of a strain-free single layer of a material is challenging
because small deformations are ubiquitous due to the mismatch of the substrate’s lattice and
its thermoelectric expansion coefficient with the over-grown monolayer [89, 90]. Therefore,
the robustness of the direct band gap to external deformations (i.e., tensile and compressive)
is of high importance regarding the performance of devices. In Fig. 3.17, we investigate the
electronic structure under external tensile and compressive strains. The strain causes a non-
linear variation in the band gap of monolayer CdTe, which first increases by 0.5 eV in the
range of 0~5% and then drops by 0.2 eV under 5 to 10% strain. But in the compression re-
gion, from 0 to -5%, a decrease of 0.1 eV in the band gap occurs. Increasing the compression
further from -5 to -10% causes an increase of 0.1 eV in the band gap. The band gap retains
its direct nature through the whole range of biaxial strain from 0 to -10% and from 0 to 6%.
A direct-to-indirect transition occurs in the strained region beyond 7%. Close observation of
bands near the VBM with the increase of tensile strain show two nearly degenerate (differ by
15 meV) secondary maxima on both sides of G are pushed upward gradually towards VBM.
Beyond 7% strain, these secondary maxima cross the VBM resulting in an indirect band gap.
The critical strain (for direct-to-indirect switching) of 7% for SL CdTe is considerably higher
than 3% for monolayer MoS2. Comparing the PDOS of the un-strained and strained configu-
rations of CdTe, one can see the increase in the overlap between Cd-s and Te-p orbitals near
the CBM under 10% strain. Due to the decrease in the dispersion of VBM under tensile strain,
the density of states increases. Under compression, the CBM exchanges between Cd-s and
Te-p orbitals.

The strain modulation of the monolayer CdTe2 electronic structure is shown in Fig. S11.
The band gap increases/decreases monotonically with tensile/compressive strains. The semiconductor-
to-metal transition occurs by -10% biaxial compressive strain. Both VBM and CBM become
flattened with the increase of tensile strain. The secondary maxima in the valance band move
upward and cross the fundamental VBM under the 10% strain. Due to the flattened band
edges under the stretching, there is a minor difference in the indirect and direct band gap. The
CBM retains its position at the mid-way of the M�G k-path, except for a small move towards
M under 10% strain. Under compression, the band gap closes while retaining its CBM and
VBM locations as an un-strained configuration. The change in band gap with strain is 0.07
eV/strain(%), which is higher than other 2D TMDCs, showing potential for optoelectronic
devices.
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Figure 3.17: Electronic band structure and atom-projected density of states (PDOS) of un-
strained and strained (i.e., tensile and compressive strained up to ±10%) monolayer CdTe
using PBE functionals. The zero in the energy axis is denoted by the horizontal broken line
and the VBM is set to it. The VBM and CBM are indicated with solid green circles. The low-
est conduction band of the unstrained band structure (represented by a dashed line) is plotted
on all strained band structures for comparison.
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Figure 3.18: Electronic band structure and atom-projected density of states (PDOS) of un-
strained and strained (i.e., tensile and compressive strained up to ±10%) monolayer CdTe2

using PBE functionals. VBM and CBM are indicated with solid green circles, and the zero
in the energy axis (red dashed line) is set at VBM in each case. The lowest conduction band
of the unstrained band structure (represented by dashed lines) is plotted on all strained band
structures for comparison.

3.4 Conclusions

In summary, using USPEX code in conjunction with VASP, we found several low-energy
CdxTey 2D structures in which hexagonal CdTe is at global minimum and CdTe2 is only a
few meV above the convex-hull. Passing these structures through the state-of-art stability
filters proved their experimental accessibility. The Cd-Te bond character in both phases is
predominantly ionic, but the Te-Te bond in 2D CdTe2 has a covalent character. Contrary to
monolayer MoS2, the direct band gap nature of 2D-CdTe retains in the bilayer, trilayer, bulk,
and strained configurations. The CdTe2 has an indirect band gap which is highly tunable by
strain. Its band gap becomes pseudo-direct due to the flattening of both VBM and CBM under
the tensile strain but shows metallic behavior under 10% compression.



Chapter 4

Thermal transport in two-dimensional
GexSy

4.1 2D GexSy

The demand for two-dimensional (2D) materials has significantly increased due to their unique
properties and potential for miniaturization in future devices. One such material is graphene,
derived from graphite, which exhibits exceptional characteristics such as high carrier mo-
bility and lattice thermal conductivity (kl), making it suitable for efficient thermal transport
[5, 6, 91]. However, in the context of thermoelectric devices, the efficiency at temperature T

is quantified by a dimensionless figure of merit, ZT = sS
2
T

ke+kl

, where s , S, ke, and kl repre-
sent electrical conductivity, Seebeck coefficient, electronic thermal conductivity, and lattice
thermal conductivity, respectively. It is worth noting that ZT is inversely proportional to
the kl . Therefore, the high kl and metallic nature of intrinsic graphene pose challenges for
its direct use in thermoelectric devices, and various methods like nanostructuring and dop-
ing are employed to mitigate these issues [92]. Consequently, alternative materials are being
explored, with 2D transition metal dichalcogenides (TMDs) gaining considerable attention.
Nonetheless, most TMDs exhibit relatively high lattice thermal conductivity [93], prompting
researchers to redirect their focus toward 2D IV-VI materials. These materials have emerged
as a prominent research area due to their ability to achieve ultra-low lattice thermal conduc-
tivity and higher Seebeck coefficients [94].

The suitable band gap, earth abundance, and non-toxic characteristics of germanium sul-
fides and its constituent elements make the orthorhombic (Pnma) phase of GeS the primary
focus of researchers. The monolayer GeS (Pmn21) can be obtained through mechanical exfo-
liation from its bulk and has shown great potential thermoelectric device applications due to its
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high electron mobility and ultra-low lattice thermal conductivity. Similarly, the 1T structure of
2D GeS2 [95] and the low-symmetric (P21212) phase of two-dimensional (2D) Ge2S [96] have
also exhibited excellent properties, particularly as thermoelectric and anode materials. How-
ever, while the bulk counterparts of these GexSy compounds exhibit various polymorphs, such
as cubic [97], orthorhombic [98], amorphous [99] phases of GeS, and monoclinic [100], or-
thorhombic [101], and beta [102] phases of GeS2, it remains unexplored whether their mono-
layer forms possess unique and undiscovered structures. This intriguing possibility suggests
that the monolayers of these compounds may exhibit distinct properties, thereby warranting
further investigation and exploration.

In the pursuit of obtaining 2D counterparts of materials, researchers employ various ex-
perimental procedures. These methods can be of two categories: top-down and bottom-up
approaches. In the first approach, a single layer is exfoliated from the bulk material, which
is particularly feasible for layered materials held together by van der Waals forces such as
graphene [5] or 2D TMDs. Conversely, in the bottom-up approach layer grows on a substrate
from vapors of precursors such as physical or chemical vapor depositions [103]. In paral-
lel, density functional theory (DFT) can predict a single layer by cutting it from the layered
bulk and allowing for relaxation with sufficient vacuum in the out-of-plane direction. In con-
trast, the non-layered bulk materials lack preferred planes for cleaving a single layer, leading
to many possible 2D structures along various planes. Among these, the one with the low-
est formation energy is energetically favorable, called the ground-state 2D structure of the
given composition. The ground states of materials have particular importance due to their
higher possibility of experimental realization. Another strategy involves replacing atoms in
already explored monolayer lattices with the elements under investigation and searching for
the most energetically favorable configuration, such as in the case of germanene and silicene
[59]. However, manually arranging the atoms in all possible structures can be a tedious task.
Fortunately, significant advancements in computational tools have revolutionized the field of
materials science. Among these tools, the Universal Structure Predictor: Evolutionary Xtal-
lography (USPEX) [37, 70] stands out with its high success rate among genetic-algorithm-
based search codes. USPEX offers a specific 2D search capability, making it particularly
suitable for identifying the lowest-energy phases in compounds with variable compositions,
such as 2D CdxTey [104]. By harnessing the power of USPEX, one can efficiently search for
and identify the energetically stable structures of 2D GexSy compounds.

This study predicts novel ground-state structures of 2D GexSy compounds with three dif-
ferent compositions: Ge2S, GeS, and GeS2, that exhibit higher stability than their previously
reported counterparts. Specifically, we focus on their crystal structures, electronic structure,
and phonon transport properties. The 2D GeS phase demonstrates lower lattice thermal con-
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ductivity compared to its orthorhombic monolayer counterpart. We delve into the underlying
mechanisms responsible for the ultra-low kl of 2D GeS, examining factors such as anhar-
monicity, phonon group velocity, their lifetimes, and weighted phase space for three-phonon
scattering. Moreover, 2D GeS2 shows intriguing in-plane anisotropic elastic stiffness and kl ,
while 2D Ge2S has comparatively higher kl . The interplay of anisotropic acoustic and low-
frequency optical phonon group velocity and relatively higher lifetimes to their distinguished
kl in 2D GeS2 makes this study of fundamental interest.

4.2 Computational methodology

The search for lowest-energy structures of 2D germanium sulfide involves USPEX [37, 70]
in conjunction with the Vienna Ab initio Simulation Package (VASP) [105]. Our variable-
compositional search is constrained to a layer thickness of 0~6 Å and the constituent atoms in
a unit cell of 2~12. In this search, a total of 80 generations are considered. The first generation
contains 200 randomly created structures, while the subsequent generations have 80 structures
each that evolve through natural selection and variation operators such as mutation, crossover,
and symmetry operations. The relative energetic stability of different compositions and struc-
tures was determined by comparing the formation energy per atom (E f ), which is calculated
using the equation:

E f =
1

x+ y
[E(GexSy)� xE(Ge)� yE(S)] (4.1)

In this equation, E(GexSy), E(Ge), and E(S) represent the total energies of the lowest
possible 2D configurations of GexSy, elemental germanium, and sulfur, respectively. The total
energy of each structure is calculated using the projector-augmented wave (PAW) [26] method,
which is well-suited for handling core electrons. To account for the electronic exchange-
correlation interaction, the generalized gradient approximation (GGA) [18] with the Perdew-
Burke-Ernzerhof parameterization (PBE) is employed. In order to maximize computational
efficiency, a strategy is adopted that includes a relatively coarse k-mesh with resolution of
2p ⇥ (0.08 ⇠ 0.04) Å�1, a smaller cutoff energy of 450 eV for plane wave expansion, a
vacuum size of 15 Å, and exclusion of the zero damping of Grimme (DFT-D3) [71] for the
van der Waals corrections in the first 60 generations, followed by its inclusion in the final 20
generations.

To ensure the accuracy, the resulting 2D GexSy structures undergo re-optimization using
a lager cutoff energy of 540 eV, a vacuum size of 20 Å, and a denser G-center k-mesh with
a resolution of 2p ⇥ 0.02 Å�1. The convergence criteria for energy is set to 10�8 eV and
for forces to 10�3 eV/Å. Electronic band structures are computed using both the GGA and
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Heyd-Scuseria-Ernzerhof (HSE06) [23] methods. For ab initio molecular dynamics (AIMD)
simulations, we employ the NVT ensemble with a step size of 1 fs and a total time of 10 ps at
temperatures of 300 K, 600 K, and 900 K. We use the Nosé-Hoover thermostat [73] to maintain
constant temperature during simulations. The Phonopy code [72] is used to calculate the
phonon dispersion based on the finite displacement method with supercells. We use supercell
of 6⇥ 5⇥ 1 for Ge2S, 5⇥ 5⇥ 1 for GeS, and 3⇥ 3⇥ 1 for GeS2, which are the same size as
those used for AIMD simulations.

We utilized an iterative self-consistent approach implemented in the ShengBTE package
[2] to solve the phonon Boltzmann transport equation (PBTE) and predict the lattice ther-
mal conductivity. This method relies on two sets of interatomic force constants (IFCs): har-
monic (second-order) and anharmonic (third-order). The harmonic IFCs are obtained using
the Phonopy code [72] and anharmonic IFCs through the thirdorder.py python script based on
the method developed by Lindsay et al. [44] in combination with VASP. With these sets of
IFCs, one can express the ab component of lattice thermal conductivity tensor as [2]:

kab
l

=
1

kBT 2V N
Â
l

f0( f0 +1)(h̄wl )
2
v

a
l tl (v

b
l +Db

l ) (4.2)

Here, l (k, p) represents a phonon mode characterized by the wave vector k and branch
number p. Db

l with the dimension of velocity is the correction to relaxation time approximation
(RTA) prediction. V denotes the unit-cell volume, w is the phonon frequency, N is the number
of q points in the first Brillouin zone (BZ) for a G-centered regular grid, T represents the
temperature, v

a
l is the group velocity of the phonon in the a direction, tl is the l phonon

lifetime, and f0 is the phonon occupation number given by the Bose-Einstein distribution.
The obtained kl is rescaled for 2D GexSy by multiplying a factor Lz/deff, where Lz is the total
length of the unit cell along the z direction and deff is the effective-thickness of the materials
obtained from the corresponding bulk structure. The values of deff are 7.579, 9.068, and 7.710
in units of Å for Ge2S, GeS, and GeS2, respectively [see Fig. 4.1 for details]. The long-
range interactions are included by Born effective charge tensors computed with the density
functional perturbation theory (DFPT) [106].

4.3 Results and discussion

4.3.1 Structure prediction and stability

The comparative energetic stability among various structures of a material can be represented
by the energy convex hull (ECH). The ECH of the 2D Ge:S system [See Fig. 4.2] is con-
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Figure 4.1: The fully relaxed unit cells of bulk (a) Ge2S, (b) GeS, and (c) GeS2 structure. The
vertical double-headed arrows show the effective thicknesses for each 2D GexSy compound.

structed by plotting the formation energy per atom, given by Eq. (1), of a given composi-
tion ratio in all possible structures along the y-axis and composition ratio S/(Ge+S) along
the x-axis. In literature, several polymorphs of bulk GeS, such as orthorhombic a , cubic,
and amorphous phases [97, 99, 107], have been reported due to different bonding modes.
ECH construction is an efficient and powerful tool for identifying the most stable structure
and composition [33], especially for materials with numerous polymorphs. These most sta-
ble structures will lie on the convex hull, such as in the Ge:S system, Ge2S (magenta), GeS
(cyan), and GeS2 (dark blue), as shown in Fig. 4.2. These lowest-energy 2D Ge2S, GeS,
and GeS2 (discussed later) have different structures and lower formation energies than the
previously reported ones. For comparison, the formation energies of the already reported 2D
Ge2S [96], GeS [108], and GeS2 [95] structures are represented in Fig. 4.2 by magenta, cyan,
and blue triangles, respectively. The previously known 2D GexSy structures, i.e., Ge2S, GeS,
and GeS2, have higher formation energies than our’s predicted counterpart monolayers by 85,
47, and 84 in units of meV/atom, respectively, and consequently occupy positions above the
convex hull. The worth noticing from the ECH analysis is the superior energetic stability of
our predicted GexSy that indicates easier experimental accessibility. Therefore they deserve a
detailed stability analysis, and we constrain the discussion to the structures on the convex hull
only.

The phonon band structure, which provides critical insights into the dynamic stability of
the newly predicted 2D phases of the Ge2S, GeS, and GeS2, are determined and shown in Fig.
4.3. These results reveal the dynamic stability of the 2D Ge2S, GeS and GeS2, as there are no
imaginary frequencies in Fig. 4.3(a, b, and c). There are total of 3n phonon branches, where
n is the number of atoms in the primitive unit cell. The first three lowest-frequency phonon
branches are called acoustic phonons, which are further classified into transverse acoustic
(TA), longitudinal acoustic (LA), and z-axis acoustic (ZA). The ZA mode, also called flexural
mode, represents the out-of-plane atomic vibrations and has a quadratic wave vector depen-
dence contrary to the TA and LA, which have linear dispersion near the G-point. In Fig. 4.3(c),
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Figure 4.2: This figure shows the evolution of the energy convex hull (ECH) during the US-
PEX search, where the solid bounding curve indicates the final ECH of the 2D Ge-S system.
The energetically most stable structures of 2D GexSy are highlighted with various colored
circles, whereas those previously reported ones are represented with filled triangles.
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the LA mode along G-Y direction has softer behavior (smaller slope) than along the G-X di-
rection. This difference in the phonon dispersion suggests the presence of anisotropic lattice
thermal conductivity, which will be discussed later. The remaining 3n� 3 phonon branches
are known as optical branches, divided into low and high-frequency bands separated by a gap.
This gap is 16/41 cm�1 in Ge2S/GeS while 88 cm�1 in GeS2. The common observation from
Fig. 4.3 is the overlapping of the low-frequency optical phonons with acoustic phonons. It
is one of the indicators of the high possibility of three-phonon scattering, which will even-
tually decrease lattice thermal conductivity. The maximum phonon frequency (wmax) in all
predicted structures is below 400 cm�1. Specifically, wmax is 365 cm�1 for Ge2S, smaller than
its P21212 phase (561 cm�1) [96], and 337 cm�1 for GeS, in the same range as the Pmn21

phase (~330 cm�1) [94]. wmax is 397 cm�1 for 2D GeS2, comparable to its 1T phase (~400
cm�1) [95]. Further, the dispersion in the high-frequency optical branches is comparatively
lower in GeS2 than in Ge2S and GeS.

In addition to energetic and dynamic stability, the elastic stability of predicted 2D GexSy

provides more insights into their viability. The elastic stability of our predicted 2D monoclinic
Ge2S (P2/c), GeS2 (P21/c), and trigonal GeS (P3m1) is confirmed using the corresponding
stability criteria [79] based on the elastic constants presented in Table 4.1. Specifically, GeS
with trigonal structure satisfies the criteria C11 > 0, C66 > 0, and C11 >| C12 |. The elastic
constants of GeS2 satisfy the criteria for rectangular lattice, i.e., C11 > 0, C66 > 0, and C11 ⇥
C22 > C

2
12. Similarly, due to its oblique structure, Ge2S satisfies the criterion det | Ci j |> 0,

with i, j = 1,2,6.
Generally, 2D materials are more vulnerable to high temperatures compared to their bulk.

Therefore, analyzing the thermal stability of predicted 2D GexSy compounds at elevated tem-
peratures is worthwhile. For this purpose, AIMD simulations are performed to investigate the
thermodynamic stability of newly predicted monolayers at different temperatures of 300, 600,



4.3 Results and discussion 78

and 900 K. The simulations results are shown in Fig. 4.4 at 300 K and Fig. 4.5 & 4.6 at
600 and 900 K temperatures, respectively. These results reveal that 2D GeS and GeS2 exhibit
higher structural stability because no significant changes were observed in the overall mor-
phology or bond lengths at 300, 600, and 900 K. However, the thermally stable 2D Ge2S at
300 and 600 K becomes unstable when the temperature rises to 900 K, as evident from the
broken bonds in the inset of Fig. 4.6(a). We conclude this section with the remarks that our
predicted three compositions of 2D GexSy are energetically more favorable than previously
reported ones, stable dynamically and elastically, and can withstand higher temperatures.

4.3.2 Structural analyses

The properties of a material, either bulk or two-dimensional, are entangled with its crystal
structures [109]. Therefore, before delving into electronic structure and phonon transport
properties, it is crucial to investigate the crystal structures of the low-energy lying 2D GexSy.
In Figs. 4.7(a–c), we show the 2D structures of the stable compositions Ge2S, GeS, and GeS2,
respectively. The top and side views of each structure in these figures will facilitate the readers
to understand the discussion in this section. The dashed lines represent the primitive unit cell
in each case. Regarding symmetry, Ge2S has a monoclinic unit cell with space group P2/c,
GeS2 unit cell has space group P21/c, while GeS adopts trigonal structure with space group
P3m1. Due to the low symmetry of 2D Ge2S, views of various orientations are shown in
Fig. 4.7(a). It composes two sublayers; the red-dashed and the solid-black rhombic lattices
represent the bottom and top sublayers, respectively. The top sublayer can be obtained from
the bottom by mirror symmetry along the z-axis plus a glide of 0.5b along the

�!
b lattice vector,

where b is the lattice constant. For clarity, we show the top view of only the bottom sublayer
on the right side of Fig. 4.7(a). It consists of irregular (unequal bonds) parallel zigzag chains
of Ge atoms in the ab-plane connected through S atoms. Each Ge atom makes four bonds, one
with the S atom and three with other Ge atoms, of which two Ge belong to the same sublayer
and one Ge to the neighboring sublayer. Hence, the two sublayers are attached by Ge-Ge
bond of length 2.52 Å. The Ge-Ge bond lengths in zigzag chain are 2.47 Å and 2.51 Å. Other
lattice parameters and mechanical properties, such as elastic constants and Poisson’s ratios,
are tabulated in Tab. 4.1.

Fig. 4.7(b) shows the top and side views of 2D GeS. It consists of two oppositely buckled
honeycomb sublayers with AB stacking. In this structure the inplane coordinates of the S
atoms are (1/3�!a , 1/3

�!
b ) and of the Ge atoms are (0,0) and (1/3�!a , 2/3

�!
b ), where �!

a and
�!
b

are the lattice vectors. For GeS, a = b = 3.63 Å is the optimized lattice constant. Within
each sublayer, Ge/S atoms are bonded with three S/Ge atoms through a bond length of 2.44 Å.
The two sublayers are then weakly connected by a Ge-Ge bond of length 2.93 Å. Fig. 4.7(c)
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Figure 4.4: The total energy per unit cell and temperature profiles of 2D materials (a) Ge2S, (b)
GeS, and (c) GeS2 are obtained through AIMD simulations at 300 K. The simulated structures
were visualized from top and side in the insets after a simulation time of 10 ps.
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Figure 4.5: The total energy per unit cell and temperature profiles of 2D materials (a) Ge2S, (b)
GeS, and (c) GeS2 are obtained through AIMD simulations at 600 K. The simulated structures
are visualized from top and side in the insets after a simulation time of 10 ps.
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Figure 4.6: The total energy per unit cell and temperature profiles of 2D materials (a) Ge2S, (b)
GeS, and (c) GeS2 are obtained through AIMD simulations at 900 K. The simulated structures
are visualized from top and side in the insets after a simulation time of 10 ps.
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Ge S

γ

Figure 4.7: The top and side views of 2D (a) Ge2S, (b) GeS, and (c) GeS2 and the primitive
unit cell are shown with dashed lines in each top view. All bond lengths and thicknesses of
the layers are shown in the unit of Å. The solid circle (red) in (a) represents the bond between
two sublayers. The red-dashed lines in (c) represent zigzag and armchair directions.

depicts that the primitive unit cell of 2D GeS2 constitutes corner-sharing distorted (unequal
edges) GeS4 tetrahedra. The GeS4-tetrahedron contains the Ge atom in its center, bonded with
four S atoms at the corners. All four Ge-S bonds in GeS4 tetrahedron have different lengths,
i.e., 2.23, 2.24, 2.26, 2.28 in Å, which reduces the unit-cell symmetry from orthorhombic
Pbcm (b -2D silica [110]) to monoclinic P21/c. The side views in Fig. 4.7(c) exhibit the
zigzag morphology along a-axis and armchair along the b-axis. The GeS4 tetrahedra centers
align in the ac-plane and buckle in the bc-plane, which leads to a hinge-like structure along the
b-axis. This arrangement in 2D GeS2 results in a rectangular lattice with lattice parameters
a = 6.87 Å and b = 6.17 Å. The structural anisotropy of the lattice is reflected in its high
elastic anisotropy, where Young’s modulus along the a-axis is 63.8 Nm�1, which is more than
twice of along the b-axis (27.6 Nm�1). Like phosphorene [111, 112], we expect that GeS2

will have high anisotropic lattice thermal conductivity because it is often directly proportional
to the elastic modulus [113].

4.3.3 Electronic structure

The electronic band structure and the total density of states (DOS) with projected density of
states (PDOS) for the three compositions of 2D GexSy are presented in Fig. 4.8. Its first
look shows the semiconducting nature of all these compositions. 2D Ge2S in Fig. 4.8(a)
depicts a nearly direct and narrow band gap of 0.12/0.84 eV using PBE/HSE06 functional.
The valence band maximum (VBM) and conduction band minimum (CBM) occur along G�
C�V� S path. The complete k-path used for plotting this band structure is given in Fig.
4.9(c). Interestingly, the k-points corresponding to the band edges, denoted by (C,V), do
not occur along the high symmetry k-path of the first Brillouin zone (BZ). We identified this
behavior of 2D Ge2S from Fig. 4.9(a), where the band edges of the high-symmetry k-path
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Structure
(sp. group)

Lattice
parameters

a (Å), b (Å), g
(°)

Elastic constants (Nm�1)
C11, C22, C12, C66

Young’s
moduli
Yx, Yy

(in Nm�1)

Poisson’s
ratio nx, ny

Ge2S
(P2/c) 4.98, 5.56, 45° 47.80, 54.68, 8.07, 27.96

C26 = 10.03, C16 = 5.84 46.6, 53.3 0.147, 0.169

GeS
(P3m1) 3.63, 3.63, 120° 85.40, 85.40, 28.46, 28.47 75.9, 75.9 0.333, 0.333

GeS2
(P21/c) 6.87, 6.17, 90° 64.58, 27.84, 4.22, 12.56 63.8, 27.6 0.152, 0.065

Table 4.1: Structural and elastic properties of 2D GexSy compounds. Young’s moduli and
Poisson’s ratios are calculated from the elastic constants by the corresponding formulas: Yx =
(C11C22 �C

2
12)/C22, Yy = (C11C22 �C

2
12)/C11, nx =C12/C22, and ny =C12/C11.

[Fig. 4.9(b)] does not match the totalDOS. This discrepancy should be attributed to the band
structure being limited to only high-symmetry k-points while the total DOS covers the whole
first BZ. The k-path is revised, as shown in Fig. 4.9(c), by including accurate band edges [C
(0.333 0.384 0), V (0.37 0.425 0)] determined from DOS with a denser k-mesh of reciprocal
space resolution of 2p ⇥ 0.004 Å�1. Due to the high dispersion of band structure at CBM,
there is a lower density of states than VMB. Furthermore, one can analyze the atomic orbital
contributions to the band structure by PDOS, right panel in Fig. 4.8(a). It implies that the
VBM of 2D Ge2S is contributed by the p-orbitals of both Ge and S atoms, whereas the CBM
mainly originates from the s-orbital of the Ge atom.

The 2D GeS and GeS2 exhibit band structures in Fig. 4.8 (b & c) with indirect band gaps.
Specifically, the VBM of 2D GeS is located on both sides of the G-point, i.e., along G�X and
G�K. The CBM is located at the X point, where the band structure is highly asymmetric,
as shown in Fig. 4.8(b). The asymmetric conduction band around the CBM is a footprint
of the electrical anisotropy. The VBM of 2D GeS includes the p and s orbitals of S and Ge
atoms, respectively. Its CBM is composed of Ge-s, Ge-p, and S-p orbitals. 2D GeS2 in Fig.
4.8(c) has VBM at G point and CBM at the Y point of the first Brillouin zone. The valance and
conduction bands are flat near the band edges and have a higher density of states than 2D Ge2S
and GeS2. The p-orbital of the S atom mainly contributes to the VBM and CBM, and there
is also a comparable contribution from the Ge-s orbital to the CBM. The fundamental band
gaps, calculated with PBE functionals, are 0.72/1.85 eV for 2D GeS/GeS2. The dispersions of
band structures with HSE06 functional remain similar to PBE, but the fundamental band gaps
open to 1.05 eV for 2D GeS and 2.92 eV for 2D GeS2. Thus, we have narrow, medium, and
wide band gap 2D semiconductors: Ge2S, GeS, and GeS2, respectively.
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Figure 4.8: Electronic band structures using PBE (blue)/HSE06 (magenta) functionals and
PBE total DOS with the corresponding projected density of states (PDOS) of Ge and S atoms
are presented for 2D materials: (a) Ge2S, (b) GeS, and (c) GeS2. The zero of the energy axis is
referenced to a horizontal red-dashed line that aligns with the valence band maximum (VBM).
The band edges, i.e., VBM and CBM (conduction band minimum), are highlighted with solid
green circles. The fundamental band gaps (in eV) are mentioned for each case.

4.3.4 Phonon transport in 2D GexSy compounds

Lattice thermal conductivity (kl) is a key characteristic of phonon transport and is obtained
by iteratively solving the linearized phonon Boltzmann transport equation (PBTE). The solu-
tion of PBTE relies on second and third-order interatomic force constants (IFCs) as inputs.
The influence of four-phonon scattering is disregarded due to its minimal impact on phonon
transport in materials like 2D GexSy, which lack optical-acoustic gaps in phonon dispersions
[114] (see Fig. 4.3). The third-order IFCs capture the phonon-phonon scattering processes
and play a crucial role in predicting reliable thermal conductivity. A cutoff radius determines
the region of interatomic interactions for third-order IFCs calculations. Selecting an appro-
priate cutoff radius ensures the proper inclusion of anharmonic interactions and improves the
accuracy of kl . Furthermore, solving the PBTE involves discretizing the reciprocal space into
a q-point grid hence achieving accurate kl requires a sufficiently dense q-point grid. Consid-
ering inadequate cutoff radii and q-point grids can lead to orders of variations in reported kl

values. For instance, in the case of phosphorene, different kl values in the literature can be
attributed to variations in the chosen cutoff radii and q-point grids [111, 112]. Therefore, to
avoid ambiguity in kl , we present its convergence against the cutoff radius and q-point grid in
Fig. 4.10. These figures depict an enormous variation of kl in the lower cutoff radius, which
does not include sufficient nearest neighbors for interactions, and course q-point grid. We
achieve sufficient convergent kl by considering cutoff radii of 7.4 Å, 10.8 Å, and 6.3 Å for 2D
Ge2S, GeS, and GeS2, respectively. These include up to the 20th nearest neighbors for Ge2S
and 22nd for GeS and GeS2. Our q-point grid tests show that kl well converges at 60⇥60⇥1,
100⇥100⇥1, and 45⇥45⇥1 for Ge2S, GeS, and GeS2, respectively.

Figures 4.11(a-c) depict the temperature-dependent lattice thermal conductivities of 2D
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Figure 4.9: (a) The band structure of the 2D Ge2S using the k-path shown in (b) along the high-
symmetry points in the first Brillouin zone does not capture the correct band edges, evident
from its mismatch with the density of states. Therefore, the k-path for Ge2S is revised as in
(c) to include the correct band edges denoted by C (0.333 0.384 0) and V (0.37 0.425 0). The
k-path for extracting the band structures of 2D GeS and GeS2 are presented in (d) and (e),
respectively.
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Ge2S within the stable temperature range of 200-600 K, 2D GeS and GeS2 compounds over
the temperature range of 200-900 K. Specifically, GeS has a room temperature kl of 6.82
Wm�1K�1, which is lower than monolayer MoSe2, WSe2, and phosphorene [115, 116]. Im-
portantly, it is also smaller than its meta-stable orthorhombic phase (10.5/7.8 Wm�1K�1 along
zigzag/armchair direction) but higher than other IV-VI 2D compounds like GeSe (6.7/5.2
Wm�1K�1), SnS (4.7/4.4 Wm�1K�1), and SnSe (2.6/2.4 Wm�1K�1) along the respective di-
rections [94]. On the other hand, 2D Ge2S exhibits a room temperature kl of ~29 Wm�1K�1,
which is the highest among the predicted 2D GexSy compounds and close to that of phos-
phorene in the zigzag direction [116]. The novel stable phase of 2D GeS2 has 16.95/10.68
W/m�1K�1 along the zigzag/armchair directions at 300 K, larger than the reported value for
its meta-stable 1T phase [95]. The anisotropy of kl can be quantified by the ratio kaa/kbb,
where kaa and kbb represent the kl values along a- and b-axes, respectively. In the case of
GeS2, we designate the a-axis as the zigzag direction and the b-axis as the armchair direction
[see Fig. 4.7(c)]. For 2D GeS, this ratio is exactly one, indicating isotropic phonon transport.
Similarly, for 2D Ge2S, the ratio is nearly one, implying a predominantly isotropic nature
of kl . Interestingly, the in-plane anisotropy ratio kaa/kbb is 1.59 for the predicted stable 2D
GeS2, which is higher than other orthorhombic 2D IV-VI compounds such as GeS (1.35),
GeSe(1.29), SnS (1.07), and SnSe (1.08), indicating giant in-plane anisotropic lattice thermal
conductivity. Although phosphorene exhibits a larger in-plane anisotropy ratio of 2.21 [116]
compared to 2D GeS2, it is prone to stability issues at ambient temperatures [117]. Such in-
trinsic anisotropic materials are rare and of particular importance in nanodevice applications.
Moreover, Figs. 4.11(a-c) show a consistent decrease in kl as the temperature increases, dis-
playing a strong adherence to the 1/T relationship, as indicated by the solid fitting line in
each plot. This trend is commonly observed in intrinsic 2D materials and is attributed to the
dominant occurrence of three-phonon scattering via the umklapp process, which depends on
temperature directly. The umklapp scattering process opposes heat flow by scattering phonons
in the opposite direction, impeding their effective transport. In contrast, the phonon-phonon
scattering by the normal process could not provide resistance to phonon transport [43].

Nanostructuring is a common approach to control the kl of a material. Generally, decreas-
ing the grain size causes a reduction in the phonon’s mean free path (MFP) L, resulting in a
lower kl while keeping the electronic conductivity unchanged. This behavior offers signifi-
cant potential for enhancing the system’s thermoelectric figure of merit. The cumulative kl as
a function of MFP in Figs. 4.11(d-f) provides insights into the effect of grain size on the kl

of 2D GexSy compounds at 300 K. To investigate the MFP range that dominantly contributes
to kl , we fit the data with a logistic function k(L  Lmax) = kmax/(1+ L0

L ), where kmax is
the ultimate lattice thermal conductivity, L0 is the fitting parameter called the representative
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MFP at which cumulative kl reaches 50% of its maximum value. The higher values of L0, i.e.,
569/371 nm for Ge2S and 125/170 nm for GeS2 compared to other IV-VI monolayers [118],
indicate that nanostructuring will be highly effective in reducing their kl . In contrast, the low
phonon MPF L0 of 16.5 nm for GeS, comparable to orthorhombic IV-VI monolayers, implies
that it will be hard to reduce its kl with nanostructuring and other methods like alloying might
be a convenient way. For a given nanostructure size of 50 nm, the kl is reduced to 5.70/7.45
Wm�1K�1 for Ge2S and 5.54/2.75 Wm�1K�1 for GeS2, which becomes competitive with
kl (5.83 Wm�1K�1) of GeS. The evident anisotropy in the L0 for Ge2S and GeS2 along the
a/b-axes implies that reducing the grain size of the system will have different impacts on the
kl along the a-axis compared to the b-axis. Similar anisotropic trends in L0 for phosphorene
allotropes are reported in previous studies [119]. This anisotropy offers intriguing possibili-
ties for tailoring the kl by providing additional flexibility for design purposes. The analysis
of the cumulative kl at various temperatures within the range of 300-600 K for 2D Ge2S and
300-800 K [see Fig. 4.12] for 2D GeS and GeS2 demonstrates a uniform decrease in L0 as the
temperature rises.

Understanding the mechanisms involved in heat conduction through lattice vibrations in
2D GexSy compounds requires a comprehensive analysis. We calculate the phonon group
velocities by the formula vl = ∂wl (q)

∂q
, where l represents mode index, w frequency, and q

the wave vector of the phonon, and the results are shown in Fig. 4.13. The first look of
Fig. 4.13 shows the lower group velocities, i.e., below the 6 km/s, in all 2D GexSy compared
to other 2D materials like graphene, silicene [120], MoS2 [121], phophorene [116], and the
overall lower kl can be attributed to it. However, Figs. 4.13(b, e) depict comparable group
velocities in the frequency range 200-300 cm�1 of optical phonon to its acoustic branches and
higher than the optical phonon of Ge2S and GeS2. It implies that the lower group velocity
alone does not guarantee the lower kl , and further investigation is required, particularly in
conjunction with phonon lifetimes. The phonon lifetimes, which represent the time a phonon
can exist before scattering with other lattice vibrations, for 2D GexSy compounds are shown in
Figs. 4.14 (a-c). Specifically, the short phonon lifetimes of less than 10 ps in 2D GeS indicate
frequent scattering events. These scattering events impede the heat transfer through the lattice,
resulting in the reduced kl of GeS compared to Ge2S and GeS2.

The anisotropic kl observed in 2D GeS2 can be attributed to the anisotropic group ve-
locities of both acoustic and low-frequency optical phonons in the frequency 50-150 cm�1

range. Figs. 4.13(b, e) provide evidence of larger group velocities along the G�X recipro-
cal lattice direction compared to the G�Y direction in GeS2 for acoustic and low-frequency
optical phonons. This anisotropy in group velocities directly translates into anisotropic kl

along the respective crystallographic directions. The frequency range of 50-150 cm�1, mainly
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Figure 4.11: The lattice thermal conductivity as a function of temperature and the cor-
responding 1/T fitting for 2D materials (a) Ge2S, (b) GeS, and (c) GeS2. The cumula-
tive kl is plotted against the phonon mean free path (MFP) and fitted using the expression
k(L  Lmax) = kmax/(1+ L0

L ) for (d) Ge2S, (e) GeS, and (f) GeS2, where the value (in nm)
of the fitting parameter L0 along a/b-axis is mentioned in each case.
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Figure 4.12: The cumulative kl is plotted against the phonon mean free path (MFP) and fitted
using the expression k(L  Lmax) = kmax/(1+ L0

L ), where L0 is the fitting parameter. Panels
(a) and (b) depict 2D Ge2S along the a- and b-axes at temperatures of 300 K, 450 K, and
600 K. Panel (c) represents 2D GeS, while panels (d) and (e) illustrate GeS2 along the a- and
b-axes at temperatures of 300 K, 500 K, and 800 K. L0 in units of nm is indicated with the
corresponding colors in each case.
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Figure 4.13: Figures (a, b, c) shows the phonon group velocity (vl ) along G�X for Ge2S,
GeS, and GeS2, while (d, f) represents vl along G�Y for Ge2S, GeS2, and (e) along G�K
for GeS, repectivley.

populated by optical phonons in GeS2 and Ge2S compositions, plays a crucial role due to the
larger phonon lifetimes observed within this range. While heat transfer typically dominates
by acoustic phonons, the acoustic-optical (low-frequency) phonon coupling effect allows for
exceptions to this trend, as demonstrated in a recent study of nitride perovskite LaWN3, where
60% of heat transfer occurs through optical phonons [122]. In the case of GeS2 and Ge2S, the
phonon lifetimes within the mentioned frequency range are approximately 20 ps, which is
four times longer than the lifetimes observed in GeS (~5 ps), evident from insets as enlarged
views in Figs. 4.14(a-c). It highlights the significant role played by low-frequency optical
phonons in heat transport. The frequency-resolved cumulative kl analysis [see Fig. 4.15(c)]
further confirms the substantial contributions of low-frequency optical phonons to the overall
kl . Moreover, the thermal anisotropy in GeS2 aligns with its elastic properties. The zigzag
direction exhibits a larger Young’s modulus than the armchair direction, resulting in a larger
kl along the zigzag direction.

Importantly, within the dominant heat-carrying frequency range (see Fig. 4.15), the phonon
lifetimes of 2D Ge2S and GeS2 are significantly large than those of 2D GeS. However, this
increase does not correspond to a proportional rise in kl . It highlights that phonon-phonon
scattering cannot solely be determined by phonon lifetimes. Therefore, we investigate the lat-
tice anharmonicity and the weighted phase space for three-phonon scattering. In Fig. 4.16,
we display the Grüeisen parameter gl (q) = � a0

wl (q)
∂wl (q)

∂a
, where a0 represents the equilib-

rium lattice constant, serving to quantify lattice anharmonicity of materials. Additionally, the
weighted phase space W of three-phonon scattering (as defined by Wu Li [123]) for 2D GexSy
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Figure 4.14: Phonon lifetimes of 2D Ge2S, GeS, and GeS2 are shown in Figures (a), (b), and
(c), respectively. The insets display the enlarged view for visual comparison in the frequency
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is presented in the lower panel of Fig. 4.16. Both these parameters, i.e., g and W , exhibit an
inverse relationship with phonon lifetimes, providing additional insights. The large magnitude
of g and phase space W in the range of acoustic frequencies, which serve as the primary heat
carriers, is evident from Figs. 4.16(a, d) and aligns with the lower kl of 2D GeS. On the other
hand, a comparison of g , W between 2D Ge2S and 2D GeS2 reveals that while the |g|max of
Ge2S (~5) is greater than that of 2D GeS2 (~3), the weighted phase space for Ge2S decreases
significantly compared to GeS2 as phonon frequency increases within the frequency range of
150 cm�1. Consequently, the weaker anharmonicity of 2D GeS2 is compensated by the larger
three-phonon weighted phase space, resulting in a smaller kl compared to 2D Ge2S. The large
W can be attributed to the higher phonon population in the lower-optical branches, as shown
in Fig. 4.3(c), due to the greater number of atoms in the primitive unit cell of GeS2, increasing
the probability of phonon-phonon scattering [124]. Furthermore, the higher phase space [as
observed in Fig. 4.16(e)] of GeS2 in the frequency range of 150 cm�1 supports our argument
regarding its considerable anisotropic kl , attributed to both acoustic and low-frequency optical
phonons within the 50-150 cm�1 frequency range.
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4.4 Conclusions

In this manuscript, we present the discovery of novel energetically stable 2D configurations for
Ge2S, GeS, and GeS2 structures, achieved through the utilization of the USPEX in conjunction
with VASP. Their dynamic, elastic, and thermal stabilities are confirmed using state-of-the-art
methods. Subsequently, we characterize their electronic structures, revealing semiconducting
nature with narrow, medium, and wide band gaps for Ge2S, GeS, and GeS2, respectively.
Then we focus on their lattice thermal conductivity (kl), which provides insights into their
heat transport properties. All structures exhibit overall low kl values, with 2D GeS having
the lowest value of 6.82 Wm�1K�1. We observe a significant decrease in kl of 2D Ge2S
and GeS2 with decreasing grain size, suggesting that nanostructuring could further suppress
their kl . Through a comprehensive analysis of the underlying mechanisms, we uncover the
factors contributing to the observed low kl in 2D GeS and the in-plane anisotropy in 2D
GeS2. In 2D GeS, the combination of shorter phonon lifetimes, strong anharmonicity, higher
weighted phase space, and smaller group velocities accounts for its low kl . The kl anisotropy
of 2D GeS2 is attributed to the anisotropic group velocities of both acoustic and low-frequency
optical phonons. The low-frequency optical phonons in 2D Ge2S and GeS2 exhibited lifetimes
four times longer than 2D GeS, resulting in increased kl . These findings contribute to the
fundamental understanding of heat transport in 2D GexSy compounds, which have potential in
thermal management and related fields.



Chapter 5

Summary and oultlook

5.1 Summary

This thesis primarily focused on exploring the ground-state structures of 2D configurations of
non-layered bulk materials like Cd-Te and Ge-S. The motivation behind this study stemmed
from the successful synthesis of silicene and germanene, both derived from non-layered bulk
structures. CdTe and GeS, lacking preferred cleavage planes, offered the potential for diverse
2D structures. CdTe, known for its direct band gap and relevance in solar cell applications,
and GeS, a prominent member of IV-VI compounds in thermoelectrics, were particularly cho-
sen for investigation. The search process was facilitated and rendered reliable through the
combined use of USPEX and VASP. Consequently, 2D CdTe with four atoms and CdTe2 with
six atoms in the unit cell were identified as the ground states for their compositions. Similarly,
three novel 2D structures: Ge2S (six atoms), GeS (four atoms), and GeS2 (twelve atoms) in
the GexSy system, were discovered. These structures, residing on the convex hull, could be at-
tributed to the polymorphic characteristic of GexSy compounds. Notably, the predicted struc-
tures exhibited lower formation energies than the already reported ones, demonstrating the
reliability of the search process. In the case of 2D CdTe, the search results validated the pre-
viously reported structure, confirming its ground-state nature. This success not only provided
ground-state structures but also revealed metastable structures outlined in a full convex hull.
These metastable structures sometimes displayed unique properties and could potentially be
synthesized under specific experimental conditions. It’s crucial to emphasize the significance
of determining ground-state 2D structures for CdxTey and GexSy in experimental synthesis.
Worth noting is that all the 2D predicted structures, except CdTe, lacked counterparts in the
bulk phases.

Additionally, these low-energy structures underwent rigorous dynamical, elastic, and ther-
mal stability tests through state-of-the-art first-principles methods to validate their experimen-
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tal viability. Detailed electronic structure studies were conducted on 2D CdTe and CdTe2. 2D
CdTe exhibited a direct band gap of 1.92 eV, while 2D CdTe2 displayed an indirect band gap
of 1.79 eV. Thickness and strain effects, common in experimental synthesis, were comprehen-
sively analyzed. Unlike transition metal dichalcogenides (TMDCs), the direct band gap nature
of 2D CdTe was found to be highly robust to both thickness and strain. Although its magni-
tude decreased from 1.92 to 1.59 eV with increasing thickness from monolayer to bulk, this
robustness could have significant implications for solar energy conversion, as it is hindered by
the direct-to-indirect transition seen in other TMDCs.

Furthermore, due to the semiconductor behavior of 2D GexSy compounds, where heat flow
primarily occurs through lattice vibrations, their lattice thermal conductivity was thoroughly
studied using a full iterative solution of PBTE. Among them, 2D GeS exhibited a lattice ther-
mal conductivity of 6.82 Wm�1K�1, lower than its 2D orthorhombic counterpart, making it
promising for thermoelectric applications. Meanwhile, 2D GeS2 displayed highly anisotropic
lattice thermal conductivity with a ratio of 1.59, surpassing other 2D IV-VI compounds. In-
vestigating the factors behind these excellent properties of 2D GeS revealed that the smaller
group velocities, shorter phonon lifetimes, and a high phase space for three-phonon scattering
are responsible for its ultralow lattice thermal conductivity. In the case of 2D GeS2, the giant
anisotropy in the lattice thermal conductivity could be attributed to the anisotropic phonon
group velocities of the acoustic and low-energy optical branches, which were identified as the
premier heat carriers in these materials. Finally, a nanostructuring mechanism was suggested
for 2D Ge2S and GeS2 to further reduce lattice thermal conductivity, while other techniques
like doping could prove beneficial for 2D GeS.

5.2 Outlook

Understanding the significance of ground state structures, which is located at global minimum
of the energy surface, is crucial for experimentalists. However, some meta-stable structures,
like the 1T and 1T0 structures of two-dimensional metal chalcogenides [125], have been suc-
cessfully realized experimentally. These meta-stable configurations frequently exhibit excep-
tional properties compared to their ground state. Therefore, investigating meta-stable struc-
tures, as exemplified by 2D CdTe4 and GeS4, is essential. This investigation needs to compre-
hensively explore both electrical and lattice transport properties.

In this context, our preliminary findings have shown ultralow lattice thermal conductiv-
ity, surpassing that of other reported 2D materials. The active surfaces of 2D layers in bulk
materials, owing to incomplete coordinations, require passivation with halogens or oxygen
to prevent surface reactivity. Interestingly, these passivations sometimes enhance the desired
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properties of the monolayer like in the case of phosphorene [126]. In our preliminary results,
we observed enormous suppression in lattice thermal transport within the 2D layer, which
holds promising potential for applications in thermometric devices.

In the future, our research will continue to focus on these two compelling directions. We
aim to delve deeper into these phenomena, paving the way for innovative advancements in the
field.
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