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Machine learning-based prediction of massive transfusion in emergency

department patients with primary postpartum hemorrhage
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Abstract

Objective: While an early massive transfusion (MT) protocol can reduce patient mortality,
accurately assessing the risk of MT in emergency department (ED) patients with primary
postpartum hemorrhage (PPH) presents a challenge. Therefore, the objective of this study is
to identify influential factors and develop predictive models to assess the likelihood of the

need for MT occurrence in ED patients with primary PPH.

Methods: Clinical features to assess variables extracted in the early and late phases of the
clinical course in ED patients with primary PPH for predicting MT were retrospectively
analyzed. Nine variables obtained early in the clinical course of the patients (age, sex,
delivery type, initial mental status, initial vital signs, shock index, and lactate) were
categorized as 'early features'. In addition, 'all features' were analyzed, including all variables
obtained in the late phase: hemoglobin, hematocrit, platelet counts, blood urea nitrogen,
creatinine, prothrombin time, fibrinogen, d-dimer, fibrin degradation product, and albumin.
Seven machine learning algorithm models have been developed using early and all features,
respectively: Support Vector Machine with Polynomial Kernel (SVM poly), Support Vector
Machine with Radial Basis Function Kernel (SVM radial), K-Nearest Neighbors (KNN),
Extreme Gradient Boosting (XGBoost), Logistic Regression (Logistic), Random Forest, and

Decision Tree.

Results: Out of the 612 patients, 101 (33.4%) required MT.

When all features were analyzed, the Random Forest model showed the highest performance.
The area under the curve values, accuracy, sensitivity, and specificity of the prediction model

for MT risk prediction were 0.885, 89%, 74%, and 95%, respectively.

Conclusion: This study provides a relatively accurate and applicable identification of risk



factors associated with MT that may be useful for improving hemorrhagic shock management

in ED patients with PPH patients.
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Introduction

Maternal mortality refers to the death of a pregnant woman during pregnancy or within 42
days of the termination of pregnancy. Maternal mortality ratio is the number of maternal
deaths per 100,000 live births. According to a 2014 report by the World Health Organization,
the global maternal mortality rate has steadily decreased from 283 to 209 between 1990 and

2013, while South Korea also experienced a similar decrease from 21 to 12 in 1990. [1]

Uncontrolled bleeding after delivery, known as postpartum hemorrhage (PPH), is a
significant contributor to maternal mortality. It accounts for nearly 20% of all maternal deaths
worldwide, with an estimated 125,000 deaths per year [2-4]. The United States has one of the
highest maternal mortality rates among developed countries, with approximately 11% of all
maternal deaths associated with PPH. PPH, hypertensive disorders of pregnancy, and

obstetric embolism are the three main causes of maternal death.

PPH is considered a leading and manageable cause of maternal mortality and morbidity
worldwide. PPH accounts for 19.7% of maternal deaths in developed regions, compared to

8% in developing countries [3].

PPH is traditionally defined as blood loss of 500 mL or more in the first 24 hours after
delivery. However, previous studies have shown that physicians’ estimates of bleeding
amounts during delivery were unreliable, and clinical management could be delayed if
decisions are based on these estimates [5]. In clinical practice, it is crucial to promptly and
objectively identify patients at risk of severe hemorrhagic shock that may require massive

transfusion (MT) in order to optimize patient outcomes.



Initial factors, such as initial lactate and shock index, have been shown to predict the need for
MT in patients with primary PPH [6,7]. Furthermore, predictive models that combine
coagulopathy, vital signs, and trauma vectors have been proposed for other trauma

patients [8-10]. However, the practical application of a single effective prediction model is
limited for MT prediction. Machine learning is a subfield of artificial intelligence that enables

algorithms to improve their performance on specific tasks using empirical data.

Therefore, the objective of this study is to identify influential factors and construct predictive

models to assess the likelihood of the need for MT in ED patients with primary PPH.
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Methods

Study design and data source

A retrospective cohort study was conducted on 612 patients with primary PPH who were
referred to the ED of Asan Medical Center, tertiary hospital in Seoul, South Korea, between
January 2004 and August 2023. This study was approved by the institutional review board of
our institution and the requirement for written informed consent was waived due to the

retrospective nature of the study.

The study patients were initially identified through a hospital computer database system using
a hospital discharge diagnosis of ‘Postpartum hemorrhage’. Primary PPH was defined as

hemorrhage requiring transfusion or fluid resuscitation within the first 24 hours after delivery.

None of the patients included in this study delivered at our hospital; instead, they were

referred to our ED for the evaluation and management of PPH after delivery.

The medical records, including maternal demographics, clinical findings, and outcomes, were
reviewed. Initial vital signs were used to calculate the shock index, which is defined as the
pulse rate divided by the systolic blood pressure, and the modified shock index, which is
defined as the pulse rate divided by the mean arterial pressure. Laboratory tests were also

performed upon arrival at the ED and investigated.

The primary outcome of this study was the need for MT. MT was defined as the transfusion
of 10 units or more of packed red blood cells within the initial 24 hours after the onset of

PPH. Both the amount of blood transfused before arrival at the ED and the amount of blood
transfused after arrival at the ED were measured to determine the need for MT. The goal of

the blood transfusion decision was to improve the patient's symptoms, hemodynamics, and
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laboratory results as determined by the physician. Secondary outcomes included the
performance of emergency hysterectomy, embolization for bleeding control, ICU admission,

length of hospital stay, and mortality.

Statistic technique and prediction model

The framework for developing each predictive machine learning model is shown in Figure 1.
Patients with primary PPH were divided into a training or testing cohort using data mining.
Univariate and multivariate analyses were performed to confirm and validate the
classification of each cohort. We initially performed a statistical analysis to evaluate the
significance of each variable investigated for all patients with primary PPH. Univariate
analyses were performed on each variable and MT to determine the mean, standard deviation,
median, and the proportion at the 25th and 75th interquartile ranges. A Student’s t-test was
used to analyze significant differences in the quantitative parameters, while a Fisher’s exact
test was used for the qualitative parameters. Statistical significance was set at p < 0.05.
Multivariate analyses were performed to determine predictors for MT and to select significant

variables for the prediction model.

For model training, the entire data set was randomly divided into a training set (75% for
model development and optimization) and a validation set (25% for model testing). In each
set, random down-sampling was performed to enable a 1:1 analysis between the MT group
and the non-MT group. Linear regression imputations were used to address missing values.
The predictive variables were divided into two groups: “Early features”, which included 9
variables available immediately upon arrival, and “All features”, which included 19 variables,

including laboratory test results and early features.
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1) Early features: age, parity, delivery type, initial mental status, initial vital signs
(systolic blood pressure, diastolic blood pressure, pulse rate), shock index, and

lactate

2) All features: Early features + hemoglobin, hematocrit, platelet count, BUN (blood
urea nitrogen), creatinine, prothrombin time, fibrinogen, D-dimer, FDP (fibrin

degradation product), and albumin.

Hyperparameter tuning was performed to find the best fit for each model using a coarse-
grained grid search with repeated random subsampling for cross-validation. The 75:25 train-
validation split was used for model validation in both the early features cohort and the all

features cohort (Figure 2).

The ratio of MT groups to non-MT groups was maintained in both the training set and
validation set to match the original dataset. The average performance was calculated using
ten-fold cross-validation as 9:1. We used the training set to determine the parameters of the

prediction models and evaluated their performance using the “validation set”.

To predict the need for MT in ED patients with primary PPH, seven machine learning models
were used. These models used both the established 9 variables of early features and 19
variables of all feature sets. The models included Support Vector Machine with Polynomial
Kernel (SVM poly), Support Vector Machine with Radial Basis Function Kernel (SVM
radial), K-Nearest Neighbors (KNN), Extreme Gradient Boosting (XGBoost), Logistic

Regression (Logistic), Random Forest, and Decision Tree.

For performance evaluation, the accuracy of repeated models with narrow variations in

efficiency was assessed for each machine learning algorithm. The estimated accuracy for the
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classification model tuning results is shown in Figure 3, including both preterm features and

all features.

The best performing models were selected for the predictive model, and a validation set was
applied to derive the predicted outcome results. Predictive models were developed and

validated using both early features and all features with seven machine learning models.

Sensitivity, specificity, positive predictive value, negative predictive value, and F1 score were
assessed in each model. Discrimination was assessed using the receiver operating
characteristic curve to calculate area under the curve for each machine learning analysis.
Statistical analyses and machine learning were implemented using R statistical software

(Version 3.6.1).

Results

Clinical Characteristics of the Study Patients

Out of 612 patients with primary PPH, 169 patients (27.6%) experienced MT. The
characteristics of ED patients with primary PPH in the MT group and non-MT group are

described in Table 1 and Figure 2.

The median age of ED patients with primary PPH was higher in the MT group (33 [30-36] vs.
32 [29-35], P=0.028). Of all the patients, 355 (59.8%) were primiparous and 246 (40.2%)

were multiparous. There was no difference in the incidence of MT between the two groups.

Out of 612 patients, 407 (66.5%) underwent vaginal delivery, and 205 (33.5%) underwent

Caesarean delivery. The delivery type was not statistically significant in relation to the
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occurrence of MT. Thirty-one (5.1%) patients showed a change in mental status upon arrival
at the ED from the hospital of delivery. More patients with initial consciousness problems

required compared to others [(23 (74.2%) vs. 8 (25.8%), P<0.05].

The average systolic blood pressure for all patients was 112 + 23 mmHg. In the MT group,
it was lower at 102 = 26 mmHg compared to 116 + 20 mmHg in the non-MT group (P<0.05).
Similarly, the average diastolic blood pressure was 71 = 17 mmHg for all patients, with 65 +
22 mmHg in the MT group and 72 + 17 mmHg in the non-MT group (P<0.05). Pulse rate was
significantly higher in the MT group than in the non-MT group (114 [103-127] vs. 90 [81-
102], P<0.05). There was no significant difference in body temperature between the two

groups (P=0.117)

The shock index was significantly higher in the MT group, with median values of 1.23

compared to 0.8 in the non-MT group (P<0.05).

In the laboratory test results, the MT group showed significantly lower levels of hemoglobin
(8.5+2.9vs.10.1 £2.0 g/dL, P<0.05) and hematocrit (26.0 £ 8.5 vs. 30.5 = 5.7%, P<0.05)
compared to the non-MT group. The platelet count was significantly lower in the MT group
(107 [91-142] vs. 162 [134-199] x103/uL, P<0.05). Blood urea nitrogen and creatinine levels

were significantly higher in the MT group compared to the non-MT group (P<0.05 for both).

The MT group had significantly lower albumin levels (1.4 [1.2-1.8] vs. 2.1 [1.9-2.3] mg/dL,
P<0.05). Elevated lactate levels were more prominent in the MT group (3.1 [1.9-4.3] vs. 2.1
[1.6-2.9], P<0.05). The MT group showd a longer prothrombin time, INR (1.4 [1.2-2.0] vs.
1.1 [1.0-1.2], P<0.05), and decreased fibrinogen levels (110.5 + 83.3 vs. 246.1 £ 106.2,
P<0.05). D-dimer levels were significantly lower in the MT group (58.2 [8.4-35.5] vs. 13.1

[6.8-35.2], P<0.05). FDP levels were significantly higher in the MT group (112.5 [24.2-
15



120.0] vs. 44.4 [21.7-120.0], P<0.05). No significant difference was observed in the white
blood cell counts and C-reactive protein levels between the MT group and non-MTgroup

(Table 2).

In terms of outcomes, a higer percentage of patients in the non-MT group underwent
embolization compared to the MT group (54.0% vs. 46.0%, P<0.05). Conversely, a higher
percentage of patients in the MT group underwent postpartum hysterectomy (83.3% vs.

16.7%, P<0.05).

All mortality cases were observed in the MT group (100% vs. 0%, P<0.05), and the length of
hospital stay for patients in the MT group was longer, with a median of 4 days [3-7 days],

compared to 2 days [1-3 days] for patients in the non-MT group (P<0.05) (Table 3).

The training set and validation set were divided into 458 and 154 samples, respectively,
using a 75:25 ratio. MT occurred in 126 in the training set, and 111 in the validation set
(Table 4 and Table 5). Nineteen features were compared between the MT group and non-MT

group in bothe the training set and validation set.

The median age of ED patients with PPH was higher in the MT group (33 [31-36] vs. 32 [29-
35], P=0.017) in the training set. On the other hand, there was no significant difference in the
median ages in the validation set. In both sets, there was no significant difference in the

occurrence of MT based on parity and delivery type.

In the early feature variables, the average systolic blood pressure and diastolic blood pressure
were lower in the MT group than in the non-MT group in the training set (110 £27 vs. 116 £+
20, P<0.05) and validation set (94 £+ 23 vs. 117 &+ 22, P<0.05). The average diastolic blood

pressure was significantly different between the MT group and the non-MT group, with 65 +
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23 mmHg vs. 72 + 16 mmHg in the validation set, and 59 + 19 mmHg vs. 72 + 18 mmHg in
the validation set (P<0.05). The pulse rate was higher in the MT group than in the non-MT
group in both the training set and validation set (115 [97-128] and 113 [94-139] compared to
92 [81-105] and 92 [79-104], P<0.05). The shock index was significantly higher in the MT
group compared to the non-MT group in both the training set and validation set (1.12 [0.89-
1.45] and 1.12 [0.90-1.54] compared to 0.79 [0.67-0.96] and 0.78 [0.67-0.95], p<0.05).
Lactate levels were higher in the MT group (3.9 [2.5-5.3] and 3.4 [2.4-5.9] vs. 2.2 [1.7-3.2]

and 2.1 [1.6-2.9], P<0.05) in both sets.

In the late feature variables, the MT group showed a significantly lower mean hemoglobin
level (8.5 £2.8 vs. 10.1 £2.0 g/dL, P<0.05) and hematocrit (26.2 + 8.2 vs. 30.6 £ 5.7,
P<0.05) compared to the non-MT group in the training set. Similarly, in the validation set, the
hemoglobin levels (8.5 = 3.1 vs. 10.3 + 2.1 g/dL, P<0.05) and hematocrit levels (26.1 £9.2
vs. 31.2 £ 5.8, P<0.05) lower than those in the non-MT group. The platelet counts were lower
in the MT group (109 [90-140] and 106 [88-146] vs. 162 [134-199] and 162 [131-196],
P<0.05 in both) in the training and validation sets. In the MT group, BUN and creatinine
levels were higher compared to the non-MT group in both the training set and validation set,
although they were within the normal range. (9.0 [7.0-11.0] and 9.0 [7.0-12.3] vs. 7.0 [6.0-
9.0] and 6.5 [6.0-9.0], 0.66 [0.56-0.89] and 0.75 [0.51-0.81] vs. 0.55 [0.49-0.80] and 0.54
[0.47-0.65], P<0.05 for both). The MT group also had significantly lower albumin levels (1.5
[1.1-1.8] and 1.5 [1.1-1.8] vs. 2.1 [1.7-2.3] and 2.1 [1.8-2.3] mg/dL, P<0.05 for both) in both
sets. PT INR (1.5 [1.2-2.5] and 2.3 [1.4-2.3] vs. 1.1 [1.0-1.3] and 1.2 [1.1-1.5], P<0.05 for
both), D-dimer (35.2 [8.0-71.5] and 35.4 [17.0-53.1] vs. 12.8 [5.3-35.2] and 10.2 [4.4-34.6],

P<0.05), and fibrinogen levels (113.5 &+ 83.4 and 100.2 + 74.2 vs. 244.2 + 106.8 and 259.1 +
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112.0, P<0.05) were lower in the MT group in both sets. FDP also showed significantly
higher levels in the MT group than in the non-MT group in both the training set (52.1 [19.7-
80.3] vs. 36.4 [15.2-80.3], P=0.038) and the validation set (83.4 [41.3-125.0] and 32.2 [15.2-

53.0], P<0.05).

Multivariate analysis was conducted to identify predictors of MT. The analysis used a
backward stepwise logistic regression model for the entire study patients, as well as for the

training set and validation set (Table 6, Table 7, and Table 8).

In analysis of all study patients, the initial shock index (OR 18.093 [95% CI 5.658-57.864],

P<0.05) , INR (OR 7.103 [95% CI1 2.998-16.831], P<0.05), Albumin (OR 0.343 [95% CI

0.124-0.952], P<0.05), lactate (OR 1.217 [95% CI 1.028-1.439], P<0.05) and fibrinogen (OR

0.990 [95% CI 0.986-1.002], P<0.05) were significant predictors for MT.

In the analysis of the patient group in the training set, the initial shock index (OR 10.186
[95% CI 2.862-36.259], p<0.05) was also a potent predictor for MT. Fibrinogen also showed

an association with MT (OR 0.990 [95% CI 0.985-1.002], P<0.05).

In the analysis of the patient group in the validation set, only the initial shock index showed a

strong predictor for MT (OR 135.061 [95% CI 5.673-3215.326], P<0.05).

Model Performance

To identify high-performance machine learning models for predicting MT in ED patients with
primary PPH, seven machine learning algorithms were implemented using 9 early features

and 19 all features.

18



The confusion matrix generated by seven machine learning algorithms using preterm features
when running the prediction model with the validation set is shown in Figure 4. Figure 5

shows the confusion matrix generated using all 19 features with the validation set.

In demonstrating the relative importance of variables for predicting MT in a machine learning
model, Random Forest, XGBoost, and Logistic Regression models were compared using both
early and all features. Lactate and shock index were commonly identified as potent variables
for predicting MT in patients with primary PPH when using a machine learning algorithm
with early features (Figure 6). When analyzing machine learning with Random Forest,
XGBoost, and Logistic Regression models using all features, it was found that Prothrombin

time, fibrinogen, and hemoglobin were important variables (Figure 7).

In each set of variables, the performance parameters of machine learning algorithms were

derived using both early and all features.

Among the machine learning algorithms that use early features, the SVM radial model
demonstrated the highest ROC of 0.783 and the highest accuracy, reaching 0.746. Table 9 and
Figure 8 present a comparison of the area under the curve for each machine learning analysis

using early features in the training and validation sets.

In the implementation of the model using 22 features, the Random Forest model achieves the
highest ROC of 0.884 and the highest accuracy, 0.876. The comparison includes the area
under the curve for each machine learning analysis with all predictors in the training and

validation sets (Table 10 and Figure 9).

When using only early features, the SVM radial model showed better performance in most

metrics. When considering all features, the Random Forest model was one of the top
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contenders for predicting MT in patients with primary PPH. Overall, while the SVM radial
consistently performed well in both scenarios, it is important to note that other models may

also demonstrate commendable performance depending on the predictors used.

Discussion

This study identified influential factors and constructed predictive models to assess the
likelihood of the need for MT in ED patients with primary PPH. A prediction model based on
the SVM radial and Random Forest has been successfully constructed, demonstrating

superior performance compared to other machine learning models and logistic regression.

This study is the first to develop a machine learning model for predicting the need for MT in
ED patients with primary PPH. PPH is a leading cause of preventable death. Early
identification of ED patients with primary PPH who require MT is crucial to maximize the

benefits of early transfusion administration.

MT is an adverse outcome associated with poor prognosis in various trauma and medical
conditions involving hemorrhage. Many traditional statistical methods have been used to

predict the need for MT and evaluate the risk of MT. Various predictors have been suggested.

Akaraborworn et al. [11,12] predicted the need for MT in trauma patients admitted to the
surgical intensive care unit by using the Sequential Organ Failure Assessment (SOFA) score,
intraoperative blood loss, age, base excess, and heart rate. Coagulopathy on
thromboelastography was suggested as a predictor of the need for MT in trauma

patients [13,14].

Lactate > 4 mmol/L has also been suggested as a predictor of the need for MT in

hemodynamically stable trauma patients [15]. Narrow pulse pressure, shock index, and
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modified shock index are also recognized as predictors of the need for MT and mortality in

trauma patients [10,16-18].

There have been fewer studies on PPH compared to trauma. The study already shown that
MT in patients with PPH can be predicted by lactate levels, coagulopathy, and shock
index [6,7,19,20]. Similarly, the ‘obstetric shock index’, which measures the shock index
during the peripartum period, proved to be useful in estimating blood loss in PPH [21].
Recently, coagulopathy, such as hypofibrinogenemia in viscoelastic hemostatic assays, has

been associated with the occurrence and treatment of massive PPH [22,23].

Machine learning is a subfield of artificial intelligence that enables algorithms to improve
their performance on specific tasks by using empirical data. The use of machine learning has
resulted in the development of prognostic models that can be effectively applied in clinical
settings. These models analyze multiple interconnected variables. This study used various
machine learning algorithms to identify the risk factors associated with MT. A prediction
model was developed using the training dataset and validated using the testing dataset.
Predictive models can enable healthcare practitioners to quickly assess a patient's condition,
allowing for timely medical interventions. The study has the potential to improve patient

safety and reduce complications associated with primary PPH.

Despite our promising findings, there are still limitations in our study. First, the study was
conducted in a specific clinical situation where MT occurred in a relatively rare and fatal
clinical course of PPH. In addition, although MT occurred in 27% of patients, a 1:1 down-
sampling for machine learning was performed, which may have resulted in the loss of
important information. Second, the limitations of a retrospective study resulted in significant

missing data for several variables. Statistically imputed missing data can reduce the statistical
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power of a study and produce biased estimates, leading to invalid conclusions. The counts of
missing FDP, fibrinogen, lactate, and D-dimer were 123 (20.1%), 102 (16.7%), 97 (15.8%)),
and 87 (14.2%), respectively. Third, the small sample size of this single-center study is a
significant limitation. External validation should be considered to obtain clinical results and
avoid the potential risk of overfitting. The MT prediction model has not yet been validated in
a prospective study. In the future, it is necessary to conduct multicenter and larger-scale
research. To develop a machine learning prediction model with higher sensitivity and

specificity. This model can be used to accurately assess the risk of MT.

Conclusions

It has been demonstrated that machine learning prediction methods can be used to develop
accurate prediction models for MT in patients with primary PPH. A prediction model was
successfully developed using Random Forest, which may outperform the traditional logistic
regression method. These predictive models are unique in their kind due to our expertise. We
are working to improve accuracy by learning from ongoing observational data and are

committed to integrating it into future clinical workflows.
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Table 1. Baseline and clinical characteristics of the study patients

All patients MT group Non-MT group
Characteristics P value
(n=612) (n=169) (n=443)
Age, years 32 [30-35] 33 [30-36] 32 [29-35] 0.028
Parity 0.703
Primipara 355 (59.8) 99 (27.0) 267 (73.0)
Multipara 246 (40.2) 70 (28.5) 176 (71.5)
Delivery type 0.400
Vaginal delivery 407 (66.5) 108 (26.5) 299 (73.5)
Caesarean section 205 (33.5) 61 (29.8) 144 (70.2)
Altered mental status 31(5.1) 23 (74.2) 8 (25.8) <0.001
Initial vital signs
Systolic blood pressure, mmHg 112 +£23 102 £ 26 116 £20 <0.001
Diastolic blood pressure, mmHg 71+17 65122 72+£17 <0.001
Respiratory rate, rates/min 20 [18-20] 20 [18-22] 20 [10-20] <0.001
Pulse rate, beats/min 97 [83-115] 114 [103-127] 90 [81-102] <0.001
Body temperature, °C 37.4+0.8 37.1+£0.9 373+0.9 0.117
Shock index 0.82 [0.70-1.04] 1.23 [0.83-1.59] 0.8 [0.67-0.96] <0.001

Values are expressed as the mean + standard deviation, median [interquartile range], or number (%).

Table 2. Laboratory findings of the study patients
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All patients MT group Non-MT group
Characteristics P value
(n=612) (n=169) (n=443)

White blood cells, x10%/uL 17.9£5.5 17.9£6.5 179£54 0.934
Hemoglobin, g/dL 9.9+22 85+£29 10.1£2.0 <0.001
Hematocrit, % 30.3+6.1 26.0£8.5 30.5+5.7 <0.001
Platelets, x10%/uL 152 [118-191] 107 [91-142] 162 [134-199] <0.001
Blood urea nitrogen, mg/dL. 7.5 [6.0-10.0] 9 [6-12] 7 [6-10] <0.001
Creatinine, mg/dL 0.54 [0.46-0.63] 0.77 [0.61-1.04] 0.62 [0.54-0.77] <0.001
Albumin, mg/dL 2.2[1.6-3.1] 1.4 [1.2-1.8] 2.1[1.9-2.3] <0.001
C-reactive protein, mg/dL 0.58 [0.26-1.16] 0.61[0.21-1.15] 0.58 [0.27-1.17] 0.07
Lactate, mmol/L 2.2 [1.6-3.1] 3.1[1.9-4.3] 2.1[1.6-2.9] <0.001
Prothrombin time, INR 1.1 [1.0-1.2] 1.4 [1.2-2.0] 1.1[1.0-1.2] <0.001
D-dimer, pg/mL 15.2[7.5-35.5] 35.2 [8.4-35.5] 13.1[6.8-35.2] <0.001
Fibrinogen, mg/dL 229.8 £114.0 110.5£83.3 246.1 £106.2 <0.001
FDP, mg/dL 52.6 [22.0-120.0] 112.5 [24.2-120.0] 44.4 [21.7-120.0] <0.001

Values are expressed as the mean + standard deviation or median [interquartile range].

INR, international normalized ratio; FDP, fibrin degradation product.

Table 3. Outcomes of the study patients

All patients MT group Non-MT group
Characteristics P value
(n=612) (n=169) (n=443)

Embolization 309 (50.5) 142 (46.0) 167 (54.0) <0.001



Hysterectom 6 (1.0 5(83.3 1(16.7) <0.001
Yy y

ICU admission 51(8.3) 39 (76.5) 12 (23.5) <0.001
Mortality 5(0.8) 5 (100) 0 (0) <0.001
Hospital length of stay 2 [1-4] 4 [3-7] 2 [1-3] <0.001

Values are expressed as median [interquartile range], or number (%).

Table 4. Variables of the study patients in the training set

Characteristics Aszztsiesr;ts N(Ir”ll":glr206u)p Nor;ll\f;l" 3§;oup P value
Age, years 32 [30-35] 33 [31-36] 32 [29-35] 0.017
Parity 0.449
Primipara 271 (59.2) 71 (26.2) 200 (73.8)
Multipara 187 (40.8) 55(29.4) 135 (70.6)
Delivery type 0.984
Vaginal delivery 305 (66.6) 84 (27.5) 221 (72.5)
Caesarean section 153 (33.4) 42 (24.3) 111 (72.5)
Altered mental status 25 (5.1) 17 (68.0) 8(32.0) <0.001

Initial vital signs
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Systolic blood pressure, mmHg 112 +23 102 +27 116 £20 <0.001
Diastolic blood pressure, mmHg 69+ 19 65 +23 72+ 16 <0.001
Pulse rate, beats/min 97 [83-116] 115 [97-128] 92 [81-105] <0.001
Shock index 0.86 [0.73-1.08] 1.12 [0.89-1.45] 0.79 [0.67-0.96]  <0.001
Lactate, mmol/L 2.5[1.8-3.8] 3.9[2.5-5.3] 2.2[1.7-3.2] <0.001
Hemoglobin, g/dL 9.7+24 85+28 10.1£2.0 <0.001
Hematocrit, % 29.7+6.7 26.2+8.2 30.6£5.7 <0.001
Platelets, x10%/uL 147 [114-188] 109 [90-140] 162 [131-196] <0.001
Blood urea nitrogen, mg/dL. 7.0 [6.0-10.0] 9.0 [7.0-11.0] 7.0 [6.0-9.0] <0.001
Creatinine, mg/dL 0.57 [0.49-0.70] 0.66 [0.56-0.89] 0.55[0.49-0.80]  <0.001
Albumin, mg/dL 1.9 [1.6-2.2] 1.5[1.1-1.8] 2.1[1.7-2.3] <0.001
Prothrombin time, INR 1.1 [1.0-1.3] 1.5[1.2-2.5] 1.1 [1.0-1.3] <0.001
D-dimer, pg/mL 15.4 [5.9-35.5] 35.2 [8.0-71.5] 12.8 [5.3-35.2] <0.001
Fibrinogen, mg/dL 208.2 £116.6 113.5+83.4 244.2 £ 106.8 <0.001
FDP, mg/dL 39.8[16.0-104.4]  52.1[19.7-80.3] 36.4 [15.2-80.3] 0.038
Values are expressed as the mean + standard deviation, median [interquartile range], or number (%).
INR, international normalized ratio; FDP, fibrin degradation product.
Table 5. Baseline and clinical characteristics of the study patients in the validation set
Characteristics Aglz aitsizr)lts N(IIT:glrlo 1u)p Noné:/i"z 3g)roup P value
Age, years 32 [30-35] 33 [30-36] 32 [30-35] 0.840
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Parity

Primipara

Multipara

Delivery type

Vaginal delivery

Caesarean section

Altered mental status

Initial vital signs

Systolic blood pressure, mmHg

Diastolic blood pressure, mmHg

Pulse rate, beats/min

Shock index

Lactate, mmol/L

Hemoglobin, g/D1

Hematocrit, %

Platelets, x103/uL

Blood urea nitrogen, mg/dL

Creatinine, mg/dL

Albumin, mg/dL.

Prothrombin time, INR

91 (59.1)

63 (40.9)

110 (71.4)

44 (28.6)

6 (3.9)

112 £ 25

70 £20

96 [82-116]

0.82 [0.72-1.18]

2.5[1.8-3.8]

9.7+£25

294173

147 [110-185]

7.5 [6.0-10.0]

0.57 [0.49-0.70]

1.9[1.0-2.3]

1.1[1.0-1.4]

27 (29.7)

16 (25.4)

32(29.1)

11 (25.0)

6 (100)

94 +23

59+19

113 [94-139]

1.12 [0.90-1.54]

3.4[2.4-5.9]

85131

26.1+9.2

106 [88-146]

9.0 [7.0-12.3]

0.75 [0.51-0.81]

1.5[1.1-1.8]

2.3[1.4-2.3]

64 (70.3)

47 (74.6)

78 (70.9)

33 (75.0)

0(0)

117 +£22

72 £ 18

92 [79-104]

0.78 [0.67-0.95]

2.2[1.6-3.1]

103 +2.1

31.2+58

158 [133-198]

6.5 [6.0-9.0]

0.54 [0.47-0.65]

2.1[1.8-2.3]

1.2[1.1-1.5]

0.561

0.609

<0.001

<0.001

<0.001

<0.001

<0.001

<0.001

<0.001

<0.001

<0.001

<0.001

<0.001

<0.001

<0.001
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D-dimer 14.4 [4.5-35.5] 35.4[17.0-53.1] 10.2 [4.4-34.6] <0.001
Fibrinogen 214.4+£123.5 100.2 £74.2 259.1+£112.0 <0.001
FDP 40.0 [15.3-114.1] 83.4[41.3-125.0]  32.2[15.2-53.0]  <0.001
Values are expressed as the mean + standard deviation, median [interquartile range], or number (%).
INR, international normalized ratio; FDP, fibrin degradation product.
Table 6. Multivariate analysis for predicting massive transfusion in all patients
Characteristics Univariate OR [95% CI] Multivariate OR [95% CI] P value
Age 1.057 [1.011-1.104]
Initial shock index  28.645 [14.347-57.193] 18.093 [5.658-57.864] <0.001
Hemoglobin 0.750 [0.691-0.815]
INR 20.304 [10.514-39.209] 7.103 [2.998-16.831] <0.001
Albumin 0.085 [0.052-0.139] 0.343[0.124-0.952] 0.04
Lactate 1.782 [1.551-2.046] 1.217[1.028-1.439] 0.02
D-dimer 1.007 [1.004-1.009]
Fibrinogen 0.986 [0.983-0.989] 0.990 [0.986-1.002] <0.001
FDP 1.001 [1.000-1.002]

Multivariate analysis was conducted using a backward stepwise logistic regression model.

OR, odds ratio; CI, confidential interval; INR, international normalized ratio; FDP, fibrin degradation product.
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Table 7. Multivariate analysis for predicting massive transfusion in the training set

Characteristics Univariate OR [95% CI] Multivariate OR [95% CI] P value
Age 1.068 [1.015-1.123]

Initial shock index ~ 23.232 [10.619-50.825] 10.186 [2.862-36.259] <0.001
Hemoglobin 0.765 [0.695-0.842]

INR 40.049 [15.822-101.370]

Albumin 0.084 [0.047-0.152]

Lactate 1.794 [1.526-2.109]

D-dimer 1.006 [1.003-1.009]

Fibrinogen 0.985 [0.982-0.988] 0.990 [0.985-1.002] <0.001
FDP 1.001 [1.000-1.002]

Multivariate analysis was conducted using a backward stepwise logistic regression model.
OR, odds ratio; CI, confidential interval; INR, international normalized ratio; FDP, fibrin degradation product.
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Table 8. Multivariate analysis for predicting massive transfusion in the validation set

Characteristics Univariate OR [95% CI] Multivariate OR [95% CI] p-value
Age 1.019[0.928-1.119]

Initial shock index ~ 54.183 [12.507-234.739] 135.061 [5.673-3215.326] <0.001
Hemoglobin 0.711 [0.604-0.837]

INR 6.894 [2.692-17.658]

Albumin 0.086 [0.034-0.215]

Lactate 1.754 [1.342-2.294]

D-dimer 1.008 [1.003-1.014]

Fibrinogen 0.988 [0.983-0.993]

FDP 1.002 [1.000-1.004]

Multivariate analysis was conducted using a backward stepwise logistic regression model.
OR, odds ratio; CI, confidential interval; INR, international normalized ratio; FDP, fibrin degradation product.

Table 9. Machine learning analysis for predicting massive transfusion with early features in the training set

and validation set

Training
set
= AUC Accuracy Sensitivity Specificity PPV NPV F1
= —
& validation
set
0.838 0.806 0.692 0.850 0.642 0.876 0.666
SVM radial
0.783 0.746 0.651 0.783 0.538 0.852 0.589
SVM poly 0.782 0.784 0.538 0.880 0.636 0.830 0.583
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0.751 0.694 0.651 0.711 0.466 0.840 0.543

0.696 0.666 0.423 0.761 0.407 0.772 0415
KNN

0.706 0.688 0.627 0.711 0.457 0.831 0.529

0.816 0.795 0.730 0.820 0.612 0.887 0.666
Logistic

0.782 0.720 0.697 0.729 0.500 0.861 0.582

0.799 0.752 0.692 0.776 0.545 0.866 0.610
XGBoost

0.763 0.745 0.651 0.783 0.538 0.852 0.589

0.784 0.741 0.692 0.761 0.529 0.864 0.600

Random Forest
0.755 0.740 0.534 0.819 0.500 0.861 0.534
0.722 0.709 0.692 0.716 0.486 0.857 0.571
Decision tree
0.729 0.714 0.720 0.711 0.492 0.868 0.584

Table 10. Machine learning analysis for predicting massive transfusion with all features in the training set

and validation set

Training
= AUC Accuracy Sensitivity Specificity PPV NPV F1
(=4
=3 set
(¢
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validation

set

0.898 0.870 0.807 0.895 0.750 0.923 0.777
SVM radial
0.884 0.876 0.790 0.909 0.772 0918 0.781
0.897 0.881 0.807 0910 0.777 0.924 0.792
SVM poly
0.837 0.826 0.651 0.909 0.736 0.870 0.691
0.860 0.870 0.730 0.925 0.791 0.898 0.760
KNN
0.796 0.831 0.627 0.909 0.729 0.863 0.675
0.924 0.892 0.846 0910 0.785 0.938 0.924
Logistic
0.884 0.883 0.767 0.927 0.804 0911 0.785
0.906 0.903 0.807 0.940 0.840 0.926 0.823
XGBoost
0.883 0.870 0.697 0.936 0.810 0.888 0.750
0.901 0.892 0.846 0.910 0.785 0.938 0.814
Random Forest
0.885 0.896 0.744 0.954 0.864 0.905 0.800
0.874 0.849 0.807 0.865 0.700 0.920 0.750
Decision tree
0.793 0.805 0.767 0.819 0.622 0.900 0.687
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Figure 1. Flow diagram illustrating the study selection process
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Figure 2. Distributions of numerical covariates in the training set (a), validation set (b), and all study
patients (c) for early features (A) and all features (B)
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(A-b) Early features in the training set
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(A-c) Early features in the validation set
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Figure 3. Estimated accuracy for the classification model tuning result using early features and all
features
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(B) With all features
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Figure 4. Confusion matrix of the prediction model with early features in each machine learning

algorithm
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(C) Logistic Regression
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Figure 5. Confusion matrix of the prediction model with all features in each machine learning algorithm
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Figure 6. Plot showing the relative importance of variables for predicting massive transfusion in machine
learning models of Random Forest (A), XGBoost (B) and Logistic Regression (C) using early features
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Figure 7. Plot showing the relative importance of variables for predicting massive transfusion in machine
learning models of Random Forest (A), XGBoost (B) and Logistic Regression (C) using all features
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(A) Random Forest
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Figure 8. Comparison of area under the curve using machine learning analysis with early features in the
training set (A) and validation set (B)

(A) Training set

1.00

0.75

Sensitivity (TPR)
2

0.25

0.00

0.00 025 0.50

1-Specificity (FPR)

68

075 1.00

model

DecisionTree

KMN

Logistic Regression
Random Forest
SV Paly

SVYM Radial
AGBoost



(B) Validation set
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Figure 9. Comparison of area under the curve using machine learning analysis with all features in the
training set (A) and validation set (B)
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(B) Validation set
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