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Abstract 

Objective: While an early massive transfusion (MT) protocol can reduce patient mortality, 

accurately assessing the risk of MT in emergency department (ED) patients with primary 

postpartum hemorrhage (PPH) presents a challenge. Therefore, the objective of this study is 

to identify influential factors and develop predictive models to assess the likelihood of the 

need for MT occurrence in ED patients with primary PPH. 

Methods: Clinical features to assess variables extracted in the early and late phases of the 

clinical course in ED patients with primary PPH  for predicting MT were retrospectively 

analyzed. Nine variables obtained early in the clinical course of the patients (age, sex, 

delivery type, initial mental status, initial vital signs, shock index, and lactate) were 

categorized as 'early features'. In addition, 'all features' were analyzed, including all variables 

obtained in the late phase: hemoglobin, hematocrit, platelet counts, blood urea nitrogen, 

creatinine, prothrombin time, fibrinogen, d-dimer, fibrin degradation product, and albumin. 

Seven machine learning algorithm models have been developed using early and all features, 

respectively: Support Vector Machine with Polynomial Kernel (SVM poly), Support Vector 

Machine with Radial Basis Function Kernel (SVM radial), K-Nearest Neighbors (KNN), 

Extreme Gradient Boosting (XGBoost), Logistic Regression (Logistic), Random Forest, and 

Decision Tree.  

Results: Out of the 612 patients, 101 (33.4%) required MT.  

When all features were analyzed, the Random Forest model showed the highest performance. 

The area under the curve values, accuracy, sensitivity, and specificity of the prediction model 

for MT risk prediction were 0.885, 89%, 74%, and 95%, respectively.  

Conclusion: This study provides a relatively accurate and applicable identification of risk 
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factors associated with MT that may be useful for improving hemorrhagic shock management 

in ED patients with PPH patients. 
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Introduction 

Maternal mortality refers to the death of a pregnant woman during pregnancy or within 42 

days of the termination of pregnancy. Maternal mortality ratio is the number of maternal 

deaths per 100,000 live births. According to a 2014 report by the World Health Organization, 

the global maternal mortality rate has steadily decreased from 283 to 209 between 1990 and 

2013, while South Korea also experienced a similar decrease from 21 to 12 in 1990. [1] 

Uncontrolled bleeding after delivery, known as postpartum hemorrhage (PPH), is a 

significant contributor to maternal mortality. It accounts for nearly 20% of all maternal deaths 

worldwide, with an estimated 125,000 deaths per year [2-4]. The United States has one of the 

highest maternal mortality rates among developed countries, with approximately 11% of all 

maternal deaths associated with PPH. PPH, hypertensive disorders of pregnancy, and 

obstetric embolism are the three main causes of maternal death. 

PPH is considered a leading and manageable cause of maternal mortality and morbidity 

worldwide. PPH accounts for 19.7% of maternal deaths in developed regions, compared to 

8% in developing countries [3].  

PPH is traditionally defined as blood loss of 500 mL or more in the first 24 hours after 

delivery. However, previous studies have shown that physicians’ estimates of bleeding 

amounts during delivery were unreliable, and clinical management could be delayed if 

decisions are based on these estimates [5]. In clinical practice, it is crucial to promptly and 

objectively identify patients at risk of severe hemorrhagic shock that may require massive 

transfusion (MT) in order to optimize patient outcomes. 
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Initial factors, such as initial lactate and shock index, have been shown to predict the need for 

MT in patients with primary PPH [6,7]. Furthermore, predictive models that combine 

coagulopathy, vital signs, and trauma vectors have been proposed for other trauma 

patients [8-10]. However, the practical application of a single effective prediction model is 

limited for MT prediction. Machine learning is a subfield of artificial intelligence that enables 

algorithms to improve their performance on specific tasks using empirical data. 

Therefore, the objective of this study is to identify influential factors and construct predictive 

models to assess the likelihood of the need for MT in ED patients with primary PPH.   
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Methods 

Study design and data source 

A retrospective cohort study was conducted on 612 patients with primary PPH who were 

referred to the ED of Asan Medical Center, tertiary hospital in Seoul, South Korea, between 

January 2004 and August 2023. This study was approved by the institutional review board of 

our institution and the requirement for written informed consent was waived due to the 

retrospective nature of the study. 

The study patients were initially identified through a hospital computer database system using 

a hospital discharge diagnosis of ‘Postpartum hemorrhage’. Primary PPH was defined as 

hemorrhage requiring transfusion or fluid resuscitation within the first 24 hours after delivery. 

None of the patients included in this study delivered at our hospital; instead, they were 

referred to our ED for the evaluation and management of PPH after delivery.   

The medical records, including maternal demographics, clinical findings, and outcomes, were 

reviewed. Initial vital signs were used to calculate the shock index, which is defined as the 

pulse rate divided by the systolic blood pressure, and the modified shock index, which is 

defined as the pulse rate divided by the mean arterial pressure. Laboratory tests were also 

performed upon arrival at the ED and investigated.  

The primary outcome of this study was the need for MT. MT was defined as the transfusion 

of 10 units or more of packed red blood cells within the initial 24 hours after the onset of 

PPH. Both the amount of blood transfused before arrival at the ED and the amount of blood 

transfused after arrival at the ED were measured to determine the need for MT. The goal of 

the blood transfusion decision was to improve the patient's symptoms, hemodynamics, and 
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laboratory results as determined by the physician. Secondary outcomes included the 

performance of emergency hysterectomy, embolization for bleeding control, ICU admission, 

length of hospital stay, and mortality.  

Statistic technique and prediction model 

The framework for developing each predictive machine learning model is shown in Figure 1. 

Patients with primary PPH were divided into a training or testing cohort using data mining. 

Univariate and multivariate analyses were performed to confirm and validate the 

classification of each cohort. We initially performed a statistical analysis to evaluate the 

significance of each variable investigated for all patients with primary PPH. Univariate 

analyses were performed on each variable and MT to determine the mean, standard deviation, 

median, and the proportion at the 25th and 75th interquartile ranges. A Student’s t-test was 

used to analyze significant differences in the quantitative parameters, while a Fisher’s exact 

test was used for the qualitative parameters. Statistical significance was set at p < 0.05. 

Multivariate analyses were performed to determine predictors for MT and to select significant 

variables for the prediction model.  

For model training, the entire data set was randomly divided into a training set (75% for 

model development and optimization) and a validation set (25% for model testing). In each 

set, random down-sampling was performed to enable a 1:1 analysis between the MT group 

and the non-MT group. Linear regression imputations were used to address missing values. 

The predictive variables were divided into two groups: “Early features”, which included 9 

variables available immediately upon arrival, and “All features”, which included 19 variables, 

including laboratory test results and early features. 
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1) Early features: age, parity, delivery type, initial mental status, initial vital signs 

(systolic blood pressure, diastolic blood pressure, pulse rate), shock index, and 

lactate 

2) All features: Early features + hemoglobin, hematocrit, platelet count, BUN (blood 

urea nitrogen), creatinine, prothrombin time, fibrinogen, D-dimer, FDP (fibrin 

degradation product), and albumin. 

Hyperparameter tuning was performed to find the best fit for each model using a coarse-

grained grid search with repeated random subsampling for cross-validation. The 75:25 train-

validation split was used for model validation in both the early features cohort and the all 

features cohort (Figure 2). 

The ratio of MT groups to non-MT groups was maintained in both the training set and 

validation set to match the original dataset. The average performance was calculated using 

ten-fold cross-validation as 9:1. We used the training set to determine the parameters of the 

prediction models and evaluated their performance using the “validation set”.  

To predict the need for MT in ED patients with primary PPH, seven machine learning models 

were used. These models used both the established 9 variables of early features and 19 

variables of all feature sets. The models included Support Vector Machine with Polynomial 

Kernel (SVM poly), Support Vector Machine with Radial Basis Function Kernel (SVM 

radial), K-Nearest Neighbors (KNN), Extreme Gradient Boosting (XGBoost), Logistic 

Regression (Logistic), Random Forest, and Decision Tree. 

For performance evaluation, the accuracy of repeated models with narrow variations in 

efficiency was assessed for each machine learning algorithm. The estimated accuracy for the 
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classification model tuning results is shown in Figure 3, including both preterm features and 

all features.  

The best performing models were selected for the predictive model, and a validation set was 

applied to derive the predicted outcome results. Predictive models were developed and 

validated using both early features and all features with seven machine learning models.  

Sensitivity, specificity, positive predictive value, negative predictive value, and F1 score were 

assessed in each model. Discrimination was assessed using the receiver operating 

characteristic curve to calculate area under the curve for each machine learning analysis. 

Statistical analyses and machine learning were implemented using R statistical software 

(Version 3.6.1).  

 

Results 

Clinical Characteristics of the Study Patients 

Out of 612 patients with primary PPH, 169 patients (27.6%) experienced MT. The 

characteristics of ED patients with primary PPH in the MT group and non-MT group are 

described in Table 1 and Figure 2.  

The median age of ED patients with primary PPH was higher in the MT group (33 [30-36] vs. 

32 [29-35], P=0.028). Of all the patients, 355 (59.8%) were primiparous and 246 (40.2%) 

were multiparous. There was no difference in the incidence of MT between the two groups. 

Out of 612 patients, 407 (66.5%) underwent vaginal delivery, and 205 (33.5%) underwent 

Caesarean delivery. The delivery type was not statistically significant in relation to the 
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occurrence of MT. Thirty-one (5.1%) patients showed a change in mental status upon arrival 

at the ED from the hospital of delivery. More patients with initial consciousness problems 

required  compared to others [(23 (74.2%) vs. 8 (25.8%), P<0.05]. 

The average systolic blood pressure for all patients was 112 ± 23 mmHg. In the MT group, 

it was lower at 102 ± 26 mmHg compared to 116 ± 20 mmHg in the non-MT group (P<0.05). 

Similarly, the average diastolic blood pressure was 71 ± 17 mmHg for all patients, with 65 ± 

22 mmHg in the MT group and 72 ± 17 mmHg in the non-MT group (P<0.05). Pulse rate was 

significantly higher in the MT group than in the non-MT group (114 [103-127] vs. 90 [81-

102], P<0.05). There was no significant difference in body temperature between the two 

groups (P=0.117) 

The shock index was significantly higher in the MT group, with median values of 1.23 

compared to 0.8 in the non-MT group (P<0.05). 

In the laboratory test results, the MT group showed significantly lower levels of hemoglobin 

(8.5 ± 2.9 vs. 10.1 ± 2.0 g/dL, P<0.05) and hematocrit (26.0 ± 8.5 vs. 30.5 ± 5.7%, P<0.05) 

compared to the non-MT group. The platelet count was significantly lower in the MT group 

(107 [91-142] vs. 162 [134-199] x10³/μL, P<0.05). Blood urea nitrogen and creatinine levels 

were significantly higher in the MT group compared to the non-MT group (P<0.05 for both). 

The MT group had significantly lower albumin levels (1.4 [1.2-1.8] vs. 2.1 [1.9-2.3] mg/dL, 

P<0.05). Elevated lactate levels were more prominent in the MT group (3.1 [1.9-4.3] vs. 2.1 

[1.6-2.9], P<0.05). The MT group showd a longer prothrombin time, INR (1.4 [1.2-2.0] vs. 

1.1 [1.0-1.2], P<0.05), and decreased fibrinogen levels (110.5 ± 83.3 vs. 246.1 ± 106.2, 

P<0.05). D-dimer levels were significantly lower in the MT group (58.2 [8.4-35.5] vs. 13.1 

[6.8-35.2], P<0.05). FDP levels were significantly higher in the MT group (112.5 [24.2-
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120.0] vs. 44.4 [21.7-120.0], P<0.05). No significant difference was observed in the white 

blood cell counts and C-reactive protein levels between the MT group and non-MTgroup 

(Table 2). 

In terms of outcomes, a higer percentage of patients in the non-MT group underwent 

embolization compared to the MT group (54.0% vs. 46.0%, P<0.05). Conversely, a higher 

percentage of patients in the MT group underwent postpartum hysterectomy (83.3% vs. 

16.7%, P<0.05). 

All mortality cases were observed in the MT group (100% vs. 0%, P<0.05), and the length of 

hospital stay for patients in the MT group was longer, with a median of 4 days [3-7 days], 

compared to 2 days [1-3 days] for patients in the non-MT group (P<0.05) (Table 3). 

The training set and validation set were divided into 458 and 154 samples, respectively, 

using a 75:25 ratio. MT occurred in 126 in the training set, and 111 in the validation set 

(Table 4 and Table 5). Nineteen features were compared between the MT group and non-MT 

group in bothe the training set and validation set.  

The median age of ED patients with PPH was higher in the MT group (33 [31-36] vs. 32 [29-

35], P=0.017) in the training set. On the other hand, there was no significant difference in the 

median ages in the validation set. In both sets, there was no significant difference in the 

occurrence of MT based on parity and delivery type. 

In the early feature variables, the average systolic blood pressure and diastolic blood pressure 

were lower in the MT group than in the non-MT group in the training set (110 ± 27 vs. 116 ± 

20, P<0.05) and validation set (94 ± 23 vs. 117 ± 22, P<0.05). The average diastolic blood 

pressure was significantly different between the MT group and the non-MT group, with 65 ± 
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23 mmHg vs. 72 ± 16 mmHg in the validation set, and 59 ± 19 mmHg vs. 72 ± 18 mmHg in 

the validation set (P<0.05). The pulse rate was higher in the MT group than in the non-MT 

group in both the training set and validation set (115 [97-128] and 113 [94-139] compared to 

92 [81-105] and 92 [79-104], P<0.05). The shock index was significantly higher in the MT 

group compared to the non-MT group in both the training set and validation set (1.12 [0.89-

1.45] and 1.12 [0.90-1.54] compared to 0.79 [0.67-0.96] and 0.78 [0.67-0.95], p<0.05). 

Lactate levels were higher in the MT group (3.9 [2.5-5.3] and 3.4 [2.4-5.9] vs. 2.2 [1.7-3.2] 

and 2.1 [1.6-2.9], P<0.05) in both sets. 

In the late feature variables, the MT group showed a significantly lower mean hemoglobin 

level (8.5 ± 2.8 vs. 10.1 ± 2.0 g/dL, P<0.05) and hematocrit (26.2 ± 8.2 vs. 30.6 ± 5.7, 

P<0.05) compared to the non-MT group in the training set. Similarly, in the validation set, the 

hemoglobin levels (8.5 ± 3.1 vs. 10.3 ± 2.1 g/dL, P<0.05) and hematocrit levels (26.1 ± 9.2 

vs. 31.2 ± 5.8, P<0.05) lower than those in the non-MT group. The platelet counts were lower 

in the MT group (109 [90-140] and 106 [88-146] vs. 162 [134-199] and 162 [131-196], 

P<0.05 in both) in the training and validation sets. In the MT group, BUN and creatinine 

levels were higher compared to the non-MT group in both the training set and validation set, 

although they were within the normal range. (9.0 [7.0-11.0] and 9.0 [7.0-12.3] vs. 7.0 [6.0-

9.0] and 6.5 [6.0-9.0], 0.66 [0.56-0.89] and 0.75 [0.51-0.81] vs. 0.55 [0.49-0.80] and 0.54 

[0.47-0.65], P<0.05 for both). The MT group also had significantly lower albumin levels (1.5 

[1.1-1.8] and 1.5 [1.1-1.8] vs. 2.1 [1.7-2.3] and 2.1 [1.8-2.3] mg/dL, P<0.05 for both) in both 

sets. PT INR (1.5 [1.2-2.5] and 2.3 [1.4-2.3] vs. 1.1 [1.0-1.3] and 1.2 [1.1-1.5], P<0.05 for 

both), D-dimer (35.2 [8.0-71.5] and 35.4 [17.0-53.1] vs. 12.8 [5.3-35.2] and 10.2 [4.4-34.6], 

P<0.05), and fibrinogen levels (113.5 ± 83.4 and 100.2 ± 74.2 vs. 244.2 ± 106.8 and 259.1 ± 
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112.0, P<0.05) were lower in the MT group in both sets. FDP also showed significantly 

higher levels in the MT group than in the non-MT group in both the training set (52.1 [19.7-

80.3] vs. 36.4 [15.2-80.3], P=0.038) and the validation set (83.4 [41.3-125.0] and 32.2 [15.2-

53.0], P<0.05).  

Multivariate analysis was conducted to identify predictors of MT. The analysis used a 

backward stepwise logistic regression model for the entire study patients, as well as for the 

training set and validation set (Table 6, Table 7, and Table 8).  

In analysis of all study patients, the initial shock index (OR 18.093 [95% CI 5.658-57.864], 

P<0.05) , INR (OR 7.103 [95% CI 2.998-16.831], P<0.05), Albumin (OR 0.343 [95% CI 

0.124-0.952], P<0.05), lactate (OR 1.217 [95% CI 1.028-1.439], P<0.05) and fibrinogen (OR 

0.990 [95% CI 0.986-1.002], P<0.05) were significant predictors for MT.   

In the analysis of the patient group in the training set, the initial shock index (OR 10.186 

[95% CI 2.862-36.259], p<0.05) was also a potent predictor for MT. Fibrinogen also showed 

an association with MT (OR 0.990 [95% CI 0.985-1.002], P<0.05). 

In the analysis of the patient group in the validation set, only the initial shock index showed a 

strong predictor for MT (OR 135.061 [95% CI 5.673-3215.326], P<0.05).   

Model Performance 

To identify high-performance machine learning models for predicting MT in ED patients with 

primary PPH, seven machine learning algorithms were implemented using 9 early features 

and 19 all features.  
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The confusion matrix generated by seven machine learning algorithms using preterm features 

when running the prediction model with the validation set is shown in Figure 4. Figure 5 

shows the confusion matrix generated using all 19 features with the validation set.  

In demonstrating the relative importance of variables for predicting MT in a machine learning 

model, Random Forest, XGBoost, and Logistic Regression models were compared using both 

early and all features. Lactate and shock index were commonly identified as potent variables 

for predicting MT in patients with primary PPH when using a machine learning algorithm 

with early features (Figure 6). When analyzing machine learning with Random Forest, 

XGBoost, and Logistic Regression models using all features, it was found that Prothrombin 

time, fibrinogen, and hemoglobin were important variables (Figure 7).  

In each set of variables, the performance parameters of machine learning algorithms were 

derived using both early and all features. 

Among the machine learning algorithms that use early features, the SVM radial model 

demonstrated the highest ROC of 0.783 and the highest accuracy, reaching 0.746. Table 9 and 

Figure 8 present a comparison of the area under the curve for each machine learning analysis 

using early features in the training and validation sets. 

In the implementation of the model using 22 features, the Random Forest model achieves the 

highest ROC of 0.884 and the highest accuracy, 0.876. The comparison includes the area 

under the curve for each machine learning analysis with all predictors in the training and 

validation sets (Table 10 and Figure 9).   

When using only early features, the SVM radial model showed better performance in most 

metrics. When considering all features, the Random Forest model was one of the top 
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contenders for predicting MT in patients with primary PPH. Overall, while the SVM radial 

consistently performed well in both scenarios, it is important to note that other models may 

also demonstrate commendable performance depending on the predictors used.  

Discussion 

This study identified influential factors and constructed predictive models to assess the 

likelihood of the need for MT in ED patients with primary PPH. A prediction model based on 

the SVM radial and Random Forest has been successfully constructed, demonstrating 

superior performance compared to other machine learning models and logistic regression. 

This study is the first to develop a machine learning model for predicting the need for MT in 

ED patients with primary PPH. PPH is a leading cause of preventable death. Early 

identification of ED patients with primary PPH who require MT is crucial to maximize the 

benefits of early transfusion administration.  

MT is an adverse outcome associated with poor prognosis in various trauma and medical 

conditions involving hemorrhage. Many traditional statistical methods have been used to 

predict the need for MT and evaluate the risk of MT. Various predictors have been suggested. 

Akaraborworn et al. [11,12] predicted the need for MT in trauma patients admitted to the 

surgical intensive care unit by using the Sequential Organ Failure Assessment (SOFA) score, 

intraoperative blood loss, age, base excess, and heart rate. Coagulopathy on 

thromboelastography was suggested as a predictor of the need for MT in trauma 

patients [13,14].  

Lactate > 4 mmol/L has also been suggested as a predictor of the need for MT in 

hemodynamically stable trauma patients [15]. Narrow pulse pressure, shock index, and 
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modified shock index are also recognized as predictors of the need for MT and mortality in 

trauma patients [10,16-18].  

There have been fewer studies on PPH compared to trauma. The study already shown that 

MT in patients with PPH can be predicted by lactate levels, coagulopathy, and shock 

index [6,7,19,20]. Similarly, the ‘obstetric shock index’, which measures the shock index 

during the peripartum period, proved to be useful in estimating blood loss in PPH [21]. 

Recently, coagulopathy, such as hypofibrinogenemia in viscoelastic hemostatic assays, has 

been associated with the occurrence and treatment of massive PPH [22,23]. 

Machine learning is a subfield of artificial intelligence that enables algorithms to improve 

their performance on specific tasks by using empirical data. The use of machine learning has 

resulted in the development of prognostic models that can be effectively applied in clinical 

settings. These models analyze multiple interconnected variables. This study used various 

machine learning algorithms to identify the risk factors associated with MT. A prediction 

model was developed using the training dataset and validated using the testing dataset.  

Predictive models can enable healthcare practitioners to quickly assess a patient's condition, 

allowing for timely medical interventions. The study has the potential to improve patient 

safety and reduce complications associated with primary PPH. 

Despite our promising findings, there are still limitations in our study. First, the study was 

conducted in a specific clinical situation where MT occurred in a relatively rare and fatal 

clinical course of PPH. In addition, although MT occurred in 27% of patients, a 1:1 down-

sampling for machine learning was performed, which may have resulted in the loss of 

important information. Second, the limitations of a retrospective study resulted in significant 

missing data for several variables. Statistically imputed missing data can reduce the statistical 
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power of a study and produce biased estimates, leading to invalid conclusions. The counts of 

missing FDP, fibrinogen, lactate, and D-dimer were 123 (20.1%), 102 (16.7%), 97 (15.8%), 

and 87 (14.2%), respectively. Third, the small sample size of this single-center study is a 

significant limitation. External validation should be considered to obtain clinical results and 

avoid the potential risk of overfitting. The MT prediction model has not yet been validated in 

a prospective study. In the future, it is necessary to conduct multicenter and larger-scale 

research. To develop a machine learning prediction model with higher sensitivity and 

specificity. This model can be used to accurately assess the risk of MT. 

 

Conclusions 

It has been demonstrated that machine learning prediction methods can be used to develop 

accurate prediction models for MT in patients with primary PPH. A prediction model was 

successfully developed using Random Forest, which may outperform the traditional logistic 

regression method. These predictive models are unique in their kind due to our expertise. We 

are working to improve accuracy by learning from ongoing observational data and are 

committed to integrating it into future clinical workflows. 
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국문 요약 

연구 배경 및 목적:  초기에 대량 수혈 프로토콜로 환자 사망률을 줄일 수 

있음에도, 임상 초기에서 일차 분만후출혈 환자에서 대량수혈의 필요성을 

정확하게 파악하는 것은 여전히 주요 과제로 남아 있다.  

연구 방법: 일차성 분만후출혈 환자에서 임상 경과 초기 및 말기에 추출한 

변수를 이용하여 대량수혈 예측을 위한 임상적 특징을 후향적으로 분석하였다. 

환자의 임상 경과 초기에 얻은 9 가지 초기 변수(나이, 성별, 분만 유형, 초기 

의식 상태, 초기 활력 징후, 쇼크 지수, 젖산염)과 후기에 얻어진 헤모글로빈, 

헤마토크릿, 혈소판 수, 혈중 요소 질소, 크레아티닌, 프로트롬빈 시간, 

피브리노겐, d-이합체, 피브린 분해 산물, 알부민을 모두 포함한 19 가지 변수를 

각각 나누어 분석하였다. 분석에는 다항식 커널을 이용한 서포트 벡터 머신(SVM 

poly), 방사형 기저함수 커널을 이용한 서포트 벡터 머신(SVM radial), K-최근접 

이웃(KNN), 극한 경사 부스팅(XGBoost), 로지스틱 회귀, 랜덤 포레스트, 

의사결정 트리 등 7 가지 머신러닝 알고리즘 모델을 각각 초기 및 전체 변수들에 

대해서 각각 시행되었다.   

결과 및 고찰: 612 명의 환자 중 101 명(33.4%)의 환자에서 대량수혈이 

필요하였다. 355 명(59.8%)의 환자가 초산이었으며, 407 명(66.5%)의 환자가 

질식분만 후 일차성 분만후출혈이 발생하였다. 모든 변수를 분석에 사용하였을 

때 랜덤 포레스트 모델에서 가장 높은 성능이 관찰되었으며, 대량수혈 위험도 
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예측 모델의 AUC, 정확도, 민감도, 특이도 값은 각각 89%, 74%, 95%, 0.885 로 

나타났다. 분석 결과, 젖산염, 쇼크 지수, 초기 의식 상태가 초기 대량수혈의 

가장 중요한 위험 요인으로 나타났다. 혈소판 시간, 초기 혈청 단백질 또는 

알부민 수치, 헤모글로빈도 전체 기간의 대량수혈 예측 모델에 중요한 요인으로 

나타났다.  

결론: 본 연구는 일차성 분만후출혈 응급실 환자에서 비교적 정확하고 

임상적으로 적용가능한 대량수혈 예측모델을 개발함으로써 대량수혈의 

위험인자와 출혈성 쇼크 관리가 이루어 질 수 있도록 하였다.  
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Table 1. Baseline and clinical characteristics of the study patients  

Characteristics 

All patients 

(n=612) 

MT group 

(n=169) 

Non-MT group 

(n=443) 

P value 

Age, years  32 [30-35] 33 [30-36] 32 [29-35] 0.028 

Parity    0.703 

    Primipara 355 (59.8) 99 (27.0) 267 (73.0)  

Multipara 246 (40.2) 70 (28.5) 176 (71.5)  

Delivery type     0.400 

Vaginal delivery 407 (66.5) 108 (26.5) 299 (73.5)  

Caesarean section  205 (33.5) 61 (29.8) 144 (70.2)  

Altered mental status  31 (5.1) 23 (74.2) 8 (25.8) <0.001 

Initial vital signs     

Systolic blood pressure, mmHg 112  23 102  26 116  20 <0.001 

Diastolic blood pressure, mmHg 71  17 65  22 72  17 <0.001 

Respiratory rate, rates/min  20 [18-20] 20 [18-22] 20 [10-20] <0.001 

Pulse rate, beats/min  97 [83-115] 114 [103-127] 90 [81-102] <0.001 

Body temperature, ℃  37.4  0.8 37.1  0.9 37.3  0.9 0.117 

  Shock index  0.82 [0.70-1.04] 1.23 [0.83-1.59] 0.8 [0.67-0.96] <0.001 

Values are expressed as the mean ± standard deviation, median [interquartile range], or number (%). 

 

 

Table 2. Laboratory findings of the study patients 
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Characteristics 

All patients 

(n=612) 

MT group 

(n=169) 

Non-MT group 

(n=443) 

P value 

White blood cells, 10³/μL  17.9  5.5 17.9  6.5 17.9  5.4 0.934 

Hemoglobin, g/dL  9.9  2.2 8.5  2.9 10.1  2.0 <0.001 

Hematocrit, % 30.3  6.1 26.0  8.5 30.5  5.7 <0.001 

Platelets, 10³/μL  152 [118-191] 107 [91-142] 162 [134-199] <0.001 

Blood urea nitrogen, mg/dL 7.5 [6.0-10.0] 9 [6-12] 7 [6-10] <0.001 

Creatinine, mg/dL  0.54 [0.46-0.63] 0.77 [0.61-1.04] 0.62 [0.54-0.77] <0.001 

Albumin, mg/dL  2.2 [1.6-3.1] 1.4 [1.2-1.8] 2.1 [1.9-2.3] <0.001 

C-reactive protein, mg/dL  0.58 [0.26-1.16] 0.61 [0.21-1.15] 0.58 [0.27-1.17] 0.07 

Lactate, mmol/L 2.2 [1.6-3.1] 3.1 [1.9-4.3] 2.1 [1.6-2.9] <0.001 

Prothrombin time, INR  1.1 [1.0-1.2] 1.4 [1.2-2.0] 1.1 [1.0-1.2] <0.001 

D-dimer, μg/mL 15.2 [7.5-35.5] 35.2 [8.4-35.5] 13.1 [6.8-35.2] <0.001 

Fibrinogen, mg/dL 229.8  114.0 110.5  83.3 246.1  106.2 <0.001 

FDP, mg/dL  52.6 [22.0-120.0] 112.5 [24.2-120.0] 44.4 [21.7-120.0] <0.001 

Values are expressed as the mean ± standard deviation or median [interquartile range]. 

INR, international normalized ratio; FDP, fibrin degradation product. 

 

 

 

Table 3. Outcomes of the study patients 

Characteristics 

All patients 

(n=612) 

MT group 

(n=169) 

Non-MT group 

(n=443) 

P value 

Embolization 309 (50.5) 142 (46.0) 167 (54.0) <0.001 
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Hysterectomy 6 (1.0) 5 (83.3) 1 (16.7) <0.001 

ICU admission 51 (8.3) 39 (76.5) 12 (23.5) <0.001 

Mortality 5 (0.8) 5 (100) 0 (0) <0.001 

Hospital length of stay 2 [1-4] 4 [3-7] 2 [1-3] <0.001 

Values are expressed as median [interquartile range], or number (%). 

 

 

 

 

 

 

 

Table 4. Variables of the study patients in the training set 

Characteristics 
All patients 

(n=458) 

MT group 

(n=126) 

Non-MT group 

(n=332) 
P value 

Age, years  32 [30-35] 33 [31-36] 32 [29-35] 0.017 

Parity    0.449 

    Primipara 271 (59.2) 71 (26.2) 200 (73.8)  

Multipara 187 (40.8) 55 (29.4) 135 (70.6)  

Delivery type     0.984 

Vaginal delivery 305 (66.6) 84 (27.5) 221 (72.5)  

Caesarean section  153 (33.4) 42 (24.3) 111 (72.5)  

Altered mental status  25 (5.1) 17 (68.0) 8 (32.0) <0.001 

Initial vital signs     
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Systolic blood pressure, mmHg 112  23 102  27 116  20 <0.001 

Diastolic blood pressure, mmHg 69  19 65  23 72  16 <0.001 

Pulse rate, beats/min  97 [83-116] 115 [97-128] 92 [81-105] <0.001 

  Shock index  0.86 [0.73-1.08] 1.12 [0.89-1.45] 0.79 [0.67-0.96] <0.001 

Lactate, mmol/L 2.5 [1.8-3.8] 3.9 [2.5-5.3] 2.2 [1.7-3.2] <0.001 

Hemoglobin, g/dL  9.7  2.4 8.5  2.8 10.1  2.0 <0.001 

Hematocrit, % 29.7  6.7 26.2  8.2 30.6  5.7 <0.001 

Platelets, 10³/μL  147 [114-188] 109 [90-140] 162 [131-196] <0.001 

Blood urea nitrogen, mg/dL 7.0 [6.0-10.0] 9.0 [7.0-11.0] 7.0 [6.0-9.0] <0.001 

Creatinine, mg/dL  0.57 [0.49-0.70] 0.66 [0.56-0.89] 0.55 [0.49-0.80] <0.001 

Albumin, mg/dL  1.9 [1.6-2.2] 1.5 [1.1-1.8] 2.1 [1.7-2.3] <0.001 

Prothrombin time, INR  1.1 [1.0-1.3] 1.5 [1.2-2.5] 1.1 [1.0-1.3] <0.001 

D-dimer, μg/mL 15.4 [5.9-35.5] 35.2 [8.0-71.5] 12.8 [5.3-35.2] <0.001 

Fibrinogen, mg/dL 208.2  116.6 113.5  83.4 244.2  106.8 <0.001 

FDP, mg/dL  39.8 [16.0-104.4] 52.1 [19.7-80.3] 36.4 [15.2-80.3] 0.038 

Values are expressed as the mean ± standard deviation, median [interquartile range], or number (%). 

INR, international normalized ratio; FDP, fibrin degradation product. 

Table 5. Baseline and clinical characteristics of the study patients in the validation set 

Characteristics 
All patients 

(n=154) 

MT group 

(n=111) 

Non-MT group 

(n=43) 
P value 

Age, years  32 [30-35] 33 [30-36] 32 [30-35] 0.840 
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Parity    0.561 

    Primipara 91 (59.1) 27 (29.7) 64 (70.3)  

Multipara 63 (40.9) 16 (25.4) 47 (74.6)  

Delivery type    0.609 

Vaginal delivery 110 (71.4) 32 (29.1) 78 (70.9)  

Caesarean section  44 (28.6) 11 (25.0) 33 (75.0)  

Altered mental status  6 (3.9) 6 (100) 0 (0) <0.001 

Initial vital signs     

Systolic blood pressure, mmHg 112  25 94  23 117  22 <0.001 

Diastolic blood pressure, mmHg 70  20 59  19 72  18 <0.001 

Pulse rate, beats/min  96 [82-116] 113 [94-139] 92 [79-104] <0.001 

  Shock index  0.82 [0.72-1.18] 1.12 [0.90-1.54] 0.78 [0.67-0.95] <0.001 

Lactate, mmol/L 2.5 [1.8-3.8] 3.4 [2.4-5.9] 2.2 [1.6-3.1] <0.001 

Hemoglobin, g/Dl  9.7  2.5 8.5  3.1 10.3  2.1 <0.001 

Hematocrit, %  29.4  7.3 26.1  9.2 31.2  5.8 <0.001 

Platelets, 10³/μL  147 [110-185] 106 [88-146] 158 [133-198] <0.001 

Blood urea nitrogen, mg/dL 7.5 [6.0-10.0] 9.0 [7.0-12.3] 6.5 [6.0-9.0] <0.001 

Creatinine, mg/dL  0.57 [0.49-0.70] 0.75 [0.51-0.81] 0.54 [0.47-0.65] <0.001 

Albumin, mg/dL  1.9 [1.0-2.3] 1.5 [1.1-1.8] 2.1 [1.8-2.3] <0.001 

Prothrombin time, INR  1.1 [1.0-1.4] 2.3 [1.4-2.3] 1.2 [1.1-1.5] <0.001 
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D-dimer  14.4 [4.5-35.5] 35.4 [17.0-53.1] 10.2 [4.4-34.6] <0.001 

Fibrinogen  214.4  123.5 100.2  74.2 259.1  112.0 <0.001 

FDP  40.0 [15.3-114.1] 83.4 [41.3-125.0] 32.2 [15.2-53.0] <0.001 

Values are expressed as the mean ± standard deviation, median [interquartile range], or number (%). 

INR, international normalized ratio; FDP, fibrin degradation product. 

Table 6. Multivariate analysis for predicting massive transfusion in all patients 

Characteristics Univariate OR [95% CI] Multivariate OR [95% CI] P value 

Age 1.057 [1.011-1.104]   

Initial shock index 28.645 [14.347-57.193] 18.093 [5.658-57.864] <0.001 

Hemoglobin 0.750 [0.691-0.815]   

INR 20.304 [10.514-39.209] 7.103 [2.998-16.831] <0.001 

Albumin 0.085 [0.052-0.139] 0.343[0.124-0.952] 0.04 

Lactate 1.782 [1.551-2.046] 1.217 [1.028-1.439] 0.02 

D-dimer 1.007 [1.004-1.009]   

Fibrinogen 0.986 [0.983-0.989] 0.990 [0.986-1.002] <0.001 

FDP 1.001 [1.000-1.002]   

Multivariate analysis was conducted using a backward stepwise logistic regression model. 

OR, odds ratio; CI, confidential interval; INR, international normalized ratio; FDP, fibrin degradation product. 
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Table 7. Multivariate analysis for predicting massive transfusion in the training set 

Characteristics Univariate OR [95% CI] Multivariate OR [95% CI] P value 

Age 1.068 [1.015-1.123]   

Initial shock index 23.232 [10.619-50.825] 10.186 [2.862-36.259] <0.001 

Hemoglobin 0.765 [0.695-0.842]   

INR 40.049 [15.822-101.370]   

Albumin 0.084 [0.047-0.152]   

Lactate 1.794 [1.526-2.109]   

D-dimer 1.006 [1.003-1.009]   

Fibrinogen 0.985 [0.982-0.988] 0.990 [0.985-1.002] <0.001 

FDP 1.001 [1.000-1.002]   

Multivariate analysis was conducted using a backward stepwise logistic regression model. 

OR, odds ratio; CI, confidential interval; INR, international normalized ratio; FDP, fibrin degradation product. 
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Table 8. Multivariate analysis for predicting massive transfusion in the validation set 

Characteristics Univariate OR [95% CI] Multivariate OR [95% CI] p-value 

Age 1.019 [0.928-1.119]   

Initial shock index 54.183 [12.507-234.739] 135.061 [5.673-3215.326] <0.001 

Hemoglobin 0.711 [0.604-0.837]   

INR 6.894 [2.692-17.658]   

Albumin 0.086 [0.034-0.215]   

Lactate 1.754 [1.342-2.294]   

D-dimer 1.008 [1.003-1.014]   

Fibrinogen 0.988 [0.983-0.993]   

FDP 1.002 [1.000-1.004]   

Multivariate analysis was conducted using a backward stepwise logistic regression model. 

OR, odds ratio; CI, confidential interval; INR, international normalized ratio; FDP, fibrin degradation product. 

 

Table 9. Machine learning analysis for predicting massive transfusion with early features in the training set 

and validation set 

M
o
d

e
l 

Training 

set 

AUC Accuracy Sensitivity Specificity PPV NPV F1 

validation 

set 

SVM radial 

0.838 0.806 0.692 0.850 0.642 0.876 0.666 

0.783 0.746 0.651 0.783 0.538 0.852 0.589 

SVM poly 0.782 0.784 0.538 0.880 0.636 0.830 0.583 
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0.751 0.694 0.651 0.711 0.466 0.840 0.543 

KNN 

0.696 0.666 0.423 0.761 0.407 0.772 0.415 

0.706 0.688 0.627 0.711 0.457 0.831 0.529 

Logistic 

0.816 0.795 0.730 0.820 0.612 0.887 0.666 

0.782 0.720 0.697 0.729 0.500 0.861 0.582 

XGBoost 

0.799 0.752 0.692 0.776 0.545 0.866 0.610 

0.763 0.745 0.651 0.783 0.538 0.852 0.589 

Random Forest 

0.784 0.741 0.692 0.761 0.529 0.864 0.600 

0.755 0.740 0.534 0.819 0.500 0.861 0.534 

Decision tree 

0.722 0.709 0.692 0.716 0.486 0.857 0.571 

0.729 0.714 0.720 0.711 0.492 0.868 0.584 

 

 

 

 

 

 

 

 

 

Table 10. Machine learning analysis for predicting massive transfusion with all features in the training set 

and validation set 

M
o
d

e
l 

Training 

set 

AUC Accuracy Sensitivity Specificity PPV NPV F1 
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validation 

set 

SVM radial 

0.898 0.870 0.807 0.895 0.750 0.923 0.777 

0.884 0.876 0.790 0.909 0.772 0.918 0.781 

SVM poly 

0.897 0.881 0.807 0.910 0.777 0.924 0.792 

0.837 0.826 0.651 0.909 0.736 0.870 0.691 

KNN 

0.860 0.870 0.730 0.925 0.791 0.898 0.760 

0.796 0.831 0.627 0.909 0.729 0.863 0.675 

Logistic 

0.924 0.892 0.846 0.910 0.785 0.938 0.924 

0.884 0.883 0.767 0.927 0.804 0.911 0.785 

XGBoost 

0.906 0.903 0.807 0.940 0.840 0.926 0.823 

0.883 0.870 0.697 0.936 0.810 0.888 0.750 

Random Forest 

0.901 0.892 0.846 0.910 0.785 0.938 0.814 

0.885 0.896 0.744 0.954 0.864 0.905 0.800 

Decision tree 

0.874 0.849 0.807 0.865 0.700 0.920 0.750 

0.793 0.805 0.767 0.819 0.622 0.900 0.687 
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Figure 1. Flow diagram illustrating the study selection process 
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Figure 2. Distributions of numerical covariates in the training set (a), validation set (b), and all study 

patients (c) for early features (A) and all features (B) 

 

(A-a) Early features in all study patients 

 

DBP, diastolic blood pressure; SBP, systolic blood pressure. 
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(A-b) Early features in the training set 

 

DBP, diastolic blood pressure; SBP, systolic blood pressure. 
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(A-c) Early features in the validation set 

 

(B-a) All features in all study patients 
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BUN, blood urea nitrogen; DBP, diastolic blood pressure; FDP, fibrin degradation product; SBP, systolic 

blood pressure. 

 

 

 

 

 

 

 

 

(B-b) All features in the training set 
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BUN, blood urea nitrogen; DBP, diastolic blood pressure; FDP, fibrin degradation product; SBP, systolic 

blood pressure. 

 

 

 

 

 

 

 

(B-c) All features in the validation set 
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BUN, blood urea nitrogen; DBP, diastolic blood pressure; FDP, fibrin degradation product; SBP, systolic  

blood pressure. 
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Figure 3. Estimated accuracy for the classification model tuning result using early features and all 

features  

(A) With early features 
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(B) With all features  
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Figure 4. Confusion matrix of the prediction model with early features in each machine learning 

algorithm 

(A) XGBoost 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

49 

(B) Random forest 
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(C) Logistic Regression 
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(D) KNN 
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(E) SVM radial  
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(F) SVM poly 
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(G) Decision tress  
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Figure 5. Confusion matrix of the prediction model with all features in each machine learning algorithm 

(A) XGBoost 
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(B) Random forest 
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(C) Logiestic Regression 
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(D) KNN 
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(E) SVM radial  
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(F) SVM poly 
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(G) Decision tress  
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Figure 6. Plot showing the relative importance of variables for predicting massive transfusion in machine 

learning models of Random Forest (A), XGBoost (B) and Logistic Regression (C) using early features 

(A) Random Forest 

 

SBP, systolic blood pressure; DBP, diastolic blood pressure. 

 

 

 

 

 

 

(B) XGBoost 
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SBP, systolic blood pressure; DBP, diastolic blood pressure. 

 

 

 

 

 

 

 

 

(C) Logistic Regression 
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DBP, diastolic blood pressure; SBP, systolic blood pressure. 

 

 

 

 

 

 

 

Figure 7. Plot showing the relative importance of variables for predicting massive transfusion in machine 

learning models of Random Forest (A), XGBoost (B) and Logistic Regression (C) using all features 
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(A) Random Forest 

 

SBP, systolic blood pressure; DBP, diastolic blood pressure; BUN, blood urea nitrogen; FDP, fibrin degradation 

product. 

 

 

 

 

 

 

(B) XGBoost 
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DBP, diastolic blood pressure; SBP, systolic blood pressure; FDP, fibrin degradation product; BUN, 

blood urea nitrogen. 

 

 

 

 

 

 

 

 

 

 

(C) Logistic Regression 
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DBP, diastolic blood pressure; SBP, systolic blood pressure; FDP, fibrin degradation product; BUN, blood urea 

nitrogen. 
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Figure 8. Comparison of area under the curve using machine learning analysis with early features in the 

training set (A) and validation set (B) 

 

(A) Training set 
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(B) Validation set 
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Figure 9. Comparison of area under the curve using machine learning analysis with all features in the 

training set (A) and validation set (B) 

(A) Training set  
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(B) Validation set 
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