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Abstract 

Backgrounds: Distal radius fractures (DRFs) account for approximately 18% of fractures in patients 

65 years and older. While plain radiographs are standard, the value of high-resolution computed 

tomography (CT) for detailed imaging crucial for diagnosis, prognosis, and intervention planning, and 

increasingly recognized. High-definition 3D reconstructions from CT scans are vital for applications 

like 3D printing in orthopedics and for the utility of mobile C-arm CT in orthopedic diagnostics. 

However, concerns over radiation exposure and suboptimal image resolution from some devices 

necessitate the exploration of advanced computational techniques for refining CT imaging without 

compromising safety. 

Purpose: This study aims to utilize conditional Generative Adversarial Networks (cGAN) to improve 

the resolution of 3mm CT images (CT enhancement). 

Methods: Following institutional review board approval, 3mm-1mm paired CT data from 11 patients 

with DRFs were collected. cGAN was used to improve the resolution of 3mm CT images to match 

that of 1mm images (CT enhancement). Two distinct methods were employed for training and 

generating CT images. In Method 1, a 3mm CT raw image was used as input with the aim of 

generating a 1mm CT raw image. Method 2 was designed to emphasize the difference value between 

the 3mm and 1mm images; using a 3mm CT raw image as input, it produced the difference in image 

values between the 3mm and 1mm CT scans. Both quantitative metrics, such as peak signal-to-noise 

ratio (PSNR), mean squared error (MSE), and structural similarity index (SSIM), and qualitative 

assessments by two orthopedic surgeons were used to evaluate image quality by assessing the grade 

(1~4, which low number means high quality of resolution). 

Results: Quantitative evaluations showed that our proposed techniques, particularly emphasizing the 

difference value in Method 2, consistently outperformed traditional approaches in achieving higher 

image resolution. In qualitative evaluation by two clinicians, images from method 2 showed better 

quality of images (grade: method 1, 2.7; method 2, 2.2). And more choice was found in method 2 for 

similar image with 1mm slice image (15 vs 7, p=201). 

Conclusion: In our study utilizing cGAN for enhancing CT imaging resolution, the authors found that 

the method, which focuses on the difference value between 3mm and 1mm images (Method 2), 

consistently outperformed traditional techniques.  

Keywords: distal radius fracture, high-resolution computed tomography, conditional generative 
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Introduction 

 

Accounting for approximately 18% of fractures in patients 65years and older, distal radius fractures 

(DRFs) are among the most commonly occurring fractures (1-3). Although plain radiographs remain 

the gold standard for both diagnosis and classification, there's an increasing recognition of the value 

of computed tomography (CT) in obtaining detailed images crucial for precise diagnosis, prognosis, 

and intervention planning (4, 5). Modern spiral CT scanners, despite their associated radiation dose 

increment, can furnish thin-slice, high-resolution images that achieve anatomical details with 

precision. High-resolution CT imaging is particularly essential for intricate cases where a nuanced 

understanding of fracture patterns, which directly influences therapeutic outcomes (6). These 

preoperative CT scans play a pivotal role in preoperative planning, simulating fracture reduction, 

while intra-operative X-rays guide implant positioning during surgical procedures (7-10).  

 The advent of 3D printing in orthopedics marks a transformative era, especially evident in its 

applications for preoperative strategizing and crafting patient-specific implants (11-13). For such 

applications, high-definition 3D reconstructions, predominantly derived from high-resolution CT scans, 

are imperative. In addition, the mobile C-arm CT, has emerged as an instrumental modality in 

orthopedic diagnostics and intraoperative imaging (14). The C-arm CT, owing to its maneuverability 

and real-time imaging capabilities, empowers orthopedic surgeons with enhanced intraoperative 

visualization, facilitating precise interventions, especially in intricate procedures like osteotomies, joint 

replacements, and spinal surgeries (15-17). However, despite its utility, the resolution of images 

obtained from certain C-arm CT devices can occasionally be suboptimal, potentially hampering 

accurate lesion characterization and surgical planning (17). Therefore, there are previous researches to 

improve the quality and reconstruction of the image using multi-view images, extensively (18, 19).  

Yet, the overarching concern of radiation exposure remains a deterrent, often curtailing the 

full exploitation of CT's potential. This caution stems from documented risks associated with 



5 

 

prolonged ionizing radiation exposure, linking it to increased carcinogenic potentials (20-23). In 

addition, because of the low quality of images examined with aging equipment, re-examination of the 

injured lesion is also increasing every year, and negative aspects such as increased exposure to the 

same area and increased medical costs are emerging as social problems. According to data released by 

the Health Insurance Review and Assessment Service in 2011, the rate of CT reexamination within 

one year was approximately 20% (24). 

In the light of these challenges, our investigation embarks on a quest to refine CT imaging. 

Harnessing cutting-edge computational techniques, we aspire to enhance the resolution of C-arm CT 

images, mindful of mitigating radiation exposure. A successful outcome from this endeavor promises 

to bolster the diagnostic and therapeutic tools available to orthopedic surgeons, offering sharper imaging 

insights without jeopardizing patient safety.  

With the increasing interest in artificial intelligence and its applications in medical imaging, 

various methods have been proposed to enhance the resolution of images. Traditional image super-

resolution techniques, such as bicubic interpolation, sparse coding, and self-example learning, have 

made significant contributions to the field (25-27). More recently, deep learning-based approaches, like 

Convolutional Neural Networks (CNNs) and autoencoders, have been explored for their potential in 

achieving higher-quality image reconstructions with finer details (27). Meanwhile of these 

advancements, this study specifically utilized conditional Generative Adversarial Networks (cGANs), 

a state-of-the-art deep learning framework that offers promising results in image-to-image translations 

(28-30). Recognizing the potential of these advanced techniques, our research investigates a tailored 

approach to improve CT scan resolution, taking into account clinical implications and patient safety.  

Therefore, the aim of this research is to evaluate the potential of conditional GANs in 

achieving superior CT image resolution without compromising patient safety. We hypothesize that by 

concentrating on the differential values between the original 3mm input and the corresponding 1mm 

images, the conditional GANs would yield enhanced results compared to traditional raw data-based.  
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Materials and Methods 

 

Data Collection and Preparation 

This study was conducted after receiving approval from the institutional review board (AMC, No 

2022-0210). The informed consent was obtained, and records from the CT database of a single center 

were collected, prospectively. The CT examinations were performed from January 2022 to February 

2023 for patients with distal radius fracture. We included patients’ age from 19 to 80 years old. We 

evaluated the patients who had paired 3mm-1mm wrist CT scans that possible to be utilized for deep 

learning training and test. We excluded patients with (1) rheumatoid arthritis, (2) suspicion of 

infection, (3) metastatic lesion, (4) a history of operation at affected side, and (5) deformity of the 

wrist joint. After excluding these patients, a total of 11 patients were eligible and enrolled for this 

study. We scrutinized demographic data and assessed the fracture patterns based on the AO/OTA 

Classification (31).  

From the collected data of 8 patients, 513 3mm images and 2176 1mm images, which paired 

images, were used for training, and 201 3mm images and 1004 1mm images of data from 3 patient 

were used for evaluation. The 3mm images were virtually derived from the 1mm CT image sets, 

meaning each patient underwent a single 1mm CT examination, from which the corresponding 3mm 

paired images were virtually generated. For training, CT data is used to optimize the deep learning 

model, and evaluation data is used to evaluate the degree to which 3mm CT images are similar to 

1mm scan data generated by inputting them into the deep learning model. Additionally, a qualitative 

evaluation is conducted using 119 3mm CT images of two patients collected at an external institution 

and images generated by a deep learning model.  
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Network Architecture and Training 

Definitions 

“Thickness of CT slice” and “scanning interval” are core concepts for resolution surrounding CT 

imaging. Slice thickness refers to the axial resolution of a CT slice, whereas scanning interval refers to 

the distance between consecutive two slices. If slice thickness was smaller than scanning interval, 

there would be no information for the skipped section. Therefore, these two specifications have a 

same value in general. Figure 1 shows the simple illustration of relationship between slice thickness 

and scanning interval. To enhance the quality of CT scan data acquired from a low-resolution CT 

scanner, both slice thickness and scanning interval should be considered. In this study, 1mm CT scans 

indicates the scans with 1mm thickness and 1mm interval. 

 

Figure 1. The definitions of slice thickness and scanning interval. 

 

Illustration of the relationship between CT ‘slice thickness’ and ‘scan interval’. (Left): Set-up 

depicting 1mm ‘slice thickness’ and an identical 1mm ‘scan interval’. (Center): Configuration 

illustrating 3mm ‘slice thickness’ and an identical 3mm ‘scan interval’. (Right): Scheme showcasing a 

3mm ‘slice thickness’ with a varied 1.5mm ‘scan interval’. Green arrows highlight the ‘slice 

thickness’, while red arrows indicate ‘scan intervals’. ‘Slice thickness’ defines the axial resolution, 

while ‘scanning interval’ refers to the gap between two consecutive slices. 
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Flow of CT Enhancement 

To improve the quality of CT scans, two common processes are used: reducing the size of a 3mm 

image to a 1mm image and interpolating from that 1mm image. Since this process consists of two 

steps—reduction and interpolation—the quality of the final image could be compromised if errors 

occur in either step. Therefore, in this study, we developed a method to simultaneously reduce 

thickness and generate adjacent images from 3mm to 1mm images at once by introducing conditional 

GANs, one of the GAN methods. Since Generative Adversarial Networks (GANs) were proposed in 

deep learning technology, various models for generating data such as video and voice have been 

proposed (32-34). Conditional GANs are a technology that enables image-to-image translation and 

can create a target image from an input image (35). Figure 2 shows the configuration of conditional 

GANs. (A) in Figure 2 represents a generative model that generates a fake image from an input image, 

and (B) represents a discriminative model that distinguishes the generated image into real and fake. 

Our generator was ‘U-Net’-based architecture (36), and for our discriminator we utilized a 

convolutional ‘PatchGAN’ classifier (37). In the figure, x is the CT 3mm input image, y is the 1mm 

correct image, G is the generative model, D is the discriminative model, and G(x) represents the 

generated 1mm CT image. The flow chart of the network was described in Figure 3.  
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Figure 2. Conditional GANs model. 

 

(A) It represents a generative model that generates a fake image from an input image (x). ‘x’ is the CT 

3 mm input image. (B) It was a discriminative model that distinguishes the generated image into real 

and fake. ‘y’ is the 1mm correct image. G, generative model; D, discriminative model; G(x), 

generated 1mm CT image. 
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Figure 3. Flow chart. 

 

This flow chart illustrates the process of converting N sheets of 3mm CT images into their 

corresponding 1mm counterparts using two methods within a cGAN model. Each 3mm CT image is 

processed individually and the operation is repeated N times. In Method 1 (A), the i-th 3mm CT 

image's pixel value is read and input into the cGAN model in the range of [-1,1]. The model then 

generates an output that is scaled from the range [-1,1] to fit the CT image pixel value range of 

[0,4095]. Method 2 (B) also starts by reading the i-th 3mm CT image's pixel value and inputting it 

into the cGAN model in the range of [-1,1]. However, this method involves an additional step where 

the scaled input value [0,1] is added to the output value [-1,1] of the generation model. The final step 

in both methods involves determining whether the 1mm slices at positions 2P, 1P, C, 1N, and 2N, 

relative to the original 3mm slice, have been created successfully. The generated 1mm CT image is 

saved, and the process concludes when there are no more 3mm CT images to be processed. 
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Because the scan interval of a 1mm CT image is shorter than that of a 3mm CT scan image, 

differences may occur in the image corresponding to the 3mm image. As a result of checking the 

difference image between the 3mm CT image and the corresponding 1mm CT image, changes could 

be confirmed depending on the rotation direction of the equipment. Figure 4 shows the difference 

image between the 3mm CT input image and the 1mm CT corresponding image. In the figure, (A) is a 

3mm input image, (B) is the corresponding 1mm scan image, and (C) is the difference image obtained 

by subtracting the 1mm image from 3mm. The red pixel value represents a positive value (3mm is a 

bright pixel) and the blue pixel value is representing a negative value (1mm is the brightest pixel). As 

can be seen in the second image, the difference between the 3mm image and the corresponding 1mm 

CT image is the smallest, and the difference between the adjacent before and after images is more 

evident. 
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Figure 4. Difference image between 3mm CT image and 1mm CT corresponding image. 

 

(A) 3mm input image. (B) the corresponding 1mm scan image, and (C) is the difference image 

obtained by subtracting the 1mm image from 3mm. The red pixel value means a positive value (3mm 

is a bright pixel) and the blue pixel value is representing a negative value (1mm is the brightest pixel). 

The difference between the 3mm image and the corresponding 1mm CT image is the smallest in 1 

prev. images and 1mm CT. Otherwise, the difference between the adjacent before and after images is 

evident in 2 prev. and 2 next. images. Prev, previous.  

 

As can be seen in the difference image in Figure 4, when generating a corresponding 1mm 

CT image from a 3mm CT image, it can be expected that quality improvement will be difficult if only 

one conditional GANs model is used for adjacent front and rear slices. Therefore, in this study, a 

method of constructing multiple models was applied to generate 1mm CT images corresponding to 

3mm CT images. Figure 5 shows the configuration of the model for generating corresponding slices 

and adjacent slices. 
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Figure 5. Configuration of 3mm CT image input and multiple 1mm generative models (A) and the 
example of slice location mapping table (B).  

 

The grey column within the 3mm image means the matched area on the 1mm image. The 1mm image 

corresponding to 3mm was used in the Typo, and 1mm images adjacent to 3mm were used for training 

the 2P, 1P, 1N, and 2N models, respectively. 

C, corresponding; 2P, before 2 slices; 1P, before 1 slice; 1N, after 1 slice; 2N, after 2 slices. 
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Training 

The optimization method proposed in the paper (35) was used to learn conditional GANs, which 

generate 1mm CT images by inputting 3mm CT images. In the 3mm-1mm paired images composed of 

training data, the 1mm image corresponding to 3mm was used in the Typo, and the 1mm images 

adjacent to 3mm were used for training the 2P, 1P, 1N, and 2N models, respectively. It is noteworthy 

that there was a disparity in the intervals between the 3mm images and the 1mm images, with the 

former having an interval of 3mm and the latter 0.7mm. The grey column within the 3mm image 

denotes the matched area on the 1mm image, as illustrated in Figure 5.. Two methods were applied to 

training and generating CT images. ‘Method 1’ used a 3mm CT raw image as the input image and was 

configured to generate a 1mm CT raw image. In ‘Method 2’, in order to focus on training the 

difference value between the 3mm image and the corresponding 1mm image, the 3mm CT raw image 

was used as the input image and the difference image value of the 3mm and 1mm CT was created 

(Figure 6). The “U-Net” was used, and 2D CT images were used for encoder, and produced as 2D 

CT.(35)  
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Figure 6. Two models for generating 1mm slice CT images from 3 mm images: (A) Method 1, (B) 
Method 2. 

 

(A) ‘Method 1’ used a 3mm CT raw image (x) as the input image and was configured to generate a 

1mm CT raw image (G(x)). (B) ‘Method 2’ used 3mm CT raw image (x) as the input image, and the 

difference values between 3mm and 1mm CT images (*) were trained. The different value was added 

to create 1mm CT images (+). X, CT 3 mm input image; G, generative model; G(x), generated results 

 

Experiments 

Quantitative evaluation  

We conducted a performance evaluation of the proposed method that simultaneously performs 

thickness reduction and interpolation of CT images. First, we confirmed the reproduction of the 

training data of the model that inputs the 3mm CT image and generates the 1mm CT image. By 

reproducing the training data, we can check whether the applied method is operating for its designed 

purpose. Next, cross-validation was conducted 3 times from the 8 patients, using 7 patient's data as 

training and 1 patient as testing. The test results of training data reproduction and cross-validation 

were compared with the image generated by inputting the 3mm CT image and the correct 1mm image. 
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Metrics 

There are several types of evaluation metrics that evaluate the similarity between two images, and 

each of them has its own unique characteristics. To evaluate CT quality improvement, the commonly 

used peak signal-to-noise ratio (PSNR), mean squared error (MSE), and structural similarity index 

(SSIM) were used (38). Additionally, each evaluation index was applied to two methods, one that uses 

raw values of CT images and the other that focuses on training the difference values of corresponding 

images, to confirm the number of slices with improved quality for each patient. 

 

Qualitative evaluation  

Two orthopaedic surgeons evaluated the set of images of CT using 2D axial serial images and 3D 

reconstructed images. The set was consists of 1mm slice, 3mm slice, and generated images from two 

different method 1 and 2. They made a grading from 1 to 4 for each image of set, in blinded. Grade 1 

was highest resolution quality of images, and grade 4 was the lowest. Additionally, they were 

questioned to choose better quality images, which were similar to 1mm slice images, between 

generated images from method 1 and 2. Two evaluators’ agreement for grading and choice for better 

images between two generate images was assessed using Cohen kappa coefficients.  
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Results 

 

Included patients’ mean age was 64.8 years old. Six patients were injured at right side, and the other 

were left side. According to AO classification, all fractures were involved at intra-articular side (C2: 7 

cases, C3: 4 cases). 

 

Quantitative Results 

The reproducibility evaluation results of the training data and the performance evaluation results of the 

test data for each evaluation scale are shown in Tables 1 and 2. Tables 3 and 4 show a performance 

comparison of a method that learns to generate raw CT images and a method that focuses on learning 

the difference value between the 3mm input image and the 1mm corresponding image. Table 3 showed 

that method 2 had more slices of images, which generated higher quality resolution, in PSNR, MSE 

metrics (85.1% vs 14.9%), and SSIM (63.6% vs 36.4%). In test data, the superiority was not very 

evident compared to training data (PSNR, MSE: 47.3% for method 2, SSIM: 65.8% for method 2).   

Both proposed methods show high performance in training data reproduction evaluation, 

showing that thickness reduction and interpolation can be applied from a 3mm CT image to a 1mm CT 

image at once. In comparing methods for training data and test data, the method that focused on training 

the difference value between the 3mm input image and the 1mm corresponding image (method 2) 

showed higher performance compared to the method learning raw data (method 1). 
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Table 1. The results for reproducibility evaluation of training data. 

 Method 1  Method 2 
 PSNR MSE SSIM  PSNR MSE SSIM 

Training 

1 49.29073 0.0000123 0.98783  49.86939 0.0000108 0.98762 

2 48.89408 0.0000135 0.98742  49.42825 0.0000119 0.98725 

3 52.76710 0.0000058 0.99509  53.93693 0.0000045 0.99560 

4 55.38347 0.0000034 0.99776  56.19667 0.0000029 0.99785 

5 52.12194 0.0000065 0.99539  53.16895 0.0000052 0.99541 

6 54.62009 0.0000041 0.99634  55.50990 0.0000034 0.99641 

7 52.00740 0.0000067 0.99509  52.97627 0.0000055 0.99540 

8 51.29487 0.0000079 0.99560  52.10701 0.0000065 0.99587 

mean 54.04746 0.0000075 0.99382  52.89917 0.0000063 0.99393 

PSNR, peak signal-to-noise ratio; MSE, mean squared error; SSIM, structural similarity index 

Grayish colored columns mean the better quality of images based on each metric (PSNR, MSE, SSIM) 

from the method 1 and 2.  

 

Table 2. The results for quantitative evaluation of test data. 

  Method 1  Method 2 
  PSNR MSE SSIM  PSNR MSE SSIM 

Test 

9 47.22105 0.0000240 0.99313  46.45742 0.0000298 0.99212 

10 44.82873 0.0000454 0.98829  45.05453 0.0000433 0.98531 

11 44.74124 0.0000459 0.97661  44.89021 0.0000436 0.97714 

Grayish colored columns mean the better quality of images based on each metric (PSNR, MSE, SSIM) 

from the method 1 and 2.  
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Table 3. The results for performance comparison of two methods on training data.  

 
Number of 

slices 
PSNR, MSE SSIM 

 Method 1 Method 2 Method 1 Method 2 

Training 

1 215 34 181 120 95 

2 233 58 175 97 136 

3 353 15 338 51 302 

4 391 66 325 156 235 

5 208 20 188 79 129 

6 302 65 237 148 154 

7 225 41 184 77 148 

8 249 26 223 65 184 

Total 2176 325 
(14.9%) 

1851 
(85.1%) 

793 
(36.4%) 

1383 
(63.6%) 

The number of each column for PSNR, MSE, SSIM means the number of slice, which has better quality 

of the image slice compared to the other method in each PSNR, MSE, and SSIM metrics.  

 

Table 4. The results for performance comparison of two methods on test data. 

 
Number of 

slices 
PSNR, MSE SSIM 

 Method 1 Method 2 Method 1 Method 2 

Test 

9 391 318 73 78 313 

10 302 93 209 120 182 

11 311 118 193 145 166 

Total 1004 529 
(52.7%) 

475 
(47.3%) 

343 
(34.2%) 

661 
(65.8%) 

The number of each column for PSNR, MSE, SSIM means the number of slice, which has better quality 

of the image slice compared to the other method in each PSNR, MSE, and SSIM metrics.  
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Qualitative Results 

The evaluated image’s sample was in Figure 7. In two clinician evaluations for grading in each set, all 

images of 1mm slice had the highest quality of the images (grade 1), and 3mm slice images were grade 

4. Compared to images from generated by method 1, images from method 2 showed better quality of 

images (grade: method 1, 2.7; method 2, 2.2) (Figure 8). The kappa coefficient for method 1 was 0.792 

(p=0.007), and 2 for 0.744 (p=0.011). And more choice was found in method 2 for similar image with 

1mm slice image (15 vs 7, kappa = 0.377, p=201).  

 

Figure 7. The evaluated sample of the set of images: (A) 3mm CT image, (B) 1mm CT image, (C) 

Image from Method 1, and (D) Image from Method 2.  
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Figure 8. Quality evaluation for generated images from method 1 and 2: (A) grading for each image, 

and (B) the choice for better quality of image from method 1 and 2. 
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Discussion 

 

This study presents a comprehensive approach to enhance CT image quality using conditional GANs. 

The idea of simultaneously reducing the thickness and interpolating from a 3mm CT image to a 1mm 

image is novel and highly applicable in the clinical scenario, especially for intricate orthopedic cases 

such as distal radius fractures. Furthermore, we proved that the method 2, which focusing on the 

differential values between the original 3mm input and the corresponding 1mm images, produced more 

enhanced results in both ways of quantitative and qualitative ways than the method 1, which was 

traditional raw data-based approaches. 

First, our results indicated that the feasibility of generating 1mm CT images from 3mm images 

by conditional GANs. In other medical departments, especially using chest CT, there were several trials 

to achieve high-resolution CT from low-resolution CT to increase detection the disease by deep learning 

method. They demonstrated their protocol as an acceptable by measurements of metrics of PSNR, SSIM 

(PSNR 32.60, SSIM 0.881) (39). It could lessen the CT scanning time and decrease the radiation dose 

(39-41). There were several suggested network models for enhancing the CT image quality: variants of 

GANs, and convolutional neural networks (CNN). Among those networks, CNN is known to fail in the 

recognition of global structure in natural images, so it is less likely to preserve the needed anatomical 

structures for synthetic CT. However, GANs, because of its architectural and theoretical properties, can 

maintain the structural content of the images (41). Conditional GANs have emerged as a versatile and 

effective solution for image-to-image translation challenges, demonstrating significant potential in 

applications such as enhancing the resolution of CT images. These networks are distinct in their ability 

to learn the mapping from input to output images while concurrently learning a loss function to train 

this mapping. This dual learning capability makes cGANs adaptable to a wide array of tasks that 

traditionally required unique loss formulations. A notable feature of cGANs is their use of the 

PatchGAN discriminator, which specifically targets high-frequency details in images. This approach is 
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crucial in preserving the crispness and fine details in images, addressing the common issue of blurriness 

associated with L1 and L2 losses in image generation. In medical imaging, and particularly in CT image 

enhancement, the ability of cGANs to produce realistic images that maintain the structural integrity of 

the input is invaluable. The combination of L1 loss with the cGANs framework results in outputs that 

are not only realistic but also closely aligned with the input, ensuring that critical details and structures 

in medical images are accurately reproduced. This balance of realism and fidelity makes cGANs an 

ideal choice for enhancing the resolution of CT images, offering a promising direction for advancements 

in medical imaging technology. Therefore, we applied the GANs for deep learning.  

While previous chest CT enhancement efforts serve as a precursor to our study, the challenges 

faced there are notably different. The respiratory, cardiac, and other motions introduce a variable that's 

absent in our orthopedic context. For instance, respiratory-induced motion artifacts in chest CT can 

distort the anatomical structures, making the interpolation task even more complex. Compared to their 

limitations, Our results, achieving a PSNR of 54.05 and SSIM of 0.99, surpassed the metrics from chest 

CT research. This could be attributed to our controlled acquisition process, where both 3mm and 1mm 

images were obtained from a fixed patient's position, ensuring minimal external variances.  

Secondly, we showed that the method focusing on the difference value between the 3mm and 

1mm images (method 2) outperformed the raw data approach (method 1). The qualitative assessment 

further supported this notion, with orthopedic surgeons showing a preference for images generated by 

method 2. This method effectively provided a near-real representation of the 1mm CT images, bridging 

the resolution gap. This implies that understanding the differential values can provide superior guidance 

for the enhancement algorithms. However, it was more evident in training data set, but not in test data. 

Deep learning models, when trained excessively on a specific dataset, tend to perform exceedingly well 

on that but might falter on unseen data. Regularization techniques, augmenting the dataset, or 

employing transfer learning can potentially ameliorate this discrepancy (42, 43). 
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 Third, even compared to 3mm slice, the reconstructed images from deep learning using method 

1, 2 showed higher resolution, there was still limitations to improve the quality of 3 mm slice to 1mm 

slice. In clinical settings, the keen eyes of radiologists and clinicians were able to distinguish the 

reconstructed images from the original 1mm slices. This highlights the subtle intricacies and anatomical 

details present in genuine 1mm slices that our current methods might not fully capture. Three primary 

external variables played a role in this discernibility: 1) Scan Direction, 2) patient position, and 3) 

machine settings. The scan direction in which the CT scan progresses can influence the image's 

appearance, especially when considering tissue boundaries and interfaces. Moreover, even minor 

deviations in patient positioning can lead to variations in image quality. This becomes particularly 

pertinent when considering orthopedic cases where precise positioning can influence the visualization 

of fractures or deformities. Furthermore, diverse CT machine settings, encompassing parameters like 

tube current, rotation speed, and scan duration, can significantly affect the resultant image. These 

variations might be introducing nuances in the image that our deep learning models haven't yet learned 

to reproduce accurately.  

Lastly, our technique, utilizing cGANs for enhancing CT image resolution, holds significant 

potential for broader application in various medical fields. Firstly, many local clinics rely on older CT 

machines, which often produce lower-quality images. Retaking CT scans to improve image quality 

poses an additional risk due to increased radiation exposure, making our cGAN-based enhancement 

protocol a safer alternative. Secondly, the development of patient-specific implants demands high-

resolution CT images to ensure precision and customization. Our technique can upgrade lower-quality 

scans to the required level of detail, thereby supporting more accurate implant fabrication. Lastly, the 

emergence of C-arm CT imaging in surgical settings is a promising advancement, but the current image 

quality often falls short of clinical needs. Enhancing these images using our cGANs protocol could 

greatly improve their utility in surgical planning and execution, providing clearer, more detailed visual 

information. This adaptability of our cGAN-based enhancement method across different scenarios 
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underlines its potential as a transformative tool in medical imaging, particularly in situations where 

image quality is paramount yet constrained by existing equipment limitations. 

Our results, while promising, also point towards areas of potential improvement. Increasing 

the sample size will expose our model to a wider array of CT images with varied intricacies. This could 

refine its learning and allow it to better approximate true 1mm slices. Additionally, iteratively refining 

our deep learning protocol by incorporating feedback from clinical evaluations, and perhaps integrating 

newer neural network architectures, can further bridge the resolution and quality gap. 

 There were some limitations. Firstly, the study utilized a small patient pool from a single-

center, which might introduce bias and limit the generalizability of the results. A multi-center study with 

a larger sample size might provide more robust and generalized conclusions. Additionally, while 

conditional GANs have showcased promising results, there are inherent challenges associated with 

GANs, such as mode collapse and training instability. Third, it's essential to acknowledge that while the 

enhanced images were of higher resolution than the 3mm slice, achieving the quality of true 1mm slices 

remains a challenge. Factors like scan direction and diverse machine settings introduce variations that 

a deep learning model might struggle with. Addressing these challenges in future iterations will ensure 

consistent and reliable image enhancements. Despite these limitations, the promising results presented 

here hold significant implications for orthopedics and radiology. With enhanced image quality, surgeons 

can better understand the anatomy, leading to improved surgical outcomes. Furthermore, the proposed 

method can reduce the need for repeated scans, reducing radiation exposure and healthcare costs. 
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Conclusion 

In our study aimed at refining CT imaging resolution using conditional Generative Adversarial 

Networks (cGANs), we assessed the potential of using this advanced computational technique to 

enhance the resolution of CT scans while maintaining patient safety. Our quantitative findings indicated 

that our proposed method, which emphasizes learning the difference value between the 3mm input and 

the 1mm corresponding image, consistently yielded superior image resolution compared to traditional 

approaches. Moreover, qualitative evaluations by orthopedic surgeons further confirmed that images 

produced by this method were closer in quality to 1mm slice images, reinforcing its clinical applicability. 

Consequently, conditional GANs offer a promising pathway for achieving improved CT image 

resolution without compromising patient safety, addressing concerns over radiation exposure and re-

examinations, and ultimately aiding in more precise diagnostics and therapeutic interventions in 

orthopedics. 
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