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영문 요약 

 

Backgrounds and Objective 

 Evaluating the tympanic membrane (TM) using an otoendoscope is the first and most important step in 

various clinical fields. Unfortunately, most lesions of TM have more than one diagnostic name. 

Therefore, we built a database of otoendoscopic images with multiple diseases and investigated the 

impact of concurrent diseases on the classification performance of deep learning networks.  

 

Study Design 

This retrospective study investigated the impact of concurrent diseases in the tympanic membrane on 

diagnostic performance using multi-class classification. A customized architecture of EfficientNet-B4 

was introduced to predict the primary class (otitis media with effusion (OME), chronic otitis media 

(COM), and 'None' without OME and COM) and secondary classes (attic cholesteatoma, myringitis, 

otomycosis, and ventilation tube). 

 

Results 

Deep-learning classifications accurately predicted the primary class with dice similarity coefficient 

(DSC) of 95.19%, while misidentification between COM and OME rarely occurred. Among the 

secondary classes, the diagnosis of attic cholesteatoma and myringitis achieved a DSC of 88.37% and 
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88.28%, respectively. Although concurrent diseases hampered the prediction performance, there was 

only a 0.44% probability of inaccurately predicting two or more secondary classes (29/6,630). The 

inference time per image was 2.594 ms on average. 

 

Conclusion  

The algorithm presented in this study demonstrated the ability to accurately predict TM lesions even in 

situations with multiple concurrent diseases. This finding is expected to contribute to clinical decision-

making in the future, providing valuable assistance in managing cases involving complex medical 

conditions. 
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INTRODUCTION 

 

In the otologic field, evaluating the tympanic membrane (TM) and the middle ear via endoscopic 

evaluation is usually the first step for patients complaining of earache or other problem such as 

hearing loss, dizziness, or facial palsy(1). To evaluate otologic diseases such as acute/chronic otitis 

externa or acute/chronic otitis media, it is important to examine the state of the external auditory 

canal (EAC) and TM using common tools like the otoscope, which allows for simple observation and 

diagnosis. Apart from being a primary diagnostic step, an accurate otoscopic exam can also guide the 

correct course of treatment during the follow up period. Given how important it is to diagnose and 

evaluate accurately the state of disease during the follow up period, intensive training is required 

before being able to accurately diagnose the condition (1). Unfortunately, misdiagnosis in the clinical 

field is still fairly common.  

One study reported that diagnostic accuracy varied among physicians, including otolaryngologists, 

pediatricians, and family medicine doctors(2). Another study reported that otolaryngologists 

diagnosed these otologic diseases with 73% accuracy while pediatricians and general practitioners 

had an accuracy rate of 50% and 64%, respectively(3). Therefore, even though there is a glaring need 

for trained otolaryngologists to make accurate diagnoses, the limited number of specialists makes it 

impossible(4). Therefore, there is a need to develop a modality that can accurately evaluate the status 

of EAC and TM to support the diagnostic system. Specifically, there is a need for an image-based 
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diagnostic algorithm based on otoscopic images.  

In recent years, advances in image classification using deep learning networks have been proven to 

improve the diagnosis performance of middle ear diseases(5-12). Khan et al.(9) reported that 

classification accuracy of deep network reached 94.9% in the classification of normal, chronic otitis 

media (COM) with TM perforation, and otitis media with effusion (OME). Detection of tympanic 

perforation had an accuracy rate of 91%(10). The ensemble approach, which combines the outputs 

of multiple networks, enhanced predictability in the categorical classification of otoendoscopic 

images(11, 12). Deep learning prediction can help clinicians make more accurate decisions(13). 

Although previous studies showed the potential applicability of deep learning-based diagnosis, 

otoendoscopic images of multiple diseases that could hamper diagnostic accuracy were excluded 

from the prediction.  

Convolutional neural networks (CNNs), a category of deep neural networks, have demonstrated 

significant effectiveness in domains like image recognition and classification. This resembles the 

reaction of a neuron in the visual cortex when exposed to a particular stimulus(14). These networks 

are specifically crafted to autonomously and flexibly acquire spatial hierarchies of features from input 

data. CNNs excel in handling tasks that deal with data organized in a grid-like fashion, such as 

images(15). They have achieved notable success in various applications like image classification, 

object detection, facial recognition, and other computer vision assignments(16-18). Their strength 

lies in the capacity to autonomously acquire hierarchical features, making them potent for discerning 
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meaningful patterns within intricate datasets(19). 

EfficientNet architecture is a family of CNNs designed to achieve better performance with fewer 

parameters and computations compared to traditional CNN architectures. In 2019, Tan and Le 

introduced a neural network architecture called EfficientNet. The EfficientNet family consisted of 

various versions, including B0, B1, B2, B3, B4, B5, and B6, each characterized by distinct levels of 

model complexity and computational demands. EfficientNet achieved notable improvements in 

performance over ResNet while simultaneously reducing computational complexity. This 

architecture demonstrated high efficacy in tasks such as image classification and object recognition, 

showcasing a superior balance between accuracy and computational efficiency. EfficientNet-B4 is 

one of a specific variant of the EfficientNet architecture. Generally, larger variants like B4 tend to 

provide increased accuracy but necessitate more resources for both training and inference. The 

selection of a particular variant is contingent upon the available resources and the specific needs of 

the given task(20). 

Pytorch is an open-source framework designed for deep learning, offering a dynamic and adaptable 

computational graph(21). This feature makes it highly suitable for research and development in the 

realm of artificial intelligence. Pytorch finds extensive application in tasks like deep learning, 

machine learning, and computer vision. Pytorch uses a dynamic computational graph, which makes 

it easier to work with variable-length sequences and dynamic inputs. Pytorch introduces a multi-

dimensional array called a tensor, which is similar to NumPy arrays. Tensors in Pytorch can be used 
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for a wide range of mathematical operations and are fundamental to building neural networks. 

Pytorch includes a built-in automatic differentiation library called Autograd. This enables automatic 

computation of gradients, which is crucial for training neural networks using gradient-based 

optimization algorithms(22-24).  Pytorch and TensorFlow are commonly compared as two of the 

most popular open-source deep learning frameworks. The debate over which framework is superior 

has been ongoing, with TensorFlow often recognized as an industry-centric framework, while Pytorch 

is renowned for its prominence in research and academia(25). 

In this study, we built a database of otoendoscopic images containing multiple diseases using the 

most efficient network system to investigate the impact of concurrent diseases on the classification 

performance of deep learning networks. 
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MATERIALS AND METHODS 

 

Data description 

Otoendoscopic images of TM were collected from patients who visited the otologic clinic in Asan 

Medical Center from Jan 2018 to Dec 2020. In clinical practice, the otoendoscopic video sequence 

was taken for diagnostic examination and an image frame visualizing the whole TM was stored in 

the hospital system without patient-identifiable information. Otoendoscopic images enrolled based 

on the date of visit were completely anonymized before being provided by the hospital system. The 

collected images were classified into one primary class and four secondary classes according to their 

diagnostic classification. The categories of each image were blindly annotated by two otologists with 

26 and 5 years of experience, respectively. A total of 6,630 otoendoscopic images labeled identically 

by two annotators were included in this study. Figure 1 demonstrated the classification of 

otoendoscopic images by primary and secondary classes with representative examples. The primary 

class was annotated as one of otitis media with effusion (OME, 1,630 images), chronic otitis media 

(COM, 1,534 images), and 'None' (3,466 images) – meaning the absence of OME and COM. OME 

refers to effusions in the middle ear cavity, which manifest in the air-fluid level or as an amber-like 

color change of TMs. COM refers to a perforated TM. Binary labels were given for the secondary 

classes of attic cholesteatoma (893 images), myringitis (1,083 images), otomycosis (181 images), 

and ventilation tube (1,676 images) (Fig. 1). Attic cholesteatoma refers to any sign of retraction 
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pocket in attic or visible attic destruction. Myringitis is defined as any inflammation of the tympanic 

membrane, including acute otitis media (AOM). Otomycosis refers to a fibrinous accumulation of 

debris or visible pores of fungus in the external auditory canal. Ventilation tube refers to an inserted 

tube across the TM. For example, when a TM was normal, the primary class was 'None' and the 

secondary classes were 'False' for attic cholesteatoma, myringitis, otomycosis, and ventilation tube 

(Fig. 2b). An otoendoscopic image with only otomycosis was assigned 'None' for the primary class, 

'True' for otomycosis, and 'False' for the other secondary classes. For 3,508 images, one or more 

secondary classes were positive. The present study is in compliance with the Declaration of Helsinki 

and research approval was granted from the Institutional Review Board of the Asan Medical Center 

with a waiver of research consent (IRB no. 2021-0837). 

 

Deep learning network 

The architecture of EfficientNet-B4(20) was customized to have shared and task-specific layers for 

the multi-task learning (Fig. 2a). Initially, we conducted several preliminary experiments using 

relatively big classification models such as EfficientNet-B7, InceptionResNet-V2, Inception-V3, 

DenseNet201. Among the models, EfficientNet-B7 exhibited the best performance (Table1). When 

evaluated on B4, which belongs to the same family, the performance difference compared to B7 was 

negligible. Considering the similar performance and a smaller model size, we have decided to use 

EfficientNet-B4 as the final architecture. The task-specific layers consisted of five shallow classifiers 
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corresponding to the primary class and four secondary classes ('combined model'). Parameters 

between the classifiers were not shared. 

As an input to deep networks, RGB images reformatted into 256×256×3 with circular cropping were 

used (Fig. 2a). Data augmentation was performed by randomly applying rotation (−90° to 90°), 

translation shift (0–20% of image size in horizontal and vertical axes), zoom (0–20%), horizontal 

flip, brightness change (0-20%) and downscale (0-50%). The pre-trained weight from ImageNet was 

applied for transfer learning. Categorical cross-entropy loss was adopted to train the models for multi-

class classification, which is defined as, 

𝐿𝐶𝐶𝐸 = −
1

𝑁
∑∑𝑡𝑖,𝑐𝑙𝑜𝑔(𝑝𝑖,𝑐)

𝑀

𝑐

𝑁

𝑖

 

where N is the number of training samples, M is the number of classes, t_(i,c) is the ground truth, 

and p_(i,c) is the output probability. The final output was determined as the primary rank of the 

softmax value.   

 

Training setup and Evaluation metrics 

The deep learning model implemented using Pytorch which was known to the most commonly used 

library for deep learning networks was trained. Pytorch is an open-source library designed for deep 

learning, offering a dynamic and adaptable computational graph. It was adapted in this study due to 

its well-known stability and efficacy, especially in academic fields. This training was performed on 



8 

 

a workstation with AMD Ryzen 7 5800X CPU 3.8 GHz, 128 GB RAM, and two NVIDIA Geforce 

RTX 3090 Ti GPUs. The model training was conducted for 200 epochs at maximum with a mini -

batch size of 32. For training, an Adam optimizer was applied with β1 = 0.9 and β2 = 0.9999. The 

learning rate was initially set as 10−3 and was reduced by half with a saturation criteria of 50 epochs. 

The evaluation metrics for each label were precision, sensitivity (recall), specificity, and dice 

similarity coefficient (DSC), which were defined as precision = TP / (TP + FP), sensitivity = TP / (TP 

+ FN), specificity = TN / (FP + TN) and DSC = 2 × precision × recall / (precision + recall), where 

TP is true positive, FP is false positive, and FN is false negative. The per-class accuracy was 

calculated by dividing the sum of TPs and TNs with the total number of images in a fold.  

For 5-fold cross validation, the dataset was divided so that each fold contained an equal number of 

images (n = 1,326). The fold proportion of training, validation, and test sets was fixed at 3:1:1 and 

their compositions were changed under cyclic permutation.  

 

Combine prediction and Separate prediction for single class as reference 

To evaluate the performance of multi-class classification, the deep learning models for the prediction 

of each class were separately trained ('separate model') as well as combinely trained ('combined 

model'). In separate model setting, only one classifier for the target class remained in the task-specific 

layers. In combined model setting, whole classifiers including primary classes and all secondary 

classes pass through task-specific layers at the same time (Fig.2a).  
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Visual setup 

In the realm of medical imaging, it is imperative to verify whether decisions are influenced by 

accurate regions within the image. The utilization of class activation mapping (CAM) techniques, 

particularly Grad-CAM in this study, proves beneficial. Grad-CAM, an extended version of CAM, 

utilizes class-specific gradient information from the final convolutional layer to generate a coarse 

localization map, highlighting significant areas in the image comparing both in combined and 

separate models.  

 

Statistical analysis 

Categorical variables are presented as numbers and percentages. The McNemar test was applied to 

compare DSC values between combined and separate models. Statistical analyses were performed 

using R package (version 4.3.1). 
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RESULTS 

 

Classification performance of combined model 

In the prediction of the primary class, the overall DSC was 95.19%, with COM achieving the highest 

DSC of 96.09%. Followed by COM, ‘none’ accounted for 95.68% and OME accounted for 93.80% 

(Table 2). Figure 3 demonstrated the confusion matrix which displayed the probabilities associated 

with predicting each class compared to the ground truth. Misidentification between COM and OME 

rarely occurred (7 images), and most of the prediction errors appeared as false positives and false 

negatives in the 'None' class (Figure 3). Among the secondary classes, the ventilation tube was most 

accurately diagnosed (DSC = 98.89%), followed by attic cholesteatoma and myringitis with DSCs of 

88% or higher; 88.37% and 88.28%, respectively (Table 2). Otomycosis, which trained with  fewer 

positive cases, had lower predictive accuracy, as DSC value 72.38%, than other classes. In confusion 

matrix, true positive and false negative were highest in ventilation tube (Figure 3). Figure 4 

demonstrated the receiver operating characteristics (ROC) curves and area under curve (AUC) values 

for primary classes. The AUC values for the primary and secondary classes were ≥ 0.9925 in both 

combined and separate models. When examining the AUC values, we observed slight differences 

across various categories, but it was evident that the combined model and the separate model 

exhibited almost similar performance.  
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Impact of concurrent diseases 

Table 3 demonstrated the comparison of prediction accuracy between combined and separate models 

according to the number of positives in the secondary classes. With a greater number of positive 

secondary classes, the probability of accurate prediction for all classes gradually decreased from 

92.57% to 14.29% in combined model. Separate model also demonstrated in similar decrease, from 

91.51% to 57.14%. Overall, it appeared that the combined model outperformed the separate model 

in terms of prediction accuracy, slightly. However, in cases where there were three secondary classes, 

the separate model seemed somewhat higher. This might be attributed to the limited number of images 

with three or more secondary classes (n=7) during the training and validation, resulting in such 

outcomes. 

When the number of positives in the secondary classes ≥ 2, the proportion of images with at least one 

false prediction was over 40%. Nonetheless, the combined model had only a 0.32% probability of 

inaccurately predicting two or more secondary classes (21/6,630), whereas separate model 

demonstrated 0.44% probability of inaccurately predicting two or more secondary classes (29/6,630).  

 

Comparison with separate models with combine models 

Table 2 demonstrated the prediction performance of combined model for primary and secondary 

classes. Compared to the separate models, the combined model slightly improved the predictability 

of the deep learning models. In primary class, difference of DSC values between combined model 
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and separate model was 0.29% (p=0.360), whereas in secondary class, attic cholesteatoma accounted 

for 0.62% (p=0.663), otomycosis accounted for 4.12% (p=0.030), and ventilation tube accounted for 

0.21% (p=0.879). Only for myringitis demonstrated slightly higher predictability in separate model 

than combined model, albeit not in a statistically significant way (p=0.404). The combined model 

provided correct diagnoses for all classes in 88.1% of the images (5,841/6,630), which was 0.98% 

higher than the separate models (Table 3, p = 0.009).  

 Table 4 demonstrated computational cost and inference time for application of deep-learning 

classification for tympanic membrane changes. Overall, when comparing the combined model and 

the separate model, the combined model demonstrated a slightly higher prediction accuracy, although 

the difference was not very significant. However, upon comparing the training and inference times, 

it was evident that the combined model required considerably less time. Specifically, the 

interpretation time per image was approximately 2.594 ms for the combined model and 12.893 ms 

for the separate model, indicating about a 5-fold difference in processing time. This observation 

suggested that when making deep learning predictions, the combined model not only maintained the 

overall quality of cochlear evaluations but also provided more efficient prediction times, highlighting 

its advantages. 

 

Grad-CAM visualization 

Figure 5 demonstrated Grad-CAM visualization of representative examples for combined and 
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separate models. The red area in the figure highlighted the part of the model where the attention is 

strong. It presented that the combined model made its prediction by comprehensively observing the 

entire tympanic membrane than separate model.  
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DISCUSSION 

 

In real practice, it is not easy to examine the status of TM and reach an accurate diagnosis of the 

middle ear in crying children or non-cooperative patients in a short time. Additionally, in situations 

where a skilled otologist is not available, there is likely to be an incorrect diagnosis, which leads to 

malpractice. Although diagnostic rates have dramatically increased since the otoendoscopy was 

introduced, diagnostic accuracy still differs among physicians(2), while even otolaryngologists can 

sometimes produce inaccurate diagnoses(3). Therefore, many researchers have worked on various 

deep learning models for the effective diagnosis of middle ear diseases. 

Previous studies have shown that deep-learning classification can accurately predict the diagnosis of 

otitis media, up to almost 98.26% of the time(8-12). Alhudhaif et al.(8) analyzed a total 956 

otoendoscopic images. A newly designed computer-aided decision support model leveraging CNN 

has been implemented. To enhance the overall effectiveness of the proposed model, a fusion of 

channel and spatial attention model (CBAM), residual blocks, and the hypercolumn technique has 

been integrated. They divided into five classes consisting of otitis externa, ear ventilation tube, 

foreign bodies in the ear, pseudo-membranes, and tympanosclerosis with an overall accuracy rate of 

98.26%. Khan et al.(9) analyzed 2,484 otoendoscopic images. This paper presented a novel 

application of state-of-the-art CNN models, DenseNet. One layer collected and combined all the 

outputs from preceding layers by concatenating them along the depth dimension. This design results 
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in a superior accuracy on the ImageNet dataset. They divided into three classes consisting of normal, 

perforation, and middle ear effusion with an overall accuracy rate of 95%. Lee et al. (10) analyzed 

1338 otoendoscopic images. The Python programming language was employed to construct the CNN 

model designed for identifying the status of the TM and the presence of perforation. This model was 

comprised of two convolutional layers, two max pooling layers, and two fully connected layers. In 

the test dataset, normal TM and perforated TM were labelled, and the CNN model achieved an 

accuracy of 97.9% in detecting the status of the TM and 91.0% in identifying the presence of 

perforation. Cha et al.(11) analyzed 10,544 otoendoscopic images. They initially utilized nine public 

convolution-based deep neural networks; SqeezeNet, Alexnet, ResNet18, MobileNet-V2, 

GoogLeNet, Resnet50, Resnet101, Inception-V3, InceptionResnet-V2, and finally two best-

performing model, Inception-V3 and Resnet101, were adopted. They categorized characteristics of 

the TM and external auditory canal into six groups corresponding to various ear conditions, 

encompassing a broad range of ear diseases such as normal, attic retraction, tympanic perforation, 

otitis externa ± myringitis, and tumor. Overall, the system was able to achieve an average of 93% 

diagnostic accuracy. They implied that it was noteworthy that as the dataset size increased, the 

performance difference between training models diminished. Therefore, choosing a model that struck 

a balance between efficacy and accuracy was emphasized as crucial. Zeng et al.(12) analyzed 20,542 

otoendoscopic images. ResNet19 (including ResNet50 and ResNet101), DensNet-BC20 and BC21 

(comprising DensNet-BC121, DensNet-BC161, and DensNet-BC169), InceptionV322 and V423, 
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Inception-ResNet-V223, and MoblieNet-V224 and V325 were instantiated and performance data 

were compared across different releases. In this procedure, they opted to replace the fully connected 

layers in each model with global average pooling, resulting in the generation of eight output nodes 

employing a softmax activation function. They divided into eight classes consisting of normal, 

cholesteatoma of the middle ear, COM, external auditory canal bleeding, impacted cerumen, 

otomycosis external, secretory otitis media, and TM calcification with an overall accuracy rate of 

95.59%. Study from Wu et al.(5) performed the deep learning classification of pediatric otitis media. 

They utilized two most widely used CNN architectures named Xception and MobileNet-V2 for deep 

learning networks. They divided into three classes including, AOM, OME, and normal. Out of the 

eligible otoscopic images, 10,703 were employed for the training set, and 1,500 images were 

allocated to the testing set. The Xception model and the MobileNet-V2 model exhibited comparable 

overall accuracies, achieving 97.45% and 95.72%, respectively. However, these studies were limited 

by the fact that only one diagnostic label per image was assigned for deep-learning prediction, despite 

the fact that multiple diseases can be detected simultaneously in real practice. For example, some 

patients with attic cholesteatoma can have ventilation tube for prevention of TM retraction, while we 

can also diagnose myringitis in a patient who has tympanic perforation with or without 

tympanosclerosis.  

In this study, we proposed a deep-learning method that can predict the diagnosis of TM changes for 

two non-coexisting diseases (OME and COM) and four concurrently detectable categories (attic 
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cholesteatoma, myringitis, otomycosis and ventilation tube) with a single network. Our deep-learning 

classification demonstrated high predictive performance using a database including TMs with up to 

4 diseases at the same time. The DSC value of the primary class was greater than 95%, with COM 

achieving the highest value. In terms of secondary classes, the ventilation tube was rarely 

misidentified (DSC = 98.89%). Therefore, the multi-class classification for TM changes may have 

potential for higher clinical applicability than previous approaches in which all images were single 

labeled. 

The combined model for predicting multiple classes at the same time produced better outcomes and 

required less inference time than the separate models that required a per-class training. The combined 

model also finished the prediction in 1/5 of the training and inference time required for separate 

models (Table 4). In our research, we were able to perform analysis and predictions at a rate of over 

100 images per second using the performance of a CPU i9-10920X, RAM 128GB, and GPU 

RTX2080TI. Even the analyzed time in this algorithm was fast enough to utilize in real world, the 

most direct approach to reducing computational workload is to utilize superior hardware and optimize 

the model. These advantages of deep-learning prediction can help improve the overall diagnostic 

quality for TM changes. Due to their high predictability, the deep learning models can also support 

clinical decision-making for inexperienced clinicians and be utilized as a training tool for medical 

staff. The reduced analysis time of the deep learning models can also make real-time application 

more feasible. In the same regard, deep learning prediction can help with more accurate diagnoses 



18 

 

beyond the constraints of time and space through tele-medicine. Finally, their high reproducibility 

can enhance the reliability and objectivity of the analysis tool for diagnosis.  

However, there were still some limitations on this study. First, even though large amount of samples 

were collected for analysis, the deep learning dataset was collected from a single center. As the data 

were collected from a single center, imaging was performed using endoscopic equipment from a 

specific company rather than various companies. Consequently, the collected data maintain a 

consistent resolution and image quality. However, it should be noted that the dataset may not reflect 

a diverse range of shooting qualities as it is limited to the specifications and characteristics of the 

equipment from particular company. Second, a small sample size of otomycosis resulted in fewer 

training opportunities, thus impairing its predictability. Third, as the number of positives in the 

secondary classes increases, the number of the secondary classes correctly predicted decreased, even 

in multi-class classification. An extended dataset with diverse disease patterns can be used to validate 

the generality and robustness of our classification and improve the prediction performance of TM 

changes. In the same vein, when applied to otoendoscopic video sequences(26), it can help overcome 

the bias of still image-based prediction. Cerumen, which was not included in this study, may limit 

the information on TMs required for diagnosis. As part of the pre-diagnosis evaluation process, 

quantifying the amount of cerumen using deep-learning segmentation would be helpful to determine 

whether cleaning of external acoustic meatus is necessary for accurate diagnosis. Ultimately, it is 

necessary to develop diagnostic tools that anyone can use in the EAC to easily diagnose otologic 
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diseases. 

  



20 

 

CONCLUSION 

 

In the present study, we developed a multi-class classification method for predicting TM changes 

using deep-learning. The deep-learning algorithm accurately diagnosed the TM changes on 

otoendoscopic images, even for multiple concurrent diseases. Using the combined model, the 

inference time per image was reduced to 2.594 ms (more than 380 images can be processed per 

second), which indicates that deep-learning prediction can be applicable in real-time. Therefore, 

deep-learning classification can support clinical decision-making by accurately and reproducibly 

predicting tympanic membrane changes in real time, even in the presence of multiple concurrent 

diseases.  
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Table 1. Preliminary test results of DSC values from multiple deep-learning models for tympanic membrane changes. OME, otitis media with effusion; COM, 

chronic otitis media.     

 

DSC value (%)  

Normal OME Myringitis COM Total 

EfficientNet-B7 95.36 ± 1.81 93.59 ± 2.69 96.19 ± 2.75 96.12 ± 3.33 95.31 ± 0.55 

IncpetionResNet-V2 93.99 ± 3.30 91.26 ± 4.59 96.09 ± 1.89 96.88 ± 1.44 94.55 ± 1.76 

Inception-V3 94.37 ± 4.05 90.59 ± 5.30 92.12 ± 2.34 93.51 ± 1.13 92.65 ± 2.73 

DenseNet201 95.90 ± 1.53 92.09 ± 2.84 94.06 ± 1.86 96.77 ± 0.62 94.70 ± 1.62 
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Table 2. Prediction performance of combined model for primary and secondary classes. McNemar test was applied for the comparison with s eparate models, 

denoted with the subscript 'sep'. OME, otitis media with effusion; COM, chronic otitis media.    

DSC(Dice similarity coefficient) = 2 x precision x recall / (precision + recall); Accuracy = TP / (TP + FP); Sensitivity(recall) = TP / (TP + FN); Specificity = TN 

/ (FP + TN); TP, true positive; FP, false positive; TN, true negative; FN, false negative  

 

  

 DSC Accuracy Sensitivity Precision Specificity DSCsep 
DSC - 

DSCsep 
p-value 

Primary class (P) 95.19% 95.32% 95.38% 95.32% 94.65% 94.90% 0.29% 0.360 

None 95.68% - 96.91% 94.49% 93.58% 95.49% 0.19% - 

OME 93.80% - 91.90% 95.78% 96.44% 93.76% 0.04% - 

COM 96.09% - 95.37% 96.82% 95.31% 95.46% 0.63% - 

Attic cholesteatoma (S1) 88.37% 96.97% 85.54% 91.39% 98.74% 87.75% 0.62% 0.663 

Myringitis (S2) 88.28% 96.21% 87.26% 89.32% 97.96% 88.58% -0.30% 0.404 

Otomycosis (S3) 72.38% 98.69% 62.98% 85.07% 99.69% 68.26% 4.12% 0.030 

Ventilation tube (S4) 98.89% 99.44% 98.57% 99.22% 99.74% 98.68% 0.21% 0.879 
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Table 3. Comparison of prediction accuracy between combined and separate models according to the number of positives in the secondary classes. 

 

  

 

Number of 

positives 

in the 

secondary 

classes 

Primary class correct Primary class incorrect 

Number of the secondary classes 

incorrectly predicted 
Number of the secondary classes 

incorrectly predicted 

4 3 2 1 0 4 3 2 1 0 

Combined 

model 

0 

(n = 3,122) 
- - - 

127 

(4.07%) 

2,890 

(92.57%) 
- - - 

14 

(0.45%) 

91 

(2.91%) 

1 

(n = 3,190) 
- 

1 

(0.03%) 

8 

(0.25%) 

222 

(6.96%) 

2,777 

(87.05%) 
- - 

3 

(0.09%) 

33 

(1.03%) 

146 

(4.58%) 

2 

(n = 311) 
- 

1 

(0.32%) 

10 

(3.22%) 

104 

(33.44%) 

173 

(55.63%) 
- 

1 

(0.32%) 

2 

(0.64%) 

12 

(3.86%) 

8 

(2.57%) 

3 

(n = 7) 
- - 

3 

(42.86%) 

3 

(42.86%) 

1 

(14.29%) 
- - - - - 

Sum 

(n = 6,630) 
- 

2 

(0.03%) 

21 

(0.32%) 

456 

(6.88%) 

5,841 

(88.10%) 
- 

1 

(0.02%) 

5 

(0.08%) 

59 

(0.89%) 

245 

(3.70%) 

Separate 

model 

0 

(n = 3,122) 
- - 

4 

(0.13%) 

122 

(3.91%) 

2,857 

(91.51%) 
- - - 

16 

(0.51%) 

123 

(3.94%) 

1 

(n = 3,190) 
- - 

13 

(0.41%) 

269 

(8.43%) 

2,743 

(85.99%) 
- - 

1 

(0.03%) 

16 

(0.50%) 

148 

(4.64%) 

2 

(n = 311) 
- - 

10 

(3.22%) 

106 

(34.08%) 

172 

(55.31%) 
- 

1 

(0.32%) 
- 

14 

(4.50%) 

8 

(2.57%) 

3 

(n = 7) 
- - 

2 

(28.57%) 

1 

(14.29%) 

4 

(57.14%) 
- - - - - 

Sum 

(n = 6,630) 
- - 

29 

(0.44%) 

498 

(7.51%) 

5,776 

(87.12%) 
- 

1 

(0.02%) 

1 

(0.02%) 

46 

(0.69%) 

279 

(4.21%) 
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Table 4. Computational cost and inference time for application of deep-learning classification for tympanic membrane changes. 

Model 

Number of parameters 

(million) 

Training time 

(s) 

Training time per epoch (s) 

Inference time per 

image (ms) 

Combined 17.57 10,166 50.83 2.594 

Separated 

Primary class 17.55 8,654 43.27 2.616 

Attic cholesteatoma 17.55 11,365.2 56.83 2.570 

Myringitis 17.55 11,147.2 55.74 2.558 

Otomycosis 17.55 11,272 56.36 2.572 

Ventilation tube 17.55 7,087.8 35.44 2.577 

Sum  49,526.2 247.64 12.893 
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Figure 1. Classification of otoendoscopic images by primary and secondary classes with 

representative examples. OME, otitis media with effusion; COM, chronic otitis media.  
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Figure 2. (a) Schematic diagram of deep learning network for multi-class classification of 

otoendoscopic images; Images for deep learning were pass through pre-processing procedures 

including thresholding, circular cropping, moving to center and image size reformatt ing. Input 

images pass through shared layer and task-specific layers combinely or separately depending on the 

types of models (b) Labeling examples; For a normal tympanic membrane (TM), the otoendoscopic 

image was labeled as 'None' for the primary class and 'False' for the secondary classes (attic 

cholesteatoma, myringitis, otomycosis and ventilation tube). When TM was diseased as one of the 

secondary classes without otitis media with effusion (OME) and chronic otitis media (COM), the 

primary class was given as 'None' for the otoendoscopic image. For example, when only 

otomycosis is identified, labelling is done with ‘none’ for primary class, ‘true’ for otomycosis, and 

‘false’ for other secondary classes.   
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Figure 3. Confusion matrix of combined model in 5-fold cross validation for the prediction of 

primary and secondary classes. GT, ground truth; OME, otitis media with effusion; COM, chronic 

otitis media. 
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Figure 4. Receiver operating characteristics (ROC) curves and AUC values for primary and 

secondary classes for combined model and separate model. Micro-average was applied to evaluate 

the overall predictability of deep learning model for the primary class. AUC, area under the ROC 

curve; OME, otitis media with effusion; COM, chronic otitis media. 
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Figure 5. Grad-CAM visualization of representative examples for combined (upper row) and 

separate (lower row) models. The red area refers to the part of the model where the attention is strong.  

GT, ground truth; OME, otitis media with effusion.  
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국문 요약 

 

배경 

이내시경을 사용하여 고막을 평가하는 것은 임상 분야에서 첫 번째이자 가장 중요한 단계이다. 

임상 현장에서 대부분의 고막 병변은 단일 질환만 있는 것이 아니라 둘 이상의 진단명을 가지게 

되는 경우가 있다. 따라서 우리는 다양한 질병을 포함한 이내시경 이미지 데이터베이스를 

구축하고, 딥러닝 네트워크을 이용하여 다양한 고막의 병변을 분류해 내는 능력에 대해 

알아보고자 하였다. 

 

방법 

본 연구는 다중 클래스 분류를 사용하여 고막 질환의 진단 성능에 대하여 알아보았다. 

EfficientNet-B4을 사용하여 주된 클래스(삼출성 중이염, 만성 중이염, '없음')와 부가 클래스 

(상고실 진주종, 고막염, 이진균증, 환기관 삽입)를 예측하였다. 

 

결과 

딥러닝 분류는 주된 클래스에 대해 95.19%의 정확도로 예측이 되었으며, 삼출성 중이염과 만성 

중이염 사이에 잘못된 식별은 거의 발생하지 않았다. 부가 클래스 중에서는 상고실 진주종과 

고막염의 진단이 각각 88.37%와 88.28%의 정확도를 보였다. 동시 질병의 경우 예측 성능이 

비교적 낮았으나, 두 개 이상의 부가 클래스를 부정확하게 예측할 확률은 0.44%에 불과했다 
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(22/6,630). 이미지 당 추론 시간은 평균 2.594ms였다. 

 

결론 

본 연구에서 제시된 알고리즘을 통하여 다중 동시 질병이 있는 상황에서도 정확하게 고막 

병변을 예측할 수 있는 능력을 확인하였다. 이 결과는 추후 임상현장에서 의사 결정 과정에 

긍정적으로 기여할 것으로 기대되며, 복잡한 의료 상황을 포함하는 사례들을 관리하는 데 

유용도록 도움을 줄 수 있을 것으로 예상된다. 
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