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Abstract

Anomalies in indoor human trajectories often relate to urgent situations (e.g., violent at-

tacks, terrorism and fire). Detecting anomalous human trajectories can improve safety and

instantly handle risks in working spaces. Therefore, this thesis studies methods for anomaly

detection in indoor human trajectories. In particular, we first study abnormal indoor hu-

man trajectory types, which may occur in real-world environments. Next, a framework

for detecting anomaly trajectories based on the density method is proposed. In addition,

this thesis develops a trajectory clustering-based anomaly detection framework. Finally, we

extend this work by studying a deep learning model to learn trajectory characteristics for

detecting anomalies.

First, anomaly types of indoor human trajectories are studied. In particular, anomalous

trajectories are essential for evaluating anomaly detection methods. However, since anoma-

lous trajectories may not be available in datasets, they are needed to create for evaluation.

In the literature, there are often two methods: giving a hypothesis for anomalies, and syn-

thesizing anomalies and injecting them into datasets. In the first method, anomalies are

assigned based on the difference in occurrence frequency and movement behaviour between

trajectory groups in datasets. In the second, anomaly trajectory types are generated and

injected into the datasets for evaluation.

Secondly, a density method-based framework is proposed for detecting anomalous tra-

jectories. A trajectory is normal if it is near to other trajectories in datasets. In other words,

the number of its neighbour trajectories is high. Thus, this framework detects anomalous

trajectories based on their densities in datasets. In particular, two trajectories are neighbour

to each other if their distance is smaller than a distance threshold. In detecting anomalies,

a trajectory is detected as an anomaly if its density is smaller than a density threshold. We

propose a new method for determining distance and density thresholds.

The next chapter proposes a framework based on a clustering algorithm to detect abnor-

mal indoor trajectories. In this framework, the abnormality of a trajectory is determined

based on the relationship between it and clusters in datasets. First, a distance metric is

proposed to improve the accuracy of distance metric for indoor human trajectories. Then,

the Epsilon parameter of Density-Based Spatial Clustering of Application with Noise (DB-

SCAN) is determined using a new DCVI metric. To find normal trajectory clusters in the

dataset, DBSCAN is used. In detecting anomalous trajectory, if a trajectory does not belong
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to any clusters, it is marked as an anomaly.

To take advantage of the power of neural networks in anomaly detection tasks, a Trans-

former encoder and self-organizing map-based deep learning model called TENSO is pro-

posed to learn trajectory characteristics. In particular, to learn internal characteristics of

normal trajectories, the Transformer encoder with the self-attention mechanism is used.

In addition, to learn clusters of normal trajectory representations in latent space, the self-

organizing map (SOM) is used. In the training phase, the TENSO model is trained using

a total loss of trajectory reconstruction and SOM losses. In the anomaly detection phase,

a test trajectory is evaluated to determine whether it is an anomaly based on trajectory

reconstruction errors and the quantization error on the SOM.

Finally, proposed frameworks are evaluated using two real trajectory datasets: MIT

Badge and sCREEN. The results show that the proposed frameworks detect trajectory

anomalies effectively, especially the TENSO model-based framework.
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Chapter 1

Introduction

1.1 Anomalous Indoor Human Trajectory Detection

Anomalous trajectory detection is one of the crucial tasks for a lot of applications. For

taxi services, for example, abnormal trajectories are related to issues like traffic congestion,

taxi driving fraud, and refusing to take passengers. Therefore, detecting anomalous taxi

trajectories may improve the performance of this service [1–7]. Moreover, anomaly event

detection plays a vital role in security surveillance in public spaces. The anomaly events,

such as terrorism, and accidents, can be detected by analyzing the object trajectories in

public places [8, 9]. In addition, to guarantee the safety and security of ships during a

voyage, their location data are used to detect outlying trajectories and remind other ships

to take the necessary avoidance actions [10–14]. Similarly, to ensure aircraft safety, data

recorded from current flights are monitored and analyzed constantly. Once anomalous data

patterns are detected, they are informed to the flight monitoring system to handle them

instantly [15–19].

With indoor areas, trajectory data have opened many new research directions. In par-

ticular, customers’ trajectories in shops can be investigated to determine their purchasing

habits [20]. This enables owners to optimize product positioning and shop design. Human

location prediction systems for indoor environments play a significant role in location-based

services [21–26]. Additionally, abnormal human movements in indoor spaces often relate to

serious situations like violent attacks, theft, and fire. Thus, detecting abnormal movements

by people can improve safety in indoor environments. In this thesis, our objective is to

identify abnormal human trajectories in indoor spaces.

In particular, this work studies three anomaly types (i.e., rare location visiting, wander-
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Chapter 1. Introduction

ing and route anomalies). A rare location is where humans rarely visit or are prohibited

from visiting. Therefore, a person’s behaviour may be considered abnormal if they access

rare places. In addition, wandering anomalies can occur when people wander around ob-

jects with bad intentions. Route anomaly can be created when people take unusual routes

to escape in urgent situations (e.g., fire and attacking violence). These anomaly types are

illustrated in Figure 1.1.

Normal
Anomaly

(a) Rare location visiting anomaly.

Normal
Anomaly

(b) Wandering anomaly.

Normal
Anomaly

(c) Route anomaly.

Figure 1.1: Illustration of anomalous trajectory types.

There have been a lot of methods proposed to detect abnormal trajectories. However, de-

tecting abnormal indoor human trajectories in urgent situations has a tight time constraint.

Thus, this task requires anomaly detection as fast as possible to handle the occurring sit-

uations instantly. Existing methods that detect anomalous trajectories with no time limits

are unsuitable [2, 27–29]. Thus, the thesis first proposed a density-based framework, which

detects anomalies in a short time to satisfy time requirements. To do this, a time window is

chosen to process trajectories. The window size is small enough to meet the time constraint.

In addition, choosing anomaly threshold is based on the distribution of trajectories in this

framework.

Next, trajectories in indoor spaces differ from those in outdoor spaces. For example,

indoor trajectories are limited by rooms, corridors, and stairs. Therefore, anomaly detection

methods proposed for outdoor trajectories are ineffective for indoor trajectory data [2, 30].

From the above aspects, the thesis develops a trajectory clustering-based framework to

improve the performance of abnormal indoor human trajectory detection. Firstly, a distance

metric for indoor trajectories is proposed. Then, the Epsilon (Eps) parameter of DBSCAN

is chosen using a new cluster validation metric (DCVI). Anomaly detection is performed

based on the relationship between test trajectory and trajectory clusters in datasets.

Finally, we propose a deep trajectory learning model-based detection method that com-

bines traditional machine learning (clustering-based) and deep learning methods for detect-

ing anomalies. Specifically, the proposed model learns internal trajectory characteristics
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Chapter 1. Introduction

using the Transformer encoder and clusters of trajectory representation in latent space us-

ing a self-organizing map (SOM). Anomaly detection is performed using the trajectory

reconstruction errors and the quantization error on the SOM. Moreover, a mechanism for

determining an appropriate anomaly threshold is proposed in our method, which is not

provided in studies [2, 27,30,31].

In evaluating the proposed frameworks, two real trajectory datasets are used: MIT

Badge and sCREEN datasets. Since truth anomalies are not available in these dataset, they

are generated for evaluation. Therefore, the need to be made for evaluation. There are

two usual ways to generate anomalies for datasets in the literature. In the first method, a

hypothesis is given based on the difference between trajectory groups. The second method is

to generate anomalies and to inject them into datasets. The results show that the proposed

frameworks effectively detect trajectory anomalies. Specifically, the framework based on the

TENSO model outperforms existing baselines in terms of performance metrics.

1.2 Creating Anomalous Indoor Human Trajectory Types

This subsection briefly describes the two methods for creating anomalies in datasets.

First, a hypothesis is given for anomalies based on the difference in behavior between

groups in the dataset [32, 33]. The hypothesis is that if one group occurs more frequently

than the other, this group is described as a normal group. The remaining group with less

occurrence is described as an anomalous group.

The second way generates anomalies and injects them into datasets [34,35]. This study

introduces three anomaly types: rare location visiting, wandering, and route anomalies,

which can occur in real-world environments. The way for creating and injecting anomalies

into datasets is detailed presented in Chapter 3.

1.3 Proposed Anomalous Trajectory Detection Frameworks

Anomaly trajectory detection methods can divided into two main categories: traditional

method-based anomaly detection and deep learning model-based anomaly detection. The

thesis uses both traditional method and deep learning model to develop anomalous trajectory

detection frameworks.

12



Chapter 1. Introduction

1.3.1 Anomalous Human Trajectory Detection based on Traditional Meth-

ods

In the traditional detection methods, the characteristics of the trajectory (e.g., distance from

other trajectories, density, and the relationship with clusters in the dataset) are discovered

to detect anomalies. In this work, we first develop a framework to detect abnormal human

trajectories using the edit distance on real sequence (EDR) and density method. Then, a

trajectory clustering-based anomaly detection framework is proposed.

The trajectory outlier detection algorithm based on distance function and density method

is introduced in [27, 31]. The authors proposed different distance measurements that are

applied to calculate the similarity between two trajectories. In their algorithms, two pa-

rameters: distance threshold and neighbor density threshold are used to detect trajectory

anomalies. However, they have not provided a method for choosing the parameter values

that should be determined based on the dataset’s distribution characteristics. Therefore, in

our work, a method for determining the parameters based on trajectory data is proposed.

Specifically, in this thesis, the density-based anomaly detection framework consists of two

phases. In the first phase, we design a method to determine the algorithm parameters:

distance threshold and density threshold using collected trajectories. In the second phase,

a test trajectory is detected as normal or abnormal. To achieve this objective, neighbor

density of the input trajectory is calculated using the distance threshold. Then, the test

trajectory is marked as an anomaly if its density is less than the density threshold.

With the clustering-based framework, a distance metric is required to calculate the

similarity between indoor trajectories. The distance between trajectories in indoor spaces

is different from those in outdoor spaces because indoor trajectories are limited by entities,

such as rooms, corridors, and stairs. Therefore, anomaly detection methods using existing

distance functions, including Euclidean distance, longest common sub-sequence (LCSS) [36],

dynamic time warping (DTW) [37], and edit distance on real sequence (EDR) [38], are

ineffective for indoor trajectory data. In addition, indoor human movement behavior may

be represented by location traces and the semantics of data points. For example, consider

the behavior between two people. One stays in a meeting room, the other in a coffee

room. Assume that these two rooms are next to each other. Their behavior is entirely

different in this case, despite their close proximity. Therefore, semantic information should

be considered when estimating the similarity between indoor trajectories. In this work, a new
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Chapter 1. Introduction

metric is proposed, which discovers both indoor walking distance and semantic information

to determine the similarity between two trajectories.

In addition, clustering-based anomaly detection methods require input parameters for

clustering algorithms, such as the number of clusters in K-Means, spectral clustering, and

hierarchical clustering. With DBSCAN, two input parameters are required: the minimum

number of points to form a new cluster (MinPts) and the radius to find the neighbors (Eps).

Choosing an appropriate value of Eps is essential for performing DBSCAN; most studies

determined this value manually. In this work, a DBSCAN cluster validity index (DCVI)

is proposed to choose an appropriate value of Eps automatically . After the parameters

are determined, DBSCAN is applied to find trajectory clusters in datasets. In detecting

anomalies, if a trajectory does not belong to any clusters, it is marked as an anomaly.

1.3.2 Anomalous Human Trajectory Detection based on Deep Learning

Model

Deep learning-based detection methods often focus on learning embedding vectors that cap-

ture spatial-temporal information in trajectories. Detecting anomalies is based on the em-

bedding vectors [39–46]. However, these methods do not discover relationships between

trajectory representations (e.g., distance, density, and clusters of trajectory representations)

in latent space to use them for detecting abnormal trajectories. From the above aspects, we

aim at building a novel deep learning model that learns normal trajectories’ interior features

and clusters of normal trajectory representations in latent space to detect anomalies.

In particular, a deep learning model called TENSO, which is based on the Transformer

encoder and self-organizing map (SOM), is proposed in this work. To capture internal char-

acteristics of normal trajectories in a latent space, the Transformer encoder is first used.

Each trajectory is encoded by an output sequence that captures the correlation between

points in the trajectory through a self-attention mechanism. To learn more helpful informa-

tion in latent space, the TENSO model discovers both positional information of trajectories’

points and their indoor semantic information (e.g., working rooms, meeting rooms, and

corridors). Then, a decoder reconstructs the trajectories from their representations in the

latent space.

To learn the clusters of normal trajectory representations in latent space, a SOM layer is

used in this work. The SOM is a data clustering model containing interconnected neurons on

a low-dimensional map [47–51]. Each neuron is represented by a prototype vector. Note that
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Chapter 1. Introduction

prototype vectors belong to the same space as the input data for the SOM. While training

the SOM, the prototype vectors are updated and forwarded to input data. In TENSO, the

SOM input data space contains latent representations of trajectories, that are the output of

the Transformer encoder. Besides, the number of prototype vectors is chosen much less than

the number of trajectories in this work. Thus, if trajectory representations are close to each

other in the latent space, they are represented by the same prototype vector on the SOM.

To train the TENSO model, a total loss of the trajectory reconstruction and SOM losses

is used. After the model is trained, anomaly detection is performed when a new trajectory

comes. In particular, the anomaly score (AS) of a trajectory is determined using the TENSO

model. If the AS exceeds a given threshold, the trajectory is detected as an anomaly. In

this work, the anomaly threshold is determined based on trajectories’ anomaly scores in the

training set. A new factor, the weighted sum (WS) of precision and recall, is proposed to

choose the threshold value.

1.4 Evaluation Methods

This thesis aims at proposing anomaly detection frameworks in indoor human trajectories.

To evaluate the proposed frameworks, two real trajectory datasets are used: MIT Badge [52]

and sCREEN [20].

With the anomaly detection frameworks based on density and clustering methods, the

datasets are divided into two parts. In particular, in the density-based framework, the first

part is used to determine distance and density thresholds. Meanwhile, this part is used

to find trajectory clusters in the clustering-based framework. The second part is used to

evaluate the anomaly detection accuracy of both frameworks.

With the deep learning-based framework, the datasets are divided into three sets: the

training set for training the proposed model, the validation set for choosing the best model,

and the test set for evaluating results of the proposed framework.

In addition, three performance metrics are used in this thesis: recall, precision, and

f1-score. Recall represents the anomaly detection ability of methods, and precision is the

correction of detection methods. F1-score is the harmonic mean of precision and recall.
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Chapter 1. Introduction

1.5 Thesis Organization

This dissertation is presented as follows. First, Chapter 2 starts by discussing related works.

Then, Chapter 3 presents the methods for creating anomalous trajectory types. Chapter 4

provides a detailed introduction to the density-based framework. A detailed description of

the clustering-based framework is presented in Chapter 5. Chapter 6 introduces a frame-

work based on a deep learning model. Finally, in Chapter 7, we conclude this thesis by

summarizing our contributions and discussing future works.
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Chapter 2

Background and Related Works

2.1 Distance Metrics for Trajectory Data

A lot of distance functions are used to determine the level of similarity between two trajecto-

ries [53]. Euclidean distance measures the total distance between all pairs of corresponding

points between two trajectories. However, Euclidean distance requires the same length of

two considering trajectories, and it is sensitive to noises or equipment recording errors. Sev-

eral other distance measurements have been proposed to improve Euclidean distance. For

instance, LCSS in [36] can find similar common subsequences between the two trajectories

of different lengths. This measurement is also robust to noise by giving the space and time

thresholds to find similar points of two trajectories. Meanwhile, DTW in [37] has been

successfully applied to time series data and trajectories. DTW is based on defining a cost

for aligning two data points, and it finds the minimum cost to align all points between two

trajectories. However, this measurement is sensitive to noises because the aligning cost is

based on a real distance between two points [54]. EDR in [38] can remove noise effects by

quantizing the distance between a pair of elements to two values, 0 and 1. This measurement

does not require the same lengths of two considering trajectories by seeking the minimum

number of edit operations to change one trajectory to another. The authors in [55] pro-

posed an indoor semantic trajectory similarity measure (ISTSM) that was improved from

the EDR. ISTSM integrated semantic labels and indoor walking distance to calculate the

similarity of indoor semantic trajectories. On the other hand, the indoor walking distance

was only considered if the two points were the same semantic. They directly assigned the

penalty value of two different semantic points to a maximum value of 1. In other words,

they ignored the space aspect between two points if they were different semantic labels.
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Existing metrics do not efficiently discover the characteristics of indoor trajectories for

determining the trajectories’ distance. Thus, in the thesis, we propose a new distance

metric for indoor trajectories, which uses both the indoor walking distance and semantic

information for calculating distance of trajectories.

2.2 Distance-based Anomalous Trajectory Detection

The distance-based anomalous trajectory detection method calculates the similarity between

trajectories using a distance function. A similarity threshold is given to identify abnormal

trajectories [56, 57]. Zhu et al. introduced the time-dependent popular routesbased tra-

jectory outlier detection (TPRO) method [56]. In this study, the most popular routes on

each timestamp were used to detect the temporal anomalies. The trajectory datasets were

divided into groups using a partitioning strategy. A reference trajectory represents each

group. The edit distance between the reference trajectory of each group and the popular

routes in the given city was then calculated. The anomalous trajectory groups were de-

tected if the distance between its reference trajectory and the popular routes was larger

than a given distance threshold. Saleem et al. presented the road segment partitioning

towards anomalous trajectory detection (RPAT) algorithm [57]. The trajectories were di-

vided into sub-trajectories based on the road segments. The speed, flow rate, and visited

time were features used to calculate the score for each sub-trajectory. The score of each

trajectory is the total of its sub-trajectory scores. Trajectory scores above a user-specified

threshold are anomalies.

2.3 Extensible Markov Model-based Anomalous Trajectory Detection

The extensible Markov Model (EMM) combines an adaptive Markov chain and a clustering

algorithm to detect anomalous trajectories [33]. The threshold nearest neighbour clustering

algorithm (tNN) is used in this study. In particular, each cluster is modelled by a reference

point. With a new data point, its distances and existing clusters are determined. If the

smallest distance is greater than a given clustering threshold, a new cluster is created. In

contrast, the point belongs to the cluster according to the smallest distance.

In the EMM model, each node is a cluster of location points, which is represented by a

cluster model. Depending on the distance between a new point and clusters, the point is

grouped either into one of the existing nodes or forms a new node. In detecting anomalies,
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a point is marked as an anomaly if it belongs to one of two situations: The point forms a

new node, or the point belongs to a node whose occurrence probability or whose transition

probability is lower than a given threshold. A trajectory is considered anomalous if it

contains at least one abnormal point.

2.4 Density-based Anomalous Trajectory Detection

In the density-based anomalous trajectory detection method, the neighbor density of trajec-

tories is estimated to detect anomalies. A previous study [27] proposed the trajectory outlier

detection (TRAOD) algorithm by investigating the partition and detection strategy in find-

ing sub-trajectory outliers. A new distance function was proposed, which comprises three

components: Perpendicular distance, parallel distance, and angle distance. The density of

sub-trajectories was determined using a distance threshold. A sub-trajectory is anomalous if

its density is smaller than a threshold. The study in [31] also introduced a distance measure

that uses intra-trajectory and inter-trajectory features. The distances between trajectories

were first calculated to find the neighbor density of each trajectory. The anomalous trajec-

tories were then detected based on the density threshold. In these studies, a mechanism for

determining density threshold is not provided. Thus, the performance of anomaly detection

can be affected.

By contrast, in our density-based anomalous trajectory detection framework, a new

method is proposed to choose distance and density thresholds. The thresholds are deter-

mined based on the distribution of trajectories in datasets.

2.5 Clustering-based Anomalous Trajectory Detection

Clustering-based methods group trajectories into clusters using an appropriate clustering

algorithm. Anomalies are detected if they do not belong to any clusters or belong to clusters

that only have a few trajectories. Wang et al. [2] proposed an anomalous trajectory detection

method using a hierarchical clustering algorithm to derive anomalous trajectories from a taxi

GPS dataset. First, the trajectories that travel between the same source and destination were

all extracted. The hierarchical clustering algorithm is then adopted to derive the clusters

of trajectories using the edit distance. The clusters that have only a trajectory are finally

marked as anomalies. Unlike in [2], the authors in [30] developed a two-phase anomalous

trajectory detection framework: Online phase and offline phase. The offline phase finds the
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clusters of trajectories. In this step, the distance between trajectories was calculated using

LCSS, and a hierarchical clustering algorithm was also adopted to group trajectories. In the

second phase, a trajectory was marked as an anomaly if it did not belong to any clusters.

The challenge of clustering-based anomaly detection methods is determining the input

parameters of an algorithm. For example, the hierarchical clustering algorithm requires the

number of clusters as an input parameter. Previous studies [58, 59] proposed a few indices

to find the number of clusters. These indices estimated the compactness of clusters and the

separation between clusters for finding the number of clusters in datasets. DBSCAN requires

two input parameters: Eps and MinPts; determining the Eps parameter is more difficult

for DBSCAN. Many methods have been proposed to choose the Eps value. A combination

of the elbow method and the kth nearest neighbour is used to determine the Eps value

for DBSCAN [60]. They found k nearest neighbours of all data points in the dataset and

sorted them in descending order of k − distance. An Eps value was chosen according to

the cutoff point of the sorted k − dist graph. On the other hand, the cutoff point cannot

always be identified. A new method to choose the Eps value was proposed to overcome

the disadvantage of the elbow method [61]. They automatically found the greatest slope

change instead of observing the graph. The Eps value was determined according to the

point with the greatest slope. The performance of this method still depended on the shape

of the k − dist graph. A new approach was proposed to determine the Eps value using

empty circles [62]. They started by finding all empty circles in the dataset. The radius

of the circles was sorted in descending order. The elbow value of this sorted radius was

chosen as the Eps value. Nevertheless, similar to the reported method [60], it was difficult

to determine the appropriate elbow value if it was unclear.

By contrast, in this work, the value of Eps is selected based on an evaluation of the

clustering quality. Specifically, a novel DBSCAN clustering validity index called DCVI

is proposed to choose the Eps value. DCVI measures the compactness of clusters, the

separation between clusters, and the separation between clusters and outliers. The value of

Eps is determined according to the maximum value of DCVI.

2.6 Deep Learning-based Anomalous Trajectory Detection

With recent neural network development, anomalous trajectory detection methods have

started to focus on learning trajectory representations.

In particular, RNNs, which are used for learning sequential data, are widely applied
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for outlier detection tasks in trajectory data. The authors in [39] proposed a deep learning

model called Anomalous Trajectory Detection using Recurrent Neural Network (ATD-RNN)

to identify abnormal trajectories. This model learned the trajectory embedding, that kept

normal trajectories’ internal characteristics and their sequential information. ATD-RNN was

trained by minimizing the cross-entropy loss function using a labeled dataset. With a new

trajectory, the model predicted the probability of detecting the trajectory as an anomaly.

The study in [63] introduced an LSTM autoencoder-based Seq2Seq model to identify

abnormal vehicle routes. An LSTM encoder mapped each input route into a vector, which

captured the input route’s characteristics. Then an LSTM decoder reconstructed the en-

coded route. An anomaly was detected if it was not reconstructed correctly by the autoen-

coder. Similarly, a framework was proposed for detecting dangerous driving behavior and

hazardous roads using autoencoders [40]. In particular, the autoencoders were trained to

learn a latent space that captures the input sequences’ most representative characteristics.

The difference between the input and reconstructed sequences also was used to indicate out-

liers. In the work, the authors studied autoencoders based on CNN and LSTM architectures

for anomaly detection tasks.

In recent years, due to the occurrence of the Transformer architecture with an atten-

tion mechanism, capturing long-range dependence in sequential data is performed more

effectively. Anomaly detection methods based on this neural network have also emerged

gradually. For example, detecting anomalies in electrocardiogram (ECG) signals based on

the Transformer was introduced in [64]. In this paper, the authors used the Transformer

encoder to learn normal data patterns. Anomalies are detected using errors between the

predicted and original ECG signals. The study in [41] also proposed an anomalous detection

method based on the Transformer for improving safety and predicting risks in traffic. Their

model used the Universal Transformer encoder to learn trajectories’ embeddings by keeping

information on trajectory points. Like the study [39], this model was also trained using the

cross-entropy loss function, and a labeled dataset for abnormal and normal trajectories was

required. Both above Transformer-based models learned to capture the interior features of

normal samples in input data. However, they do not learn the relationship between repre-

sentations of data in latent space to detect anomalies. Besides, the study in [64] does not

provide an effective mechanism for choosing an appropriate anomaly threshold. This work

still needs to set a specific value in the formulation of determining the anomaly threshold.

By contrast, in our proposed deep learning model, learning trajectory representations
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and the relationship between trajectory representations in the latent space is performed in

a deep learning neural network. In particular, a model based on the Transformer encoder

and SOM is proposed. The Transformer encoder with the self-attention mechanism learns

the internal characteristics of trajectories. To learn the relationship between the trajectory

representations in the latent space, a SOM layer is used in our model. Specifically, the SOM

learns clusters of trajectory representations in the latent space. In addition, in detecting

anomalies, an effective mechanism is provided for determining an anomaly threshold. The

anomaly threshold is first chosen based on trajectories’ anomaly scores in the training set.

Then, a new metric (i.e., WS) is proposed to select the appropriate value of the anomaly

threshold.

22



Chapter 3

Generating Anomaly Types in Indoor

Trajectories

In this section, datasets for evaluating anomaly detection frameworks in this thesis are first

introduced (i.e., MIT Badge and sCREEN datasets). Then, anomalous trajectory types are

studies, and they are generated for evaluation.

3.1 Datasets

3.1.1 MIT Badge Dataset

The MIT Badge dataset includes the timestamped geographic locations of employees at an

IT call center in Chicago from 26 March–17 April 2007 [52]. The location data of workers

is estimated by the radio signal strength (RSSI) of the badge assigned to each worker. The

in-house positioning system measures the RSSIs of each employee’s badge at various base

stations placed around the office. These signals are used to determine the instantaneous

position of each badge. Thirty-six workers from three other groups participated in the data

collection. The configuration group contains 28 workers. On the other hand, there are only

seven in the pricing group and four in the coordinator group. Each recorded data point

contains x and y coordinates at each timestamp. The sampling rate of data is 10 points per

minute.

Each trajectory contains data points collected in a time windowW. The data are collected

within 17 days and divided into two parts for evaluation. The first part accounts for 70%

of the total and contains 12 days. This part is used in the first phase of the framework to

find the workers’ normal trajectory clusters. The second part is the test dataset, with 30%
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of the total that contains data within five days. The days for testing are chosen randomly

from 17 collected days in the dataset.

3.1.2 sCREEN dataset

The sCREEN dataset was gathered in a German supermarket during business hours in July

2016 [20]. The location data of customers is collected using sensors installed in shopping

carts and baskets. While customers shop for items, sensors send the ultrawideband signal

regularly to anchors placed on the supermarket’s ceiling. The location of the anchors is

known. The real-time location system is based on the position of three anchors with the

same timestamp to estimate customers’ location. Similar to the MIT Badge dataset, each

data point in the sCREEN dataset also contains information about the coordinates and

timestamps of each point. Each trajectory is extracted from the location trace using the

time window W. Assuming that the working hours in the supermarket are from 8:00 to

22:00. There are 175 carts and baskets to collect data for 29 days.

3.2 Generating Anomalous Trajectory Types

In this section, two methods for generating anomalies for evaluation are presented.

3.2.1 Hypothesized Anomalies

In the first method, a hypothesis is given for anomalies based on the difference in behavior

between groups in the dataset. The hypothesis is that if one group occurs more frequently

than the other, this group is described as a normal group. The remaining group with less

occurrence is described as an anomalous group. In particular, in the MIT Badge dataset,

the configuration group accounts for approximately 70% of the total (i.e., 28 workers), while

the pricing group accounts for only 20% (i.e., 7 workers). Since the movement patterns

of two of these groups are different, it is assumed that the movement of employees in the

configuration group is normal and in the pricing group is abnormal. The sCREEN dataset

does not contain different groups, so there is no hypothesis given for anomalies in this

dataset. In other words, the first way to generate anomalies is not used in the sCREEN

dataset.
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Figure 3.1: A normal trajectory

Figure 3.2: A rare location visiting anomaly

3.2.2 Synthesized Anomalies

In the second method, anomalies are generated anomalies and injected into datasets. In

this thesis, three anomaly types are studied: rare location visiting, wandering and route

anomalies.

� Rare Location Visiting Anomaly. In indoor spaces, the rare location refers to

where humans have rarely visited or been prohibited from visiting. For example, in a

factory, the prohibited places may be security control and engine rooms that workers

can not enter. Moreover, the rare locations can also be places that workers visit only at

a specific time. For example, the cafeteria can be a rare location with workers during

working hours, even though they may come there for lunch. Similarly, customers

in supermarkets or stores are also not permitted to access some locations, including

security, staff areas, and warehouses. Therefore, if one person moves to rare locations,
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his/her behavior may be anomalous. Rare locations need to be identified based on the

floor plan and historical trajectories of the dataset to generate this anomaly. First, the

floor plan is divided into grid cells. Then, the probability of each trajectory visiting

cells is calculated using the history trajectories. The cells with visiting probability

are 0 chosen as rare locations. Rare location visit anomalies are generated from the

normal trajectories by shifting some points of original trajectories to the rare locations.

The number of shifted points is controlled by the parameter 𝜏 . For example, 𝜏 = 0.5

means 50% of the normal trajectory is moved to rare locations. The starting point for

shifting is randomly chosen from the original trajectory. As shown in Figures 3.1 and

3.2, examples of a normal trajectory and a rare location visiting anomaly, respectively.

In these figures, the yellow area represents a rare location. The blue path is the normal

part, and the red path represents the anomaly part.

Figure 3.3: A wandering anomaly

Figure 3.4: A route anomaly

� Wandering Anomaly.
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A wandering anomaly can be created when a person wanders around objects many

times, possibly with bad intentions. To create this anomaly, wandering routes in floor

plans in datasets are found. Then, a wandering anomalies are synthesized from original

trajectories based on found wandering routes. An example of wandering anomaly is

depicted in Figure 3.3, which wanders around the working rooms (i.e., the red path).

Parameter 𝜏 also is used to control the abnormality level.

� Route Anomaly. A route anomaly occurs when people take unusual routes to escape

in urgent situations (e.g., fire and attacking violence). For example, when a fire occurs

suddenly in indoor spaces, humans tend to move following random routes to escape.

In this case, people tend to run to exits of the buildings. Thus, we choose the exit as

the end point of the route anomaly. An example of a route anomaly is generated as

Figure 4d, with the red path being abnormal. Like the two above anomaly types, the

abnormality level is controlled by parameter 𝜏 .

3.3 Chapter Summary

In this chapter, we first introduced two datasets (i.e., MIT Badge and sCREEN datasets),

which are used for the evaluation of anomaly detection methods in this work. Then, two

methods for generating anomalies in datasets are presented in more detail. In the first

method, a hypothesis is given to assign labels to trajectories in datasets. In the second

method, anomalies are synthesized and injected into datasets for evaluation.
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Density-based Anomalous Human

Trajectory Detection

4.1 Proposed Anomalous Trajectory Detection Framework based on Density

In this section, a density-based anomalous trajectory detection framework is proposed.

Then, the proposed framework is evaluated and compared with other baselines using the

MIT Badge and sCREEN datasets.

4.1.1 Definitions

First, three obvious definitions related to trajectory are provided. Then, EDR is introduced

in detail that is used in this framework.

4.1.1.1 Definitions Related to Trajectory

� Definition 1. A trajectory 𝑇 is a sequence of multi-dimensional points and denoted

by 𝑇 = 𝑝1, 𝑝2, . . . 𝑝𝑛. In our work, 𝑝𝑖 is a location point in 2-dimensional space with

latitude 𝑝𝑖,𝑥 and longitude 𝑝𝑖,𝑦. n is the length of trajectory T and can differ from the

lengths of other trajectories.

� Definition 2. Two trajectories S and R are neighbors to each other if 𝐷𝑖𝑠𝑡(𝑆,𝑅) ≤

𝑇ℎ𝑟𝑒𝑠𝐷𝑖𝑠𝑡. Here 𝐷𝑖𝑠𝑡(𝑆,𝑅) is the distance between S and R. 𝑇ℎ𝑟𝑒𝑠𝐷𝑖𝑠𝑡 denotes the

distance threshold used to determine whether two trajectories are neighbors or not.

� Definition 3. A trajectory S is an anomaly if and only if 𝐷𝑒𝑛𝑆 ≤ 𝑇ℎ𝑟𝑒𝑠𝐷𝑒𝑛, where

𝐷𝑒𝑛𝑆 is the neighbor number of S and is a given density threshold.
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4.1.1.2 Definition of EDR

𝐸𝐷𝑅(𝑅,𝑆) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝑛, if 𝑚 = 0

𝑚, if 𝑛 = 0

𝑚𝑖𝑛{𝐸𝐷𝑅(𝑅𝑒𝑠𝑡(𝑅), 𝑅𝑒𝑠𝑡(𝑆)) + 𝐶𝑜𝑠𝑡[𝑟𝑒𝑝𝑙𝑎𝑐𝑒(𝑠𝑛, 𝑟𝑚)],

𝐸𝐷𝑅(𝑅,𝑅𝑒𝑠𝑡(𝑆)) + 𝐶𝑜𝑠𝑡[𝑑𝑒𝑙𝑒𝑡𝑒(𝑠𝑛)],

𝐸𝐷𝑅(𝑆,𝑅𝑒𝑠𝑡(𝑅)) + 𝐶𝑜𝑠𝑡[𝑖𝑛𝑠𝑒𝑟𝑡(𝑟𝑚)]}, otherwise

(4.1)

where 𝐶𝑜𝑠𝑡[𝑑𝑒𝑙𝑒𝑡𝑒(𝑠𝑛)] = 𝐶𝑜𝑠𝑡[𝑖𝑛𝑠𝑒𝑟𝑡(𝑟𝑚)] = 1. 𝐶𝑜𝑠𝑡[𝑟𝑒𝑝𝑙𝑎𝑐𝑒(𝑠𝑛, 𝑟𝑚)] = 0 if and only if

|𝑠𝑛,𝑥 − 𝑟𝑚,𝑥 ≤ 𝜂 and |𝑠𝑛,𝑦 − 𝑟𝑚,𝑦 ≤ 𝜂 else 𝐶𝑜𝑠𝑡[𝑟𝑒𝑝𝑙𝑎𝑐𝑒(𝑠𝑛, 𝑟𝑚)] = 1. 𝜂 is a predefined

matching threshold. The cost of insert or delete operations is always 1. Meanwhile, the cost

of replace operation between 𝑠𝑛 and 𝑟𝑚 is 0 if two points matches. In contrast, the cost of

replace operation is 1.
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Figure 4.1: Anomalous Trajectory Detection Framework

4.1.2 Methodology

First, an anomalous trajectory detection framework is introduced. Then, a new method is

proposed to determine distance and density thresholds.
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4.1.2.1 Anomalous Trajectory Detection Framework

In this work, we want to design an abnormal detection approach. The abnormal trajectory

detection framework is divided into two phases: offline and online as shown in Figure 4.1.

In during the offline phase, the parameters 𝑇ℎ𝑟𝑒𝑠𝐷𝑖𝑠𝑡 and 𝑇ℎ𝑟𝑒𝑠𝐷𝑒𝑛 are determined

based on collected trajectories in dataset. The dataset contains both normal and abnormal

unlabeled trajectories. Before proceeding, these raw trajectories must be preprocessed.

Since the objective is to detect the workers’ abnormal behaviors as soon as possible, their

trajectories are checked within short periods of time, which is known as timeslot. Hence,

during the data preprocessing step, each trajectory is collected using timeslot.

In the online phase, each input trajectory is checked. First, we use EDR to calculate the

distances between the input trajectory and all existing trajectories in the dataset. Then, the

neighbor density of this trajectory is determined based on 𝑇ℎ𝑟𝑒𝑠𝐷𝑖𝑠𝑡. Finally, anomaly de-

tector shows that the input trajectory is abnormal if its density is not higher than 𝑇ℎ𝑟𝑒𝑠𝐷𝑒𝑛.

(a) (b)

Figure 4.2: Distribution of pairwise distances: (a) Before preprocessing, (b) After prepro-
cessing.

4.1.2.2 Determining Distance Threshold

The distance threshold 𝑇ℎ𝑟𝑒𝑠𝐷𝑖𝑠𝑡 is used to determine whether two trajectories are neighbor

or not. Two trajectories are neighbors if their distance is no larger than 𝑇ℎ𝑟𝑒𝑠𝐷𝑖𝑠𝑡. This

parameter has a direct impact on the algorithm performance. If 𝑇ℎ𝑟𝑒𝑠𝐷𝑖𝑠𝑡 is small, many

trajectories are detected as anomalies, and the false alarm rate is high. In contrast, if
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𝑇ℎ𝑟𝑒𝑠𝐷𝑖𝑠𝑡 is large, there are very few anomalous trajectories found. Hence, choosing an

appropriate value of 𝑇ℎ𝑟𝑒𝑠𝐷𝑖𝑠𝑡 is a crucial task in the density-based anomaly detection

method.

From the dataset, the pairwise distances between trajectories are calculated. Then is

chosen based on the mean value 𝜇𝐷𝑖𝑠𝑡 and the standard deviation 𝜎𝐷𝑖𝑠𝑡 of the pairwise

distances. Since the distance threshold is used to determine whether two trajectories are

neighbors or not, only trajectories related to each other are considered. From this angle,

the distance value that does not represent the relationship between trajectories is removed

before calculating 𝑇ℎ𝑟𝑒𝑠𝐷𝑖𝑠𝑡. As shown in Figure 4.2(a), there is a peak at the value of 100.

This is the maximum EDR value of two trajectories in the dataset, and it represents those

two completely different trajectories. In the preprocessing step, we remove this peak, and

receive the result as shown in Figure 4.2(b). Before choosing the distance threshold, the

trajectories’ pairwise distances at all timeslots are collected. Therefore, all timeslots have

the same distance threshold 𝑇ℎ𝑟𝑒𝑠𝐷𝑖𝑠𝑡. After calculating the mean value and the standard

deviation of pairwise distances, we obtain 𝜇𝐷𝑖𝑠𝑡 and 𝜎𝐷𝑖𝑠𝑡. The distance threshold is defined

as follows:

𝑇ℎ𝑟𝑒𝑠𝐷𝑖𝑠𝑡 = 𝜇𝐷𝑖𝑠𝑡 + 𝜙1 × 𝜎𝐷𝑖𝑠𝑡, (4.2)

where 𝜙1 is a predefined parameter by user.

4.1.2.3 Determining Distance Threshold

The density threshold is used to determine whether a trajectory is detected as normal or

abnormal. If density of a trajectory is no larger than 𝑇ℎ𝑟𝑒𝑠𝐷𝑒𝑛, it is marked as an anomaly.

The density threshold must also be chosen before using to detect anomaly. In MIT Badge

dataset, the neighbor density of workers depends on the working hour. For example, the

number of workers in during the first and last hours of a day often is less than during

other hours. If we only use a 𝑇ℎ𝑟𝑒𝑠𝐷𝑒𝑛 for all hours of the day, the method’s performance

may be affected. From this viewpoint, the density threshold is determined in accordance

with timeslots. This means that each timeslot will receive an appropriate density threshold.

The density threshold at timeslot T is denoted as 𝑇ℎ𝑟𝑒𝑠𝑇𝐷𝑒𝑛. To determine 𝑇ℎ𝑟𝑒𝑠𝑇𝐷𝑒𝑛, we

calculate the density of each trajectory in the dataset at timeslot T. The value of 𝑇ℎ𝑟𝑒𝑠𝑇𝐷𝑒𝑛

is also selected based on the mean value 𝜇𝑇
𝐷𝑒𝑛 and the standard deviation value 𝜎𝑇

𝐷𝑒𝑛 of
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trajectories’ densities. 𝑇ℎ𝑟𝑒𝑠𝑇𝐷𝑒𝑛 is defined as follows:

𝑇ℎ𝑟𝑒𝑠𝑇𝐷𝑒𝑛 = 𝜇𝑇
𝐷𝑒𝑛 + 𝜙2 × 𝜎𝑇

𝐷𝑒𝑛, (4.3)

where 𝜙2 is a predefined parameter by user. Since the anomalous trajectory has little in

common with the other trajectories, the density threshold 𝑇ℎ𝑟𝑒𝑠𝑇𝐷𝑒𝑛 for detecting anomaly

is smaller than the mean value 𝜇𝑇
𝐷𝑒𝑛 of trajectories’ densities (𝜙2 < 0).

4.1.3 Performance Evaluation

4.1.3.1 Experiment Setup

In this subsection, the proposed framework is evaluated using the MIT Badge and sCREEN

datasets. In the MIT Badge dataset, the chosen timeslot is 10 minutes. This means that, in

each timeslot, the maximum length of a trajectory is 100. Because data may be missing, this

value may be less than 100. Each day is divided into 54 timeslots from 9:00 to 18:00. The

experiments are conducted three times with different sets of test days. The output of the

algorithm is the average of all run times. The average number of trajectories over timeslots

is about 4000 in the first phase. The average number of trajectories for testing is about 400,

with one half for the normal trajectories and the other half for abnormal trajectories.

In the sCREEN dataset, areas visited by customers in supermarkets do not depend on

the time of day, so time is not divided into slots in the sCREEN dataset. All trajectories

are grouped to process for detecting anomalies. The chosen timeslot is 5 minutes in this

dataset.

4.1.3.2 Results

There are three parameters determined for the proposed framework: 𝜂 in the EDR mea-

surement, 𝑇ℎ𝑟𝑒𝑠𝐷𝑖𝑠𝑡 and 𝑇ℎ𝑟𝑒𝑠𝐷𝑒𝑛. 𝜂 is a threshold for determining whether two points

of two trajectories are matched or not. If they are matched, the cost of replacement is 0;

otherwise, it is 1. Based on the floor plan of the MIT Badge dataset, we recognize that

two workers are close to each other if the Euclidean distance between them is less than 10

meters. The parameter 𝜂 is then set to 1000 according to the scale in the floor plan of MIT

Badge dataset. With the sCREEN dataset, the value of 𝜂 is chosen at 4 (i.e, 4 meters).

In order to determine 𝑇ℎ𝑟𝑒𝑠𝐷𝑖𝑠𝑡 and 𝑇ℎ𝑟𝑒𝑠𝐷𝑒𝑛, we must first define the values of 𝜙1 and

𝜙2, respectively. The precision and recall of algorithm depend on the values of 𝜙1 and 𝜙2.
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Figure 4.3: Density threshold distribution over time in the MIT Badge dataset

Table 4.1: Results on the MIT Badge dataset.

EMM Density

Recall Precision f1-score Recall Precision f1-score

Pricing group 0.8955 0.6687 0.7635 0.9929 0.6394 0.7779

Rare location visiting anomaly 1 0.6082 0.7563 0.9964 0.6826 0.8098

Wandering anomaly 1 0.6082 0.7563 1 0.6834 0.8115

Route anomaly 1 0.6082 0.7563 1 0.6834 0.8115

To ensure the anomaly detection ability as well as the precision of the algorithm, we choose:

𝜙1 = −0.4 and 𝜙2 = −0.6 in this work.

In the MIT Badge dataset, the density threshold 𝑇ℎ𝑟𝑒𝑠𝑇𝐷𝑒𝑛 is determined for each times-

lot 𝑇 , and distribution of the density threshold over all timeslots is shown in Figure 4.3. As

can be seen, the density threshold is low during the first hours and quickly reduces during

lunch and last hours. Meanwhile, this value is the highest from 1.00 pm to 3.00 pm in the

range of red ellipse.

Table 4.2: Results on the sCREEN dataset.

EMM Density

Recall Precision f1-score Recall Precision f1-score

Rare location visiting anomaly 1 0.5828 0.7364 1 0.7225 0.8389

Wandering anomaly 1 0.5828 0.7364 1 0.7225 0.8389

Route anomaly 1 0.5828 0.7364 1 0.7225 0.8389
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The results of detecting anomaly types are shown in Tables 4.1 and 4.2. The proposed

framework is compared with EMM model-based anomalous trajectory detection framework.

As can be seen in Tables 4.1 and 4.2, the density-based framework outperforms the

EMM-based framework over all anomalies. With hypothesized anomalies in the MIT Badge

dataset, the proposed framework achieves at 77.79% and is 1.26% higher than the EMM-

based framework in terms of f1-score.

The density-based and EMM-based frameworks detect correctly synthesized anomalies

with recall of 1 in both datasets. In addition, the EMM-based framework only achieves

about 76% and 74% of f1-score in the MIT Badge and the sCREEN datasets, respectively.

In contrast, f1-score of the proposed framework is about 81% and 84% on the MIT Badge

and the sCREEN datasets, respectively.

4.2 Chapter Summary

In this chapter, we introduced first two datasets: MIT Badge and sCREEN, which are used

to evaluate the proposed frameworks in this thesis. In addition, anomalous trajectory types

are synthesized and injected to the datasets for evaluation.

Next, we proposed an anomalous human trajectory detection framework based on the

density method. The framework is divided into two phases: offline and online. Task of

the first phase is to determine the values for parameters: distance threshold and density

threshold. Meanwhile, in the second phase, a new trajectory is checked that it is an anomaly

or not. We also validate the algorithm using MIT Badge and sCREEN datasets, and receive

the better results the EMM-based framework. In the next chapter, we plan to improve

the distance function by combining the semantic information and the space information for

determining the distance of two trajectories. In addition, anomalous trajectory detection is

performed based on a clustering algorithm.
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Chapter 5

Clustering-based Anomaly Detection

in Indoor Human Trajectories

In this chapter, we proposes a two-phase framework for detecting indoor human trajectory

anomalies based on density-based spatial clustering of applications with noise (DBSCAN).

The first phase of the framework groups datasets into clusters. In the second phase, the

abnormality of a new trajectory is checked. A new metric called the longest common sub-

sequence using the indoor walking distance and a semantic label (LCSS_IS) is proposed to

calculate the similarity between trajectories, extending from LCSS. Moreover, a DBSCAN

cluster validity index (DCVI) is proposed to improve the trajectory clustering performance.

The DCVI is used to choose the epsilon parameter for DBSCAN. The proposed method is

evaluated using two real trajectory datasets: MIT Badge and sCREEN.

5.1 Definitions

In this section, definitions of LCSS measure and DBSCAN are provided.

5.1.1 Longest Common Subsequence (LCSS) Measure

LCSS is a similarity measure for character strings [65–68]. This measure tries to identify the

longest common subsequence between two considering strings. In another study [36], the

original LCSS was extended to compare two trajectories of moving objects. Let R and S be

two trajectories with length𝑚 and 𝑛, respectively, where𝑅 = ((𝑟𝑥,1, 𝑟𝑦,1), (𝑟𝑥,2, 𝑟𝑦,2), ..., (𝑟𝑥,𝑚, 𝑟𝑦,𝑚))

and 𝑆 = ((𝑠𝑥,1, 𝑠𝑦,1), (𝑠𝑥,2, 𝑠𝑦,2), ..., (𝑠𝑥,𝑛, 𝑠𝑦,𝑛)). For a trajectory R, let 𝑅𝑒𝑠𝑡(𝑅) be the tra-

jectory 𝑅𝑒𝑠𝑡(𝑅) = ((𝑟𝑥,1, 𝑟𝑦,1), (𝑟𝑥,2, 𝑟𝑦,2), ..., (𝑟𝑥,𝑚−1, 𝑟𝑦,𝑚−1)). LCSS of 𝑅 and 𝑆 trajectories
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is defined in the following equation [30].

𝐿𝐶𝑆𝑆(𝑅,𝑆) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0, if 𝑚 = 0 or 𝑛 = 0

𝐿𝐶𝑆𝑆(𝑅𝑒𝑠𝑡(𝑅), 𝑅𝑒𝑠𝑡(𝑆)) + 1,

if |𝑟𝑥,𝑚 − 𝑠𝑥,𝑛| < 𝜂 and |𝑟𝑦,𝑚 − 𝑠𝑦,𝑛| < 𝜂 and | 𝑚− 𝑛 |≤ 𝜈

𝑚𝑎𝑥{𝐿𝐶𝑆𝑆(𝑅𝑒𝑠𝑡(𝑅), 𝑆), 𝐿𝐶𝑆𝑆(𝑅,𝑅𝑒𝑠𝑡(𝑆))}, otherwise

(5.1)

where 𝜂 and 𝜈 are pre-defined parameters that depend on the application and the dataset.

𝜂 is a distance threshold to determine whether two points are matched. If the difference in

the X dimension (|𝑟𝑥,𝑚− 𝑠𝑥,𝑛|) and the difference in the Y dimension (|𝑟𝑦,𝑚− 𝑠𝑦,𝑛|) between

two points 𝑟𝑚 and 𝑠𝑛 are smaller than 𝜂, the two points are matched. 𝜈 controls how far in

time to match one point of R to a point of S.

LCSS can calculate the similarity between two trajectories of varying lengths by finding

the matched points between two trajectories. This measurement is also robust to noise by

giving the distance and time thresholds to find close points of two trajectories. However, in

the LCSS measure, the proximity of two points from two trajectories is determined using

the differences on X and Y dimensions. This measure ignores the movement constraints

of indoor spaces, which are limited by entities such as rooms, corridors, and stairs. The

actual travel distance between two points in indoor space is longer than the distance used in

LCSS. LCSS is inappropriate for determining the similarity of indoor trajectories. Moreover,

LCSS only uses the space distance to determine the trajectories’ similarity and ignores the

semantic information of points. Therefore, this paper proposes a new similarity measure

called LCSS_IS, which uses indoor walking distance and semantic labels to determine the

similarity of trajectories.

5.1.2 DBSCAN

DBSCAN aims to seek high-density clusters and detect outliers in datasets [60,69–71]. The

clustering algorithm can also handle datasets with noise and clusters of any shape. In

addition, DBSCAN does not require the number of clusters as an input parameter, while

some of the clustering algorithms require it [72]. Nevertheless, this algorithm requires two

input parameters: Eps and MinPts. The former is the radius to find neighbors, and the

latter is the minimum number of points to form a cluster.
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Several related definitions of DBSCAN are first stated.

� Definition 1: Point 𝑞 is an 𝐸𝑝𝑠− 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟 of a point 𝑝 if 𝑑𝑖𝑠𝑡(𝑝, 𝑞) ≤ 𝐸𝑝𝑠. 𝑑𝑖𝑠𝑡(𝑝, 𝑞)

is the distance between two points 𝑝 and 𝑞.

� Definition 2: Point 𝑞 is a core point of the cluster if the number of its 𝐸𝑝𝑠−𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠

is greater than or equal to 𝑀𝑖𝑛𝑃𝑡𝑠− 1.

� Definition 3: Point 𝑞 is a border point of the cluster if it is not a core point, but it is

an 𝐸𝑝𝑠− 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟 of the core point.

� Definition 4: Outliers are points that are neither core points nor border points of the

clusters.

DBSCAN labels the data points in the dataset as core points if they satisfy Definition 2.

Core points are 𝐸𝑝𝑠−𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟 to each other belonging to the same cluster. From obtained

core points, border points are labeled if they satisfy Definition 3. Outliers are data points

that do not belong to any clusters [62].

5.2 Methodology

In this section, a two-phase framework is first proposed to detect human trajectory anomalies

using DBSCAN. To improve the accuracy of the similarity measure between trajectories, a

new measure called LCSS_IS is then proposed for indoor human trajectories. In LCSS_IS,

the indoor walking distance and semantic information are combined to evaluate the similarity

between trajectories rather than relying solely on coordinates’ differences between points as

in the original LCSS. Unlike ISTSM, which only uses the indoor walking distance for points

that have the same semantic label, LCSS_IS uses it in both cases of the same and different

semantic labels. Finally, to improve the clustering performance of DBSCAN, a cluster

validity index is proposed to determine the Eps value, an important parameter of DBSCAN.

5.2.1 Clustering-Based Anomalous Trajectory Detection Framework

This section introduces an overview of the two-phase framework for detecting human trajec-

tory anomalies. This section also discusses how to cluster trajectories using DBSCAN and

detect anomalous trajectories.

As shown in Figure 5.1, phase 1 of the framework groups the trajectories in the database

into clusters. First, raw location traces from the database are preprocessed to extract a
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Figure 5.1: A two-phase framework for detecting human anomalous trajectory.

set of trajectories. Trajectories that have lost many data points from equipment recording

errors are removed. Then, a distance matrix of processed trajectories is calculated using

a new distance function LCSS_IS that is extended based on LCSS. Finally, we cluster the

trajectories using DBSCAN. This step proposes a new cluster validity index DCVI to choose

an appropriate Eps value for DBSCAN.

Anomalous trajectory detection is performed in phase 2. A new trajectory is checked to

determine whether it belongs to any clusters obtained from the database in phase 1. The

Eps-neighbors of the new trajectory in clusters are then determined using the Eps value.

The new trajectory belongs to the cluster if the number of neighbors is greater than or equal

to (𝑀𝑖𝑛𝑃𝑡𝑠− 1). The new trajectory is detected as an anomaly if it does not belong to any

clusters. Otherwise, it is a normal trajectory.

5.2.2 Similarity Measure for Indoor Human Trajectories

5.2.2.1 Longest Common Subsequence using Indoor Walking Distance and a

Semantic Label (LCSS_IS)

To determine LCSS_IS between two trajectories, a navigation graph is first constructed to

calculate the indoor walking distance between two points. The navigation graph represents

the topology of a floor plan of an indoor space [73–76]. In this work, the navigation graph

is constructed using a connectivity base graph model [77]. The connectivity base graph

is defined by vertices and edges. Entities of the floor plan, such as rooms, stairs, and
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hallways, are decomposed and represented by vertices. Edges are used to connect vertices

in the graph. An edge corresponds to a connection between two partitions in the floor plan.

Moreover, to represent the proximity between entities in indoor space, each edge is assigned

a value according to the distance of entities. The connectivity base graph model has a low

computation complexity while maintaining indoor trajectory modeling efficiency.

In the present work, depending on the floor plans of indoor spaces in datasets, each vertex

represents a particular space. For example, in the MIT Badge dataset, a navigation graph is

constructed as shown in Figure 5.2. In this floor plan, the space is divided into small working

cubicles for workers. Therefore, each vertex is considered to cover two opposite cubicles and

the part of the corridor between these cubicles. Moreover, since the movement characteristics

are important for anomaly detection in human movement, vertices are positioned along the

corridors. In Figure 5.2a, vertex 10 covers a space, represented by a small rectangle in the

upper left corner of the floor plan. The graph vertices are connected based on the walking

routes in the indoor area. To measure the indoor walking distance between the two positions

in the floor plan, two vertices in the navigation graph that are the closest to the two positions

in the floor plan are determined. The shortest path between the two vertices is defined as

the indoor walking distance using the Dijkstra shortest path algorithm [78]. For example, in

Figure 5.2, vertices 12 and 18 are the closest to the A and B points, respectively. Therefore,

the distance between points A and B is the shortest path from vertex 12 to 18. This path

is marked with red arrows as shown in Figure 5.3.

Figure 5.2: Indoor navigation graph.

Next, semantic labels need to be assigned to the trajectory points to compute the distance

between indoor trajectories using LCSS_IS. Each point is matched with a label using the
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Figure 5.3: Floor plan.

Table 5.1: List of semantic labels in datasets.

Dataset MIT Badge sCREEN

Semantic labels

Working space Rest space Travel space Category of products Entry and exit Travel space

Configuration Kitchen Corridors Fruit and vegetables Entrance Main pathway

Pricing Coffee X Dairy Checkout Racetrack

Coordinator Centers X Frozen products X X

Printer, Copy X X Drinks X X

Meeting X X Bakery X X

Base space X X Beauty X X

point coordinates and entity labels in indoor spaces. A list of semantic labels, defined in the

MIT Badge and the sCREEN datasets, is shown in Table 5.1.

A semantic trajectory is then defined as follows:

𝑇 = {((𝑥1, 𝑦1), 𝑠1, 𝑡1), ((𝑥2, 𝑦2), 𝑠2, 𝑡2), ..., ((𝑥𝑖, 𝑦𝑖), 𝑠𝑖, 𝑡𝑖), ..., ((𝑥𝑛, 𝑦𝑛), 𝑠𝑛, 𝑡𝑛)} (5.2)

where (𝑥𝑖, 𝑦𝑖) and 𝑠𝑖 are coordinates and semantic labels of point 𝑖, respectively, at the

timestamp 𝑡𝑖. 𝑛 is the length of trajectory 𝑇 . LCSS_IS of 𝑅 and 𝑆 trajectories is defined

in Equation (5.3).
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𝐿𝐶𝑆𝑆_𝐼𝑆(𝑅,𝑆) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0, if 𝑚 = 0 or 𝑛 = 0

𝑚𝑎𝑥{𝐿𝐶𝑆𝑆_𝐼𝑆(𝑅𝑒𝑠𝑡(𝑅), 𝑆), 𝐿𝐶𝑆𝑆_𝐼𝑆(𝑅,𝑅𝑒𝑠𝑡(𝑆)),

𝐿𝐶𝑆𝑆_𝐼𝑆(𝑅𝑒𝑠𝑡(𝑅), 𝑅𝑒𝑠𝑡(𝑆)) + 𝜆+ 𝑑},

if 𝐼𝑛𝑑𝑜𝑜𝑟𝐷𝑖𝑠𝑡(𝑟𝑚, 𝑠𝑛) < 𝜂 and | 𝑚− 𝑛 |≤ 𝜈

𝑚𝑎𝑥{𝐿𝐶𝑆𝑆_𝐼𝑆(𝑅𝑒𝑠𝑡(𝑅), 𝑆), 𝐿𝐶𝑆𝑆_𝐼𝑆(𝑅,𝑅𝑒𝑠𝑡(𝑆)),

𝐿𝐶𝑆𝑆_𝐼𝑆(𝑅𝑒𝑠𝑡(𝑅), 𝑅𝑒𝑠𝑡(𝑆)) + 𝜆}, otherwise

(5.3)

where the parameter 𝑑 belongs to the range of (0, 1). 𝜆 = 1 − 𝑑 if two points 𝑟𝑚 and

𝑠𝑛 are the same semantic, otherwise 𝜆 = 0. In this work, 𝑑 represents the spatial proximity

between the two points while 𝜆 indicates their semantic similarity. When the sum of 𝑑

and 𝜆 equals 1, two points are spatially close and have the same semantics. In addition,

the value of 𝑑 may be chosen based on the application. For example, 𝑑 > 0.5 if the focus

is on the spatial aspect over the semantic information and otherwise. When 𝑑 = 0.5, the

spatial proximity and semantic similarity are considered equally. 𝐼𝑛𝑑𝑜𝑜𝑟𝐷𝑖𝑠𝑡(𝑟𝑚, 𝑠𝑛) is the

indoor walking distance between two points 𝑟𝑚 and 𝑠𝑛, which is used to measure the spatial

proximity between them. Similar to LCSS, 𝜂 and 𝜈 are pre-defined parameters. If 𝜂 is a

distance threshold to determine if two points are close to one another, 𝜈 controls how far in

time two points are matched.

In addition, two variants of LCSS_IS are also considered: LCSS using indoor walk-

ing distance called LCSS_IWD in Equation (5.4) and LCSS using a semantic label called

LCSS_SL in Equation (5.5).

𝐿𝐶𝑆𝑆_𝐼𝑊𝐷(𝑅,𝑆) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0, if 𝑚 = 0 or 𝑛 = 0

𝐿𝐶𝑆𝑆_𝐼𝑊𝐷(𝑅𝑒𝑠𝑡(𝑅), 𝑅𝑒𝑠𝑡(𝑆)) + 1,

if 𝐼𝑛𝑑𝑜𝑜𝑟𝐷𝑖𝑠𝑡(𝑟𝑚, 𝑠𝑛) < 𝜂 and | 𝑚− 𝑛 |≤ 𝜈

𝑚𝑎𝑥{𝐿𝐶𝑆𝑆_𝐼𝑊𝐷(𝑅𝑒𝑠𝑡(𝑅), 𝑆), 𝐿𝐶𝑆𝑆_𝐼𝑊𝐷(𝑅,𝑅𝑒𝑠𝑡(𝑆))}, otherwise
(5.4)
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𝐿𝐶𝑆𝑆_𝑆𝐿(𝑅,𝑆) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0, if 𝑚 = 0 or 𝑛 = 0

𝑚𝑎𝑥{𝐿𝐶𝑆𝑆_𝑆𝐿(𝑅𝑒𝑠𝑡(𝑅), 𝑆), 𝐿𝐶𝑆𝑆_𝑆𝐿(𝑅,𝑅𝑒𝑠𝑡(𝑆)),

𝐿𝐶𝑆𝑆_𝑆𝐿(𝑅𝑒𝑠𝑡(𝑅), 𝑅𝑒𝑠𝑡(𝑆)) + 𝜆+ 𝑑},

if |𝑟𝑥,𝑚 − 𝑠𝑥,𝑛| < 𝜂 and |𝑟𝑦,𝑚 − 𝑠𝑦,𝑛| < 𝜂 and | 𝑚− 𝑛 |≤ 𝜈

𝑚𝑎𝑥{𝐿𝐶𝑆𝑆_𝑆𝐿(𝑅𝑒𝑠𝑡(𝑅), 𝑆), 𝐿𝐶𝑆𝑆_𝑆𝐿(𝑅,𝑅𝑒𝑠𝑡(𝑆)),

𝐿𝐶𝑆𝑆_𝑆𝐿(𝑅𝑒𝑠𝑡(𝑅), 𝑅𝑒𝑠𝑡(𝑆)) + 𝜆}, otherwise

(5.5)

Equation (5.4) shows that LCSS_IWD evaluates the similarity between two points 𝑟𝑚

and 𝑠𝑛 only using indoor walking distance. In contrast, the similarity between these two

points in the LCSS_SL and LCSS_IS metrics is considered from both spatial and semantic

aspects. Nevertheless, to estimate the spatial proximity between two points, LCSS_SL uses

their coordinates’ differences between the points as in the original LCSS, while LCSS_IS

explores their indoor walking distance. In other words, LCSS_IS is a combination of

LCSS_IWD and LCSS_SL.

The above metrics are normalized between 0 and 1, as reported elsewhere [39]. For

example, the normalization of LCSS_IS is defined as follows:

𝑁𝑜𝑟𝑚𝐿𝐶𝑆𝑆_𝐼𝑆(𝑅,𝑆) =
𝐿𝐶𝑆𝑆_𝐼𝑆(𝑅,𝑆)

𝑚𝑖𝑛(𝑚,𝑛)
(5.6)

from𝑁𝑜𝑟𝑚𝐿𝐶𝑆𝑆_𝐼𝑆(𝑅,𝑆), the distance between two trajectories is determined: 𝐷𝑖𝑠𝑡(𝑅,𝑆) =

1−𝑁𝑜𝑟𝑚𝐿𝐶𝑆𝑆_𝐼𝑆(𝑅,𝑆). When the distance equals 0, two trajectories are the same, while 1

indicates that they are entirely different.

5.2.3 Determination for Eps Value

In these two parameters of DBSCAN, MinPts can be chosen more easily based on the user’s

knowledge of the dataset [60]. In contrast, Eps has a larger effect on the result of clusters

and outliers. If Eps is chosen incorrectly, DBSCAN fails to discover clusters of the dataset.

For example, when Eps is small, the number of clusters increases, and only a small number of

data points are grouped. Moreover, there are many data points found as outliers. When Eps

is large, the number of clusters decreases, and there will be few outliers. Therefore, choosing

an appropriate Eps value is a challenge for DBSCAN. This study focuses on choosing the

value of Eps.

Eps is a vital input parameter of DBSCAN. The value of Eps directly affects the number
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of clusters and outliers. If Eps is chosen incorrectly, DBSCAN fails to discover clusters of

the data set. For example, when Eps is small, the number of clusters increases, and only

a small number of data points is grouped. Moreover, there are many data points found as

outliers. In contrast, when Eps is large, the number of clusters decreases, and there is a

small number of found outliers. Therefore, choosing the optimal Eps is a challenge for the

DBSCAN algorithm.

Inspired by existing cluster validity indices [58], this paper proposes a DBSCAN cluster

validity index called DCVI. This index is used to choose the Eps value by estimating the

quality of DBSCAN. Unlike other clustering algorithms, the clustering results of DBSCAN

contain clusters and outliers. Therefore, the quality of DBSCAN is estimated based on

measuring the separation between clusters, the separation between outliers and clusters,

and the compactness within each cluster. DCVI is defined as the following equation:

𝐷𝐶𝑉 𝐼 =
𝑀𝑖𝑛𝑙={1,..., 𝐾−1},𝑘={𝑙+1,..., 𝐾}𝐼𝑛𝑡𝑒𝑟𝐶𝐷(𝐶𝑙, 𝐶𝑘) +𝑀𝑖𝑛𝑜={1,2..., 𝑂},𝑘={1,..., 𝐾}𝑂𝐶𝐷(𝑜, 𝐶𝑘)

(𝑀𝑖𝑛𝑘={1,..., 𝐾}𝐼𝑛𝑡𝑟𝑎𝐶𝐷(𝐶𝑘))𝜌

(5.7)

In Equation (5.7), 𝐼𝑛𝑡𝑒𝑟𝐶𝐷(𝐶𝑙, 𝐶𝑘) is the distance between clusters 𝐶𝑙 and 𝐶𝑘. 𝑂𝐶𝐷(𝑜, 𝐶𝑘)

is the distance between outlier 𝑜 and cluster 𝐶𝑘. 𝐼𝑛𝑡𝑟𝑎𝐶𝐷(𝐶𝑘) is the intra-cluster distance

of cluster 𝐶𝑘. 𝜌 controls the contribution of the intra-cluster distance to DCVI.

In this work, 𝐼𝑛𝑡𝑒𝑟𝐶𝐷(𝐶𝑙, 𝐶𝑘) is the average distance between points in cluster 𝐶𝑙 and

points in cluster 𝐶𝑘. The minimum distance between outlier 𝑜 and all points in cluster 𝐶𝑘

is chosen to calculate 𝑂𝐶𝐷(𝑜, 𝐶𝑘). 𝐼𝑛𝑡𝑟𝑎𝐶𝐷(𝐶𝑘) is the average distance between points

within cluster 𝐶𝑘. DBSCAN can be considered successful for grouping data points when the

outliers are far from clusters, the clusters are separated from each other, and the compactness

of clusters is strong. Therefore, the Eps value is chosen when DCVI is maximum.

Figure 5.4 presents a way to determine the Eps value based on DCVI. First, the Eps

value is changed from the minimum value to the maximum value of the trajectory distance.

According to each Eps value, clusters of the dataset are found using DBSCAN. Then, the

value of DCVI is calculated at this Eps value. Finally, the Eps value is chosen according to

the maximum value of DCVI.
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𝐸𝑝𝑠 ∈ 𝐸𝑝𝑠𝑚𝑖𝑛: 𝐸𝑝𝑠𝑚𝑎𝑥

Find clusters using DBSCAN 

(Parameters: pre-defined 

Minpts, Eps)

Calculate 𝐷𝐶𝑉𝐼

Find 𝐷𝐶𝑉𝐼 =
max(𝐷𝐶𝑉𝐼𝐸𝑝𝑠𝑚𝑖𝑛:𝐸𝑝𝑠𝑚𝑎𝑥

)

𝐸𝑝𝑠

Eps

Clusters

𝐷𝐶𝑉𝐼

Figure 5.4: Flowchart for choosing the Eps value using DCVI.

5.3 Performance Evaluation

The proposed framework based on DBSCAN is evaluated using two datasets: The MIT

Badge dataset and the sCREEN dataset. The data preprocessing in the datasets is performed

as in the subsection 4.1.3.1.

5.3.1 Parameter Determination for Distance Metric and DBSCAN

5.3.1.1 Parameter Determination for Distance Metric

This study proposes the LCSS_IS measurement presented in Section 5.2.2 to measure the

distance between trajectories. In this metric, the parameter 𝑑 is set to 𝑑 = 0.5. The value of

parameter 𝜆 is 𝜆 = 1− 𝑑 = 0.5 when two points are the same semantic labels. This implies

that the weights assigned to spatial closeness and semantic similarity are equivalent when

estimating the similarity of the points. Moreover, parameter 𝜂 = 3500 with the MIT Badge

dataset and 𝜂 = 5 with the sCREEN dataset. In this work, the value of 𝜂 is set based on

the floor plan scale and the knowledge about human movement behavior in indoor spaces.

Here, 𝜂 is a distance threshold for determining the spatial closeness between points. The

parameter 𝜈 shows how far in time a point from one trajectory is matched to a point in

another trajectory. In this study, the value of 𝜈 is set to the maximum point number of
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two considering trajectories. This means there is no time constraint when estimating the

similarity between two points of two trajectories. Since the trajectories are extracted in

a short time window, each point from one trajectory is matched to all points in another

trajectory over the whole time window.

5.3.1.2 Determining the Eps Value for DBSCAN

DBSCAN requires two input parameters: MinPts and Eps. Based on previous studies

[72, 77], MinPts was chosen to be twice the dimensions of data points in the feature space,

i.e., 𝑀𝑖𝑛𝑃𝑡𝑠 = 2 × 𝑑𝑖𝑚. In this work, with the Euclidean, EDR, LCSS, and LCSS_IWD

measures, the feature space dimensions for the location points include the x-coordinate, y-

coordinate, and timestamp. In contrast, the data space has four dimensions with LCSS_SL,

LCSS_IS, and ISTSM because the semantic attribute of the location point is added. There-

fore, the MinPts is set to six for the distance metrics in the three-dimensional space and

eight for the others in the four-dimensional space.

The value of Eps is chosen using the DCVI metric in Equation (5.7). Note that the 𝜌

parameter, which controls the role of intra-cluster distance, needs to be determined before

calculating DCVI. In this work, 𝜌 is chosen using the performance of the algorithm when

detecting noise. Noise is first generated with a completely different distribution with anomaly

types. This step ensures that the determination of the 𝜌 parameter is independent of the

algorithm performance evaluation when detecting anomalies. Noise is then injected into the

dataset as anomalies. The algorithm performance for detecting noise is estimated with the

different 𝜌 values. Finally, the value of 𝜌, which corresponds to the best performance of the

algorithm is selected.

� Noise creation. Noise points are added to the original trajectory as the following

equation [36]:

(𝑥𝑛𝑜𝑖𝑠𝑒, 𝑦𝑛𝑜𝑖𝑠𝑒) = (𝑥+ 𝑟𝑎𝑛𝑑𝑛×𝑋, 𝑦 + 𝑟𝑎𝑛𝑑𝑛× 𝑌 ) (5.8)

where (𝑥, 𝑦) and (𝑥𝑛𝑜𝑖𝑠𝑒, 𝑦𝑛𝑜𝑖𝑠𝑒) are coordinates of points before and after adding noise,

respectively. 𝑟𝑎𝑛𝑑𝑛 is a random value created from Gaussian distribution with mean

0 and variance 1. 𝑋 and 𝑌 are constants that control the proximity between the noise

point and the original point. 𝑋 = 7000 and 𝑌 = 5000 with the MIT Badge dataset

and 𝑋 = 10 and 𝑌 = 10 with the sCREEN dataset. In addition, the ratio of noise
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point number in each trajectory is chosen randomly in the range [0.3, 1]. The starting

point for adding noise is chosen randomly from the original trajectory.

 = 0.2



(a)

 = 0.2



(b)

Figure 5.5: Selecting 𝜌 value based on algorithm performance when detecting noise: (a)
MIT Badge dataset. (b) sCREEN dataset.

� Choosing 𝜌 parameter. The value of 𝜌 is selected based on the trade-off between

the algorithm’s recall and precision. In this work, 𝜌 corresponds to the intersection

point of recall and precision. This means that the algorithm needs to ensure anomaly

detection ability while maintaining precision. Figure 5.5a,b show the performance of

the algorithm when detecting noise for the MIT Badge and the sCREEN datasets,

respectively. The value of 𝜌, which equals 0.2 for both datasets, is determined from

these figures.

� Choosing Eps parameter. After selecting 𝜌, the Eps value is determined using

the DCVI metric, as shown in Figure 5.4. The Eps value is chosen according to the

maximum value of DCVI. Note that, in the MIT Badge dataset, data are divided into

timeslots, and the algorithm is performed following each timeslot. Therefore, there

are 54 Eps values according to 54 timeslots. Here, this paper shows only one chosen

Eps value according to slot 0, which is 0.42 at the red point in Figure 5.6a. On the

other hand, with the sCREEN dataset, data are not divided into timeslots, so only

one Eps value (i.e., 0.41 at the red point as in Figure 5.6b) is selected. In Equation

(5.7), it should be noted that, if the number of clusters and outliers are equal to 1 and

0, respectively, 𝐼𝑛𝑡𝑒𝑟𝐶𝐷(𝐶𝑙, 𝐶𝑘) and 𝑂𝐶𝐷(𝑜, 𝐶𝑘) are equal to 0. As in Figure 5.6, if

Eps is too large, there is no outlier, and all trajectories are grouped into one cluster.

In this case, DCVI equals the minimum value at 0 according to the part shown by the
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Num_cluster > 1
Num_outlier > 0

Num_cluster =1
Num_outlier > 0

Num_cluster =1
Num_outlier = 0

(a)

1

Num_cluster =1
Num_outlier > 0

Num_cluster >1
Num_outlier > 0

Num_cluster =1
Num_outlier = 0

(b)

Figure 5.6: Selecting the Eps value: (a) MIT Badge dataset. (b) sCREEN dataset.

red ellipse. In addition, if the number of clusters is higher than one and the number

of outliers is greater than 0, DCVI is large according to the portion indicated in the

green ellipses. The yellow ellipses show that the DCVI is small at Eps values, where

only one cluster is found, and the number of outliers is greater than 0.

5.3.2 Result Analysis

In this work, we use three metrics: recall, precision, and F1-score to estimate the algorithm

performance. The proposed method is evaluated and compared with four baselines.

� EMM. The work in [33] detects anomalous trajectories using an EMM.

� Density method. This method detects a trajectory as an anomaly if its density is

smaller than a given threshold. The density method has been used in studies [31,33,79].

� Hierarchical clustering. The hierarchical clustering-based anomaly detection method

is proposed in [30]. This work detects abnormal trajectories based on their closeness

with extracted clusters from datasets.

� Spectral clustering. From a previous study [30], the hierarchical clustering al-

gorithm is replaced with the spectral clustering algorithm for finding clusters from

datasets. Anomalies are found in the same way in [30].

The baselines, except for EMM, also require a distance measure to calculate similarity in

the trajectories. In this work, these baselines use four existing distance measures: Euclidean,
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EDR, LCSS, and ISTSM. Our DBSCAN-based anomaly detection method is evaluated using

seven existing and proposed distance metrics: Euclidean, EDR, LCSS, ISTSM, LCSS_IWD,

LCSS_SL, and LCSS_IS. The following subsections present the outcomes of methods over

the various anomaly types.

5.3.2.1 Anomaly as Pricing Group

This subsection only estimates the performance of the methods using the original MIT

Badge dataset. Because there is no labeled anomaly in the dataset, a hypothesis is given

for creating anomalies. In particular, in the MIT Badge dataset, the configuration group

accounts for approximately 70% of the total while the pricing group is only 20%. Therefore, it

is assumed that the workers’ movement in the former is normal, while the workers’ movement

in the latter is abnormal. Moreover, the number of normal and abnormal trajectories for

evaluating the algorithm is chosen equally. The algorithm is fairly estimated owing to the

balance between abnormal and normal sample numbers in the test dataset. Table 5.2 lists

the results of baselines and the proposed method for detecting anomalies as the pricing

group.

In particular, EMM achieves a high recall value of 89.55% compared with a precision of

only 66.87%. Because EMM evaluates the abnormality at the level of the trajectory point,

and a trajectory is detected as an anomaly if it contains at least one anomalous point. This

means that EMM prioritizes seeking the abnormality of the trajectory point. Therefore,

there are many normal trajectories detected as anomalies, and EMM precision is low.

The methods, which use distance metrics, evaluate the abnormality at the trajectory

level. With these methods, LCSS obtains a higher precision than EDR and ISTSM. One

possible explanation is that LCSS aims to find the longest common subsequence between

two trajectories, ignoring the unmatched points. Therefore, LCSS tends to seek out the

normality of a trajectory rather than its abnormality. This explains why the methods

obtain better results in precision. Moreover, in four distance metrics (Euclidean, EDR,

LCSS, and ISTSM), the biggest disadvantage of Euclidean, compared with the remaining

metrics, is that it can not be applied directly to the trajectories with different lengths. In

this work, to use the Euclidean metric, the missed points are interpolated based on existing

points. The linear interpolation method was used [80]. After interpolation, the Euclidean

distance may estimate the similarity of trajectories quite well because this metric uses the

absolute difference between points. Therefore, the performance of methods using Euclidean
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Table 5.2: Results with anomaly as pricing group.

Method Measure Recall Precision F1-score
EMM 0.8955 0.6687 0.7635

Density

Euc 0.7634 0.7241 0.7408
EDR 0.9929 0.6394 0.7779
LCSS 0.8221 0.7692 0.7927
ISTSM 0.7914 0.7639 0.7738

Hierachical Clustering

Euc 0.8702 0.7206 0.787
EDR 0.8923 0.6738 0.7676
LCSS 0.7826 0.7082 0.7435
ISTSM 0.9288 0.6701 0.7783

Spectral Clustering

Euc 0.8681 0.7198 0.7858
EDR 0.8823 0.6964 0.7782
LCSS 0.816 0.7227 0.7664
ISTSM 0.9207 0.6737 0.7777

Proposed

Euc 0.7897 0.8214 0.8052
EDR 0.9035 0.7479 0.8179
LCSS 0.8363 0.8085 0.8216
ISTSM 0.8637 0.7083 0.7742

LCSS_IWD 0.6856 0.8817 0.771
LCSS_SL 0.9539 0.8022 0.8708
LCSS_IS 0.8997 0.8838 0.8903

is comparable to EDR, LCSS, and ISTSM.

ISTSM, which uses space and semantic aspects to determine the trajectories’ similarity,

obtains a higher recall than precision for all methods. One possible explanation is that

ISTSM prioritizes seeking the difference between trajectories. In ISTSM, if two points have

different semantic labels, evenly close in space, a maximum value of 1 is assigned to the

substitution cost of the two points. Therefore, trajectories may be detected as anomalies

more easily, and recall is high. However, precision is low, so F1-score for this measure is low.

The proposed method with LCSS_IS outperforms the other methods in the F1-score.

LCSS_IS, which is extended from LCSS, shows an improved ability to distinguish between

two trajectories using the indoor walking distance and semantic labels to determine points’

similarity. This means that LCSS_IS uses the spatial proximity and semantic information

to estimate the distance of the trajectories rather than that solely based on the space as-

pect as LCSS, EDR, and Euclidean. Unlike ISTSM, which only uses the indoor walking

distance for the same labels and ignores it for the different labels, LCSS_IS uses the indoor

walking distance for both the same and different labels. Moreover, the performance of the

two variants, LCSS_IWD and LCSS_SL, are also evaluated. In LCSS_IWD, the indoor

walking distance is used to determine the similarity between the two points. Meanwhile,
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Table 5.3: Results with rare location visiting anomaly on the MIT Badge dataset.

𝜏 (%) 0.5 1
Method Measure Recall Precision F1-score Recall Precision F1-score
EMM 1 0.6082 0.7563 1 0.6082 0.7563

Density

Euc 0.9528 0.7746 0.8537 0.9528 0.7746 0.8537
EDR 0.9964 0.6826 0.8098 1 0.6834 0.8115
LCSS 0.9911 0.8334 0.9052 1 0.8346 0.9096
ISTSM 0.716 0.7853 0.7478 1 0.7267 0.8417

HC

Euc 0.9379 0.7475 0.8285 1 0.7465 0.8532
EDR 0.8953 0.6542 0.7554 1 0.6787 0.8084
LCSS 0.9132 0.7085 0.797 1 0.7265 0.8412
ISTSM 0.968 0.6401 0.7706 1 0.6894 0.8159

SC

Euc 0.9383 0.746 0.8277 1 0.745 0.8522
EDR 0.8766 0.6993 0.7763 1 0.7255 0.8402
LCSS 0.8973 0.7368 0.8074 1 0.8365 0.9098
ISTSM 0.8411 0.6448 0.7299 1 0.6837 0.8119

Proposed

Euc 0.9941 0.7908 0.8792 1 0.8351 0.9083
EDR 0.8401 0.7961 0.8153 1 0.8228 0.9025
LCSS 1 0.8585 0.923 1 0.8585 0.923
ISTSM 0.8792 0.7189 0.7886 1 0.8141 0.897

LCSS_IWD 0.741 0.9072 0.8145 0.983 0.927 0.9543
LCSS_SL 0.9977 0.8114 0.8944 1 0.8117 0.8956
LCSS_IS 0.9629 0.91 0.9356 1 0.9137 0.9545

LCSS_SL uses both the space and semantic aspects to estimate the similarity. Note that,

in LCSS_SL, the spatial proximity is determined using the coordinates’ norm between two

points as in LCSS. As can be seen in Table 5.2, LCSS_IWD achieves high precision, while

LCSS_SL improves recall. Since LCSS_IS is a combination of LCSS_IWD and LCSS_SL,

the performance of the proposed method with LCSS_IS is improved in the recall, precision

and F1-score.

5.3.2.2 Synthetic Anomalies

This subsection estimates the performance of the methods for two synthetic anomaly types:

Rare location visits and route anomalies. To estimate the anomaly detection ability of the

methods over various anomaly types, in the test dataset, abnormal trajectories are replaced

according to their type, and the normal trajectories remain.

Tables 5.3 and 5.4 depict the results of detecting rare location visit anomalies on the

MIT Badge and the sCREEN datasets, respectively. In the experiments, 𝜏 = {0.5, 1}, which

is the ratio of the shifted point number to rare locations in each trajectory. The outcome

of methods is better when 𝜏 increases. This is because the abnormality is higher when

a trajectory remains at a rare location over a longer time. Tables 5.5 and 5.6 show the
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Table 5.4: Results with rare location visiting anomaly on the sCREEN dataset.

𝜏 (%) 0.5 1
Method Measure Recall Precision F1-score Recall Precision F1-score
EMM 1 0.5828 0.7364 1 0.5828 0.7364

Density

Euc 1 0.672 0.8038 1 0.672 0.8038
EDR 0.748 0.6608 0.7017 1 0.7225 0.8389
LCSS 1 0.7102 0.8305 1 0.7102 0.8305
ISTSM 0.884 0.6637 0.7582 1 0.6906 0.817

HC

Euc 1 0.5176 0.6821 1 0.5176 0.6821
EDR 1 0.5435 0.7042 1 0.5435 0.7042
LCSS 1 0.7102 0.8305 1 0.7102 0.8305
ISTSM 1 0.6443 0.7837 1 0.6443 0.7837

SC

Euc 1 0.5252 0.6887 1 0.5252 0.6887
EDR 1 0.5495 0.7093 1 0.5495 0.7093
LCSS 0.968 0.7634 0.8536 1 0.7692 0.8695
ISTSM 1 0.6631 0.7974 1 0.6631 0.7974

Proposed

Euc 1 0.7937 0.885 1 0.7937 0.885
EDR 0.672 0.7636 0.7149 1 0.8278 0.9058
LCSS 0.996 0.8111 0.8941 1 0.8117 0.8961
ISTSM 1 0.6684 0.8013 1 0.6684 0.8013

LCSS_IWD 1 0.8065 0.8929 1 0.8065 0.8929
LCSS_SL 1 0.7553 0.8606 1 0.7553 0.8606
LCSS_IS 0.928 0.8722 0.8992 1 0.8803 0.9363

performance of methods in both datasets when detecting route anomalies.

In the evaluated baselines, EMM achieves the highest recall value with synthetic anomaly

types on both datasets. As previously stated, a trajectory is detected as an anomaly by EMM

if the trajectory has at least one abnormal point. Moreover, synthetic anomalies contain

points with high abnormality, and the points are identified easily by EMM. Therefore, EMM

may detect all synthetic anomalies. However, because a trajectory is detected easily as an

anomaly by EMM, the precision of this method is low. Hence the F1-score is also low.

The baselines, which use distance metrics, also obtain a very high recall value with all

types of synthetic anomalies on both datasets. Because the synthetic anomalies have a

strong abnormality at the trajectory level compared to the normal trajectories, they may

be detected by the baseline methods. Nevertheless, the precision of the baselines is low. As

the baselines detect anomalies using thresholds (i.e., the density threshold in the density

method and the distance threshold between a trajectory and clusters in hierarchical and

spectral clustering), their performance is affected by the value of the thresholds. However,

choosing an appropriate threshold value for detecting anomalies is a challenge. With base-

lines, thresholds are chosen based on the knowledge about datasets. Therefore, the methods

may not obtain the best performance in precision.
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Table 5.5: Results with route anomalies on the MIT Badge dataset.

Route anomaly Detour anomaly Random route anomaly
Method Measure Recall Precision F1-score Recall Precision F1-score
EMM 1 0.6082 0.7563 1 0.6082 0.7563

Density

Euc 0.815 0.8229 0.8184 0.815 0.8229 0.8184
EDR 1 0.6834 0.8115 1 0.6834 0.8115
LCSS 0.9974 0.8328 0.9076 0.9937 0.8323 0.9057
ISTSM 1 0.7267 0.8417 0.9988 0.6853 0.8128

HC

Euc 1 0.7465 0.8532 1 0.7465 0.8532
EDR 0.976 0.6734 0.7968 0.99 0.6765 0.8036
LCSS 0.9903 0.7272 0.8382 0.9846 0.7261 0.8354
ISTSM 1 0.6894 0.8159 0.9843 0.6439 0.7784

SC

Euc 1 0.745 0.8522 1 0.745 0.8522
EDR 0.9751 0.6338 0.7682 0.9914 0.7239 0.836
LCSS 0.9954 0.7555 0.8582 0.9988 0.7562 0.8599
ISTSM 1 0.6837 0.8119 0.9048 0.6614 0.7639

Proposed

Euc 1 0.8351 0.9083 1 0.8351 0.9083
EDR 0.8862 0.8703 0.8761 0.9224 0.8839 0.9007
LCSS 1 0.8585 0.923 1 0.8424 0.9135
ISTSM 1 0.8141 0.897 0.9685 0.7052 0.8147

LCSS_IWD 0.9983 0.9291 0.9624 0.9928 0.9287 0.9597
LCSS_SL 1 0.8117 0.8956 1 0.8114 0.8954
LCSS_IS 0.994 0.9132 0.9515 0.9885 0.9132 0.9489

Table 5.6: Results with route anomalies on the sCREEN dataset.

Route anomaly Detour anomaly Random route anomaly
Method Measure Recall Precision F1-score Recall Precision F1-score
EMM 1 0.5828 0.7364 1 0.5828 0.7364

Density

Euc 1 0.6964 0.821 1 0.6964 0.821
EDR 1 0.7225 0.8389 1 0.7225 0.8389
LCSS 1 0.7102 0.8305 1 0.7102 0.8305
ISTSM 1 0.6812 0.8104 1 0.6812 0.8104

HC

Euc 1 0.5176 0.6821 1 0.5176 0.6821
EDR 1 0.5435 0.7042 1 0.5435 0.7042
LCSS 1 0.7102 0.8305 1 0.7102 0.8305
ISTSM 1 0.6443 0.7837 1 0.6443 0.7837

SC

Euc 1 0.5252 0.6887 1 0.5252 0.6887
EDR 1 0.5495 0.7093 1 0.5495 0.7093
LCSS 1 0.7692 0.8695 1 0.7692 0.8695
ISTSM 1 0.6631 0.7974 1 0.6631 0.7974

Proposed

Euc 1 0.7937 0.885 1 0.7937 0.885
EDR 1 0.8278 0.9058 1 0.8278 0.9058
LCSS 1 0.8117 0.8961 1 0.8117 0.8961
ISTSM 1 0.6684 0.8013 1 0.6684 0.8013

LCSS_IWD 1 0.8065 0.8929 1 0.8065 0.8929
LCSS_SL 1 0.7553 0.8606 1 0.7553 0.8606
LCSS_IS 1 0.8803 0.9363 1 0.8803 0.9363
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In contrast, the proposed method improves precision value compared to the baselines

while achieving a high recall value. This is because our method detects anomalies using the

Eps value. The appropriate value of Eps is determined based on estimating the clustering

quality of DBSCAN using the DCVI metric. Therefore, the performance of the proposed

method is improved significantly compared with the baselines in precision and F1-score

with synthetic anomalies. Moreover, in the proposed method, LCSS_IS outperforms other

distance metrics in the F1-score, except for detecting route anomalies on the MIT Badge

dataset. In this case, the F1-score obtains the highest value of approximately 96% with the

variant

LCSS_IWD. With LCSS_IS, this method also achieves a high F1-score of approximately

95% and outperforms the other baselines.

Because normal trajectories are maintained in the test dataset when estimating the

method performance over other anomaly types, the result of 𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 samples does

not change for each method. Therefore, if the result of 𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 samples of a method

is the same as with different anomaly types, the F1-score of the method is equal according

to these anomaly types. For example, the F1-score for detecting detour and random route

anomalies is the same following each method in the sCREEN dataset.

5.3.2.3 Effect of the MinPts Parameter on Performance

This subsection presents the performance of the proposed method over various anomaly types

when varying the MinPts parameter of DBSCAN. It is known that MinPts has less influence

than Eps on the clustering quality of DBSCAN. The value of MinPts often is chosen based on

the user’s knowledge about datasets [79] (i.e., MinPts can be set to twice the dimensions of

the data). In this experiment, the MinPts change in the range of [3, 40]. With a given value of

MinPts, an appropriate value of Eps is determined using the DCVI metric. Then, the chosen

Eps value is used for clustering trajectories and detecting anomalies. Figure 5.7a,b show the

results in terms of the F1-score for the MIT Badge and sCREEN datasets, respectively.

Note that only the LCSS_IS measure is used in this experiment. The trend of changing

performance is similar to all anomaly types. The proposed method achieves the best results

around MinPts = 8 on the two datasets. When 𝑀𝑖𝑛𝑃𝑡𝑠 > 10, the performance of the

proposed method is decreased. This may be explained by the fact that many trajectories

are detected as noise when the MinPts that are chosen are too large, which may affect

the clustering quality of DBSCAN. Therefore, the effectiveness of detecting anomalies is
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degraded.

(a) (b)

Figure 5.7: Performance of the proposed method when varying 𝑀𝑖𝑛𝑃𝑡𝑠: (a) MIT Badge
dataset. (b) sCREEN dataset.

5.4 Chapter Summary

This paper proposed a two-phase framework for detecting indoor human trajectory anoma-

lies based on DBSCAN. This proposed method discovered trajectory clusters in the dataset.

A newly coming trajectory is detected as an anomaly if it does not belong to any clusters

of trajectories. A novel measure called LCSS_IS was proposed to determine the similarity

of the trajectories, which was extended from the original LCSS for discovering the features

of indoor human movement. In particular, the indoor walking distance and semantic in-

formation were combined to estimate the similarity of trajectories. Therefore, LCSS_IS

measured the distance of trajectories in indoor spaces more precisely than existing distance

metrics. Furthermore, a novel cluster validity index, DCVI, was proposed to choose the Eps

parameter for DBSCAN. DCVI was designed to measure the separation between clusters,

the separation between clusters and outliers, and the compactness within each cluster. An

appropriate Eps value was determined corresponding to the maximum value of DCVI. The

proposed method was evaluated on two real datasets: MIT Badge and sCREEN. The dif-

ferent anomalous trajectory types were also detected in this work. The proposed method

showed impressive performance and outperformed the baselines.

In this work, there are a few limitations. First, several features of trajectory data, such

as speed and moving direction, were not considered for calculating the distance between

trajectories. Second, the proposed method was not evaluated on datasets with complex
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floor plans, such as buildings with many floors. We plan to extend this work to address the

above limitations in a future study.
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Chapter 6

Deep Learning-based Anomalous

Trajectory Detection

To identify anomalous human trajectories, understanding features of their movement plays

an important role. Therefore, in this work, a Transformer encoder and self-organizing map-

based model called TENSO is proposed to learn trajectory characteristics for detecting

anomalies. In particular, the proposed model learns the internal characteristics of nor-

mal trajectories and clusters of normal trajectory representations in a latent space. To

learn the internal characteristics of normal trajectories, the encoder of Transformer with a

self-attention mechanism first encodes trajectories into sequences of embedding vectors of

trajectory points in the latent space. Then, a decoder reconstructs the trajectories from the

latent space. In addition, to learn clusters of normal trajectory representations in the latent

space, the self-organizing map (SOM) layer is used, which gets its input as the output of the

Transformer encoder. In the training phase, the TENSO model is trained using a total loss

of trajectory reconstruction and SOM losses. In the anomaly detection phase, a test trajec-

tory is evaluated to determine whether it is an anomaly based on trajectory reconstruction

errors and the quantization error on the SOM. In this phase, a new metric is proposed which,

namely WS, is the weighted sum of recall and precision to choose the appropriate threshold

for detecting anomalies. The TENSO model-based framework is evaluated using two real

trajectory datasets: MIT Badge and sCREEN.

6.1 Definitions

This section presents definitions of Transformer encoder and SOM in detail as follows.
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Figure 6.1: Transformer encoder

6.1.1 Transformer encoder

Transformer is a network architecture based on an attention mechanism, and consists of

two main parts: an encoder and a decoder [81]. This neural network can effectively replace

recurrent neural network (RNN) and convolutional neural network (CNN) architectures in

sequential tasks. In this work, we only consider the Transformer encoder, which is presented

in Figure 6.1. It contains two sub-layers: a layer of multi-head self-attention and a position-

wise fully connected feed-forward network.

� Multi-head self-attention. A single attention layer called Scaled Dot-Product At-

tention is the main calculation layer in multi-head attention. It consist of three inputs:

queries, keys of dimension 𝑑𝑘, and values of dimension 𝑑𝑣. To determine the weights

of the values, they compute the dot products of the query with each key, divide each

result by
√
𝑑𝑘, and then apply a softmax function. The queries, keys, and values are

packed as separate matrices: Q, K, and V. The equation for a single attention is

Attention(𝑄,𝐾, 𝑉 ) = Softmax(
𝑄𝐾𝑇

√
𝑑𝑘

)𝑉 (6.1)

Note that in the Transformer encoder, the keys, queries, and values are obtained from

the same place, and the attention is known as self-attention. Since performing parallel

self-attention layers on multiple subspaces of the input sequence is better than on a

single space, the input sequence is projected h times with learned linear projections

before applying self-attention layers. This mechanism is known as multi-head self-
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attention in the Transformer encoder and is performed as follows:

MultiHead(𝑄,𝐾, 𝑉 ) = Concat(head1, ..., headℎ)𝑊
𝑂, (6.2)

where head𝑖 = Attention(𝑄𝑊𝑄
𝑖 ,𝐾𝑊𝐾

𝑖 , 𝑉 𝑊 𝑉
𝑖 ), and the linear projections are matrices

𝑊𝑄
𝑖 ∈ R𝑑𝑚𝑜𝑑𝑒𝑙×𝑑𝑘 , 𝑊𝐾

𝑖 ∈ R𝑑𝑚𝑜𝑑𝑒𝑙×𝑑𝑘 , 𝑊 𝑉
𝑖 ∈ R𝑑𝑚𝑜𝑑𝑒𝑙×𝑑𝑣 and 𝑊𝑂 ∈ Rℎ𝑑𝑣×𝑑𝑚𝑜𝑑𝑒𝑙 .

� Position-wise feed-forward network. This sub-layer is applied to each position

of the output sequence of multi-head self-attention. It consists of a dense layer with

ReLU activation and a linear layer:

FFN(𝑥) = 𝑊2 × ReLU(𝑊1𝑥+𝐵1) + 𝑏2, (6.3)

where 𝑥 is the input of the sub-layer, with 𝑊2, 𝑊1, 𝑏1, and 𝑏2 as parameters of the

network.

The output from each of these two sub-layers of the Transformer encoder are normalized

and added by an Add & Norm layer.

6.1.2 Self-organizing map

The SOM is a competitive learning neural network known as a topology-preserving clus-

tering model [82, 83]. This network has two layers: an input layer, and an output layer of

interconnected neurons (often called units or nodes) in a two-dimensional grip map.

Assume that a set of input data samples is defined 𝑋 = {𝑥𝑖}1≤𝑖≤𝐿, 𝑥𝑖 ∈ R𝐷. A SOM

has 𝑉 units, and each unit is represented by a corresponding prototype vector {𝑚𝑣}1≤𝑣≤𝑉 .

Prototype vectors belong to the same space as input data (i.e., R𝐷). In each iteration of

SOM training, all prototype vectors are updated. The level of the update depends on the

correlation between prototype vectors and the input data vector, which is determined by a

distance metric. When an input data sample comes, the prototype vector with the smallest

distance is determined. The unit on the map that corresponds to this prototype vector is

called the best matching unit (BMU). A definition for BMU 𝑏𝑖 of 𝑥𝑖 is

𝑏𝑖 = argmin
𝑣

(Dist(𝑥𝑖,𝑚𝑣)), (6.4)

where Dist(.) is the chosen distance metric.
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On the grid map, the Manhattan distance 𝑑(𝑖, 𝑗) between two nodes 𝑖 and 𝑗 is determined.

A temperature parameter, 𝑇 , and a neighborhood function, 𝐾𝑇 (𝑑), of SOM are also defined.

Temperature parameter 𝑇 at iteration 𝑖𝑡𝑒𝑟 is determined as follows:

𝑇 (𝑖𝑡𝑒𝑟) = 𝑇max(
𝑇min
𝑇max

)
𝑖𝑡𝑒𝑟

𝑁𝑢𝑚𝑖𝑡𝑒𝑟𝑠 , (6.5)

where 𝑇max and 𝑇min are the initial and final temperatures, respectively. 𝑁𝑢𝑚𝑖𝑡𝑒𝑟𝑠 is the

number of iterations. The function 𝐾𝑇 (𝑑) determines the neighborhood radius around a

unit on the map, and can be defined as a Gaussian neighborhood function as follows:

𝐾𝑇 (𝑑) = 𝑒−
𝑑2

𝑇2 . (6.6)

In its training phase, the SOM gets each input sample 𝑥𝑖 and updates all prototype vectors

by forwarding them to closer 𝑥𝑖. The weight for updating is the value of the neighborhood

function around the BMU of 𝑥𝑖. Thus, close neighboring units will be updated more than

farther ones. The updating procedure is presented in the following expression:

𝑚𝑣 ← 𝑚𝑣 + 𝜒×𝐾𝑇 (𝑑(𝑏𝑖, 𝑣))(𝑥𝑖 −𝑚𝑣), (6.7)

where 𝜒 is the learning rate.

6.2 Methodology

6.2.1 Model based on the Transformer Encoder and SOM
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Figure 6.2: The architecture of the TENSO model
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6.2.1.1 Overview of the Proposed Model

In this work, we build a model based on the Transformer encoder and SOM with two main

tasks: learning normal trajectory representations, and learning their clusters in latent space.

The first task is based on the Transformer encoder, and the second is based on the SOM

layer.

Since the proposed TENSO model captures interior features of normal trajectories,

anomalous trajectories may not be well reconstructed. Moreover, anomalous trajectory

representations in the latent space may not belong to clusters of normal representations,

which are also learned by the TENSO model. Thus, the proposed model can detect anoma-

lous trajectories using reconstruction errors and the relationship between representations

and clusters of normal trajectory representations in latent space. The architecture of the

TENSO model is divided into three main parts as seen in Figure 6.2. The first part learns

the input features of the trajectory (the green blocks). The second part includes the Trans-

former encoder and a decoder. The Transformer encoder learns trajectory representations

and encodes them via output sequences in a latent space. A decoder with dense layers

is used to reconstruct original trajectories. The third part is the SOM layer, which gets

the input from the output of the Transformer encoder. This part learns normal trajectory

representation clusters in latent space. Detailed descriptions of the parts are presented as

follows.

6.2.1.2 Learning Input Features of Trajectories

To learn the correlation between a trajectory’s points and to encode them using the Trans-

former encoder, the input trajectory points need to be embedded as vector representations.

In particular, each trajectory point contains positional and semantic information. Since each

trajectory’s position belongs to a low-dimensional space (i.e., x and y coordinates), it is pro-

jected to a high-dimensional space. This helps the model learn more positional information

about the trajectory points. This step is performed using a dense layer. Besides, since the x

and y coordinate values may have different ranges, they are normalized to the range of [0,1]

by using min-max normalization [84].

To use semantic information for learning trajectory representations, semantic labels need

to be embedded as dense vectors. First, semantic labels of trajectory points are converted

to one-hot vectors. Then, the one-hot vectors are projected to a high-dimensional space
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using a dense layer. Two vector representations of semantic and positional information are

concatenated and projected in a higher dimension space to obtain the trajectory point’s

final vector representation.

6.2.1.3 Learning Trajectory Representations

In this subsection, the Transformer encoder and a decoder are presented. First, the Trans-

former encoder is used to learn the correlation between a trajectory’s points and its sequential

information. Then, the original trajectory reconstruction from the output sequence of the

Transformer encoder is obtained using the decoder.

In the TENSO model, the Transformer encoder gets input as a sequence of trajectory

points’ embeddings. With the self-attention mechanism, each trajectory’s point is encoded

as a vector representation that captures the correlation of this point with all trajectory

points. Since the attention mechanism does not retain the order of trajectory points by

itself, positional encoding is added to the input of the Transformer encoder. The output

of the Transformer encoder is a sequence of points’ vector representations that captures

internal characteristics and the sequential nature of the trajectory. The Transformer encoder

consists of N stacked identical layers. Each layer comprises two main sub-layers: multi-head

self-attention and position-wise fully connected feed forward layer [81].

A simple decoder with dense layers is used to reconstruct the original trajectory, which

ensures the trade-off between the trajectory reconstruction’s effectiveness and the computa-

tional cost of the model. The decoder consists of one hidden layer and two outputs. The first

output reconstructs the trajectory’s positional information (i.e., x and y coordinates), and

the second reconstructs the semantic label information (i.e., the probabilities that trajectory

points’ labels belong to semantic labels in the dataset).

6.2.1.4 SOM-based Normal Trajectory Representation Cluster Modeling

This subsection describer the SOM layer for learning normal trajectory representation clus-

ters in latent space, which is trained jointly with the remaining parts of the TENSO model.

The correlations between trajectory representations in latent space may be useful for

abnormal trajectory detection tasks. In particular, if a trajectory whose representation does

not belong to any clusters in latent space, this trajectory may be an anomaly. Thus, the

proposed model learns normal trajectory representation clusters in the latent space to detect

anomalous trajectories, which can be performed by the SOM layer.
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The input of the SOM is gotten from the output of the Transformer encoder. After

training the SOM, the normal trajectory representation clusters in the latent space are

modeled by prototype vectors of the SOM. Depending on the dataset and the application,

the number of prototype vectors may vary. A small number of units on a map learns

a general distribution of datasets, whereas a SOM with many units may represent more

detailed datasets. In our work, the number of units is chosen as 100 (i.e., a square map of

10 × 10). This value is much smaller than the number of trajectories in the training sets

(i.e., 10,537 trajectories in the MIT Badge dataset and 11,107 trajectories in the sCREEN

dataset).

6.2.1.5 Loss Functions

In the TENSO model, all parameters are trained and updated jointly. A total loss function

is designed that comprises three different terms:

Total Loss = 𝐿1 + 𝛾1 × 𝐿2 + 𝛾2 × 𝐿SOM, (6.8)

where 𝐿1 is the loss for reconstructing x-y coordinates, 𝐿2 is the loss for reconstructing

semantic labels, and 𝐿SOM is the loss of the SOM; 𝛾1 and 𝛾2 are parameters that control

the role of component loss functions in the total loss function.

In 𝐿1, we use lock-step Euclidean distance (LSED) to determine the x-y coordinate

reconstruction error between the decoded and original trajectories. 𝐿1 is defined as

𝐿1 =
1

𝑀

𝑀∑︁
𝑖=1

LSED(𝑇 (𝑥,𝑦)
𝑖 , 𝑇

(𝑥,𝑦)
𝑖 ), (6.9)

where 𝑀 is the number of trajectories used for each parameter update, referred to as batch

size. 𝑇 (𝑥,𝑦)
𝑖 and 𝑇

(𝑥,𝑦)
𝑖 are the decoded and original trajectories 𝑖𝑡ℎ, respectively, which only

contain x-y coordinate information of the trajectory points.

LSED(𝑇 (𝑥,𝑦)
𝑖 , 𝑇

(𝑥,𝑦)
𝑖 ) is defined as follows [53]:

LSED(𝑇 (𝑥,𝑦)
𝑖 , 𝑇

(𝑥,𝑦)
𝑖 ) =

1

𝑛

𝑛∑︁
𝑗=1

dist(𝑝(𝑥,𝑦)𝑗 , 𝑝
(𝑥,𝑦)
𝑗 ), (6.10)

where dist(𝑝(𝑥,𝑦)𝑗 , 𝑝
(𝑥,𝑦)
𝑗 ) is the Euclidean distance between two points 𝑝(𝑥,𝑦)𝑗 and 𝑝

(𝑥,𝑦)
𝑗 , which

are the decoded and original points 𝑗𝑡ℎ of the trajectory 𝑖𝑡ℎ, and 𝑛 is the point number of
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each trajectory.

In TENSO, since the model needs to predict the semantic label for each trajectory point,

𝐿2 is chosen as the cross-entropy loss function, which is used for training models in multiclass

classification. The equation for 𝐿2 is

𝐿2 = −
1

𝑀
× 1

𝑛

𝑀∑︁
𝑖=1

𝑛∑︁
𝑗=1

𝑆∑︁
𝑘=1

𝑇 𝑠
𝑖,𝑗,𝑘 × log(𝑝𝑠𝑖,𝑗,𝑘), (6.11)

where 𝑆 is the number of semantic label classes in the datasets, 𝑇 𝑠
𝑖,𝑗,𝑘 is the value of the

semantic label information at the class 𝑘𝑡ℎ of the point 𝑗𝑡ℎ of the original trajectory 𝑖𝑡ℎ (0 if

a negative instance and 1 if a positive instance). 𝑝𝑠𝑖,𝑗,𝑘 is the probability that the semantic

label of point 𝑗𝑡ℎ of the original trajectory 𝑖𝑡ℎ belongs to the semantic label class 𝑘𝑡ℎ.

For the loss of the SOM layer, 𝐿SOM is defined by

𝐿SOM =
1

𝑀

𝑀∑︁
𝑖=1

𝑉∑︁
𝑣=1

𝐾𝑇 (𝑑(𝑏𝑖, 𝑣))× LSED(𝑧𝑖,𝑚𝑣). (6.12)

The terms in equation 6.12 are explained in Table 6.1.

Table 6.1: Explanation of terms

Term Meaning
𝑀 The number of input trajectories
𝑉 The number of units on the map
𝑧𝑖 Latent representation of input trajectory 𝑖𝑡ℎ

𝑏𝑖 Best matching unit of 𝑧𝑖 on the SOM
𝑚𝑣 Prototype vector of unit 𝑣 on the SOM

𝑑(𝑏𝑖, 𝑣) Manhattan distance between 𝑏𝑖 and 𝑣 on the SOM
LSED(𝑧𝑖,𝑚𝑣) Lock-step Euclidean distance between 𝑧𝑖 and 𝑚𝑣

𝐾𝑇 (.) The neighbor function

The training procedure of the proposed model is presented in Algorithm 1.

6.2.2 Anomalous Trajectory Detection

This subsection discusses abnormal trajectory detection based on the TENSO model. In

the training step of TENSO, normal historical trajectories are used. Then, a new trajectory

is detected whether it is an anomaly. In particular, the anomaly score of each trajectory is

determined based on the trained TENSO model. The trajectory is marked as an anomaly

if the anomaly score exceeds a given threshold. Determination of the anomaly score and

threshold are presented in detail as follows.
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Algorithm 1 Training procedure for TENSO

Input: - 𝑋𝑇𝑟𝑎𝑖𝑛 = {𝑇1, ..., 𝑇𝑁𝑇𝑟𝑎𝑖𝑛
}

- Number of epochs (𝑛𝑢𝑚𝑒𝑝𝑜𝑐ℎ)
- Batch size (𝑀)
- Temperatures 𝑇max, 𝑇min

Output: - Trained TENSO

1: Determine the number of iterations:
2: 𝑁𝑢𝑚𝑖𝑡𝑒𝑟𝑠 = 𝑛𝑢𝑚𝑒𝑝𝑜𝑐ℎ × [𝑁𝑇𝑟𝑎𝑖𝑛

𝑀 ]
3: for 𝑖𝑡𝑒𝑟 ← 1 to 𝑁𝑢𝑚𝑖𝑡𝑒𝑟𝑠 do
4: Get a batch of trajectories: {𝑇𝑖}𝑀𝑖=1

5: Determine the latent representation batch: {𝑧𝑖}𝑀𝑖=1

6: Determine the reconstructed terms of trajectories: {𝑇 (𝑥,𝑦)
𝑖 }𝑀𝑖=1 and {𝑇 𝑠

𝑖 }𝑀𝑖=1

7: Find BMUs of the latent representation batch: {𝑏𝑖}𝑀𝑖=1

8: Update temperature parameter 𝑇 using equation 6.5
9: Determine neighborhood function 𝐾𝑇 (𝑑(𝑏𝑖, 𝑣)) using equation 6.6
10: Update all parameters of TENSO using the total loss in equation 6.8
11: end for

6.2.2.1 Anomaly Score

To determine the anomaly score, the trajectory reconstruction errors and the quantization

error of latent representation on the SOM are used. The trajectory’s reconstruction er-

rors consist of two terms: the x-y coordinate reconstruction error and the semantic label

reconstruction error.

In two terms of the reconstruction errors, the x-y coordinate reconstruction error is

measured using LSED distance, which is defined as the following equation.

RE1 = LSED(𝑇 (𝑥,𝑦)
𝑖 , 𝑇

(𝑥,𝑦)
𝑖 ), (6.13)

where 𝑇
(𝑥,𝑦)
𝑖 is the x-y coordinate reconstruction of 𝑇 (𝑥,𝑦)

𝑖 .

To obtain the semantic label reconstruction error, the output of the softmax function

from the decoder is processed. This output is a sequence of vectors. Vector 𝑗𝑡ℎ contains

probabilities that the semantic label of point 𝑗𝑡ℎ belongs to label classes in dataset. The

error label detection probability of point 𝑗𝑡ℎ in each trajectory may be determined as (1−

𝑝𝑠𝑗,𝑘=Target label). 𝑝
𝑠
𝑗,𝑘=Target label is correct label detection probability for point 𝑗

𝑡ℎ. We define

the trajectory’s semantic label reconstruction error as the average value of trajectory point

error detection probabilities, which is determined as follows:

RE2 =
1

𝑛

𝑛∑︁
𝑗=1

(1− 𝑝𝑠𝑗,𝑘=Target label). (6.14)
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The quantization error is the distance between the latent representation of the trajectory

and its BMU’s prototype vector on the SOM [85]. In this work, quantization error is also

determined using LSED distance as follows:

QESOM = LSED(𝑧𝑖,𝑚𝑏𝑖), (6.15)

where 𝑧𝑖 is the latent representation of 𝑇𝑖, and 𝑚𝑏𝑖 is the prototype vector of BMU 𝑏𝑖 of

𝑧𝑖 on the SOM.

The anomaly score of each trajectory is determined as

AS = (𝛼× RE1 + 𝛽 × RE2) + (1− 𝛼− 𝛽)×QESOM, (6.16)

where 𝛼 and 𝛽 control the role of terms in the equation for AS. In this work, we set

𝛼 = 𝛽 = 0.25. With these values, the role of the quantization error on the SOM and the

reconstruction error by the Transformer encoder and decoder is the same (i.e., the weight is

0.5 for each term). Besides, the trajectory reconstruction errors for x-y coordinates and the

semantic label are considered equally (i.e., the weight is 0.25 for each term).

Since the probability 𝑝𝑠𝑗,𝑘=Target label belongs to the range of [0,1], the value of RE2 is also

in the range of [0,1] in equation 6.14. However, the values of RE1 and QE are determined

using the LSED metric, and their ranges may differ from [0,1]. Thus, we normalize RE1

and QE to the range of [0,1] using min-max normalization. This ensures all terms in the AS

equation have the same range.

6.2.2.2 Anomaly Threshold

To detect abnormal trajectories, a threshold is used. In this work, a new method is proposed

for determining the anomaly threshold based on anomaly scores of trajectories in the training

set. The anomaly threshold is defined as follows:

Thres = 𝜇ASt + 𝜃 × 𝜎ASt , (6.17)

where 𝜇ASt and 𝜎ASt are the mean and the standard deviation (SD) of the trajectory anomaly

scores in the training set; 𝜃 is a parameter determined by the new WS metric. Note that

since the training set only contains normal trajectories, Thres should be larger than 𝜇ASt .

Thus, 𝜃 should be positive.
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The value of 𝜃 is chosen based on the proposed framework’s performance on the validation

set. The new factor that is the weighted sum of recall and precision, is used for finding the

appropriate value of 𝜃. The equation for WS is defined as

WS = 𝛿 × Recall+ (1− 𝛿)× Precision, (6.18)

where 𝛿 is a parameter that controls the trade-off between recall and precision in WS. If 𝛿

is larger than 0.5, the role of recall is more important than precision; otherwise, precision is

more important. In our work, 𝛿 is set at 0.5.

Algorithm 2 Determine the anomaly threshold

Input: - Trained TENSO model
- 𝑋Train = {𝑇train1 , ..., 𝑇train𝑁T

}
- 𝑋Val = {𝑇val1 , ..., 𝑇val𝑁V

}
- Values 𝜃min, 𝜃max

Output: The chosen anomaly threshold: Threschosen
1: for 𝑖← 1 to 𝑁T do
2: Determine RE1,RE2,QESOM using TENSO with 𝑇train𝑖
3: Calculate 𝐴𝑆𝑇train𝑖

by equation 6.16
4: end for
5: for 𝑖← 1 to 𝑁V do
6: Determine RE1,RE2,QESOM using TENSO with 𝑇val𝑖
7: Calculate 𝐴𝑆𝑇val𝑖

by equation 6.16
8: end for
9: 𝜇ASt ← mean{AS𝑇train𝑖}𝑖={1,...,𝑁T}
10: 𝜎ASt ← SD{AS𝑇train𝑖}𝑖={1,...,𝑁T}
11: for 𝜃 ← 𝜃min to 𝜃max do
12: Thres ← 𝜇ASt + 𝜃 × 𝜎ASt
13: for 𝑖← 1 to 𝑁V do
14: if AS𝑇val𝑖 ≤ Thres then
15: 𝑇val𝑖 ← Normal trajectory
16: else
17: 𝑇val𝑖 ← Abnormal trajectory
18: end if
19: end for
20: Determine the number of True Positive (TP) samples in 𝑋Val

21: Determine the number of False Positive (FP) samples in 𝑋Val

22: Calculate recall and precision using TP, FP
23: Calculate WS by equation 6.18
24: end for
25: 𝜃chosen ← argmax

𝜃
WS

26: Threschosen ← 𝜇ASt + 𝜃chosen × 𝜎ASt

With an anomaly detection framework, it is expected that both recall and precision of
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𝜃𝑐ℎ𝑜𝑠𝑒𝑛 = 1.25

Figure 6.3: Choosing the value of 𝜃

the framework achieve high values. In this case, the WS of recall and precision also obtains

a high value. This only can be achieved if the anomaly threshold is selected appropriately. If

a small value of threshold is chosen, the framework tends to detect trajectories as anomalies.

Thus, recall obtains a high value, whereas precision is small. In contrast, if the anomaly

threshold is large, a trajectory is marked normal more easily. Therefore, recall is small and

precision is high. In both cases of threshold, the WS of recall and precision is small. From

these aspects, an appropriate threshold is selected that the framework achieves a maximum

value for WS. In this work, 𝜃 is chosen according to the maximum value of WS on the

validation set. It is expected that this value also yields a good performance with the test

set. A detailed description for choosing 𝜃 and the anomaly threshold is in Algorithm 2.

Figure 6.3 depicts the selected value for 𝜃 as 1.25, corresponding to the maximum WS value

for the validation set in the MIT Badge dataset. The chosen value of 𝜃 is larger than 0,

which is appropriate considering our previous statement about 𝜃.

6.2.3 Result Analysis

6.2.3.1 Baselines

In this work, we compare the proposed method with four baselines.

� Hierarchical clustering. In this baseline, the hierarchical clustering algorithm was

first applied to find the normal trajectory clusters in the dataset [53]. Then, a new

trajectory can be detected as an anomaly based on its relationship with the found

clusters.
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� DBSCAN. The work in [80] detected anomalous trajectories using DBSCAN. In this

work, a distance metric was proposed to measure the distance of trajectories, and the

Epsilon parameter of DBSCAN was determined using a new DCVI metric. To find

normal trajectory clusters in the dataset, DBSCAN was used. In detecting anomalous

trajectory, if a trajectory did not belong to any clusters, it was marked as an anomaly.

� LSTM-AE. In [39], an autoencoder-based framework for detecting anomalies was

proposed. The authors applied two autoencoders (CNN-AE and LSTM-AE) to learn

the latent spaces from input sequences. We compare the proposed framework with the

LSTM-AE-based framework in this baseline.

� LSTM-VAE. The authors in [81] proposed an anomaly detection framework with

multi-sensor measurement values for maritime components. Their model contained

a LSTM-based variational autoencoder (LSTM-VAE). The architecture of VAE con-

strained the latent space of input data to a standard normal distribution. Besides,

they used LSTM network in VAE to capture the temporal dependencies in the input

sequences. In detecting anomalies, the reconstructed sequences from VAE was used

to find the anomaly score. They determined a anomaly threshold based on the mean

and standard deviation of anomaly scores for normal samples in the validation set.

� Transformer. The study in [64] introduced an Transformer-based anomaly detection

framework for ECG signals. In this work, a deep learning model contains an embedding

layer and a standard Transformer encoder to learn latent representations of original

signals for detecting anomalies. Besides, an anomaly threshold was also determined

based on predicted errors of normal signals in the training set.

6.2.3.2 Implementation Details

The proposed model is implemented in Python 3.9.5 using the Tensorflow Keras library. To

train the model, the Adam optimizer is used with a learning rate of 0.001. The number of

training epochs is 40, and the batch size is 128. The model’s hyper-parameters are selected

based on the framework’s performance on the validation set. Besides, parameters 𝛾1 and

𝛾2 in the total loss function are chosen based on the learning curves of components in this

function. These experiments for selecting 𝛾1, 𝛾2 and the model hyper-parameters will be

discussed in subsections 6.2.3.5 and 6.2.3.6, respectively. The set of selected parameters is

listed in Table 6.2.
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Table 6.2: List of parameters

Parameters Value
Studied in
experiments

Input feature learning
Coordinates projecting dimension 64 ✓
Semantic projecting dimension 32 ✓

Transformer encoder
D-model 128 ✓

Num of heads 4 ✓
Num of layers 4 ✓

Decoder Hidden dimension of decoder 64 ✗

SOM
Map size of SOM 10x10 ✓

𝑇max 10 ✗

𝑇min 0.1 ✗

Total loss function
𝛾1 0.01 ✓
𝛾2 0.001 ✓

Learning rate 0.001 ✗

Epochs 40 ✗

Batch size 128 ✗

In the training phase, the best model is chosen at the epoch with the minimum vali-

dation loss. This means that choosing the model is based on the best result from learning

trajectory representations and their clusters in latent space. With a given hyper-parameter

set, selecting the best model in the training phase is independent of downstream tasks.

In the evaluation phase, the proposed framework uses both the MIT Badge and the

sCREEN datasets. Besides, this work is compared with five baselines: hierarchical clustering-

based, DBSCAN-based, LSTM-AE-based, LSTM-VAE-based, and Transformer methods. In

the LSTM-AE-based method, since a mechanism for determining the anomaly threshold was

not provided, we used the mechanism from the LSTM-VAE-based method to select an ap-

propriate threshold.

Besides, two variants of the TENSO model are evaluated in this subsection. In particular,

the first variant learns a latent space of normal trajectories using the Transformer encoder.

Then, the SOM layer is used to learn normal trajectory representation clusters in the latent

space. In this variant, the decoder is dropped, and trajectories are not reconstructed from

the latent space. The variant is called TE-SOM. In the anomaly detection phase, the TE-

SOM-based framework only uses the distance between the trajectory representation and its

nearest cluster in the latent space.

In contrast, the second variant based on the Transformer encoder and a decoder (TE-

Decoder) only learns normal trajectory representations. The SOM for learning normal tra-

jectory representation groups is dropped in TE-Decoder. To detect anomalies, the TE-

69



Chapter 6. Deep Learning-based Anomalous Trajectory Detection

Decoder-based framework only uses trajectory reconstruction errors. The results of all

methods for each anomaly type are presented below.

6.2.3.3 Detecting pricing group as anomaly

Since the occurrence frequency and movement behaviors in worker groups are different in

the MIT Badge dataset, a hypothesis is given to assign abnormal and normal labels to

trajectories in this dataset [33]. Specifically, if the occurrence frequency of a group is much

less than other groups, it can be considered an anomaly group. In the MIT Badge dataset,

the pricing group accounts for only about 18% of the total, and the configuration group is

approximately 72%. Therefore, workers’ trajectories in the pricing and configuration groups

are assigned as abnormal and normal samples, respectively. Table 6.3 shows the results of

all methods when detecting pricing group as anomaly in the MIT Badge dataset. We can

see that TENSO achieves 89.64% in terms of f1-score and outperforms all baselines.

In particular, the TENSO-based framework is significantly better than clustering-based

methods (i.e., about 19% better than hierarchical clustering and 6% better than DBSCAN).

With the clustering-based baselines, anomaly detection was only based on the relationship

between the test sample and clusters in the dataset. In other words, they did not discover

internal characteristics of trajectories. In contrast, TENSO jointly learns the correlation

between points within each trajectory and trajectory representation clusters in the latent

space to detect anomalies. Therefore, the proposed framework discovers more helpful in-

formation about trajectories, and improves accuracy in detecting anomalies. Note that the

DBSCAN-based method in [86] used a time window of 10 minutes to collect data for each

trajectory. In this work, to detect anomalies earlier, a shorter time window of only 2 minutes

is used. Since the trajectory length is smaller, determining whether the trajectory is normal

or abnormal becomes more difficult, and leads to lower performance.

Besides, our method detects anomalies more effectively than the existing deep learning-

based methods. In particular, TENSO outperforms LSTM-AE, LSTM-VAE and Trans-

former at 10.55%, 12.31% and 9.83%, respectively, in terms of f1-score. These baselines

focused on learning a latent space that captures the internal characteristics of trajectories.

Anomalies were detected using reconstructed trajectories through the models. However, the

three baselines did not discover the clusters of trajectory representations in the latent space

for anomaly detection, which is performed in the TENSO model. This explains that the

TENSO-based framework achieves better performance than the baselines.

70



Chapter 6. Deep Learning-based Anomalous Trajectory Detection

Table 6.3: Results for detecting pricing group as anomaly in MIT Badge dataset.

Method Recall Precision f1-score

Hierarchical clustering 0.7368 0.6708 0.7009

DBSCAN 0.8563 0.8149 0.835

LSTM-AE 0.8798 0.7183 0.7909

LSTM-VAE 0.7695 0.7772 0.7733

Transformer 0.7924 0.8039 0.7981

TE-SOM 0.9275 0.7595 0.8351

TE-Decoder 0.8066 0.8744 0.8392

TENSO 0.9009 0.892 0.8964

The TE-SOM and TE-Decoder variants achieve similar results in terms of f1-score (i.e.,

about 84%). In other aspects, TE-SOM obtains the highest recall at 92.75 % while only

achieving approximately 76% for precision. In contrast, TE-Decoder outperforms TE-SOM

in precision by about 11%. Thus, combining the two variants in TENSO helps achieve the

best anomaly detection performance where both recall and precision are high.

6.2.3.4 Detecting synthesized anomalies

Three anomaly types (i.e., rare location visiting anomaly, wandering anomaly and route

anomaly) are injected into both datasets for the evaluation. We also change the 𝜏 parameter

to control the abnormality level of synthesized trajectories. In particular, 𝜏 is set to 0.5,

0.75 and 1 according to the time for anomaly part in each trajectory being 1, 1.5 and 2

minutes, respectively.

Tables 6.4 and 6.5 present the results of all methods when detecting three synthesized

anomaly types in the MIT Badge and sCREEN datasets, respectively. The proposed frame-

work achieves the best performance in these experiments compared with all the baselines.

In particular, with the MIT Badget dataset, the TENSO-based framework detects all rare

location visiting and wandering anomalies for three 𝜏 settings and achieves an f1-score of

94.83%. With route anomalies, the f1-score is achieved at 87.07%, 94.49% and 94.71% ac-

cording to 𝜏 be 0.5, 0.75 and 1, respectively. With the sCREEN dataset, the proposed

framework also achieves results similar to the MIT Badge dataset. All rare location visiting

anomalies are identified, and the f1-score is approximately 96% in this case. The results

for detecting route and wandering anomalies are also high, with f1-score at about 91% and

93%, respectively, for 𝜏 of 0.5. When 𝜏 increases to 0.75 and 1, f1-score is about 95% for

both anomaly types. In both datasets, as can be seen that when 𝜏 increases, the anomaly
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Table 6.4: Results for detecting synthesized anomalies in the MIT Badge dataset

Synthesized
anomalies

𝜏 (%) 0.5 0.75 1

Method Recall Precision F1-score Recall Precision F1-score Recall Precision F1-score
Rare location
visiting anomaly

Hierarchical
clustering

0.9715 0.6892 0.8064 1 0.6954 0.8203 1 0.6954 0.8203

DBSCAN 0.6579 0.7718 0.7104 1 0.8371 0.9113 1 0.8371 0.9113
LSTM-AE 0.9988 0.7432 0.8522 1 0.7434 0.8528 1 0.7434 0.8528
LSTM-AE 0.9628 0.8136 0.882 0.9895 0.8177 0.8954 0.9994 0.8192 0.9004
Transformer 0.9988 0.8378 0.9112 0.9994 0.8379 0.9116 1 0.838 0.9119
TE-SOM 1 0.7729 0.872 1 0.7729 0.872 1 0.7729 0.872

TE-Decoder 1 0.8961 0.9452 1 0.8961 0.9452 1 0.8961 0.9452
TENSO 1 0.9017 0.9483 1 0.9017 0.9483 1 0.9017 0.9483

Route anomaly
Hierarchical
clustering

0.5713 0.566 0.5686 0.938 0.6817 0.7896 0.9418 0.6825 0.7915

DBSCAN 0.544 0.7366 0.6258 0.9789 0.8342 0.9008 0.9957 0.8365 0.9092
LSTM-AE 0.8854 0.7195 0.7939 0.9882 0.7412 0.8471 0.995 0.7425 0.8504
LSTM-AE 0.8841 0.8003 0.8402 0.9281 0.808 0.8639 0.9622 0.8135 0.8816
Transformer 0.8742 0.8189 0.8456 0.9368 0.8289 0.8796 0.9851 0.836 0.9044
TE-SOM 0.9039 0.7547 0.8227 0.964 0.7665 0.854 0.9962 0.7723 0.8701

TE-Decoder 0.8296 0.8774 0.8529 0.9368 0.8899 0.9128 0.9857 0.8948 0.9381
TENSO 0.855 0.8869 0.8707 0.9932 0.9011 0.9449 0.9975 0.9014 0.9471

Wandering
anomaly

Hierarchical
clustering

0.6406 0.5939 0.6164 0.7429 0.6291 0.6813 0.7745 0.6387 0.7001

DBSCAN 0.7534 0.7948 0.7735 0.9994 0.8371 0.911 1 0.8371 0.9113
LSTM-AE 0.9994 0.7433 0.8525 1 0.7434 0.8528 1 0.7434 0.8528
LSTM-AE 0.8618 0.7962 0.8277 0.9449 0.8107 0.8727 0.995 0.8186 0.8982
Transformer 0.9473 0.8305 0.8851 0.9752 0.8346 0.8994 0.9777 0.8349 0.9007
TE-SOM 0.9993 0.7728 0.8717 1 0.7729 0.872 1 0.7729 0.872

TE-Decoder 1 0.8961 0.9452 1 0.8961 0.9452 1 0.8961 0.9452
TENSO 1 0.9017 0.9483 1 0.9017 0.9483 1 0.9017 0.9483

detection accuracy of all methods is also larger for all anomaly types. Since abnormality in

trajectories is higher when 𝜏 increases, they are detected more easily. Thus, the anomaly

detection results are higher.

In the clustering-based baselines, when 𝜏 = 0.5, the anomaly detection performance

is much lower than the deep learning-based methods in both datasets. For example, at

𝜏 = 0.5, the TENSO-based framework outperforms the hierarchical clustering-based method

by about 30% for route and wandering anomalies in the MIT Badge dataset, and for all

anomaly types in the sCREEN dataset. This can be explained that the clustering-based

detection methods’ performance was affected by the distance metric of trajectories. In these

baselines, the distance metrics (i.e., the longest common subsequence (LCSS) in the hierar-

chical clustering-based method and the extension of LCSS (LCSS_IS) in the DBSCAN-based

method) were used. LCSS and LCSS_IS aim at finding the largest number of similar points

between two trajectories, ignoring unmatched points. In other words, these metrics tend

to find normality rather than abnormality [86]. Thus, if the anomaly part in synthesized

trajectories is small, anomaly detection performance of clustering-based methods is low.
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Table 6.5: Results for detecting synthesized anomalies in the sCREEN dataset

Synthesized
anomalies

𝜏 (%) 0.5 0.75 1

Method Recall Precision F1-score Recall Precision F1-score Recall Precision F1-score

Rare location
visiting anomaly

Hierarchical
clustering

0.9677 0.5176 0.6745 1 0.5258 0.6892 1 0.5258 0.6892

DBSCAN 0.7948 0.739 0.7659 1 0.7808 0.8769 1 0.7808 0.8769
LSTM-AE 1 0.7942 0.8853 1 0.7942 0.8853 1 0.7942 0.8853
LSTM-AE 1 0.8019 0.8901 1 0.8019 0.8901 1 0.8019 0.8901
Transformer 1 0.871 0.931 1 0.871 0.931 1 0.871 0.931
TE-SOM 0.9625 0.819 0.885 0.9916 0.8234 0.8997 0.998 0.8243 0.9029

TE-Decoder 1 0.9093 0.9525 1 0.9093 0.9525 1 0.9093 0.9525
TENSO 1 0.9214 0.9591 1 0.9214 0.9591 1 0.9214 0.9591

Route anomaly

Hierarchical
clustering

0.9375 0.5096 0.6603 0.9977 0.5252 0.6882 1 0.5258 0.6869

DBSCAN 0.6772 0.707 0.6918 1 0.7808 0.8769 1 0.7808 0.8769
LSTM-AE 0.9008 0.7766 0.8342 0.9011 0.7767 0.8343 0.9034 0.7771 0.8356
LSTM-AE 0.7654 0.756 0.7654 1 0.8019 0.8901 1 0.8019 0.8901
Transformer 0.936 0.8634 0.8982 0.9997 0.871 0.9309 1 0.871 0.931
TE-SOM 0.9974 0.8242 0.9026 0.9974 0.8242 0.9026 0.9974 0.8242 0.9026

TE-Decoder 0.8406 0.894 0.8665 0.9594 0.9059 0.9318 0.9948 0.9089 0.9499
TENSO 0.9201 0.9151 0.9177 0.989 0.9206 0.9536 0.9925 0.9208 0.9553

Wandering
anomaly

Hierarchical
clustering

0.8671 0.4901 0.6262 0.9392 0.5101 0.6611 0.9524 0.5136 0.6673

DBSCAN 0.8075 0.7421 0.7734 1 0.7808 0.8769 1 0.7808 0.8769
LSTM-AE 0.9302 0.7821 0.8498 1 0.7942 0.8853 1 0.7942 0.8853
LSTM-AE 0.9484 0.7934 0.864 1 0.8019 0.8901 1 0.8019 0.8901
Transformer 0.9945 0.8704 0.9283 0.998 0.8708 0.93 1 0.871 0.931
TE-SOM 0.9107 0.8107 0.8578 0.9326 0.8143 0.8694 0.9974 0.8242 0.9026

TE-Decoder 0.9971 0.9091 0.9511 1 0.9093 0.9525 1 0.9093 0.9525
TENSO 0.944 0.9171 0.9304 0.9674 0.9189 0.9426 0.9948 0.921 0.9565

Moreover, as stated previously, the clustering-based baselines only use the relationship

between the test trajectory and the clusters of normal trajectories in the dataset to detect

anomalies. They did not explore the internal characteristics of the trajectories. Therefore,

their performance is still lower than the proposed framework even when abnormality in

synthesized trajectories increases (e.g., 𝜏 = {0.75, 1}).

In the existing deep learning-based methods, the best model (i.e., Transformer) achieves

91.19% and 93.1% in terms of f1-score for detecting rare location visit anomaly in the MIT

Badge and sCREEN datasets, respectively. The results are still lower than the TENSO-

based framework by 3.64% with the MIT Badge dataset and by 2.55% with the sCREEN

dataset. The reason for the performance difference is that the baselines were solely based on

trajectory reconstruction errors to detect anomalies. In contrast, the proposed framework

uses both trajectory reconstruction error and quantization error on SOM. Tables 6.4 and 6.5

also show that the Transformer-based method is better than LSTM-AE-based and LSTM-

VAE-based methods on both datasets in terms of f1-score. This can be explained that the

Transformer architecture is more effective than LSTM architecture in learning trajectory
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representations for detecting anomalies.

With the two variants of the proposed model, TE-Decoder achieves high precision while

TE-SOM maintains high recall for all anomaly types. Therefore, the combination of TE-

Decoder and TE-SOM in TENSO significantly improves detection results with both datasets,

as shown in Tables 6.4 and 6.5. Besides, as can be seen that TE-Decoder also has an attrac-

tive performance in f1-score for all anomalies. This variant is even better than the TENSO-

based method when detecting the wandering anomaly in the sCREEN dataset: about 2%

and 1% higher for f1-score when 𝜏 = 0.5 and 0.75, respectively. This means that learning

internal characteristics and sequential information of trajectories based on the Transformer

encoder and decoder plays an important role in detecting anomalies. In addition, as can be

seen from Tables 6.4 and 6.5, the TE-Decoder variant also outperforms Transformer-based

method, although both models also use the Transformer architecture. This is because an

effective way to select the anomaly threshold is provided in the TE-Decoder. In contrast, in

the Transformer-based method, a fixed value is used in the formulation of determining the

anomaly threshold, which affects the performance of detecting anomalies.

From Tables 6.4 and 6.5, it can be shown that the deep learning-based methods can detect

easily the rare location visiting anomaly. This is possibly explained that this anomaly type

contains rare locations, which the deep learning models do not see in the training phase.

Thus, the rare location visiting anomaly is not reconstructed well by the models, and they

are detected more easily than two remaining anomaly types. For example, the lowest recall

still achieves 96.28% for LSTM-VAE in the MIT Badge dataset and 96.25% for TE-SOM

in the sCREEN dataset. With the TENSO-based framework, all anomalies of this type are

detected.

Note that if anomaly detection ability of a method does not change over different anomaly

types, the f1-score of the method is the same for the anomaly types. Since the anomaly

detection ability is maintained, the number of true positive samples does not change over

the anomaly types. Besides, since normal samples are maintained when evaluating the

methods for all anomaly types, the number of false positive samples is also kept. Thus,

the f1-score, determined using the number of true positive and false positive samples, is the

same for the anomaly types. For example, in the MIT Badge dataset, since all samples of

rare location visiting and wandering anomalies are correctly detected by the TENSO-based

framework, the results in terms of the f1-score for this method are the same for the two

anomaly types.
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(a) (b) (c)

(d) (e) (f)

Figure 6.4: Component loss functions when changing 𝛾1 and 𝛾2: (a) 𝐿1 when changing 𝛾1.
(b) 𝐿2 when changing 𝛾1. (c) 𝐿SOM when changing 𝛾1. (d) 𝐿1 when changing 𝛾2. (e) 𝐿2

when changing 𝛾2. (f) 𝐿SOM when changing 𝛾2.

6.2.3.5 Sensitivity of Parameters in Loss Functions

This subsection discusses the 𝛾1 and 𝛾2 parameters that controls the trade-off between

components in the total loss function of the proposed model. The experiments are performed

with the MIT Badge dataset.

The influence of these parameters on 𝐿1, 𝐿2, and 𝐿SOM (i.e., the loss function for recon-

structing x-y coordinates, the loss function for reconstructing semantic information, and the

loss of the SOM, respectively) is shown in Figure 6.4. As can be seen in Figure 6.4 that 𝐿1

has the smallest amplitude. The amplitude of 𝐿SOM is the largest and is much larger than

the two remaining components. Note that the weight of 𝐿1 in the total loss function is 1.

Thus, to ensure the trade-off between components in the total loss function, the weight of

𝐿2 (i.e., 𝛾1) should be smaller than 1, and the weight of 𝐿SOM (i.e., 𝛾2) should be smaller

than 𝛾1.

To evaluate the effect of 𝛾1 on the learning curves, 𝛾2 is kept to a value smaller than 1

(e.g., 0.001), and we change 𝛾1 to different values {0.001, 0.01, 0.1, 1}. The top row of Figure

6.4 shows the evolution of three learning curves in the total loss function when changing

𝛾1. In Figure 6.4(a), the learning curves of 𝐿1 according to values of 𝛾1 are only slightly
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different. This can be explained that since the amplitude of 𝐿2 is not much larger than 𝐿1,

the effect of changing the weight of 𝐿2 on the learning curve of 𝐿1 is unclear. Besides, as

can be seen in Figure 6.4(c) that optimization of the SOM loss is ensured with each value

of 𝛾1. As previously shown, the amplitude of 𝐿2 is much smaller than 𝐿𝑆𝑂𝑀 . Thus, the

optimizing process of 𝐿SOM is also not influenced by 𝛾1. In contrast, since 𝛾1 is the weight

of 𝐿2, it directly affects the learning curve of 𝐿2. In particular, the optimizing process is

slow when the weight is too small (e.g., when 𝛾1 = 0.001). When the weight is near or equal

to 1, the learning curve is not smooth, and quickly drops to the optimal value in the first

few training epochs. Therefore, to ensure optimization of all components in the total loss

function, an appropriate 𝛾1 value of 0.01 is chosen.

Next, the evolution of learning curves when changing 𝛾2 is shown in the bottom row of

Figure 6.4. Note that in the experiments, 𝛾1 = 0.01. As can be seen that the 𝐿1 and 𝐿2

reconstruction losses are clearly affected when 𝛾2 is changed. That is possibly explained

that the value of 𝐿SOM is much higher than 𝐿1 and 𝐿2. Thus, when the weight of 𝐿SOM

changes, it influences these losses remarkably. In particular, with a value for 𝛾2 of 0.1 or

1, the optimizing process of 𝐿1 is improper, as seen in Figure 6.4(d). It decreases quickly

after the first few epochs and then increases significantly in the subsequent epochs before

reaching the optimal value. When 𝛾2 is reduced to one of the {0.0001, 0.001, 0.01} values,

the optimization of this function is ensured. Similarly, the 𝐿2 reconstruction loss function

is not optimized correctly with 𝛾2 from the set {0.01, 0.1, 1} as seen in Figure 6.4(e). With

the SOM loss, 𝛾2 has more influence than 𝛾1 on the learning curve. The reason is that 𝛾2 is

the weight of 𝐿SOM, directly affecting this learning curve. However, optimization of 𝐿SOM

is still properly ensured with all the values of 𝛾2. From the above analysis, we select 0.001

as the 𝛾2 value, which is appropriate for the three loss functions.

6.2.3.6 Effects of hyper-parameters

A discussion about the effects of model hyper-parameters on the proposed framework’s

performance is given in this subsection. Specifically, Figure 6.5 shows the effects of six

hyper-parameters: the x-y coordinate projecting dimension, semantic information projecting

dimension, d_model (i.e., the input dimension of the Transformer encoder), the number for

multi-head self-attention, the number of layers in the Transformer encoder, and the map size

of the SOM layer. The experiments are performed on the validation set of the MIT Badge

dataset, and both hypothesized and synthesized anomalies are used for evaluation. Note
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(a) (b) (c)

(d) (e) (f)

Figure 6.5: Influence of parameters on the performance in MIT Badge dataset: (a) Coordi-
nates projecting dimension. (b) Semantic projecting dimension. (c) D-model. (d) Number
of multi head self-attention. (e) Number of Transformer encoder layers. (f) Map size.

that the synthesized anomalies are generated with 𝜏 = 1 in the experiments. The proposed

framework’s performance is presented in terms of the f1-score.

First, as can be seen in Figures 6.5(a) and 6.5(b) that the route anomaly detection ability

by the framework is clearly affected when changing semantic information and coordinates

projecting dimensions of trajectory points. In contrast, with the remaining anomalies, the

framework performance is stable over the different values for these hyper-parameters. Thus,

selecting semantic information and coordinate projecting dimensions is based on the perfor-

mance from detecting the route anomaly. In particular, the semantic information and the

coordinate projecting dimensions are set to 32 and 64, respectively. The proposed framework

achieves the best performance on the route anomaly at these values.

Next, Figures 6.5(c), 6.5(d) and 6.5(e) present the effects on framework’s performance

from hyper-parameters on the Transformer encoder (i.e., the d_model, the number for multi-

head self-attention, and the number of Transformer encoder layers, respectively). In Figure

6.5(c), framework performance is stable over all anomaly types when the d_model is not

greater than 128. If d_model = 256, the performance decreases. One possible reason is
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that when the d_model is too large, the model becomes more complex and causes the over-

fitting problem. In the case, the value of the d_model is set at 128. From Figures 6.5(d)

and 6.5(e), the number for multi-head self-attention and the number of Transformer encoder

layers are set at 4. These values are chosen to ensure the trade-off between effectiveness and

computational cost.

Finally, the effect of map size on the SOM is shown in Figure 6.5(f). As can be seen in

Figure 6.5(f), the framework’s performance when changing the map size is also stable for

hypothesized anomalies (i.e., pricing group’s trajectories) and the two synthesized anomaly

types (i.e., rare location and wandering anomalies). Therefore, choosing the map size is

also based on the proposed framework’s performance when detecting route anomaly. From

Figure 6.5(f), the map size is chosen at 10 according to the best performance on the route

anomaly.

6.3 Chapter Summary

This work proposed an anomalous indoor human trajectory detection framework using a

deep learning model. Our proposed model was based on the Transformer encoder and SOM,

which jointly learned normal trajectories’ representations and their clusters in the latent

space. In particular, the Transformer encoder with a self-attention mechanism was used to

learn the correlations between points within each trajectory and its sequence information.

A decoder reconstructed the input trajectory from its latent representation. In addition, the

SOM layer was used to learn clusters of normal trajectory representations in the latent space.

In detecting anomalous trajectories, the anomaly score of the test trajectory was determined

by using the trained model. The trajectory’s anomaly score contained the trajectory recon-

struction errors from the latent space and the quantization error on the SOM. If the anomaly

score exceeded a set threshold, the test trajectory was detected as an anomaly. In this work,

we also proposed a novel metric called WS, the weighted sum of recall and precision for

determining the anomaly threshold. Especially an appropriate anomaly threshold was se-

lected according to the maximum value for WS with the validation set. Our framework

was estimated using two real trajectory datasets: MIT Badge and sCREEN. The results

depicted that the proposed framework achieved attractive performance, and outperformed

existing methods in anomaly trajectory detection.

In the future, we will extend the proposed model to learn more information about tra-

jectories (e.g., speed, direction) to improve anomaly detection performance. Besides, the

78



Chapter 6. Deep Learning-based Anomalous Trajectory Detection

model will be developed to detect the anomaly trajectories even if the trajectories are not

complete.
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Chapter 7

Concluding Remarks

7.1 Summary of the Contribution

This dissertation studies problems in anomalous human trajectory detection in indoor spaces.

First, we studied abnormal indoor human trajectory types. Then, a density-based frame-

work for detecting anomalous trajectories was proposed. Next, a trajectory clustering-based

anomalous indoor human trajectory detection framework was introduced to improve the

performance of detecting anomalies. Finally, a deep learning model was developed to learn

the characteristics of trajectories for detecting abnormalities.

Anomalous trajectory types in indoor human movements are crucial for evaluating pro-

posed anomalous detection frameworks. Thus, we studied abnormal human trajectory types

in indoor spaces, which can occur in real-world environments. Then, these anomaly types

were synthesized and injected into datasets for evaluation. In this chapter, we also introduced

the density-based anomalous trajectory detection framework. This framework proposed a

new method for determining distance and density thresholds. A trajectory was detected

as an anomaly if its density was smaller than a density threshold. The results show that

our framework detected anomalies efficiently and outperformed the EMM-based anomalous

detection framework.

In the next chapter, the clustering-based anomalous trajectory detection framework was

studied. In particular, a new distance metric called LCSS_IS, extending from LCSS, was

first proposed to improve the performance of measuring the distance between indoor hu-

man trajectories. Then, to improve the performance of clustering trajectories in datasets,

a new metric (DCVI) was introduced for choosing the Eps parameter in DBSCAN. To de-

tect abnormal trajectories, clusters in datasets were first discovered using DBSCAN. Then, a
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trajectory was marked as an anomaly if it did not belong to any clusters in datasets. The ex-

periments showed that the proposed framework was better than baselines (i.e., EMM-based,

density-based, hierarchical clustering-based and spectral clustering-based). In addition, the

proposed distance metric was also more efficient than existing distance metrics (i.e., Eu-

clidean, EDR, LCSS, ISTSM).

To learn more trajectory characteristics for detecting anomalous trajectories, a deep

learning model called TENSO was proposed. In TENSO, a Transformer encoder was used

to learn a latent space of trajectories, which captured the internal characteristics of tra-

jectories. From the latent space, a SOM layer was used to learn clusters of trajectory

representations. To train the model, a total loss function of reconstruction and SOM losses

was proposed. In addition, to detect anomalous trajectories, a new method for determining

anomaly thresholds was proposed. A trajectory was detected as an anomaly if its anomaly

score was larger than the anomaly threshold. The performance of the TENSO-based frame-

work was evaluated and compared with traditional methods (i.e., hierarchical clustering-

based, DBSCAN-based) and models (i.e., LSTM-AE-based, LSTM-VAE-based and variants

of TENSO). The results showed that our model achieved the best performance.

In summary, the main contributions of this work are as follows:

� We studied characteristics of abnormal human trajectory types in indoor spaces, which

can occur in urgent situations. Then, these anomaly types were generated and injected

into datasets for evaluating abnormal trajectory detection frameworks.

� We proposed a density-based anomalous trajectory detection framework. In this

method, anomaly thresholds are determined based on distribution of trajectories in

datasets.

� Trajectory clustering-based anomalous indoor trajectory detection is proposed to im-

prove anomaly detection ability. A new metric called LCSS_IS is proposed for indoor

human trajectories. Besides, a new cluster validity index called DCVI is proposed to

choose the Eps parameter of DBSCAN. In detecting anomalies, a trajectory is detected

based its relationship and clusters in datasets.

� A deep learning model was proposed to learn trajectory characteristics for detecting

abnormal trajectories. In our model, both internal characteristics of trajectories and

clusters of trajectory representations in latent space was discovered. To learn the

internal characteristics of trajectories, the Transformer encoder was used. Then, a
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SOM layer was used to learn clusters of trajectory representations from the latent

space of trajectories.

� For the problem of choosing a threshold to detect anomalies, we developed a new met-

ric called WS, which is a weighted sum of recall and precision. To find an appropriate

anomaly threshold value, normal trajectory scores in the training set were first deter-

mined. Then, the framework’s performance was evaluated on a validation set using

WS. An anomaly threshold was chosen according to the maximum value of WS.

� Various experiments have been conducted to evaluate the proposed anomaly detec-

tion frameworks. Specifically, the proposed frameworks were evaluated using two real

trajectory datasets: MIT Badge and sCREEN. The results show that our frameworks

efficiently detected anomalous human trajectory types in indoor spaces. Specifically,

the TENSO-based framework achieved an attractive performance and outperformed

all evaluated frameworks.

7.2 Future Works

For studying anomalous human trajectory types in indoor spaces, we discover characteristics

of three anomaly types: rare location visiting anomaly, wandering and route anomalies.

These anomaly types can occur in some urgent situations in workplaces, such as fire, violent

attacks, theft, and terrorism. In the future, we want to study more anomalous human

trajectory types in indoor spaces. For example, one person can suffer from an accident, and

they stop at the location for a longer period.

In the clustering-based anomalous detection framework, there are still a few limitations.

First, several features of trajectory data, such as speed and moving direction, were not

considered for calculating the distance between trajectories. Second, the proposed method

was not evaluated on datasets with complex floor plans, such as buildings with many floors.

We plan to extend this framework to address the above limitations in a future study.

For learning characteristics using deep learning models, we also want to extend the

proposed model to learn more information about trajectories (e.g., speed, direction) to

improve anomaly detection performance. Besides, the model will be developed to detect the

anomaly trajectories even if the trajectories are not complete.
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