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Abstract

Human mobility prediction plays a pivotal role in a wide range of applications, including

targeted advertising, traffic management, urban planning, and the containment of contagious

diseases. In the context of Mobile Crowd Sensing (MCS), where mobile users collect sensory

data in their daily lives, human mobility prediction offers the potential to enhance the

data-collection process by optimizing resource allocation based on future human locations.

However, predicting human mobility is a challenging problem, characterized by non-linear,

dynamic patterns influenced by various factors such as time, weather, and events. Therefore,

the main goal of this dissertation is to address two primary challenges: the development of

accurate and efficient human mobility prediction models, and the effective application of

human mobility prediction to enhance MCS systems. To achieve these goals, we propose

two distinct frameworks.

In the first framework, we focus on location prediction within the realm of human mo-

bility. Prior research primarily concentrated on modeling individual mobility patterns in

isolation, often neglecting valuable insights that can be gained from the movements of com-

panions. To bridge this gap, our research introduces a two-phase framework that capital-

izes on spatio-temporal contexts embedded in both the person of interest (POI) and their

companions’ mobility patterns. Initially, the framework identifies companions using spatial

closeness (SC) and person ID embedding (PIE) vectors. Additionally, it effectively addresses

the challenge of dimensionality through the application of a stacked autoencoder, where the

encoder part plays a pivotal role in solving the problem. In the second phase, a bidirectional

recurrent neural network (BRNN)-based multi-output model is employed to precisely fore-

cast the POI’s future locations across various time slots. This process is optimized using a

weighted loss approach that takes into account the significance of each future time slot for

accurate location predictions.

In the second framework, our focus shifts to the selection of opportunistic workers (OWs)

in the context of Mobile Crowd Sensing (MCS). We propose a novel framework known

as ’Context-Aware Worker Recruitment based on a Mobility Prediction Model’ (CAMP)

to efficiently choose the most suitable workers who can complete a maximum number of

sensing tasks within a given budget constraint. CAMP operates in two phases. Initially,

it predicts the future locations of workers and subsequently selects a group of workers to

carry out sensing tasks. Diverging from traditional approaches, CAMP enhances worker
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mobility prediction using a recurrent neural network-based model, substantially improving

location prediction accuracy during the first phase. In the second phase, we introduce

a weighted-utility algorithm that takes into account variations in task distribution across

different locations and sensing cycles. The integration of accurate mobility prediction and

the weighted-utility worker selection algorithm positions CAMP as a superior solution for

optimizing task allocation within the MCS framework.

We conducted comprehensive experiments to assess the performance of the proposed

next-location prediction and worker selection frameworks across diverse large datasets. The

evaluation results demonstrate that the location prediction frameworks achieve higher pre-

dictive accuracy, while the worker selection framework successfully completes more tasks

within the same budget constraints compared to their alternatives.
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Chapter 1

Introduction

1.1 Human Mobility Prediction

Human mobility prediction serves a critical role in a wide spectrum of applications, encom-

passing fields like advertising, traffic management, urban planning, and the control of con-

tagious diseases [1–3]. For instance, governments can enhance transportation planning and

alleviate traffic congestion and crowd management by predicting people’s whereabouts [4].

Ride-hailing services such as Uber and Grab rely heavily on precise mobility prediction algo-

rithms to accurately gauge customer travel demands and allocate resources efficiently [5,6].

In opportunistic mobile social networks, where each mobile user is regarded as a node, ac-

curate prediction of the next node’s position reduces the number of route discoveries and

minimizes hop counts for source-to-destination paths [7, 8]. Notably, in industrial zones,

predicting worker locations based on their recent movements is vital for improving safety

and expediting rescue operations in the event of an incident [9, 10].

Existing methods, such as [11–14], primarily concentrate on developing models that

capture the sequential nature of human mobility preferences for the person-of-interest (POI)

only. These methods often overlook the spatio-temporal context of a person’s movement

companions, thus missing out on valuable information associated with companion mobility.

1.2 The Proposed Companion Mobility to Assist in Future Human Location

Prediction Framework

Motivated by the fact that people frequently move with friends, colleagues, or coworkers;

therefore, incorporating mobility information about companions can improve the perfor-

mance of a location-prediction model, we propose a two-phase framework that takes ad-
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Chapter 1. Introduction

vantage of a person’s companions’ mobility information to predict the next location of the

person-of-interest (POI). In a nutshell, we propose two new methods to choose compan-

ions of the POI. Then, utilizing mobility information of both the POI and his/her chosen

companions, a bidirectional recurrent neural network (BRNN) predicts the POI’s future

locations.

For the first phase, two companion selection methods are proposed to determine the

POI’s companions so their mobility information can help predict the POI’s future locations.

The first method uses a spatial closeness (SC) [15] metric that measures the similarity

in mobility between the POI and others, and then selects the most similar individuals as

the POI’s companions. For the second companion selection method, a person ID embedding

(PIE) matrix is learned. Each embedding vector in the PIE matrix represents an individual’s

mobility characteristics. Similarity scores between the POI’s PIE vector and vectors of other

people are calculated using cosine similarity. Those who have PIE vectors with the highest

similarity score to the POI’s PIE vector are selected as her/his companions.

In machine learning, one-hot encoding vectors are conventionally used to represent cate-

gorical inputs to the model. However, extensive use of one-hot vectors can lead to the curse

of dimensionality, especially as vector lengths increase. This can adversely affect model

performance and training time. Therefore, in the first phase of the framework, we employ

a stacked autoencoder [16] to address the curse of dimensionality. Specifically, instead of

directly inputting one-hot vectors of various input features (such as location, day of the

week, time slot of the day, and ID) into the prediction model in the second phase, they

first pass through the encoder layer of the autoencoder. The encoder layer transforms input

features into dense representations, effectively reducing input dimensionality and capturing

intricate correlations between input features, thereby improving the model’s prediction.

In the second phase, the BRNN-based multi-output prediction model forecasts future

personal locations using recent mobility data from the POI and the selected companions.

The advantage of BRNN lies in its ability to process input both in the forward and re-

verse temporal order, mitigating the limitation of traditional RNNs that only process input

sequentially. This enables the BRNN to consider future context. Furthermore, the multi-

output model is designed to predict the person’s location in several time slots with varying

time gaps. For example, if the time slot length is 15 minutes and the person is currently in

time slot 𝑡, the model predicts positions for time slots 𝑡 + 1, 𝑡 + 4, 𝑡 + 8, 𝑡 + 12, and 𝑡 + 16

(corresponding to 15 minutes, one hour, two hours, three hours, and four hours later, re-
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Chapter 1. Introduction

spectively).

The proposed model was trained and tested using two large-scale Wi-Fi trace datasets,

the Dartmouth dataset [17] and the UB dataset [18]. We compared our model’s perfor-

mance to that of several baselines: the Markov model [11], SERM [12], VANext [13], and

DPBPT [14]. The results show that the proposed model outperformed the baseline models

in predicting the person’s next several locations.

1.3 Opportunistic Worker Selection In Mobile Crowd Sensing

In addition to its applications in the aforementioned contexts, human mobility prediction

plays a crucial role in the realm of Mobile Crowd Sensing (MCS). MCS, a method char-

acterized by the active participation of dynamically moving mobile users, often referred to

as "workers," has emerged as a highly promising approach for collecting a diverse array

of urban data. Workers, equipped with mobile devices, contribute to the acquisition of

valuable environmental, economic, and social data. This method has garnered significant

attention from both academic and industrial communities, primarily owing to its potential

to offer highly accurate, cost-effective, and scalable sensing solutions, as noted in previous

surveys [19,20].

MCS, however, introduces its unique set of challenges. Workers’ mobility patterns can

be intricate and unpredictable, with individuals traversing various locations, sometimes in-

termittently or with varying frequencies. Here, the role of human mobility prediction comes

into focus. By leveraging predictive models that estimate the future locations of workers,

we can significantly enhance the efficiency and effectiveness of MCS data collection. These

models, as presented in this dissertation, provide MCS systems with the ability to anticipate

worker locations, consequently optimizing resource allocation and task distribution in real-

time. As a result, the integration of human mobility prediction into MCS not only refines

the data collection process but also bolsters its capabilities to address various environmen-

tal, economic, and social challenges more adeptly, enabling the development of innovative

applications that benefit society at large [21,22].

Task allocation in MCS involves strategically assigning sensing tasks to mobile workers

to efficiently collect data in urban areas [23]. It optimizes worker selection based on mobility,

expertise, and availability for timely task completion. This enhances MCS project perfor-

mance, impacting data quality, completion rates, and resource use. Various approaches

consider factors like worker mobility prediction, task traits, and geography. Workers are
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Chapter 1. Introduction

categorized as participatory (move to task locations) or opportunistic (integrate tasks into

routines). Participatory workers ensure task completion but face limitations [24,25]. Work-

ers must deviate from their regular schedules and travel to specific locations to complete

the tasks, which can be inconvenient and costly. Even if they are willing to contribute

sensing data, the cost may deter some workers from participating. Furthermore, the cost of

MCS projects in participatory mode is frequently higher from providing incentives to cover

workers’ travel expenses.

Opportunistic workers (OWs) play an important role in MCS [26,27]. The OWs offer an

efficient and cost-effective approach, as workers contribute data seamlessly while going about

their routine schedules, requiring no additional travel or effort. This mode of involvement

maximizes resource utilization and potentially increases the available pool of workers for

MCS projects. However, OWs selection can be difficult because the accuracy and effective-

ness of collected data can be highly dependent on customary routes and tasks in frequently

visited areas. To assign tasks effectively to OWs, it is frequently necessary to predict work-

ers’ routes, which can be challenging due to the complexity and unpredictability of real-life

factors. As a result, worker selection based on opportunistic mode may be less accurate

than intended, and data quality for some tasks may be lower than expected.

1.4 The Proposed Context-Aware Worker Recruitment for MobileCrowd Sens-

ing Based on Mobility Prediction Framework

To addresses the OW selection problem in MCS, we propose a new framework called context-

aware worker recruitment based on mobility prediction (CAMP) for selecting OWs for urban

environment MCS sensing projects. CAMP employs a two-phase strategy, the first of which

involves predicting future locations based on workers’ historical mobility data. The second

phase assigns tasks to workers using a weighted-utility function that accounts for dynamic

changes in task distribution throughout the day.

In the first phase, we introduce a more advanced approach by employing a recurrent

neural network (RNN)-based model for worker mobility prediction. RNNs have proven

to be highly effective in handling time series data and capturing the intricate patterns

of worker movement [28–30]. By leveraging the power of RNNs, CAMP overcomes the

shortcomings of the inhomogeneous Poisson process assumption, enabling the framework to

make predictions more accurately and select workers with a higher probability of visiting

locations with a substantial number of tasks. This incorporation of an RNN-based prediction

12



Chapter 1. Introduction

model contributes to the overall effectiveness of CAMP in selecting opportune workers,

further improving the performance of MCS tasks.

In the second phase, we present a novel weighted-utility worker selection algorithm de-

signed to address the OWs selection problem. While previous methods like Icrowd [31]

ignores variations in the number of tasks at each location or DLMV [32] assumes a constant

number of tasks at all locations over time, our proposed algorithm takes dynamic changes

in task distribution into account. Specifically, it prioritizes locations projected to have more

tasks in the next sensing cycle (SC) and selects workers with a higher likelihood of visiting

these locations. This intelligent approach enables the algorithm to efficiently identify work-

ers best suited for completing a higher number of tasks, enhancing the overall performance

of the MCS project.

The proposed framework was evaluated using a GPS-based dataset called the Crawdad

Roma/Taxi dataset [33]. The results show that the proposed framework can outperform

baseline models in the number of completed tasks for the same budget amount.

1.5 Dissertation Organization

The rest of this dissertation is organized as follows. First, Chapter 2 discusses related works.

Then, Chapter 3 describes the location prediction framework in more detail. Chapter 4

discusses the opportunistic worker selection using human mobility prediction framework.

Finally, in Chapter 5, we conclude this dissertation by summarizing our contributions and

discussing future work.
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Chapter 2

Background and Related Works

2.1 Human Mobility Analysis

The study of human movement using modern monitoring technologies like mobile phones

[34], GPS [35], WiFi [36], and RFID devices [37] has received a lot of attention recently.

A variety of research has been conducted with the goal of identifying features of human

movement [38–41], for example, divided human mobility into three categories: geographic,

temporal, and social connection. In terms of spatial features, they concentrated on geo-

graphic mobility, or how far and where a person moves. Temporal factors were taken into

account, such as pauses, which represent the amount of time a person spends in a given

area. Inter-contact time was defined as the elapsed time between two adjacent contacts for

a pair of people, whereas the connectedness characteristic indicates contact or encounter

between two people. It is worth noting that incorporating human mobility features aids

in precisely predicting human movement. Thus, a mobility prediction model is developed

in this dissertation, which takes into account features of human movement such as time,

location, and social correlation.

2.2 Location Prediction

Song et al. [45] found significant stability in the predictability of human mobility by calculat-

ing the entropy of an individual’s trajectory. Many research attempts have been made thus

far to transform this predictability into practical location prediction models [46–48]. The

majority of early location prediction approaches are based on patterns [39–41]. The authors

of [40] suggested WhereNext, a method for predicting the next position of a moving item

with a high degree of precision. The prediction is based on previously extracted movement
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Table 2.1: Comparison of some location prediction approaches.

Categories Strengths Weaknesses Paper

Pattern base-models Models are simple Models suffer from the
one-sided nature of pre-
defined patterns

[39–41]

Markov based-models Models are simple Models are unable to
detect the long-term
impact and periodicity
of a person’s historical
movements.

[11,42–44]

Deep learning-based
models

Models are improved
in terms of prediction
accuracy

Models are more com-
plicated and require
large amount of data

[12–14]

patterns known as trajectory patterns, which are a simple representation of moving object

behaviors as sequences of regularly visited places with a standard journey duration. In [41],

the authors proposed geographic-temporal-semantic-based location prediction (GTS-LP), a

novel mining-based location prediction approach that considers a user’s geography-triggered,

temporally triggered, and semantically triggered intentions in order to estimate the likeli-

hood of the user visiting a location. The above methods extract pre-defined mobility patterns

(e.g., sequential patterns, periodic patterns) from trajectory traces, and use these patterns

to predict future positions. However, these techniques suffer from the one-sided nature of

pre-defined patterns.

Several studies attempted to predict where a person will visit based on past knowledge

about that individual’s historic locations [11, 42–44]. The Markov model is used in the

majority of these investigations. For example, the authors in [11] expanded the Mobility

Markov Chain (MMC) model to include n prior visited sites, and they built a unique future

location prediction technique based on this mobility model, named n-MMC. According to

the authors, the suggested Markov model has higher prediction accuracy than the original

Markov model. In [42], a novel division method for pre-processing trajectory data was

proposed in which the original trajectory’s feature points are extracted based on structural

changes in the trajectory, and then important locations are extracted by clustering the

feature points with an improved density, peak-clustering algorithm. Finally, a multi-order

fusion Markov model based on the AdaBoost algorithm predicts the next important location

of mobile users. These methods, on the other hand, are unable to detect the long-term

impact and periodicity of a person’s historical movements.

Deep learning approaches, particularly recurrent neural networks (RNNs) like LSTM [49]
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and GRU [50], have recently become popular for capturing long-term sequential impacts and

movement patterns. The authors of [12] proposed an RNN-based architecture that learns

the embedding of many factors (e.g., user, location, time, keyword) as well as the transition

parameters of a recurrent neural network. As a result, it successfully captures semantics-

aware spatio-temporal transition regularities to increase accuracy in location prediction. The

authors in [13] proposed an attention recurrent network for mobility prediction. With histor-

ical mobility attention, the authors suggested a latent variable model that infers the user’s

next location. However, training attention networks is challenging in location prediction

because they require a large amount of data to achieve optimal parameters. More recently,

the authors in [14] predict a vehicle’s likely destinations and routes based on the most recent

partial trajectory and contextual data. Nonetheless, their model did not consider the vehicle

ID, which aids the model in distinguishing the pattern of vehicles and improves prediction

accuracy. A comparison of approaches presented in this subsection can be found in Table

2.1.

The above methods, however, usually do not take mobility information from the POI’s

companions into consideration. In fact, incorporating companions’ mobility information

might improve model performance when predicting a POI’s next location. In our proposed

framework, we first define and select companions of the POI. Then, we train a BRNN model

that uses mobility information from the POI and her/his companions to predict the POI’s

future locations.

2.3 Social Correlation Detection

Human decision-making is heavily impacted by social contacts [51–53]. Studies on the

similarity of human mobility [54] show that social ties are a substantial influencing factor

in people’s mobility patterns. This has given rise to the possibility of improving human

mobility models by including companion movement. Graph clustering has been used in a

lot of research to find social groups in which a network is separated into disjoint communities

using clustering techniques [55]. Several studies on community detection have been published

based on network members’ contact histories, such as encounter frequency and length, and

on a person’s total number of previous contacts [56, 57]. Authors in [56] proposed group

discovery using co-location (GDC) and decentralized GDC (DGDC) methods, which use

the frequency and length of meetings to reliably discover groups. In [57], the authors used

models that can reliably assess, predict, and cluster multi-modal data from people and
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groups within a population’s social network to reveal the structure inherent in everyday

activities. By evaluating the Bluetooth-based encounter history from a real-life mobility

dataset, the work in [58] found social groupings within a network of mobile users. The

community discovery approach focuses on creating similarity measurements that can depict

the degree of social ties between users by taking into account spatio-temporal components

of human interactions, and then using clustering algorithms.

These social correlation detection approaches, however, have drawbacks. They are unable

to evaluate many aspects of human movement at the same time, such as location, time, and

personal preference. Furthermore, if the data size increases (e.g., a large number of people,

a long experimental period), these methods become more time-consuming. Our proposed

social correlation detection (i.e., the companion selection method) is based on a deep learning

technique that can incorporate many mobility features and that handles big datasets.

2.4 Tasks Allocation in Mobile Crowd Sensing

Worker selection is an important process in MCS that can have a significant impact on the

quality and reliability of the data collected. MCS systems typically rely on a large number of

workers, many of whom are volunteers, to complete tasks like collecting data and conducting

surveys. It is critical to select the best workers for these jobs in order to ensure that the

data collected are accurate and useful. For worker selection in MCS, a variety of approaches

have been proposed, including heuristics based on worker attributes such as reliability and

expertise, as well as machine learning-based approaches that can take into account a wide

range of factors. Overall, the goal of MCS worker selection is to find the best match between

workers and tasks in order to maximize the quality and utility of the data collected.

One area of study focuses on using a participatory worker approach in which MCS

servers require workers to change their routes and go to specific locations to complete sensing

tasks. This approach employs two task assignment models: worker-selected tasks (WST),

in which workers select their own tasks, and server-assigned tasks (SAT), in which tasks

are automatically assigned by the MCS server [59]. The WST model gives workers more

freedom, allowing them to choose tasks that match their interests and goals, which can boost

motivation and involvement, resulting in higher-quality data collection [60–62]. However,

the WST model may result in reduced coverage and inefficiency in task completion, because

workers might not select tasks that are critical to the MCS system’s overall performance.

The SAT model, on the other hand, centralizes the task selection and assignment process,
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allowing the MCS server to optimize task selection based on factors like coverage, quality,

and cost [63–65]. This can lead to more efficient task completion and improved overall MCS

system performance. However, because workers have no say in the tasks assigned to them,

the SAT-based approach may result in decreased worker motivation and engagement. In

order to fairly distribute tasks and optimize task completion, the SAT model also neces-

sitates a complex algorithm for task allocation and management. As a result, researchers

have been looking into ways to strike a balance between worker autonomy and MCS sys-

tem performance using various strategies such as task incentives, worker preferences, and

adaptive task assignments.

Another area of study is the use of OWs, who can provide sensing data as part of their

daily routines without deviating from their original paths [66–68]. Most of this research

concentrates on selecting OWs for a single data-sensing task with a specific goal and budget

constraints. For example, researchers investigated worker recruitment for a single data

sensing task and presented various worker selection strategies to select a minimum set of

workers to ensure a certain level of sensing quality or to select a specific number of workers

to optimize data quality. Other studies have focused on maximizing the overall benefits

of multiple concurrent data collection tasks on an MCS platform designed for multiple

tasks that share limited resources. These studies propose algorithms for task allocation

that optimize overall system performance when tasks are constrained by a limited incentive

budget or when multiple tasks must share a pool of workers with limited data collection

capabilities.

2.5 Opportunistic Worker Selection in Mobile Crowd Sensing Using Human

Mobility Prediction

To address the challenges associated with OW selection and enhance data collection effi-

ciency, the incorporation of mobility prediction models becomes crucial [69, 70]. Mobility

prediction involves estimating how OWs will move in the future based on their past loca-

tions or relevant data. By accurately predicting their routes, MCS systems can optimize

task assignment to OWs, thereby improving data collection efficiency and accuracy. How-

ever, predicting worker mobility in real-life situations is a complex task due to the presence

of numerous unpredictable factors influencing human movement. Factors such as varying

personal schedules, transportation options, weather conditions, and unexpected events can

significantly impact OWs’ movements. As a result, developing reliable mobility prediction
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models that account for these factors becomes a challenging endeavor. Mobility prediction

in MCS opens up various application scenarios with far-reaching implications. Firstly, it

enables optimal task assignment by accurately anticipating the movement patterns of OWs,

ensuring tasks are assigned to workers who are most likely to be present in specific locations

at the right time. This enhances data collection efficiency and reduces response time for crit-

ical tasks. Secondly, mobility prediction maximizes resource utilization by hiring OWs who

may stay at areas where data collection is most needed, ensuring comprehensive coverage

of the sensing area. Thirdly, it facilitates quality assurance by allowing proactive measures

to cross-validate or supplement data collected from OWs with data from other sources if

necessary, ensuring data accuracy and reliability. These scenarios collectively underscore

the importance of mobility prediction in enhancing the effectiveness and impact of MCS

projects.

A typical flow of an OWs selection scheme consists of two key phases which are discussed

below:

In the first phase, worker mobility prediction is carried out to anticipate the future

locations of potential workers. This phase leverages historical data, location traces, or other

relevant information to predict the movement patterns of workers. By predicting where

workers are likely to be at specific times, the system gains insights into their availability and

proximity to potential tasks.

Previous approaches for the first phase relied primarily on the assumption that worker

mobility follows a Poisson process [31, 71, 72]. For instance, in iCrowd [31], the authors as-

sumed that the probability of a worker being at a specific location at a given time is directly

proportional to the number of visit times to that location, following an inhomogeneous Pois-

son process [73]. Based on this assumption, iCrowd attempted to predict the worker’s next

location. However, this assumption is not always correct, particularly in urban environments

where worker movement can be highly variable. As a result, worker selection based on these

predictions may be poor.

In the second phase, OWs selection takes place. During this stage, the system employs

various algorithms, such as the maximum utility algorithm, to choose the most suitable

workers based on the predicted mobility patterns. The goal is to optimize task allocation

and maximize overall utility by selecting workers who can efficiently perform tasks near their

anticipated locations.

The maximum utility algorithm is frequently used to select workers like in iCrowd [31].
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The algorithm computes each worker’s utility based on predicted future locations and selects

workers who bring the largest increase in total utility to the group of selected workers in

each round until the budget is depleted. However, a limitation of the traditional maximum

utility algorithm is its uniform weighting of each location, which proves to be inadequate

in scenarios where the number of tasks at each location varies substantially between each

sensing cycle (SC).

An alternative approach that considers the number of tasks at each location is presented

in DLMV [32]. In the DLMV method, the MCS system selects workers based on a predefined

task map, considering the total number of tasks they can complete. However, this approach

only accounts for a constant number of tasks over time, thereby failing to address the

dynamic nature of task availability in real-world scenarios.

To address these limitations, in this dissertation, we propose a new weighted-utility

worker selection algorithm that takes into account dynamic changes in task distribution

throughout the day. As a result, the proposed algorithm can effectively recruit workers who

are well suited to completing a higher number of tasks.
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Chapter 3

Companion Mobility to Assist in

Future Human Location Prediction

3.1 Problem Definition

Assume a day is divided into equal time slots (e.g., 15 minutes), and POI 𝑖 is currently in

time slot 𝑡. This dissertation considers the problem of predicting the location of POI 𝑖 in

future time slot 𝑡 + 𝑚 (𝑚 ≥ 1) given that the recent mobility information of POI 𝑖 and

his/her companions are known. Instead of only predicting the POI’s location in the very

next time slot (i.e., 𝑚 = 1), the proposed model is designed to predict the POI’s locations

in several time slots based on different time gaps (e.g., example, 𝑚 ∈ {1, 2, 3}). Terms used

in this chapter are listed and defined in 3.1.

Let 𝐿𝑡
𝑖 be the location of person 𝑖 in time slot 𝑡, and let 𝑋 be the recent spatio-temporal

information (e.g., location, day of the week, time slot of the day, ID) of POI 𝑖 and his/her

companions. Note that 𝑋 = (𝑋𝑖
𝑡−𝑘+1, 𝑋

𝑖
𝑡−𝑘+2, ..., 𝑋

𝑖
𝑡), where 𝑘 (𝑘 ≥ 1) is the number of

recent time slots. The next location prediction is now considered as a classification problem,

and the objective of this work is to learn 𝑃 (𝐿𝑖
𝑡+𝑚|𝑋), which is the probability that user 𝑖

will visit each location during time slot 𝑡+𝑚.

To illustrate the workings of the prediction model, we’ve provided a simplified toy ex-

ample depicted in Fig. 3.1. In this scenario, we assume there are three locations denoted

as 𝐿 = 𝐴,𝐵,𝐶, a set of recent time slots with 𝑘 = 3, and the POI is associated with two

companions. Let’s delve into the details of how the model operates.

Suppose we are at a specific time slot 𝑡. The next locations prediction model’s primary

objective is to predict the POI’s locations in subsequent time slots, namely 𝑡+1, 𝑡+2, 𝑡+3
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Table 3.1: Table of term for location prediction framework

Term Meaning

𝐿𝑖
𝑡 One-hot vector that indicates the lo-

cation of person 𝑖 in time slot 𝑡
𝐼𝐷𝑖 One-hot vector that indicates the ID

of person 𝑖

𝐶𝑗
𝑖 One-hot vector that indicates the ID

of the 𝑗𝑡ℎ companion of person 𝑖

𝐿
𝐶𝑗

𝑖
𝑡 One-hot vector for location of the 𝑗𝑡ℎ

companion of person 𝑖 in time slot 𝑡
𝐷𝑡 One-hot vector that indicates the day

of the week
𝑇𝑡 One-hot vector that indicates time slot

t
𝐸𝑙 Location embedding matrix
𝐸𝑖𝑑 Person ID embedding matrix
𝑘 Number of time slots to look back

𝑃𝑂𝐼 Person of interest
𝑃𝐼𝐸 Person ID embedding

(where 𝑚 ∈ 1, 2, 3 denotes the time slot index). Now, let’s focus on the illustration in Fig.

3.1 to understand how the model generates predictions.

For time slot 𝑡 + 1, the model produces an output represented as (0.1, 0.6, 0.3). These

values correspond to the likelihood or probability distribution of the POI’s presence at

each of the three locations: 𝐴,𝐵,𝐶. In this particular example, the highest probability is

associated with location 𝐵, with a probability of 0.6. Therefore, based on this prediction,

the model suggests that the POI is most likely to be at location 𝐵 during time slot 𝑡 + 1.

Similarly, the POI is most likely to be at location 𝐶 during time slot 𝑡+ 2 and 𝑡+ 3.

Next
locations
prediciton


model

0.1 0.4 0.5

0.1 0.1 0.8

0.1 0.6 0.3

t+2

t+1

t+3

A B C
Visiting probabilties of POItt-1t-2

BBA

CBB

CCA

POI

Companion 1

Companion 2

Time slot:

Location:
Time slot

tt-1t-2

tt-1t-2

Figure 3.1: A toy example of how the prediction model work with 𝑘 = 3, 𝐿 = {𝐴,𝐵,𝐶},𝑚 ∈
{1, 2, 3}.
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Figure 3.2: Two-phase framework for predicting an individual’s future locations.

This simplified toy example serves as a visual representation of how the model gener-

ates location predictions for the POI at subsequent time slots, taking into account factors

such as past mobility patterns and the influence of companions. It showcases the practi-

cal application of the model in predicting future locations based on this multi-dimensional

analysis.

3.2 Methodology

In this section, we first provide an overview of the proposed two-phase framework, and

we then discuss in detail how the proposed framework selects the POI’s companions and

predicts her/his future locations.

Figure 3.2 depicts an overview of the proposed method, which consists of two phases.

In Phase 1, two models are trained. The first is a selection model to determine the POI’s

companions. The second model in Phase 1 is the location, day, time, ID autoencoder (LDTI-

AE), which is trained to reconstruct a concatenated vector of those features. The encoder

in the LDTI-AE is reused as one layer of the prediction model in the second phase.

In Phase 2, the BRNN-based multi-output model is trained. This model takes data

from the POI and his/her companions as input and predicts the POI’s future location for

the next several time slots. In this model, the encoder from the LDTI-AE (e.g., the model

trained in Phase 1) is used to compress input features (e.g., location, time slot index, the

day of the week, and ID) into dense latent representations that help to mitigate the curse

of dimensionality. In the remainder of this section, the details of each part are presented.
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3.2.1 Companion Selection Methods

In this subsection, two companion selection methods are presented for identifying the POI’s

companions. Each uses different metrics to estimate the similarity between mobility pat-

terns. The most similar companions are then chosen. The key advantage of these methods

is that they just use the correlation in movement behavior of people, rather than requiring

the information on actual social relationships between them. Note that, even if a person

moves alone, the companion selection methods still can identify her/his companions.

1. Spatial closeness: The first method uses spatial closeness [15] metric. This metric

compares the geographic distributions of individuals to measure the closeness between

them in terms of mobility.

(a) Location-person vector construction: First, a location-person vector with a length

equal to the number of locations is constructed for each person. Each element

in the vector presents the probability of an individual being seen at a specific

location. Table 3.2 shows samples of location-person vectors.

Table 3.2: Samples of location-person vectors.

Person Location 1 Location 2 ... Location N

𝑢 0.064 0.453 ... 0.088

𝑣 0.082 0.621 ... 0.001

... ... ... ... ...

(b) Spatial closeness calculation: The SC score between the two people with vectors

𝑢 and 𝑣 is calculated as shown below:

SC score = 1− 𝑢.𝑣

‖𝑢‖2‖𝑣‖2
(3.1)

The SC score indicates the distance between vectors 𝑢 and 𝑣 in the location-person

vector space. Those who usually visit the same location (i.e., companions) will

get a low SC score, otherwise, the SC score between vectors will be high.

2. Person ID embedding model: The second companion selection model leverages the

concept of embedding, a powerful technique extensively utilized in neural networks,

particularly in natural language processing and recommendation systems. Embedding

enables the transformation of discrete variables into continuous vectors of real-valued

numbers, which are more amenable to processing by neural network architectures.
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This process involves mapping each discrete variable to a low-dimensional vector in a

continuous space.

In the context of the proposed framework, embedding is applied to the discrete features

related to mobility patterns, such as location, day of the week, and time slot. By

representing these categorical variables as continuous vectors, the model can better

capture the underlying semantic relationships and contextual nuances within the data.

This means that similar features are grouped together in the embedding space, allowing

the neural network to grasp the intricate dependencies and patterns that may not be

apparent when dealing with raw categorical data.

The advantage of employing embedding in the second companion selection model is

that it enables a more sophisticated understanding of mobility patterns. It allows the

model to identify not only straightforward correlations but also subtle and complex

relationships between the POI and potential companions based on their movement

behavior. Consequently, the framework can make more informed and context-aware

decisions when selecting companions for predicting the POI’s future locations. In the

following sections, we will delve into the technical specifics of this embedding technique

and its implications for the framework’s predictive accuracy.

(a) Person-ID-embedding matrix:

An embedding-based companion selection model is developed to find a group

of companions whose mobility information can help to predict the POI’s future

locations. The core idea behind this model involves leveraging the power of

embeddings, specifically Person ID Embeddings (PIE), to represent individuals

and capture their mobility patterns. Instead of dealing with discrete person

IDs, the model transforms them into continuous PIE vectors that encapsulate

the unique characteristics and behaviors of each individual. This transformation

process enables a more nuanced understanding of the people’s mobility, which,

in turn, is used to predict POI movements.

The model’s functionality relies on cosine similarity, a widely adopted metric in

similarity measurement, to gauge the resemblance between the PIE vector of a

given POI and the PIE vectors of other individuals within the dataset. This

similarity score essentially serves as a gauge for assessing the compatibility and

relevance of individuals as potential companions for the POI in the context of
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Figure 3.3: Model architecture for learning a PIE matrix in phase 1.

predicting future locations.

The architecture to train the PIE matrix is shown in Fig. 3.3. The model is

characterized by two input branches, each responsible for handling distinct facets

of information.

In the first branch, the model takes in the person’s unique identifier (𝐼𝐷𝑖), typ-

ically represented as a one-hot vector. This identifier is then subjected to a

transformation process involving the PIE matrix (𝐸𝑖𝑑), which ingeniously con-

verts the discrete person ID into a PIE vector (𝑒𝐼𝐷). This PIE vector is the crux

of the model’s ability to understand and encapsulate the mobility characteristics

of each individual, essentially transforming it into a continuous and informative

representation.

The second branch of the model receives input in the form of one-hot vectors rep-

resenting the day of the week (𝐷𝑡) and the time slot index (𝑇𝑡). These inputs are

crucial in understanding the temporal aspects of mobility, as they provide context

regarding when an individual’s mobility patterns are expected to manifest.

Then, each of the two branches is fed into a dense layer, as shown in Fig. 3.3,

and those two dense layers have the same number of neurons (e.g., the number

of neurons equals the number of locations). Please note that the weights of the

dense layer in the second branch are intentionally frozen. This decision is driven

by the understanding that the temporal aspects (day of the week and time slot)
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are relatively stable and should not be altered during the training process, in

contrast to the dynamic person ID embeddings.

Lastly, outputs from the two dense layers are pairwise summed and softmax

activated to estimate the individual’s current location (𝐿𝑡
𝑖).

(b) Similarity measurement: Given the PIE matrix, a cosine similarity metric is used

to calculate the similarity score between PIE vectors 𝑢 and 𝑣 of two people, as

shown below:

Cosine similarity score =
𝑢.𝑣

‖𝑢‖2‖𝑣‖2
(3.2)

As described above, temporal information (e.g., the day of the week, the time

slot index) and spatial information (e.g., locations) are used to train a model that

can estimate a person’s current location. Note that weights of the dense layer in

the second branch are frozen (as shown in Fig. 3.3), and therefore, the model

only updates parameters of the dense layer and the embedding layer in the first

branch. This requires the PIE matrix to be updated in a way that effectively

reflects the correlation between a person and his/her visited locations. So, if

two people usually move in a similar way (i.e., visit the same place at a specific

time), their PIE vectors are forced to be close to each other in the embedding

space. Thus, the similarity score between these two PIE vectors will be high. On

the other hand, if the two people’s movements differ, their PIE vectors in the

embedding space are far apart, and their PIE vectors’ similarity score is low.

3.2.2 Location-Day-Time slot-ID Autoencoder (LDTI-AE)

The implementation of autoencoders has been fundamental in the realm of artificial neural

networks, enabling the acquisition of condensed representations known as latent represen-

tations or codings, which offer a high degree of utility in various applications. Notably,

autoencoders excel in dimensionality reduction by transforming complex input data into

codings of substantially lower dimensionality. In our research, we introduce a novel concept

– the Stacked Location, Day, Time, and ID Autoencoder (LDTI-AE), specially designed to

process one-hot vectors representing location, day of the week, time slot, and person’s ID.

The LDTI-AE functions as a reconstruction engine, taking the one-hot vectors as input

and effectively deciphering them back to their original form. This process results in the

LDTI-AE generating dense latent representations that encapsulate the intricate dynamics
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Figure 3.4: LDTI - Autoencoder architecture in phase 1.

of user mobility. Our proposed LDTI-AE architecture, as illustrated in Fig. 3.4, consists of

three hidden layers in addition to the input and output layers. It operates on the one-hot

vectors, namely 𝐿𝑡 for location, 𝐷𝑡 for the day of the week, 𝑇𝑡 for the time slot index, and

𝐼𝐷𝑖 for the person’s ID.

To empower the learning process within the hidden layers, we employ the Rectified Lin-

ear Unit (ReLU) activation function for the first two hidden layers. Given the concatenated

nature of the output vector, comprising 𝐿𝑡, 𝐷𝑡, 𝑇𝑡, and 𝐼𝐷𝑖, we leverage the sigmoid ac-

tivation function within the output layer. Furthermore, the training process is steered by

a cross-entropy loss function, optimizing the LDTI-AE to effectively reproduce the original

one-hot vectors.

This LDTI-AE design is an important contribution of our framework, demonstrating its

capability to distill spatio-temporal and personal attributes into compact latent representa-

tions, offering a critical dimensionality reduction that enhances the overall efficiency of our

predictive models. Its significance lies in its potential to discern intricate patterns within

mobility data, a pivotal feature in enabling the effective prediction of a person’s future

locations.

3.2.3 BRNN-based Future Location Prediction Model

To predict future locations, the proposed model adopts a Bidirectional Recurrent Neural Net-

work (BRNN) configuration, featuring the utilization of Long Short-Term Memory (LSTM)

cells. This innovative model excels in deciphering the complex dynamics of human mobility,

28



Chapter 3. Companion Mobility to Assist in Future Human Location Prediction

Advanced Mobile Networks and Intelligent Systems Lab 1

𝑒ூ஽೔

𝑡 − 𝑘 + 1 ≤ ℎ ≤ 𝑡

𝑳
𝒉

𝑪𝒊
𝒋

𝑫𝒉

𝑻𝒉

𝑪𝒊
𝒋

LD
T

I E
ncod

er

𝑳𝒉

𝑪𝒊
𝟏

LD
T

I E
ncod

er

LD
T

I E
ncod

er

𝑳𝒉
𝒊

𝑫𝒉

𝑻𝒉

𝑰𝑫𝒊

𝑃෠(𝐿௧ାଵ଺
௜ )Softmax

𝑃෠(𝐿௧ାଵଶ
௜ )Softmax

𝑃෠(𝐿௧ା଼
௜ )Softmax

𝑃෠(𝐿௧ାସ
௜ )Softmax

Fully 
connected

Dropout
Fully 

connected 𝑃෠(𝐿௧ାଵ
௜ )Softmax

C
o

ncaten
ate

𝑰𝑫𝒊

𝑳𝒉
𝒊

Bidirectional 
RNN

Encoder layers Recurrent layer

Embedding layers

Output layers
E

m
be

dd
in

g
layer

𝑒௅𝐸௟

𝐸௜ௗ

E
m

be
dd

in
g

laye
r

Location embedding

Person ID embedding

Figure 3.5: The BRNN-based future locations prediction model.

making it an integral component of our framework.

Leveraging data from the POI and two selected companions, the BRNN-based multi-

output model undertakes the task of predicting the locations that the POI may potentially

visit within subsequent time slots. Specifically, these time slots include 𝑡 + 𝑚, where 𝑚

spans a selection of intervals such as 1, 4, 8, 12, and, 16. The architecture of this model is

thoughtfully illustrated in Fig. 3.5, serving as a visual representation of its inner workings.

One of the noteworthy components of this model is the adoption of Bidirectional Recur-

rent Neural Networks. This architectural choice empowers the model to analyze sequences

in both forward and backward directions, enhancing its ability to capture intricate temporal

dependencies within the data. Furthermore, the incorporation of LSTM cells enables the

model to effectively manage and remember crucial information over extended sequences.

This dynamic memory retention plays a pivotal role in ensuring the model’s proficiency in

understanding and predicting the POI’s future locations.

The introduction of this BRNN-based multi-output model represents a significant stride

in the development of our predictive framework. Its role is to translate intricate mobility

patterns into actionable predictions, thereby enhancing the framework’s overall predictive

accuracy and enabling a more profound understanding of human mobility dynamics. The
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subsequent sections will delve deeper into the individual elements and the model’s overall

functionality, elucidating its significance within our framework.

As shown in Fig. 3.5, the proposed model consists of four layers: the encoder layer,

the embedding layer, the recurrent layer, and the output layer. Details of each layer are as

follows.

1. The encoder layers: These employ the encoder (i.e., up to hidden layer 2 of the LDTI-

AE) to compress the spatio-temporal and personal features of the POI and his/her

companions into dense latent representations. Note that all encoder weights are frozen

in this phase.

2. The embedding layers:

(a) Location embedding: This layer learns embedding matrix, 𝐸𝑙, such that every

location L can be transformed into embedding vector 𝑒𝐿.

(b) Person ID embedding: The ID embedding layer learns embedding matrix, 𝐸𝑖𝑑,

such that the ID of person 𝑖, 𝐼𝐷𝑖, can be transformed into embedding vector

𝑒𝐼𝐷. Please note that embedding matrix 𝐸𝑖𝑑 in this layer is different from the

PIE matrix that is described in the Companion Selection Model subsection.

3. The recurrent layer: Output from the encoder and embedding layers is then concate-

nated before being fed into the recurrent layer. In this work, the recurrent layer is a

BRNN that uses LSTM cells.

4. The output layers: The last hidden state of the LSTM cell then passes through five

identical branches, each of which includes a fully connected layer with ReLU activation,

a dropout layer, and a fully connected layer with a softmax activation function. As

illustrated in Fig. 3.5, each branch corresponds to predicting the POI’s location in a

certain time slot. In particular, the output of the branch that predicts the location of

POI 𝑖 in time slot 𝑡+𝑚,𝑚 ∈ {1, 4, 8, 12, 16} is 𝑃 (𝐿𝑖
𝑡+𝑚), which is the probability the

POI will visit each location in time slot 𝑡+𝑚.
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3.2.4 Parameter Learning

To train and update model parameters, the cross-entropy loss function is utilized. The total

loss of the five outputs is computed as follows:

Total loss =
𝑏𝑎𝑡𝑐ℎ𝑠𝑖𝑧𝑒∑︁ ∑︁

𝑚

− log(𝑃 (𝐿𝑡+𝑚)) (3.3)

where 𝑚 ∈ {1, 4, 8, 12, 16} corresponds to output of the prediction model; 𝑃 (𝐿𝑖
𝑡+𝑚) is the

model’s predicted probability for the POI’s location in time slot 𝑡+𝑚.

In practical applications, the utility of location predictions tends to decrease as we look

further into the future. Recognizing this, our model incorporates a weighted loss mechanism

to account for the varying importance of predictions across different time slots.

This weighted loss approach assigns a higher penalty to the loss term associated with

predictions for the near-future time slots, reflecting the higher significance of these predic-

tions. Conversely, it assigns a lower penalty to the loss term for predictions pertaining to

distant-future time slots, which are less critical.

To calculate the weighted total loss of the five output loss terms, the following procedure

is followed:

Weighted total loss =
𝑏𝑎𝑡𝑐ℎ𝑠𝑖𝑧𝑒∑︁ ∑︁

𝑚

−𝑊𝑚 log(𝑃 (𝐿𝑖
𝑡+𝑚)) (3.4)

where

𝑊𝑚 =
1

𝑚
× ℎ;ℎ =

1∑︀
𝑛∈{1,4,8,12,16}

1
𝑛

=
48

73
(3.5)

is the weight for the loss term of the output that predicts the POI’s location in time slot

𝑡+𝑚; ℎ is the constant that keep
∑︀

𝑚∈{1,4,8,12,16}𝑊𝑚 = 1

3.3 Datasets

In our study, we employed two extensive datasets of Wi-Fi traces for training and evaluating

our proposed framework. Given the limited coverage range of Wi-Fi technology, the location

of the connected access point (AP) can be regarded as the mobile user’s location at that

particular moment [74, 75]. Consequently, we represent human mobility as a sequence of

connected APs. The first dataset utilized is the Dartmouth dataset [17], which encompasses

Wi-Fi logs from 13,888 mobile device users on the Dartmouth College campus. These logs

include a timestamp, device ID, and the basic service set identifier (BSSID) recorded each
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Table 3.3: Statistics on the two experimental datasets after pre-processing.

Dartmouth UB

Number of people (mobile users) 50 50
Number of locations (APs) 623 + 1 dummy 1243 + 1 dummy
Number of time slots per day 41 41
Experiment period 118 days 90 days

time a mobile device associates or disassociates with a Wi-Fi AP. The second dataset,

known as the Buffalo/phonelab-wifi dataset (UB dataset) [18], encompasses five months of

data originating from smartphones carried by 284 members of the University at Buffalo

(UB), including faculty, staff, and students.

For the training and testing of our models, we selected data from the Dartmouth dataset

pertaining to the 50 most active mobile users over a period of 118 days, spanning from

January 3 to April 30, 2004. In this experiment, we focused on 623 access points (locations).

Similarly, from the UB dataset, we selected data from the 50 most active mobile users over

90 days, in conjunction with 1243 access points.

As a crucial part of our data preparation, we addressed variations in data collection

intervals between the two datasets. We segmented a typical working day, running from 8:00

to 18:00, into time slots. Subsequently, we mapped the timestamp of each data record to its

corresponding pre-defined time slot. Notably, mobile users tend to remain at a particular

location for a significant duration, such as during a class. In this study, we standardized the

time slot duration to 15 minutes. Consequently, there were a total of 41 time slots per day,

including the final time slot. It’s important to clarify that, within a specific time slot, the

user’s most recent location is considered their location for the entire time slot. Additionally,

time slots devoid of data records were tagged with a designated placeholder location.

To provide an overview of the dataset statistics following this pre-processing stage, please

refer to Table 3.3.

Due to the sparsity of data in both datasets, a significant proportion of time slots was

labeled with a placeholder, often referred to as a "dummy location." This led to a challenging

issue where the model, due to the imbalance in data, frequently predicted this dummy

location, which held no practical value. To mitigate this problem, a data processing step was

applied. Specifically, all training and validation samples labeled with the dummy location

were removed. In other words, all five labels for the five distinct outputs corresponding to

time slots 𝑡+ 1, 𝑡+ 4, 𝑡+ 8, 𝑡+ 12, and 𝑡+ 16 were required to have real locations instead of
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Figure 3.6: Input-Label timelines of five test sets.

the dummy location.

It’s important to clarify that this trimming of dummy locations pertained exclusively to

the labels, while dummy locations could still exist in the input features. Additionally, to

ensure that the model had the capacity to predict locations for all the time slots between

9:00 and 18:00, additional time slot data ranging from 8:00 to 22:00 was incorporated into

the training phase.

For the testing phase, a fair and independent assessment of the model was conducted for

each distinct output. During this phase, only the label corresponding to the specific output

being evaluated was required to have a real location (non-dummy location), while labels for

the other outputs could still contain dummy locations. To elucidate, when assessing the

model’s performance in predicting the location for time slot 𝑡 + 1, it was only necessary
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to ensure that the label for output 𝑡 + 1 was not the dummy location. Consequently, five

distinct test sets were created for the testing phase to evaluate the model’s performance for

each of the five outputs: 𝑡+1, 𝑡+4, 𝑡+8, 𝑡+12, and 𝑡+16. A visual representation of these

input-label timelines can be seen in Figure 3.6.

To provide further context, it’s worth noting that in both the UB and Dartmouth traces,

the experiment periods spanned 90 and 118 days, respectively. For the temporal dimension,

each dataset was partitioned randomly into training, validation, and test sets following a

6:2:2 ratio. The first two sets were designated for model training and hyperparameter op-

timization, while the final set was reserved for the evaluation of model performance. This

division scheme ensured a balanced and comprehensive assessment of the model’s capabili-

ties.

3.4 Experiment Results

In this section, we provide the results from a series of experiments carried out to evaluate

the efficacy of our proposed framework. We begin with the baseline models and then move

on to the implementation details. Finally, we present the experiment results followed by

validation of the proposed approaches.

3.4.1 Baseline Models

Our proposed model underwent a comparative analysis against several baseline methods,

each offering distinct approaches to the task of location prediction. These baseline methods

included:

� Markov Model [11]: This method focuses on learning and establishing movement regu-

larities in human mobility patterns. It employs these regularities to select the location

with the highest probability for a future visit.

� SERM [12]: SERM is designed to capture the diverse contextual factors influencing hu-

man movement. It achieves this by learning embedding vectors for multiple variables,

including ID, location, time, and keywords. Additionally, SERM models the transition

parameters of a recurrent neural network to enable semantics-aware predictions of the

next location.

� VANext [13]: VANext is centered around a variational attention mechanism that com-

bines past mobility pattern periodicity with recent check-in preferences. This fusion
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of historical patterns and recent preferences enhances the accuracy of next-location

predictions.

� DPBPT [14]: DPBPT operates by predicting the next location based on the most

recent locations.

These baseline methods, each with its unique strategy and underlying principles, served

as benchmarks against which our proposed model was evaluated. This comparative analysis

enabled us to gauge the performance and effectiveness of our model in the context of location

prediction, shedding light on its strengths and potential advancements in this field.

3.4.2 Implementation Details

The implementation of both the proposed and baseline models was carried out using the

TensorFlow Keras library. The hardware setup for this implementation involved a four-

core Xeon CPU paired with a single Titan-XP GPU, ensuring computational efficiency and

performance.

During the training process, each model underwent 50 training epochs to ensure conver-

gence and optimize performance. To identify the most effective set of hyperparameters, we

relied on validation accuracy as a key metric for model selection.

The optimization of the models was accomplished through the RMSprop optimizer, with

a learning rate parameter set at 0.001. Furthermore, we configured a batch size of 1024 for

the training process. This batch size choice helps to balance the computational load and

memory usage during training.

For the baseline models, a dedicated tuning process was conducted to fine-tune their

parameters, ensuring the best performance for each specific dataset. This meticulous tuning

procedure was performed to adapt the baseline models to the unique characteristics and

complexities of the datasets under consideration, ultimately maximizing their predictive

capabilities.

In summary, our implementation setup, hyperparameter selection, and optimization

strategies were carefully tailored to harness the computational resources efficiently and to

yield the best possible performance from both the proposed model and the baseline meth-

ods. This methodical approach allowed for a fair and insightful comparative evaluation of

the models in the context of location prediction.
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Figure 3.7: Top-1 accuracies on the two datasets from the different methods predicting POI
locations in several time slots.
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3.4.3 Experiment Results

Figure 3.7 shows the top-1 test accuracy from the proposed and the baseline models when

predicting an individual’s locations in the next time slots (e.g., 𝑡+1, 𝑡+4, 𝑡+8, 𝑡+12, and 𝑡+

16). Comparisons of these methods resulted in the following.

RNN-based models (SERM, VANext, the proposed model with SC, and the proposed

model with PIE) outperformed the Markov-based model by a large margin when predicting

the target person’s location in future time slots, owing to two factors. First, the Markov

model is based on assumptions about personal movement distributions. Second, Markov

models can only model first-order dependencies for a person’s movement characteristics,

while RNN-based models can model long-term dependencies. Note that the performance of

the Markov model when predicting the individual’s location in the next time slot, 𝑡+1, was

high thanks to the characteristics of the user’s movements in the two datasets, where mobile

users frequently stayed in one place for a couple of time slots.

The performance of the VANext model and the DPBPT when predicting an individual’s

location in distant time slots dropped significantly. The major issue is that both models do

not consider the person ID, which has an important role in future location prediction. The

person ID helps the model distinguish mobility characteristics between people and makes

for a more accurate prediction when estimating that person’s future location. SERM was

a strong baseline when predicting a person’s location in future time slots cause this model

considered the person’s ID.

Models that utilized companion mobility information (e.g., the suggested model with SC

and PIE) outperformed models that did not use companion mobility information (Markov,

SERM, VANext, and DPBPT). This demonstrates that using companion mobility informa-

tion improves the model’s accuracy. Models using the PIE approach surpassed the models

that use the SC approach because the PIE approach incorporates both spatial and tem-

poral aspects in people’s movements, whereas the SC technique just considers the spatial

component.

The average top-1, top-3, and top-5 test accuracies of the five outputs of different models

are shown in Table 3.4 and Table 3.5. As can be seen, the proposed models that consider

companion mobility (with SC and with PIE) outperformed baseline models that do not

include companion information. Again, this proves that human movement is highly depen-

dent on companions; consequently, incorporating companion mobility information into the
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Table 3.4: Average top-1, top-3, and top-5 accuracies with Dartmouth data.

Model Avg. Top-1 Accuracy Avg. Top-3 Accuracy Avg. Top-5 Accuracy

Markov 0.7713 0.8703 0.8964
SERM 0.8174 0.9376 0.9573
VANext 0.7809 0.8865 0.9013
DPBPT 0.7805 0.8878 0.9052

Proposed model with SC 0.8214 0.9431 0.9582
Proposed model with PIE 0.8289 0.9462 0.9590

Table 3.5: Average top-1, top-3, and top-5 accuracies with UB data.

Model Avg. Top-1 Accuracy Avg. Top-3 Accuracy Avg. Top-5 Accuracy

Markov 0.4560 0.6496 0.7089
SERM 0.5318 0.7401 0.7970
VANext 0.4824 0.6523 0.7126
DPBPT 0.4925 0.6648 0.7210

Proposed model with SC 0.5427 0.7466 0.8043
Proposed model with PIE 0.5452 0.7499 0.8095

prediction model enhances performance when predicting the POI’s future locations.

Table 3.6 shows the number of parameters for each model on the two experimental

datasets. In general, the proposed models (with SC and PIE) have fewer parameters than

the SERM and DPBPT models, demonstrating the effectiveness of our proposed model.

Although the VANext model has the fewest parameters, its performance in distant time

slots is significantly lower than other models.

Table 3.6: Number of parameters of different models on the two datasets.

Model Dartmouth UB

SERM 442,572 607,336
VANext 168,451 341,140
DPBPT 586,672 1,026,252

Proposed model with SC 354,096 554,576
Proposed model with PIE 414,144 521,788

3.4.4 Sensitivity of Hyper-parameters

The impact of different model hyper-parameter settings on location prediction performance

is investigated in this subsection. Specifically, we evaluate the sensitivity of four hyper-

parameters: person ID embedding size, the location embedding size, the number of bi-LSTM

hidden units, and the first fully connected layer size. We set the person ID embedding size

and the location embedding size to {8, 16, 32, 64, 128}, the number of bi-LSTM hidden units
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Figure 3.8: Performance with varying parameters on Dartmouth dataset. (a) Person ID
embedding size. (b) Location embedding size. (c) Bi-LSTM hidden unit size. (d) The first
fully connected layer size.
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to {8, 16, 32, 64, 128}, and the first fully connected layer size to {32, 64, 128, 256, 512}.

Except for the parameters under test, all other parameters were left at their default settings.

Figure 3.8 shows the performance comparison when we vary the values of model parameters

on the Dartmouth dataset. In general, we find that using a larger value of the hyper-

parameters improves performance by allowing for a more powerful representation. However,

this increases the model’s complexity and makes it prone to overfitting. In our experiments,

based on the results in Fig. 3.8, we chose the following hyper-parameters to account for the

effectiveness vs. computational cost trade-off: the location and user embedding sizes are

set to 64, the number of bi-LSTM hidden units is set to 64, and the size of the first fully

connected layer is set to 128.

3.4.5 Effectiveness of Weighted Loss

In this subsection, we conduct an in-depth examination of the effectiveness of using weighted

loss in enhancing the performance of our proposed model. Figure 3.9 provides a visual

representation of how the model, employing PIE as a key training element, performs on our

two experimental datasets when utilizing both normal loss and weighted loss.

The graph in Figure 3.9 vividly illustrates the tangible benefits of weighted loss in elevat-

ing the accuracy of the model, particularly when predicting the POI’s location in near-future

time slots, such as 𝑡+ 1 and 𝑡+ 4. As previously mentioned, the incorporation of weighted

loss essentially compels the model to prioritize the precision of predictions for these immi-

nent time slots. Consequently, this focused optimization leads to a noticeable enhancement

in the model’s performance within this temporal context.

However, it is worth noting that the advantages of weighted loss are not limited to

the prediction of locations in the near future. When evaluating the model’s performance

in predicting locations in more distant-future time slots, like 𝑡 + 8, 𝑡 + 12, and 𝑡 + 16, we

observed notable improvements across both experimental datasets. The rationale behind this

phenomenon may be attributed to the unique characteristic of weighted loss. By assigning

different weights to the loss term associated with each output of the model, it inherently

influences the learning rate while fine-tuning the model parameters with respect to the

outputs. In essence, this dynamic and adaptive learning rate mechanism plays a pivotal

role in consistently enhancing the accuracy of a multi-output model, iteratively refining its

predictions with each subsequent output.
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Figure 3.9: Performance comparison of the proposed model with PIE, trained using normal
loss and weighted loss.
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3.4.6 Person ID Embedding Companion Selection Validation

In this subsection, the proposed PIE-based companion selection method is validated. This

step’s purpose is to demonstrate that the PIE vectors of two people with similar mobility

are close to each other in the embedding space. Otherwise, their PIE vectors remain apart.

For the demonstration, the t-SNE technique [76] was employed to visualize the PIE vector.

The Dartmouth dataset was used for this subsection. Besides the original data from 50

people, synthetic data of four new virtual people (IDs 51, 52, 53, and 54) were generated

from the original data. The data preparation is described as follows.

� Step 1: Pick training data of five people at random from a pool of 50 original people.

Here, randomly chosen people are the persons with IDs 1, 34, 44, 10, and 50.

� Step 2: Create data of the five new virtual people by randomly combining data samples

of the five people chosen in Step 1. The synthetic data construction of the five new

virtual people (IDs 51, 52, 53, and 54) is shown in Fig. 3.10. Please note that the

data of each chosen person were randomly selected at the sample level. For example,

to create data for virtual person 51, 50% of the sample data of person 1, and 50% of

the sample data of person 34 were randomly chosen and combined.

50% of data from
person 1

50% of data from
person 34Data of person 51

50% of data from
person 44Data of person 52

25% of data
from person 1

75% of data from person 10Data of person 53

100% of data from person 50Data of person 54

50% of data from
person 1

Figure 3.10: Synthetic data construction for five new virtual people with IDs 51, 52, 53, and
54.

The cosine similarity scores of the PIE vectors for specific individuals are presented in

Table 3.7. Analyzing these scores leads to several insightful conclusions as below.

� Firstly, it is worth noting that the source data used to construct virtual persons’ data
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Table 3.7: The cosine similarity scores between different people’s PIE vectors.

Person ID 1 34 44 10 50 51 52 53 54

1 1.0000 0.1832 0.1705 0.1364 0.0976 0.6910 0.7467 0.5697 0.0982
34 0.1832 1.0000 0.1378 0.2357 0.1576 0.8014 0.2076 0.2044 0.1975
44 0.1705 0.1378 1.0000 0.0618 0.2942 0.1378 0.7351 0.0618 0.2942
10 0.1364 0.2357 0.0618 1.0000 -0.2157 0.2357 0.1630 0.8559 -0.2157
50 0.0976 0.1576 0.2942 -0.1860 1.0000 0.1576 0.3149 -0.1860 0.9999

51 0.6910 0.8014 0.1378 0.2357 0.1576 1.0000 0.5259 0.5150 0.1570
52 0.7467 0.2076 0.7351 0.1630 0.3149 0.5259 1.0000 0.4234 0.3158
53 0.5697 0.2044 0.0618 0.8559 -0.1860 0.5150 0.4234 1.0000 -0.1893
54 0.0982 0.1975 0.2942 -0.2157 0.9999 0.1570 0.3158 -0.1893 1.0000

(e.g., persons 1, 34, 44, 10, and 50) was chosen randomly. Notably, their person-

id-embedding (PIE) vectors exhibited relatively low similarity scores, as illustrated

in Table 3.7. Specifically, the cosine similarities between the PIE vector of person 1

and persons 34, 44, 10, and 50 were 0.1832, 0.1705, 0.1364, and 0.0976, respectively.

This suggests that the data for virtual users 51 and 52 originated from source data

positioned far apart in the embedding space. However, the cosine similarity scores

between the PIE of person 51 and 52 with their source data person are relatively high.

This indicates that even when information is synthesized from disparate sources, the

resulting node maintains a high similarity with its source nodes.

� Comparatively, the cosine similarity score between the PIE vectors of person 53 and

person 1 is lower than those of person 51 and person 1, and person 52 and person 1

(e.g., 0.5697 vs. 0.6910 and 0.7467, respectively). This discrepancy is attributed to

person 53’s mobility data utilizing only 25% of the data from person 1, while persons

51 and 52 utilize 50%.

� With 75% overlap in mobility data from person 10, the cosine similarity score between

the PIE vectors of persons 53 and 10 is notably high (e.g., 0.8559).

� Persons 51 and 52 share the same 50% of mobility data from person 1, resulting in

relatively high cosine similarity scores among them. For example, the cosine similarity

score between the PIE of persons 51 and 52 is 0.5259.

� The cosine similarity score between the PIE vectors of individuals 50 and 54 is nearly

perfect, at approximately 1 (e.g., 0.9999), indicating identical mobility patterns. Sim-

ilarly, high similarity scores are observed between PIE vectors of 44 and 52, 10 and

53, 51 and 34, highlighting similarities in their respective mobility profiles.
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Figure 3.11: t-SNE plot of the PIE vectors for all 54 people. Each point in the plot indicates
a PIE vector.

Given the data from 54 people (e.g., 50 original and 4 virtual), a PIE model was trained

to get the PIE vectors, which were then visualized into two-dimensional space using the t-

SNE technique. Figure 3.11 shows the t-SNE plot of the PIE vectors for all 54 people. Each

point in the plot indicates a PIE vector. We focused on the PIE vectors of the following

IDs: 1, 10, 34, 44, 50, 51, 52, 53, and 54.

Some observation can be made from the t-SNE plot:

� The mobility patterns of both person 50 and virtual person 54 are identical, resulting

in closely positioned PIE vectors for this pair. However, it’s noteworthy that although

the PIE vectors for individuals 50 and 54 exhibit high similarity, the corresponding t-

SNE algorithm [76] projections may not perfectly overlap due to inherent randomness
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in the algorithm.

� A similar pattern is observed for other pairs, such as 44 and 52, 10 and 53, 51 and 34.

� The PIE vectors of individuals in group 51, 52, and 53 closely cluster around the PIE

vector of person 1, indicating substantial similarity in their mobility profiles compared

to person 1.

� We acknowledge that the t-SNE plot may not fully capture dissimilarity between node

(e.g., person id embedding (PIE) vectors) for the individuals under consideration. For

instance, as shown in Table 3.7, the similarity score between person 1 and person 34

is low (0.1832), but their positions in the t-SNE plot (as shown in Fig. 3.11) appear

relatively close.

The main reason is that during the dimensionality reduction process, t-SNE emphasizes

selecting pairs with high similarity and compressing them to remain in close proximity

in low-dimensional space. Consequently, pairs such as 1-51 and 34-51 appear close,

leading to the placement of pair 1-34 in proximity, despite their low similarity score

(0.1832).

This tendency is also reflected in the distribution of nodes 1, 34, 44, 10 in Fig. 3.11.

For example, nodes 1 and 44 exhibit low similarity scores, yet t-SNE pulls node 1 and

node 44 close to node 52, creating the appearance of close proximity in the t-SNE

figure.

The utilization of the t-SNE plot this the manuscript serves the purpose of illustrating

that nodes with high similarity scores share similar positions in the embedding space.

However, since the above mentioned limitation of the t-SNE method – nodes with low

similarity scores appear close in the 2D plot, as seen with nodes 1, 34, 44, and 10.

3.5 Chapter Summary

In this chapter, we present a comprehensive two-phase framework designed to predict a per-

son’s future locations with a strong focus on enhancing predictive accuracy. Our innovative

framework leverages the rich spatio-temporal contexts embedded within the mobility pat-

terns of both the person of interest (POI) and their companions. By intelligently selecting

companions whose mobility information contributes significantly to predicting the POI’s

future locations, our framework introduces two efficient methods. The first method hinges
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on spatial proximity, while the second takes advantage of a novel embedding technique.

Additionally, we address the challenge of high dimensionality by integrating a stacked au-

toencoder, which learns a latent vector capturing essential factors governing human mobility,

including location, day of the week, time slot, and person ID. To culminate the predictive

process, we employ a bidirectional recurrent neural network (BRNN)-based multi-output

model, utilizing mobility information from the POI and their companions while ensuring

robust training through weighted loss. This holistic approach enables accurate predictions

of the POI’s locations across several future time slots.

It’s noteworthy that our framework does not rely on social relationships between the POI

and companions but instead on the similarity in their movement behavior. This distinction

makes our model highly versatile, and applicable to a wide range of spatio-temporal datasets,

even in cases where social relationship information is lacking.

To validate the efficacy of our model, we conducted rigorous evaluations on two real-

world datasets. The results unequivocally indicate that our framework surpasses baseline

methodologies in predicting a person’s future locations. These findings emphasize the signif-

icant potential of our framework in enhancing the accuracy and efficiency of human mobility

prediction, positioning it as a promising approach for a broad spectrum of applications in

various domains.
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Chapter 4

Context-Aware Worker Recruitment

for MobileCrowd Sensing Based on

Mobility Prediction

4.1 System Model and Problem Definition

4.1.1 System Model

This study centers on the challenge of Mobile Crowd Sensing (MCS), a domain wherein a

multitude of sensing devices is strategically deployed across urban landscapes to amass data

concerning a diverse array of phenomena. These phenomena span a spectrum of variables,

including but not limited to traffic conditions, air quality, and noise levels. At the inception

of each day, a comprehensive set of sensing tasks is strategically distributed across the urban

landscape, presenting a unique logistical puzzle for the MCS data center. This challenge

requires the MCS data center to accomplish as many of these designated tasks as possible,

all within the constraints of a predefined budget.

To achieve this goal, the MCS center has two primary strategies at its disposal: it can opt

to engage participatory workers, such as mobile users or taxi drivers, who actively contribute

to data collection, driven by attractive incentives; alternatively, the center can seek the

assistance of Opportunistic Workers (OWs), who require comparatively lower incentives for

their contributions.

In the context of this research, our primary focus is on the intricate task of strategically

selecting OWs with the objective of optimizing task completion within the constraints of a
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Opportunistic
worker

Daily routine

The MCS Center

Upload data
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Mobility
prediction

Worker
selection

Figure 4.1: The system model for this study.
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Figure 4.2: Example of a task map.

fixed budget. The intricate web of these activities is captured and illustrated in Figure 4.1,

which delineates the data collection framework involving the recruited workers, illuminating

the intricate dynamics of this complex system.

4.1.2 Problem Definition

The sensing area is partitioned into 𝑘 smaller sections called grids, which are represented

as 𝐺 = {𝑔1, 𝑔2, ..., 𝑔𝑘}. The working day is divided into 𝑚 SCs, which are represented as

𝑇 = {𝑡1, 𝑡2, ..., 𝑡𝑚}. At the start of each day, the MCS organizer assigns a number of tasks to

each grid in every SC. Figure 4.2 illustrates an example of how tasks are assigned to grids.

All tasks that are located in specific grids for the SC can be completed if at least one OW

visits the grid during the SC.

In general scenarios, the MCS center will predict workers’ next locations and execute the

OW selection algorithm for every 𝑞 SCs. Let 𝑊 = {𝑤1, 𝑤2, ..., 𝑤𝑛} be the set of all workers

and 𝑊𝑠 is the set of selected workers for 𝑞 SCs, 𝑊𝑠 ⊆ 𝑊 . The budget for every SC is 𝐵,

and the incentive award given to an OW hired for a SC is 𝐼. Thus, the maximum number

of workers that the MCS system can hire for the SC is 𝐵
𝐼 .

The objective of this work is to maximize the number of completed tasks, denoted as

|𝐶|, with a pre-defined budget constraint 𝐵. The optimization problem can be formulated

as follows:

Maximize |𝐶|
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Table 4.1: Table of term for OW selection framework

Term Meaning

MCS Mobile crowd sensing
OW Opportunistic worker
RNN Recurrent neural network
SC Sensing cycle
𝐵 Budget
𝐺 Set of grids

{𝑔1, 𝑔2, ..., 𝑔𝑘} 𝑘 grids in G
𝑇 Set of sensing cycles

{𝑡1, 𝑡2, ..., 𝑡𝑚} 𝑚 cycles in T
𝑊 Set of workers

{𝑤1, 𝑤2, ..., 𝑤𝑛} 𝑛 workers in W
𝑊𝑠 Set of selected workers
𝑞 Number of SCs to predict locations
𝐼 Incentive award
|𝐶| Completed tasks

Subject to: |𝑊𝑠| × 𝐼 ≤ 𝐵

Terms used in this work are listed and defined in Table 4.1.

Comparison to iCrowd [31] and DLMV [32] scheme:

In iCrowd, it is assumed that there is only one task available at each grid in every sensing

cycle (SC). However, in a real scenario, this assumption may not hold true as the number of

tasks at each grid can vary significantly throughout the day. In dynamic urban environments,

task demands can fluctuate due to changing user needs, events, or time-dependent factors.

Ignoring this variability in task distribution could lead to sub-optimal worker selections,

resulting in potential inefficiencies and missed opportunities for task completion.

In DLMV, the authors do consider the differences in the number of tasks at each grid.

However, the number of tasks assigned to each grid remains unchanged throughout the day.

The dynamic nature of task distribution is not adequately accounted for in their approach.

In real-world scenarios, task demands may experience constant fluctuations, influenced by

factors such as time of day, traffic patterns, and varying user preferences. Failing to address

this dynamism in task allocation could hinder the system’s ability to adapt to real-time

demands and may result in less efficient worker selection, limiting the overall effectiveness

of the MCS process.
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Figure 4.3: The proposed CAMP framework.

4.2 Methodology

4.2.1 Design Overview

In our MCS system, worker selection is centralized and managed by a server. The server

collects and stores the mobility history of all volunteers in the target area, and selects workers

from this pool for each MCS task. Only the selected workers perform tasks and submit

results in each sensing cycle. Our proposed CAMP approach consists of two phases: 1)

using historical mobility data, to predict each worker’s location; and 2) using the predictions

to select workers. This allows the system to effectively recruit a group of workers who are

well-suited to completing the tasks at hand. The CAMP framework is shown in Fig. 4.3

and works as follows.

Phase I - data preparation and worker mobility prediction: Using the past movement

patterns of workers, predict where the employees will be located during the next SCs. In

detail, the next-location prediction model is trained using the mobility traces in two steps:

� Mapping mobility traces – given the historical mobility traces of workers, maps each

trace into pre-defined grids.

� Mobility prediction – train the RNN-based multi-output model to predict the next

locations of each worker based on their current and historical mobility data.

Phase II - iterative OWs selection: Based on the prediction of each worker’s movements,

we propose an algorithm to gradually choose OWs.

� The algorithm starts by selecting the worker who has the highest utility among all

available workers, and adds her/him to the solution set. The formal definition of
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Figure 4.4: The RNN-based multi-output next location prediction model.

utility will be discussed in the next section.

� Then, the algorithm finds the worker who has not been selected and who has the

highest incremental utility when combined with the worker(s) already selected. That

worker is then added to the selected group.

� The algorithm continues adding workers, one at a time, choosing each worker based on

their incremental utility, until the total incentive paid to the selected workers exceeds

the pre-defined budget constraint.

4.2.2 Multi-output Next-location Prediction

The recurrent neural network, a type of neural network designed to process sequential data

with cycles and internal memory units, is a core component of the CAMP method for

predicting workers’ future locations. In this context, the CAMP method employs an RNN-

based multi-output model with an LSTM (Long Short-Term Memory) cell to predict a

worker’s potential locations over the next three sensing cycles (𝑞 = 3). The worker’s mobility

data serve as input to the model, which, in turn, forecasts the worker’s potential locations

in the subsequent time slots (𝑡 + 𝑘, 𝑘 ∈ 1, 2, 3). The architectural layout of the location

prediction model is graphically represented in Figure 4.4.

As depicted in Fig. 4.4, the prediction model includes three layers: the input layer, the

recurrent layer, and the output layer.

1. The input layer of the model takes into account the worker’s recent locations as well as

time-slot and day-of-the-week indices. In Fig. 4.4, the vectors 𝐿ℎ, 𝐷ℎ, and 𝑇ℎ (𝑡− 2 ≤
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ℎ ≤ 𝑡) correspond to the location, day of the week, and time slot index of SC ℎ,

respectively.

2. The recurrent layer is comprised of an RNN that integrates an LSTM cell.

3. The output layer is composed of three parallel branches, each including a fully con-

nected layer equipped with a Rectified Linear Unit (ReLU) activation function. This

is followed by a dropout layer, which helps prevent overfitting, and another fully con-

nected layer that employs softmax activation. Figure 4.4 illustrates the mapping of

each branch, each of which is responsible for predicting the worker’s locations within a

specific time interval. For instance, the branch associated with predicting the worker’s

locations during time slot 𝑡+ 𝑘, where 𝑘 ∈ 1, 2, 3, is denoted as 𝑃 (𝐿𝑡+𝑘). This branch

estimates the probability of visiting different locations during that specific time slot.

The cross-entropy loss function is used to train and optimize the model’s parameters.

The overall loss for the three outputs is calculated as follows:

Loss =

batch_size∑︁ 𝑞∑︁
𝑖=1

− log(𝑃 (𝐿𝑡+𝑖)) (4.1)

where:

� batch_size is the number of samples in a batch.

� 𝑞 is the number of next time slots to predict worker’s location. In our experiment,

𝑞 = 3.

� 𝑃 (𝐿𝑡+𝑖) is the probability of a worker visit locations in time slot 𝑡+ 𝑖.

4.2.3 Weighted-utility OWs Selection

1. Weighted-utility calculation: Given the probability to visit each location during each of

the next 𝑞 SCs, the algorithm iteratively selects the most beneficial OWs for each SC.

As mentioned above, priority is assigned to each location depending on the number

of tasks at that location at a certain SC. The weighted utility for a set of selected
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workers, 𝑊𝑠, is calculated as follows:

weighted-utility(𝑊𝑠) =
∑︁
𝑔∈𝐺

𝑞∑︁
𝑖=1

weight(𝑔)

× prob𝑔,𝑡+𝑖(𝑊𝑠)

(4.2)

where:

� 𝑊𝑠 is the set of selected workers.

� weight(𝑔) is the number of tasks assigned to grid 𝑔

� 𝑡+ 1 is the consider SC.

� prob𝑔,𝑡+𝑖(𝑊𝑠) is the probability of grid 𝑔 being visited by 𝑊𝑠 during SC 𝑡 + 𝑖,

and is calculated using Eq.(4.3).

prob𝑔,𝑡+𝑖(𝑊𝑠) = 1−
∏︁

𝑤∈𝑊𝑠

(1− 𝑃𝑔,𝑡+𝑖(𝑤)) (4.3)

where:

� 𝑤 is the worker in 𝑊𝑠

� 𝑔 is the grid.

� 𝑡+ 1 is the consider SC.

� 𝑃𝑔,𝑡+𝑖(𝑤) is the probability of worker 𝑤 visiting grid 𝑔 during SC 𝑡 + 𝑖. Recall

that this probability is output by the RNN-based multi-output next-location

prediction model.

2. Worker selection: In this step, we merge each unselected worker, denoted as 𝑤 (i.e., 𝑤 ∈

𝑊∖𝑊𝑠), with the existing set 𝑊𝑠 to create a new set (𝑊𝑠 ∪ 𝑤). This is accomplished

by considering the available information, specifically, 𝑊 , 𝑊𝑠, and the task map for

the current SC. Subsequently, the weighted-utility of each combined set is computed

as weighted-utility(𝑊𝑠 ∪𝑤) using Eq. (4.2). The combined set displaying the highest

weighted-utility is designated as the new𝑊𝑠 for the forthcoming iteration. This process

iterates until the total incentives allocated to selected workers surpass the budget

constraint. Algorithm 1 provides the pseudo-code detailing the worker selection process

for reference.
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Algorithm 1 Weighted-utility Opportunistic Worker Selection.

Input: Available workers 𝑊 ; budget constraint 𝐵.
Output: A set of selected OWs for 𝑞 sensing cycles.
1: set 𝑊𝑠 = ∅
2: while |𝑊𝑠| × 𝐼 ≤ 𝐵 and 𝑊 ̸= ∅ do
3: set MaxUtility = 0, bestW = 0
4: for 𝑤𝑗 ∈ (𝑊∖𝑊𝑠) do
5: Calculate weighted-utility(𝑊𝑠 ∪ 𝑤𝑗) using Eq.(4.2)
6: if weighted-utility(𝑊𝑠 ∪ 𝑤𝑗) > MaxUtility then
7: MaxUtility = weighted-utility(𝑊𝑠 ∪ 𝑤𝑗)
8: bestW = 𝑤𝑗

9: end if

10: end for

11: 𝑊𝑠 = 𝑊𝑠 ∪ bestW
12: 𝑊 = 𝑊∖bestW
13: end while

14: return 𝑊𝑠

4.3 Experimental Results

4.3.1 Baseline Methods

In our comprehensive evaluation, we rigorously compared the performance of the CAMP

framework with two alternative methodologies: the iCrowd framework [31] and the DLMV

framework [32]. These frameworks represent distinct strategies for addressing the intricate

challenge of worker selection within MCS.

The iCrowd framework operates on the premise of an inhomogeneous Poisson process for

mobility predictions. This approach utilizes a greedy maximum utility algorithm to make

informed decisions regarding worker selection. In contrast, the DLMV framework adopts a

deep learning-based approach to predict vehicle mobility, leveraging advanced neural net-

works to enhance mobility forecasting. Task assignment within the DLMV framework is

facilitated through a greedy online algorithm, aiming to optimize worker-task pairings.

By pitting the CAMP framework against these well-established methodologies, we sought

to provide a comprehensive assessment of its effectiveness in the crucial task of selecting OWs

in MCS. This comparative analysis allows us to discern the relative strengths and weaknesses

of each approach, shedding light on the unique contributions and advantages of the CAMP

framework in the context of worker selection strategies for MCS.

55



Chapter 4. Context-Aware Worker Recruitment for MobileCrowd Sensing Based on
Mobility Prediction

4.3.2 Dataset and Experiment Setups

The validation of the proposed CAMP framework was carried out utilizing the Crawdad

Roma/Taxi dataset, a well-established and reliable source of real-world data. This dataset

comprises the GPS coordinates of approximately 320 taxis, meticulously collected over a

30-day period spanning from February 1, 2014, to March 3, 2014. Each taxi’s trajectory is

characterized by a series of GPS points, each accompanied by precise timestamps.

To ensure the robustness and credibility of our evaluation, extensive data-cleaning pro-

cesses were employed to refine the dataset. Following this data refinement, a total of 314

taxis were selected to serve as the workers for our MCS scenario. This comprehensive

dataset was instrumental in simulating real-world conditions and ensuring the relevance of

our evaluation.

In our validation procedure, the dataset was partitioned to facilitate the training of the

prediction model and the subsequent evaluation of the OW selection algorithm. The first 25

days’ worth of data were meticulously harnessed to train and fine-tune the prediction model,

leveraging the rich historical mobility data. The remaining 5 days’ data was designated for

the evaluation phase, during which the performance of the OW selection algorithm was

rigorously assessed under operational conditions. This systematic approach to dataset uti-

lization mirrors real-world operational scenarios, thus underlining the practical applicability

of the CAMP framework in diverse MCS applications.

For the experimental phase, a 5𝑘𝑚× 5𝑘𝑚 square area within Rome’s urban region was

thoughtfully selected as the testing ground. To ensure systematic assessment, this chosen

area was further subdivided into a grid layout, with each grid measuring 500𝑚×500𝑚. This

grid configuration, as visually depicted in Figure 4.5, facilitated a structured experiment

setup.

The experiment timeline aligned with a typical working day, spanning from 8:00 in the

morning to 18:00 in the evening. This time frame was meticulously divided into 60 Sensing

Cycles (SCs), with each SC encompassing a 10-minute duration. This setup allowed for

precise time management and observation of worker behaviors throughout the day.

In our experimental design, we introduced variability in the number of tasks generated

per SC, ranging from a minimum of 5 tasks to a maximum of 25 tasks. This broad range

enabled us to assess the performance of the CAMP framework under diverse task loads,

mirroring practical scenarios.
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Figure 4.5: Grids map of Rome city.

Furthermore, the budget (denoted as𝐵) for the experiment was systematically configured

to take on values of 5, 10, 15, 20, and, 25 while maintaining a constant incentive rate (𝐼) of 1.

The selection of these budget values aimed to explore the implications of different budget

constraints on worker selection efficiency.

The comprehensive experiment setups are succinctly summarized in Table 4.2, outlining

the key parameters and configurations employed to evaluate the performance of the CAMP

framework under varying conditions, facilitating a thorough understanding of its capabilities

and adaptability in practical Mobile Crowd Sensing (MCS) applications.

Table 4.2: Experimental setups

Values Default value

Number of days 5 5
Number of workers |𝑁 | = 314 314
Number of grids |𝐺| = 100 100

Number of SCs per day |𝑇 | = 60 60
Incentive per SC 𝐼 = 1 1
Budget for a SCs 𝐵 = {5, 10, 15, 20, 25} 25

Number of tasks assigned per SC {5, 10, 15, 20, 25} 25
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At the beginning of each day, the MCS center initiates the task allocation process by

randomly assigning a specific number of tasks across a set of grids, denoted as |𝐺|. This

allocation procedure is integral in forming the task map that delineates the distribution of

tasks across different grids during each Sensing Cycle (SC). This task map is methodically

created and allocated at the beginning of each operational day by the MCS center, serving

as a foundational blueprint for task distribution and worker recruitment.

In this study, we consider two distinctive scenarios to encapsulate diverse operational

settings and applications within the MCS framework:

� Scenario 1: In this scenario, the MCS center maintains a consistent and unchanging

task map for all SCs throughout the day. This approach is ideally suited for appli-

cations where task requirements remain relatively stable and exhibit minimal fluctua-

tions. For instance, consider a scenario in which tasks involve monitoring air quality

levels in a city. In such cases, the demand for tasks within each grid is expected to

remain constant over time, allowing the MCS center to utilize a fixed task map that

is applicable to all SCs.

� Scenario 2: In contrast, Scenario 2 embodies a dynamic operational mode in which

the MCS center modifies the task map for every single SC. This approach is better

aligned with applications characterized by dynamic and evolving task demands that

vary throughout the day. For example, when tasked with monitoring traffic conditions

within a city, the number of tasks required in each grid may fluctuate based on real-

time traffic patterns and demands. Consequently, a scenario where the task map is

altered at each SC becomes a more relevant and practical approach to effectively cater

to changing task requirements.

The consideration of these two scenarios provides a practical and insightful perspective

on the nuanced management of task maps within various Mobile Crowd Sensing (MCS)

applications. The ability to tailor the task map strategy to match the specific characteristics

of the tasks and their temporal variations offers a pathway to optimizing resource allocation

and ultimately enhancing the overall performance of the system. This adaptability ensures

that the MCS center can effectively respond to the dynamic task requirements inherent in

diverse applications, leading to more efficient data collection and improved task completion

rates.

For the execution of our experiments, a robust computational setup was employed, fea-
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turing a four-core Intel Xeon W-2123 CPU, 32 GB of memory, and a Titan-XP GPU. The

implementation of the CAMP framework and the comparison baseline methods was achieved

using the TensorFlow Keras library within a 64-bit Python 3.8 environment. This robust

computational infrastructure was instrumental in conducting thorough and precise assess-

ments of the proposed framework’s performance and efficiency, ensuring the reliability and

relevance of our findings in the context of real-world Mobile Crowd Sensing applications.

4.3.3 Location Prediction Performance

Table 4.3: Prediction accuracy (%) from different models

Procedure Prediction model SC 𝑡+ 1 SC 𝑡+ 2 SC 𝑡+ 3 Average

Validation
RNN-based multi-output
next-location prediction in
CAMP

30.25 18.32 12.31 20.29

Encoder-decoder RNN model
in DLMV [32]

29.54 18.13 12.45 20.04

Testing
RNN-based multi-output
next-location prediction in
CAMP

26.55 15.33 10.15 17.34

Encoder-decoder RNN model
in DLMV [32]

26.22 15.02 10.16 17.13

The statistic model in iCrowd
[31]

- - - 3.6

In this subsection, we embark on a comprehensive evaluation of the performance of

the proposed location prediction model, juxtaposed against existing approaches present in

the literature. The performance assessment is carried out by subjecting both the RNN-

based multi-output location prediction model introduced in this study and the prediction

model featured in the DLMV framework to a rigorous evaluation process, encompassing both

validation and test datasets. It is worth noting that the statistics-based models employed

in iCrowd underwent evaluation solely on the test dataset, utilizing the identification of the

location with the highest probability of being visited as the worker’s next destination.

Table 4.3 unveils the prediction accuracy metrics of the models when forecasting worker

locations within subsequent SC – specifically, SC 𝑡 + 1, SC 𝑡 + 2, and SC 𝑡 + 3. The

results underscore the efficacy of RNN-based prediction models, notably the CAMP and

the DLMV model, outperforming statistics-based models. Significantly, these RNN-based

models exhibit the highest accuracy when predicting worker locations in the immediate SC,

with a marginal decrease in accuracy as the prediction horizon extends into the future. This
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observation signifies the predominant influence of a worker’s recent movement history on

their near-term locations, highlighting the instrumental role of recent mobility patterns in

forecasting future locations.

These outcomes serve as compelling evidence for the utility of RNN-based models in

enhancing worker location predictions within MCS applications. They underscore the pivotal

role of considering a worker’s recent mobility patterns as a key determinant in making

accurate predictions about their future locations, thus establishing the superiority of RNN-

based models in the context of MCS.

4.3.4 Experiment Results

4.3.4.1 Different Budget Values:

This section provides an in-depth analysis of the performance of the Context-Aware Worker

Recruitment based on a Mobility Prediction Model (CAMP) framework within various bud-

get constraints and scenarios. We delve into the intricate relationship between the budget

allocation for each sensing cycle and the resultant number of successfully completed sensing

tasks. Figure 4.6 serves as a visual aid, offering a comparative perspective on performance

variations across a range of budget constraints. The budget for each Sensing Cycle (SC)

spans from 5𝑡𝑜25, with the number of tasks generated per SC maintained at the default

value of 25.

To provide a clearer understanding of the calculations, it’s essential to highlight the

following key points:

� total budget = budget per SC |B| × number of SC per day |T| × number of test days.

Thus in this experiment, the total budget varies from 1500 (e.g., 5 × 60 × 5) to 7500

(e.g., 25 × 60 × 5).

� total number of tasks = number of tasks per SC × number of SC per day |T| × number

of test days. Thus in this experiment, the total number of tasks is 7500 tasks (e.g., 25

× 60 × 5)

As the budget increases, we observe a general increase in the number of completed tasks,

which can be attributed to the recruitment of additional workers to fulfill the tasks. Notably,

CAMP consistently outperforms both ICrowd and DLMV across all budget constraints in

terms of the number of completed tasks.
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Figure 4.6: The performance comparison in different budgets. In this experiment, the budget
for each SC is varied from 5 to 25 while the number of tasks generated every SC is set to 25
tasks per SC. The y-axis shows the total number of completed tasks over 5 test days.
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In Scenario 1, CAMP achieves 56.3 percent more completed tasks than ICrowd, sig-

nifying a substantial enhancement in task completion rates. Similarly, within the same

scenario, CAMP surpasses DLMV by 410.7 percent, underscoring the remarkable impact of

our proposed framework.

Furthermore, in Scenario 2, CAMP reaffirms its superiority by achieving an average of

29.9 percent more completed tasks than ICrowd. Likewise, within this scenario, CAMP

outperforms DLMV by 190.8 percent, reiterating the consistent effectiveness of the CAMP

approach in dynamic task environments. These results underscore the significant potential

and adaptability of CAMP in enhancing worker selection efficiency across diverse MCS

applications.

A notable and compelling finding of our study is the consistent outperformance of the

CAMP framework when compared to the iCrowd method. This superiority can be attributed

to two fundamental factors. Firstly, the iCrowd method relies on the assumption that work-

ers’ mobility adheres to a specific statistical process. However, human mobility patterns

are inherently complex and diverse, and this assumption may not accurately capture the

intricacies of real-world mobility. In contrast, the CAMP framework leverages a cutting-

edge RNN-based multi-output prediction model. This model excels in accurately predicting

workers’ future locations by drawing insights from their past mobility data. The preci-

sion in mobility prediction significantly enhances worker selection, leading to a noticeable

performance advantage.

Secondly, a crucial distinction between the two approaches lies in their worker selection

strategies. The iCrowd framework overlooks the number of tasks associated with different

locations when making worker selections. In contrast, the CAMP framework introduces

a weighted-utility worker selection algorithm that strategically assigns higher weights to

workers more likely to visit locations with a higher task demand. This approach results in an

optimized worker selection process, effectively distributing tasks, and ultimately culminating

in higher task completion rates.

Our findings also indicate that while the prediction accuracy of the DLMV and CAMP

methods is comparable (as shown in Table 4.3), the number of completed tasks using the

DLMV method significantly lags behind. This discrepancy can be attributed to the DLMV

approach’s reliance on a worker selection algorithm that predominantly considers the likeli-

hood of workers visiting a specific location. Conversely, both the CAMP framework and the

iCrowd method adopt a more comprehensive approach by considering a worker’s likelihood
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of visiting all locations when calculating utility. This holistic evaluation of utility leads to

superior performance and a more robust task completion rate.

In summary, the technical analysis of our results underscores the comprehensive strengths

of the CAMP framework in effectively predicting worker mobility, optimizing worker selec-

tion based on task distribution, and ultimately elevating task completion rates within the

dynamic landscape of MCS scenarios.

4.3.4.2 Different Numbers of Tasks

In this section, we extend our performance evaluation of the CAMP framework, delving into

an in-depth analysis and providing valuable insights into its remarkable superiority over

baseline methods in diverse task load scenarios. Our evaluation encompasses a range of

task settings, varying from 5 tasks per sensing cycle (SC) to 25 tasks per SC, offering a

comprehensive view of the framework’s capabilities. The budget allocated for each SC in

this evaluation remains constant at 25.

The following calculations clarify the experiment setup:

� total budget = budget per SC |B| × number of SC per day |T| × number of test days.

Thus in this experiment, the total budget is 7500 (e.g., 25 × 60 × 5).

� total number of tasks = number of tasks per SC × number of SC per day |T| × number

of test days. Thus in this experiment, the total number of tasks varies from 1500 tasks

(e.g., 5 × 60 × 5) to 7500 tasks (e.g., 25 × 60 × 5)

Figure 4.7 illustrates that the CAMP framework consistently maintains a remarkable

performance advantage over both ICrowd and DLMV across all task settings. Specifically,

in Scenario 1, CAMP achieves an average of 33.1 percent more completed tasks than ICrowd

and an astounding 389.7 percent more than DLMV. Similarly, in Scenario 2, CAMP out-

performs ICrowd by an average of 14.0 percent and DLMV by a substantial 219.7 percent

in terms of completed tasks. These results underscore the remarkable effectiveness of the

CAMP approach in optimizing task completion under varying task load scenarios in the

context of MCS.

The performance of baseline methods showed some improvement as the number of tasks

increased. However, this improvement was not as substantial as that observed with the pro-

posed CAMP framework. The key differentiating factor lies in CAMP’s ability to prioritize

and select workers efficiently based on their likelihood of visiting locations with a significant
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(b) Scenario 2: Different task map every SC

Figure 4.7: Performance comparison of different numbers of tasks generated for every SC.
In this experiment, the number of tasks generated every SC is varied from 5 tasks per SC
to 25 tasks per SC while the budget for each SC is set to 25. The y-axis shows the total
number of completed tasks over 5 test days.
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number of tasks. By making more reasonable decisions in worker selection, CAMP optimizes

task allocation and enhances overall efficiency in task completion.

Moreover, the utilization of an RNN-based multi-output prediction model in the CAMP

framework enables accurate prediction of workers’ movements. This predictive capability

plays a crucial role in dynamically adapting to changing task loads, allowing CAMP to

anticipate worker movement patterns and proactively assign them to locations where their

expertise is most needed. Consequently, task allocation is improved, leading to enhanced

overall performance.

The presented results serve as compelling evidence of the CAMP framework’s adaptabil-

ity to varying task loads and reinforce its superiority over baseline methods. By effectively

addressing the challenges posed by fluctuating workloads, the CAMP framework emerges

as a robust solution that outperforms traditional approaches. These findings highlight the

practical value and potential impact of integrating the CAMP framework into real-world

scenarios, where dynamic task assignment and efficient resource utilization are critical con-

siderations.

4.3.5 Effectiveness of the Prediction model

This subsection is dedicated to the evaluation of the prediction effectiveness in the first

phase of the CAMP framework concerning OWs selection. The objective of this evaluation

is to assess whether the RNN-based model contributes to an overall improvement in the

performance and efficiency of the worker selection process.

Figure 4.8 provides a comprehensive comparison of how well the RNN-based model per-

formed under various budget constraints and scenarios. The results consistently reveal that

the RNN-based model surpasses the Poisson-based model across all budget scenarios. In Sce-

nario 1, the RNN-based model achieves an average of 74.3 percent more completed tasks,

underscoring its superior performance. Similarly, in Scenario 2, the RNN-based model out-

performs the Poisson-based model by 109.7 percent, further substantiating its effectiveness.

This observed superiority of the RNN-based model can be attributed to several key

factors. Firstly, the RNN-based model leverages the capabilities of recurrent neural networks

(RNNs) and Long Short-Term Memory (LSTM) cells, which are well-suited for handling

sequential data. In contrast, the Poisson-based model relies on a statistical process that

may not accurately capture the complex and dynamic nature of human mobility patterns.

The RNN-based model excels in predicting workers’ future locations by analyzing their
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Figure 4.8: Effectiveness of the RNN-based model for worker selection. In this experiment,
the budget for each SC is varied from 5 to 25 while the number of tasks generated every SC
is set to 25 tasks per SC. The y-axis shows the total number of completed tasks over 5 test
days.
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historical mobility data. This accuracy plays a crucial role in the worker selection process,

as more precise predictions lead to improved location-based decisions.

Secondly, the RNN-based model’s effectiveness is reinforced by its ability to consider a

worker’s likelihood of visiting all locations when calculating utility, whereas the Poisson-

based model does not account for location-specific task load. By prioritizing locations based

on expected task load, the RNN-based model facilitates more efficient worker selection and

optimized task allocation, resulting in higher task completion rates.

In conclusion, the comparative evaluation highlights the advantages of employing the

RNN-based model in the CAMP framework. The RNN’s capability to accurately predict

worker mobility patterns, coupled with its strategic approach to worker selection, leads to

enhanced task completion rates, making it a promising advancement in worker selection

strategies for MCS applications. These findings underscore the practical value and potential

impact of integrating the RNN-based model into real-world scenarios, where precise worker

selection and improved task completion are essential considerations.

4.3.6 Effectiveness of the Weighted-utility Algorithm

This subsection is dedicated to the evaluation of the weighted-utility algorithm’s effectiveness

in the second phase of the CAMP framework concerning OWs selection. The objective of

this evaluation is to assess whether the weighted-utility approach contributes to an overall

improvement in the performance and efficiency of the worker selection process.

Figure 4.9 provides a comprehensive comparison of how well the weighted-utility method

performed under various budget constraints and scenarios. The results consistently reveal

that the weighted-utility method surpasses the utility-based method across all budget sce-

narios. In Scenario 1, the weighted-utility approach achieves an average of 63.2 percent

more completed tasks, underscoring its superior performance. Similarly, in Scenario 2, the

weighted-utility algorithm outperforms the utility-based algorithm by 33.3 percent, further

substantiating its effectiveness.

The primary advantage of the weighted-utility approach lies in its capacity to accurately

prioritize locations based on the expected task load. This strategic feature enables the MCS

system to select workers who are more likely to visit high-priority locations, resulting in an

increased number of completed tasks within the given budget. By optimizing resource allo-

cation, the system achieves higher task completion rates and overall enhanced performance.

This evaluation unequivocally demonstrates the potential of the weighted-utility algorithm
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Figure 4.9: Effectiveness of the weighted-utility worker selection algorithm. In this exper-
iment, the budget for each SC is varied from 5 to 25 while the number of tasks generated
every SC is set to 25 tasks per SC. The y-axis shows the total number of completed tasks
over 5 test days.
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to revolutionize the worker selection process within the CAMP framework. Embracing this

approach in MCS systems holds the promise of elevating task completion rates, enhancing

resource management, and augmenting system efficiency. It signifies a notable advancement

in worker selection strategies for MCS applications with the potential to deliver substantial

benefits.

4.4 Chapter Summary

This chapter introduces a two-phase framework called the CAMP, meticulously designed

to tackle the intricate challenge of Opportunistic Worker (OW) selection within Mobile

Crowd Sensing (MCS). CAMP’s pivotal innovation is the seamless fusion of a highly precise

multi-output Recurrent Neural Network (RNN) model for predicting worker mobility and

an exclusive weighted-utility worker selection algorithm. This algorithm is acutely attuned

to the dynamic task distribution across diverse locations and time slots, yielding a more

refined and efficient worker selection process.

The rigorous evaluation, conducted with the real-world Crawdad Roma/Taxi dataset,

provides compelling empirical support for the exceptional performance of the CAMP frame-

work. Notably, CAMP surpasses baseline methods, namely iCrowd and DLMV, across

both considered scenarios, whether employing the same task map or undergoing changes.

This achievement is particularly significant, given the variable budget constraints and the

fluctuating number of tasks generated in each sensing cycle (SC), underscoring CAMP’s

substantial potential to significantly augment worker selection efficiency across a spectrum

of MCS applications.

In summary, the CAMP framework represents an innovative and highly efficient solution

for optimizing the selection of OWs in the MCS domain. While acknowledging its cur-

rent limitations and outlining pathways for refinement, CAMP’s contributions lay a sturdy

foundation for future advancements in worker selection strategies, promising heightened ef-

ficiency and effectiveness in diverse MCS applications, with the potential to reshape the

landscape of MCS.
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5.1 Summary of the Contribution

In summary, this dissertation addresses two core challenges within the domains of human

mobility prediction and Mobile Crowd Sensing (MCS). These challenges are the development

of accurate and efficient human mobility prediction models and the effective application of

human mobility prediction to enhance MCS systems

The first framework introduced in this dissertation revolves around accurate human mo-

bility prediction, a crucial element in enhancing various applications. It acknowledges that

human mobility is a dynamic and non-linear process influenced by multiple factors. To

bridge this gap, we present a two-phase framework that leverages spatio-temporal contexts

from both the person of interest (POI) and their companions. This framework intelligently

selects companions, overcomes the challenge of dimensionality through a stacked autoen-

coder, and employs a bidirectional recurrent neural network (BRNN)-based multi-output

model for precise location predictions across multiple time slots. A weighted loss approach

optimizes the prediction process by considering the importance of each future time slot.

The second framework, named ’Context-Aware Worker Recruitment based on a Mobil-

ity Prediction Model’ (CAMP), shifts the focus to the selection of Opportunistic Workers

(OWs) within the MCS context. CAMP, operating in two phases, efficiently selects the most

suitable workers to maximize task completion within budget constraints. The first phase

enhances worker mobility prediction through a recurrent neural network-based model, im-

proving location prediction accuracy. The second phase introduces a weighted-utility worker

selection algorithm, considering variations in task distribution. The integration of accurate

mobility prediction and the weighted-utility worker selection algorithm positions CAMP as
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a superior solution for optimizing task allocation within MCS.

Comprehensive experiments were conducted to evaluate the performance of these frame-

works using diverse large datasets. The results consistently demonstrate the superior pre-

dictive accuracy of the location prediction frameworks and the ability of the worker selection

framework to successfully complete more tasks within the same budget constraints compared

to alternative approaches. These accomplishments underscore the potential of these frame-

works to significantly enhance the accuracy and efficiency of human mobility prediction and

worker selection, offering valuable contributions to the realms of predictive analytics and

Mobile Crowd Sensing.

In summary, the main contributions of this dissertation are as follows:

� We begin by summarizing existing studies related to human mobility prediction models

and worker selection in Mobile Crowd Sensing (MCS). Subsequently, we discuss the

limitations of existing research. The central objective of this dissertation is twofold: to

address the challenges of developing accurate and efficient human mobility prediction

models and to effectively apply human mobility prediction to enhance MCS systems.

� Concerning the human mobility prediction model, we propose a multi-output Bidi-

rectional Recurrent Neural Network (BRNN)-based model for predicting an individ-

ual’s future locations based on recent mobility data from the Person of Interest (POI)

and their companions. To combat the issue of high dimensionality, we introduce an

autoencoder. Additionally, we utilize two companion selection methods to identify

companions whose mobility data can contribute significantly to predicting the POI’s

future locations. Notably, we introduce a novel companion selection method based on

a person ID embedding vector.

� In tackling the second challenge, we present the CAMP framework for the selection of

Opportunistic Workers (OWs) in MCS projects. This framework incorporates an RNN-

based multi-output human mobility prediction model that accurately forecasts worker

locations in the next sensing cycle. The weighted-utility worker selection algorithm is

employed to recruit a group of OWs capable of completing the maximum number of

sensing tasks within budget constraints.

� We have conducted various experiments to evaluate the proposed human mobility

prediction model and the worker selection model. Specifically, the location prediction
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model is assessed using two large-scale Wi-Fi trace datasets, namely the UB and Dart-

mouth datasets. The results demonstrate the model’s effectiveness in predicting an

individual’s future locations. The CAMP framework’s performance is evaluated with

a GPS-based taxi dataset, the Rome-taxi dataset. The results underscore CAMP’s su-

periority over existing methods for OW selection in MCS, offering an effective solution

for this important task.

5.2 Future Works

5.2.1 Enhancing Human Mobility Prediction

In the realm of human mobility prediction, the current research grapples with data limi-

tations, hindering a comprehensive understanding of the intricate motivations behind indi-

viduals’ movements. However, a commitment to advancement steers the direction of future

work. The primary goal is to enhance the predictive models by delving deeper into the un-

derlying reasons behind mobility patterns, transcending the mere prediction of destinations

to gain insights into the driving forces behind these movements.

The forthcoming research initiatives involve a consideration of various pivotal factors

aimed at refining predictive models. This includes exploring temporal dynamics to under-

stand how mobility patterns fluctuate between workdays and weekends, influenced by daily

routines that shape people’s choices regarding their destinations. Additionally, the models

will incorporate personal preferences, tailoring predictions to align with individual behaviors.

Recognizing the significant influence of environmental factors on mobility, we will also

factor in variables such as weather conditions, traffic congestion, and the occurrence of spe-

cial events. These elements play a substantial role in shaping individuals’ mobility decisions,

and their inclusion in the models will enhance prediction accuracy, providing a comprehen-

sive understanding of how the environment intertwines with human mobility.

Looking forward, the integration of cutting-edge model architectures, such as atten-

tion mechanisms, transformers, and graph neural networks, will be a focal point of future

research. These advanced architectures have shown promise in capturing intricate depen-

dencies within sequential data and complex relationships in graph structures, which are

inherent in human mobility patterns. By applying these state-of-the-art models, we aim to

further improve the accuracy and interpretability of our predictions.

In summary, future research endeavors embrace a holistic approach, encompassing the se-
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mantic context, temporal dynamics, personal preferences, and environmental factors within

predictive models. This approach signifies a substantial step toward not only predicting in-

dividuals’ future locations but also comprehending the motivations driving their movements,

ultimately leading to more refined and accurate mobility predictions.

5.2.2 Expanding Worker Selection Framework

In the context of the worker selection framework, an existing limitation is the absence of

consideration for various influential factors that can significantly affect worker selection.

These factors include worker availability, skill levels, and past performance, among others.

Recognizing this shortfall, future research endeavors hold promise in addressing this exciting

avenue for exploration. A potential enhancement involves extending the weighted-utility

worker selection algorithm to prioritize workers based on their availability, potentially leading

to more efficient task completion, particularly when constrained by specific time limits.

Moreover, the broader applicability of the CAMP framework presents an intriguing op-

portunity for further validation. This can be achieved by subjecting the framework to rigor-

ous evaluation using diverse real-world datasets and across a wide spectrum of Mobile Crowd

Sensing (MCS) scenarios. This comprehensive approach promises to yield valuable insights

into its performance and adaptability in various operational settings. By meticulously test-

ing the proposed method in diverse contexts, we aim to acquire a holistic understanding

of its strengths and identify potential areas for refinement. Ultimately, this pursuit charts

the course towards establishing a more resilient and effective worker selection strategy for

practical MCS implementations, serving a variety of applications and domains.
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