

저작자표시-비영리-변경금지 2.0 대한민국

이용자는 아래의 조건을 따르는 경우에 한하여 자유롭게

l 이 저작물을 복제, 배포, 전송, 전시, 공연 및 방송할 수 있습니다.

다음과 같은 조건을 따라야 합니다:

l 귀하는, 이 저작물의 재이용이나 배포의 경우, 이 저작물에 적용된 이용허락조건
을 명확하게 나타내어야 합니다.

l 저작권자로부터 별도의 허가를 받으면 이러한 조건들은 적용되지 않습니다.

저작권법에 따른 이용자의 권리는 위의 내용에 의하여 영향을 받지 않습니다.

이것은 이용허락규약(Legal Code)을 이해하기 쉽게 요약한 것입니다.

Disclaimer

저작자표시. 귀하는 원저작자를 표시하여야 합니다.

비영리. 귀하는 이 저작물을 영리 목적으로 이용할 수 없습니다.

변경금지. 귀하는 이 저작물을 개작, 변형 또는 가공할 수 없습니다.

http://creativecommons.org/licenses/by-nc-nd/2.0/kr/legalcode
http://creativecommons.org/licenses/by-nc-nd/2.0/kr/

DOCTOR OF PHILOSOPHY

RESEARCH ON CONSTRAINED AND
ERROR CORRECTION CODES FOR DNA

STORAGE

The Graduate School
of University of Ulsan

Department of Electrical, Electronic
and Computer Engineering

XIAOZHOU LU

Research on Constrained and Error Correction
Codes for DNA Storage

Supervisor: Sunghwan Kim

A Dissertation

Submitted to
the Graduate School of University of Ulsan
In partial Fulfilment of the Requirements

for the Degree of

DOCTOR OF PHILOSOPHY

by

Xiaozhou Lu

Department of Electrical, Electronic
and Computer Engineering

University of Ulsan, Korea

February 2024

VITA

XIAOZHOU LU received the B.S. degree from the University of Ulsan, South
Korea, in 2018, where he is currently pursuing the M.S. and Ph.D. combined degree
with the Department of Electrical, Electronic, and Computer Engineering, Uni-
versity of Ulsan, South Korea. His research interests include 5G communication,
error correction codes, and storage systems.

ii

Research on Constrained and Error Correction
Codes for DNA Storage

This certifies that the dissertation of Xiaozhou Lu is approved.

Department of Electrical, Electronic
and Computer Engineering

University of Ulsan, Korea

February 2024

iii

ACKNOWLEDGEMENT

This thesis would not have been possible without the unquestionable support
of many people. I would like to express my gratitude to everyone who contributed
to this thesis.

Firstly, I would like to express my gratitude to my advisor, Prof. Sunghwan
Kim. It is due to his long-term guidance, support, and encouragement that I
have made progress in my research topic, ultimately allowing me to refine my
work. During my studies, he used his profound theoretical knowledge and extensive
experience to continuously help me refine my ideas and provided valuable feedback
on my paper writing. I am deeply grateful to him for this.

Secondly, I want to thank my peers. Although we come from different countries,
they always share happiness with me and have been a great help in my study.

Additionally, I am profoundly grateful to the University of Ulsan for offer-
ing me an exceptional research atmosphere and financial supporting through the
BK21+ programs. Moreover, UOU has presented us with the chance to devote
into a diverse range of valuable subjects, guided by remarkable instructors. These
experiences will furnish me with the expertise required for effective research and
professional endeavors throughout my lifetime.

Finally, I would like to express my gratitude to my parents and friends for
their love and encouragement, which enables me to keep moving forward even
under pressure and difficulties.

iv

ABSTRACT

Research on Constrained and Error Correction
Codes for DNA Storage

by

Xiaozhou Lu
Supervisor: Professor Sunghwan Kim

Submitted in Partial Fulfilment of the Requirements for the Degree of
Doctoral Dissertation

January 2024

Due to the increasing demand for data storage, DNA storage systems have be-
gun to attract considerable attention as next-generation storage technologies due
to their high densities and longevity. DNA storage technology is a method of stor-
ing binary information in the form of DNA strands, which are composed up of DNA
sequences and primers. However, common obstacles to DNA storage are caused
by insertion, deletion, and substitution errors occurring in DNA synthesis and se-
quencing. Therefore, reducing the error rates and correcting errors during DNA
synthesis and sequencing is inevitable to guarantee reliable data storage in DNA
storage. When the DNA strands stored in the DNA pool, efficient random-access
desired information from stored DNA strands presents an additional obstacle in
DNA storage.

To reduce error rates, a common approach involves imposing constraints on the
stored DNA strands, such as ensuring they satisfy GC-balanced and homopolymer
run-length constraints, etc. In terms of error correction in DNA storage, error
correction codes are employed to enhance the reliability of the DNA synthesis and
sequencing processes. Additionally, primers in DNA strands solve the problem of
random-access in DNA storage.

This thesis propose a novel code construction method based on the weight dis-
tribution of the data and introduce a specific encoding process for both balanced
and imbalanced data parts, which enables us to efficiently construct GC-balanced
DNA codes. Additionally, to minimize errors in DNA storage processes, we pro-
pose a new single insertion/deletion nonbinary systematic error correction code
with the maximum run-length constraint and its corresponding encoding algo-
rithm. Finally, to solve the issue that efficient primer design for random-access in
synthesized DNA strands, we propose a code design by combining weakly mutu-
ally uncorrelated codes with the maximum run length constraint for primer design.

v

Moreover, we also explore the weakly mutually uncorrelated codes to satisfy com-
binations of maximum run length constraint with more constraints such as being
almost-balanced and having large Hamming distance, which are also efficient con-
straints for random-access in DNA storage systems.

vi

Contents

List of Figures ix

List of Tables x

1 Introduction 1
1.1 Motivation and Objective . 1
1.2 DNA storage: system model . 3
1.3 The methodology for DNA storage 6

1.3.1 Error-correcting codes for DNA storage 7
1.3.2 Constrained codes for DNA storage 10
1.3.3 Codes for random-access in DNA storage 11

1.4 Contribution and layout . 11

2 New construction of balanced codes for DNA storage 13
2.1 Introduction . 13
2.2 Preliminaries . 14

2.2.1 Related works for binary ϵ-balanced code construction . . . 14
2.3 GC-balanced codes construction . 18

2.3.1 Overall encoding processes 18
2.3.2 Flipping functions . 19
2.3.3 Encoding and mapping . 22
2.3.4 Decoding of the proposed GC-balanced codes 24

2.4 Analysis of the average parity lengths for the proposed codes 27
2.4.1 Average parity length for f = 0 27
2.4.2 Average parity length for f = 1 29
2.4.3 Average parity length for f > 1 30

2.5 Performance evaluation . 31
2.5.1 Comparison results of average parity lengths for various ϵ . . 32
2.5.2 Average parity length comparison results for various f . . . 36

3 Nonbinary single insertion or deletion error correction codes with

vii

a maximum run-length constraint for DNA storage 40
3.1 Introduction . 40
3.2 Preliminaries . 42

3.2.1 Proposed code construction and algorithm 43
3.2.2 Construction of sequences with the maximum run-length

constraint . 44
3.3 Code construction and encoding for a nonbinary SIDEC with a max-

imum run-length constraint code 46
3.3.1 Code construction . 46
3.3.2 Encoding algorithm . 50
3.3.3 Special case with k = 190 and 191 and the overall of encod-

ing algorithm . 55
3.4 Decoding for an insertion or deletion error 59
3.5 Simulation and Comparison results 60

3.5.1 Comparison results of related work [2] and our work 63

4 Weakly mutually uncorrelated codes with maximum run-length
constraint for DNA storage 66
4.1 Introduction . 66
4.2 Preliminaries . 68

4.2.1 MU and WMU code: definitions, constructions, and properties 68
4.3 Constrained WMU code constructions 71

4.3.1 k-WMU code with the maximum run-length l constraint . . 72
4.3.2 2-WMU code with the maximum run-length l constraint and

Hamming distance d . 76
4.3.3 Almost-balanced and 3-WMU code with the maximum run-

length l constraint . 77
4.3.4 Almost-balanced 2-WMU code with the maximum run-length

l constraint and Hamming distance d 83
4.4 Applying code construction to primer design in DNA storage 85

4.4.1 2-WMU code construction with maximum run-length l con-
straint for various lengths 86

4.4.2 The size of the 2-WMU code with maximum run-length l
constraint for various lengths 87

4.4.3 Comparison for the maximum run-length constraint 90

5 Conclusions and Future works 93
5.1 Thesis Conclusion . 93
5.2 Future research directions . 95

Bibliography 97

viii

List of Figures

1.1 The fundamental model of DNA storage systems. 4
1.2 The form of linear block codes apply in DNA storage. 8
1.3 The contribution of the dissertation. 12

2.1 System model of the proposed GC-balanced code construction in
DNA storage. 18

2.2 The ratios
|B1

ϵ,n|
2n

for the binary sequences which become c(1) for
n = 102, 128, 174, and 255 and ϵ = 0.05. 20

2.3 Encoding functions E0, Ei for i = [1, f], and Efinal. 24
2.4 Encoding and decoding for f = 0. 27

2.5 The ratio
|B0

ϵ,n|
2n

for lengths n = 128, 200, and 240. 32

2.6 The ratio
|B1

ϵ,n|
2n

for lengths n = 128, 200, and 240. 33
2.7 Average parity lengths for f = 0 and n = 128, 200, and 240. 34
2.8 Average parity lengths for f = 1 and n = 128, 200, and 240. 35
2.9 Average parity lengths of the proposed codes for various f for

lengths n = 117, 174, 255, and ϵ = 0.05. 37
2.10 Average parity lengths of the proposed codes for various f for

lengths n = 117, 174, 255, and ϵ = 0.1. 38

3.1 Overall block diagram of the proposed code. 43
3.2 The flow chart of the proposed encoding algorithm. 57

4.1 Considered DNA storage system and proposed code constructions
for primers. 71

ix

List of Tables

3.1 The example of one-to-one mapping between a 48-ary element and
q-ary subsequence zjr

(j−1)r+1 with r symbols. 45
3.2 Forms of the proposed nonbinary systematic SIDEC code. 46
3.3 The relationship between the message sequence length k, the value

of B, the number of parity symbols m+ 1, and the length of code-
word c, n+ 1 . 47

3.4 The relationship between αm
3(σ−1) and cm3(σ−1) 53

3.5 The relationship between α3l
3(l−1) and c3l3(l−1) for l ∈ [1, σ] and m = 3σ. 53

3.6 The encoding results for different codeword lengths with a = 0 and
b = 1. 62

3.7 The encoding results for different codeword lengths with a is a ran-
dom number in [q] and b is a random number in [In+1]. 62

3.8 The decoding results for different codeword lengths with a single
deletion error. 63

3.9 The decoding results for different codeword lengths with a single
insertion error. 63

3.10 The comparison between referenced work [2] and our work for CCF
and maximum run-length constraint when the codeword length is
n = 150. 64

4.1 The size of the 2-WMU code with maximum run-length l = 3 for
18-24 nt. 90

4.2 Different maximum run-lengths results for the codes CR8 of lengths
n(2) = 12 and n(3) = 13, CR8-H of length n(2) = 12, |CR8-GC|(3) of
length n(3) = 13, and |CR11-GH|(2) of length n(2) = 12 91

x

Notations and Abbreviations

w(x) Weight of the sequence x: w(x) =
∑n

i=1 xi

ϵ-balanced Sequence x satisfy −⌊ϵn⌋ ≤ w(x)− n
2
≤ ⌊ϵn⌋

[i, j] Set {i, i+ 1, ..., j}

[j] Set [0, j − 1] = {0, i+ 1, ..., j − 1}

[j]\i Set {0, 1, ..., i− 1, i+ 1, ..., j − 1}

xj
i Subsequence (xi, xi+1, ..., xj)

xi Flipped bit of xi (i.e. 1 → 0 and 0 → 1)

xj
i = (xi, xi+1, ..., xj) Flipped sequence of xj

i

⌈·⌉ Ceiling function

⌊·⌋ Floor function

logq(·) Logarithm of base q

log(·) Logarithm with base two

mod Modulo

∪ Union operation

min(x) Minimum element in sequence x

max(x) Maximum element in sequence x

sum(x) Summation all elements in sequence x

Zq = [q] Finite integer ring of size q

Zn
q Set of vectors with n elements over Zq

|x| Length of the sequence x

(x,y) Concatenation of sequences x and y

A, C, G, and T DNA nucleotides (correspond to symbols 0, 1, 2, and 3)

Run-length of xi
j All symbols in xi

j are same but different with xj−1 and xi

Maximum run-length Longest run in the sequence x

Hamming distance Number of different symbols between any two sequences

xi

DNA Deoxyribonucleic acid

VT codes Varshamov-Tenengolts codes

EVT codes Extended VT codes

nt Nucleotides

PCR Polymerase chain reaction

BSC Binary symmetric channel

BCH codes Bose–Chaudhuri–Hocquenghem codes

LDPC codes Low-density parity-check codes

SIDEC codes Single insertion or deletion error correction codes

MU codes Mutually uncorrelated codes

WMU codes Weakly Mutually uncorrelated codes

xii

Chapter 1

Introduction

1.1 Motivation and Objective

With the rapid development of information technology, the total volume of data

is also exponentially growing. According to the reports in [1], until 2020, the

data volume in the world had reached approximately 44 zettabytes (ZB) (1 ZB

= 1021 bytes), and it continues to grow at a rate of 2.5 exabytes (Eb) (1 EB

= 1018 bytes) per day. Although the hardware of data storage systems, such as

tapes, hard drives, and flash memory, is also gradually being upgraded to meet

the demands of large capacity of data storage, the high-speed growth of data

and the high maintenance costs for data centers will soon be challenging to meet

people’s needs. Therefore, to investigate a new data storage medium is imperative.

Deoxyribonucleic acid (DNA) storage technology has opened up a new storage

paradigm, and its development plays a crucial role in conserving storage cost and

advancing the development of big data storage.

The basic concept of using DNA strands as a storage medium can be traced

back to 1953 when it was proposed by Watson and Crick [66], In the following

decades, some researchers worked on refining the framework and structure of us-

1

ing DNA sequences for information storage [47, 48]. In 1996, Davis [14] for the first

time encoded a dark and bright pixel image of 35 bits into DNA strands and suc-

cessfully retrieved the original image from the cellular carrier, marking the initial

success of DNA storage technology. In the subsequent years, there was a growing

number of successful cases. In 1999, Clelland et al. [7] successfully recovered a

message hidden in the DNA sequences containing 23 characters. In 2000, Leier

et al. [37] implemented an encryption and decryption method applicable to DNA

barcodes. In 2002, Reif et al. [51] first constructed a small DNA database that

could be randomly accessed. Utill 2017, Organick et al. [17] stored 200 megabyte

(MB) of data 13 million DNA strands. DNA storage systems have begun to attract

a lot of attention again.

With the further research, the advantages of DNA storage become more and

more obvious. For instance, it has the advantages of high storage density, longevity,

low maintenance cost, and efficient duplication. Although DNA storage offers

numerous potential benefits, a series of issues also exist objectively in DNA storage,

such as efficiently random-access the stored information among enormous DNA

strands and completely retrieve the stored information, given the occurrence of

errors during the DNA synthesis and sequencing process [17, 26, 4, 32, 12, 38].

To address these issues, some coding techniques [4, 20] in formation theory are

considered into DNA storage. Under the goals of errors rate reduction and errors

correction, to ensure the high storage density of DNA storage, researchers devote

to finding the optimal coding coding techniques.

Overall, the aims of this thesis are to deal with the issues occurred in DNA

storage, we propose novel coding coding strategies for DNA sequences and primers,

respectively, which is helpful for reducing errors rate, error correction, and efficient

random-access in DNA storage. The specific coding strategies are listed as follows.

• To minimize errors in DNA storage, a novel coding scheme is proposed to

2

construct DNA sequences with a proper balanced GC content. For meet

the high information density, the code design with variable parity length

is considered based on the data parts, which can efficiently reduce average

parity lengths .

• To correct the errors and reduce the errors rate in DNA storage, a new single

insertion/deletion nonbinary error correction code with the proper maximum

run-length constraint is proposed for the construction of DNA sequences. For

the proposed code, we design the fixed maximum run-length in the parity

sequence of the proposed code to be three. Additionally, the last parity

symbol and the first message symbol are always different. Hence, the overall

maximum run-length of the output codeword is guaranteed to be three when

the maximum run-length of the message sequence is three.

• To efficiently random-access in synthesized DNA strands, we propose a code

design by combining weakly mutually uncorrelated codes with the maxi-

mum run-length constraint for the construction of DNA primers. Moreover,

we also explore the weakly mutually uncorrelated codes to satisfy combina-

tions of maximum run-length constraint with more constraints such as being

almost-balanced and having large Hamming distance, which are also efficient

constraints in primer design for random-access in DNA storage systems.

1.2 DNA storage: system model

In nature, the genetic information of organisms is composed of DNA, which consists

of four bases: A, T, C, and G. DNA storage employs DNA sequences as a medium,

using specific encoding strategies to convert binary files of text, images, sounds,

and videos into corresponding DNA sequences of a certain length. In consideration

of the cost of DNA synthesis and sequencing, the length of synthesized sequences

3

Figure 1.1: The fundamental model of DNA storage systems.

are in range of 102 − 103 nucleotide(nt). In Fig. 1.1, we present the fundamental

model of DNA storage systems.

During the writing (synthesis) process, the binary files are encoded into DNA

sequences. Then, to facilitate random-access to these sequences, pairs of primers

are appended to both heads and ends of each DNA sequence, resulting in the en-

tire DNA strands. Finally, DNA strands are synthesized by various DNA synthesis

technologies and stored in either vitro (DNA pool) or vivo. In the reading (sequenc-

ing) process, a biological technique called Polymerase Chain Reaction (PCR) is

employed to duplicate and amplify synthesized DNA strands, which allows a single

stored DNA strand to be duplicated in a short time and increases its quantity ex-

ponentially. After obtaining the DNA strands that may contain errors, the primers

are attempted to be removed from the DNA strands, and the resulting DNA se-

quences are decoded back into the original binary files. The details for each step

can be checked in [32].

From Fig. 1.1, The process of DNA storage mainly involves synthesis, PCR

amplification, and sequencing, etc. This process can be regarded as a chan-

nel, which primarily encompasses three types of errors: insertion, for instance,

AACAA → AACCATA, deletion, for instance, AACAA → AACA, and substi-

4

tution, for instance, AACAA → ATCAT. Fortunately, the studies [22, 21] had

indicated that the probability of errors is in order of magnitude of 10−6, which gives

researchers confidence in the future of DNA storage. Since the variety of combina-

tions of errors that can occur during the DNA synthesis and sequencing processes,

the exact channel model in DNA storage is determined so far. For the Illumina

sequencing technology [17, 22, 21], the studies [22, 21] proposed an asymmetric

channel model for DNA storage based on the distribution of the probabilities of the

observed insertion, deletion, and substitution errors. In contrast, the study [19]

simplified the model by considering a binary symmetric channel (BSC) as a repre-

sentation of DNA storage. Then, the study [43] considered the deletion (erasure)

error in the DNA channel model and proposed binary symmetric erasure channel

(BSEC) for DNA storage, where the deletion and substitution errors are obtained

from statistics in receiver side. In subsequent years, Nanopore sequencing technol-

ogy [18, 16, 30, 53] is widely used as the next generation sequencing technology,

which reads sequence information by measuring the conductance changes of DNA

bases. The study [45] develops a channel model for Nanopore sequencing tech-

nology in information theory. This serves as a theoretical framework for studies

employing the portable and cost-effective Nanopore sequencing technology in the

domain of DNA storage.

Errors in DNA storage are not only caused by external errors in synthesis, am-

plification, and sequencing technologies, but also from inherent structural proper-

ties of DNA. For instance, the imbalance of GC content and the long Hompolymer

run in the DNA strands are significant contributors to errors [17, 26, 4, 20, 13, 27].

The GC content is the proportion of G and C in the total of DNA strand. Since

the the corresponding bases need to be accurately added in the synthesis process,

if the GC content in a DNA strand is too high or too low, it will increase the

difficulty of synthesis. During the sequencing process, an imbalanced GC content

5

is difficult to identifying DNA bases in a strand. This issue is particularly obvious

in certain sequencing technologies, resulting in signal saturation or confusion in

regions with rich GC content, which can affects the accuracy of sequencing. A

long Hompolymer run refers to the same base appears consecutively in a DNA

strand, such as GGG · · ·GGG, etc. In certain sequencing techniques, long Hom-

polymer run in the DNA strands can lead to an inability to accurately determine

the number of received bases, resulting in signal confusion and posing a challenge

in accurately identifying and recording the sequence. In general, the GC content

needs to meet 45% to 55% and 40% to 60% [26, 4] and the homopolymer run

[26, 20, 13] does not exceed 3 or 4 nt, in which cases the errors rate will be greatly

reduced in DNA storage.

In addition, random-access [17, 41, 61, 68] refers to the capability of retrieving

specific data or information stored in DNA sequences without the need to sequen-

tially read the entire DNA sequences in DNA pool. Since the DNA strands are

stored unordered in the DNA pool, this ability significantly enhances the speed and

efficiency of data retrieval compared to reading the entire DNA strands sequen-

tially in the pool. Therefore, ensuring efficient random-access poses a substantial

challenge in DNA storage.

1.3 The methodology for DNA storage

In the previous contents, the challenges faced by DNA storage are presented. In

here, The methodologies employed to address these challenges are discussed. For

correcting errors in DNA storage, the error-correcting codes are utilized. To en-

sure GC-balance and Homopolymer run constraints, the constrained codes are

employed. Additionally, some codes are designed for achieving random-access in

DNA storage.

6

1.3.1 Error-correcting codes for DNA storage

In DNA storage, error correction is crucial. The studies [26, 13, 5] did not use any

error-correcting coding or only simple coding strategies were used, so they ulti-

mately failed to fully recover the original stored information. In traditional digital

communication, ”noise” (which corresponds to errors in DNA storage) also exists

in data both at the transmitter and the receiver. To ensure users receive accurate

signals, error-correcting codes such as liner block code are explored. Based on

this concept, some researchers have begun investigating the application of error-

correcting codes in DNA storage. Although this method is feasible, it’s impor-

tant to note that most error-correcting codes are designed primarily for correcting

substitution errors. Therefore, for deletion and insertion errors in DNA storage,

researchers have adopted a straightforward approach. They erase the entire se-

quences which occurs deletion and insertion errors, and replace each of them with

a binary DNA sequence consisting of all zero bits. This method effectively treats

deletion and insertion errors as substitution errors, ultimately allowing them to

be rectified by error-correcting codes. Although this approach proves to be one of

the most effective ways to address deletion and insertion errors in DNA storage, in

order to deal with deletion and insertion errors errors more efficiently, researchers

are starting to explore algebraic error correction codes.

Linear block codes

Linear block codes are a prevalent form of coding used for error correction, they

are composed of q-ary symbols, which can be described as a linear subspace formed

by n vectors with dimension k over the finite filed Fq. The redundancy of such

codes is given by n − k. In terms of digital communication, there are a lot of

linear block codes has been deeply studied such as Repetition codes, Hamming

codes, Bose–Chaudhuri–Hocquenghem (BCH) codes, Reed–Solomon (RS) codes,

7

Figure 1.2: The form of linear block codes apply in DNA storage.

and Low-density parity-check (LDPC) codes, etc. Each of these linear block codes

exhibits outstanding performance in error correction for digital communication.

In [27], the RS codes were initially applied into DNA storage as inner codes

and outer codes, respectively. The authors of [27] not only successfully recovered

the original data from the received DNA sequence through RS codes, but also

introduced a novel form of linear block codes applied in DNA storage, as out-

lined in Fig 1.2. This coding scheme continues to find extensive application in

subsequent research. To enhance the error-correction capabilities even further, it

is logical to employ contemporary coding techniques like LDPC codes [44], which

can achieve the channel capacity limit. Since balanced GC-content (45%–55%)

and short homopolymer length (less than 3 or 4 nt) are essential for DNA syn-

thesis/sequencing, Deng et al. proposed variable-length run-length limited codes

combined with LDPC codes [15]. Also, Chandak et al. proposed a DNA storage

system with LDPC codes [19], where a simple channel model with Poisson dis-

8

tribution was considered. A machine learning based DNA basecaller [9] was also

proposed, which uses convolutional code in DNA storage.

Deletion correction codes

Deletion correction codes are a class of error-correcting codes specifically designed

to address deletion errors in data storage systems. These codes utilize algebraic

techniques to effectively correct deletion errors, which involve the loss of one or

more symbols in a sequence. The study [63] have proven that the deletion correc-

tion codes can also correct insertion errors.

The concept of a Varshamov-Tenengolts (VT) code [63], also known as a binary

single insertion/deletion error correction (SIDEC) code, was initially introduced

in 1965 as shown in Definition 1.3.1.

Definition 1.3.1 ([63]). Given an integer a ∈ [0, n], for n ≥ 3 and the binary

sequences c = (c1, c2, ..., cn) of length n, the VT codes are deifned as

V Ta(n) = {c ∈ F n
2 :

n∑
i=1

i · ci ≡ a mod (n+ 1)}. (1.1)

Levenshtein adapted the binary VT code into an extended VT (EVT) code

[40], which is capable of rectifying a single insertion, or deletion, or substitution

error. With the in-depth study of deletion correction codes, more and more dele-

tion correction codes [23, 56, 28, 6, 31, 23, 55, 54] have been proposed and the

different kinds of the deletion errors can be corrected. For instance, the multiple

deletion/insertion (t arbitrary deletion) errors correction codes have been still an

open issue, many works [6, 31, 23, 55, 54] have devoted into constructing error

correction codes with the optimal redundancy for t arbitrary deletion/insertion

errors. The most current and advanced results for t arbitrary deletion/insertion

errors correcting code could be found in [54].

9

1.3.2 Constrained codes for DNA storage

Constrained codes in DNA storage, refer to specialized coding strategies that in-

corporate specific constraints during the encoding process. These constraints are

designed to address particular challenges or characteristics inherent to DNA stor-

age systems. The primary purpose of constrained codes in DNA storage is to

guarantee that the encoded DNA sequence adheres to the natural characteristics

of DNA, thus ensuring robust and error-resistant data retrieval. This includes con-

siderations such as GC-content balancing and handling long homopolymer runs.

An effective constrained codes should proficiently transform binary data into DNA

sequences, adhering to biochemical constraints, all while maintaining a high code

rate (bits per nucleotide/base).

The methods to meet the constraint in [13] is that a direct mapping of bits

0 and 1 to A/G and C/T, effectively mitigating biased GC content and avoiding

long homopolymer runs. However, this method exhibited a low potential of code

rate of only 1 bit/nt, falling significantly less than the upper bound of almost 2

bits/nt.

Subsequently, the technique outlined in [26] introduced a ternary-based map-

ping strategy, thereby increasing the potential of code rate to log23 bits/nt. Build-

ing upon this, the authors of in [34] further refined their methodology, developing

into the properties and constructions of constrained codes while considering both

homopolymer runs and balanced GC content constraints.

More recently, in [57], a novel construction method for devising bio-constrained

codes was introduced. This approach achieved a code rate of 1.90 bits/nt, which

achieves a higher coding rate. The most current and advanced results for con-

strained codes could be found in [49] which can achieve a code rate of 1.9333

bits/nt when the length of sequences is 300 nt.

10

1.3.3 Codes for random-access in DNA storage

Codes for random-access in DNA storage refers to specialized encoding techniques

designed to facilitate efficient and precise retrieval of specific data from a pool

of stored DNA sequences. The codes are engineered to enable direct access to

desired information without the need to sequentially read through the entire DNA

sequences.

To achieve random-access to the stored data in the DNA pool, Yazdi et al

[73]. proposed a new random-access method that appends two address sequences,

called ‘primers’, to the head and tail of the synthesized DNA sequences. Yazdi

et al. [76] first designed mutually uncorrelated (MU) codes as primers in DNA

storage systems.

1.4 Contribution and layout

The dissertation consists of five chapters structured as follows, the main contribu-

tions of this dissertation are summarized in Fig 1.3.

In Chapter 1, we sum up all the motivation and fundamental knowledge rel-

evant to DNA Storage, and related knowledge such as error correction codes,

constrained codes, and the codes for random-access in DNA storage. Then, we

show the outline of the dissertation.

In Chapter 2, we propose a novel general encoding algorithm to construct

GC-balanced DNA codes by using various parity formats and flipping patterns

according to the weight distribution of binary data. To validate the effectiveness

of our proposed encoding algorithms, we compare the average parity lengths of GC-

balanced DNA codes constructed by our proposed encoding algorithm with those

in previous works. The comparison results show that the average parity lengths

of our proposed encoding algorithm are significantly smaller than parity lengths

11

Figure 1.3: The contribution of the dissertation.

of privious works for DNA sequences with GC contents ranging from 45–55% or

40–60%.

In chapter 3, We propose a new construction of a q-ary systematic SIDEC code

whose codewords meet the maximum run-length constraint to statisfy the error

correction and bio-constrained for DNA storage simultaneously. For the proposed

code, we propose systematic encoding algorithm with the parity sequence whose

the maximum run-length is always not greater than three.

In chapter 4. we propose a primer codes construction with the crucial maximum

run-length constraint. Based on our proposed primer codes with a maximum run-

length constraint, we can enhance the codes through simple methods to satisfy the

combinations of maximum run-length constraint with other beneficial constraints

for primer design, such as GC-balanced and Hamming distance. To apply our

proposed codes to primer design in DNA storage, we modify our proposed codes

with the maximum run-length constraint to implement various code lengths.

Finally, in chapter 5, we conclude the dissertation and discuss possible future

research directions.

12

Chapter 2

New construction of balanced

codes for DNA storage

2.1 Introduction

Most of the advantages of DNA storage have been presented, the DNA sequences

are prone to errors during synthesis and sequencing processing [26, 4, 32, 71],

which can affect the reliability of the stored data. Some studies [32, 34] have

reported that an imbalance in the ratio of GC contents in DNA sequences can

lead to errors. However, the studies [20, 32, 57] have suggested that the 45–55% or

40–60% GC contents in DNA sequences can enable a low error rate during synthesis

and sequencing processing. Therefore, the efficient way to construct GC-balanced

DNA sequences has been a major concern for DNA storage.

Various designs have been studied to generate binary balanced or ϵ-balanced

codewords. Look-up tables methods [72, 35] and enumeration techniques [69] were

the common ways to construct binary balanced codes. Some studies [57, 64, 42]

have also proposed efficient encoding algorithms to construct the GC-balanced

codewords for DNA storage by enumeration techniques. Although these methods

13

can achieve a high code rate, the complexity of codes construction increases with

the increase of code length, which limits their practicability. To address this issue,

Knuth [36] proposed a simple and linear-time algorithm that converts any binary

sequence into a balanced codeword by using a parity tag. Then, Nguyen et al. [49]

proposed a method to construct binary ϵ-balanced codes by modifying the Knuth

methods and applied the binary ϵ-balanced codes to design of GC-balanced DNA

codes.

To maintain the high information density of DNA storage, it is crucial to de-

velop constructions of GC-balanced DNA codes with lower parity length. We find

a space that can effectively reduce the parity length of GC-balanced codes from

weights distribution of binary data and propose novel general encoding algorithms

to construct GC-balanced DNA codes. Since the binary ϵ-balanced encoding func-

tions in [36] and [49] are applied into our proposed encoding algorithms, we com-

pare the average parity lengths of the proposed GC-balanced DNA codes with

those of the referenced codes [36],[49]. We provide some results to indicate that

the average parity lengths of our proposed encoding algorithm decrease dramati-

cally as the value of ϵ increases.

2.2 Preliminaries

2.2.1 Related works for binary ϵ-balanced code construc-

tion

We briefly present two referenced methods to construct binary ϵ-balanced codes in

[36] and [49], where the parity lengths of [36] and [49] depend on the length n and

the value of ϵ, respectively. Then, we also present the relations between binary

ϵ-balanced codes and the GC-balanced DNA codes.

14

In [36], Knuth proposed a linear-time algorithm that converts any binary se-

quence x of length n to an exact balanced codeword whose weight is n
2
for an even

value of n. Although Knuth algorithm was originally designed to construct binary

balanced codes, it is still applicable to the general ϵ-balanced codes construction

for 0 ≤ ϵ ≤ 0.5. We summarize the Knuth algorithm for constructing general

ϵ-balanced codes in Lemma 2.1.1.

Lemma 2.2.1. Let a set Sn be Sn = {1, 2, 3, ..., n}. For any binary sequence x

of length n and 0 ≤ ϵ ≤ 0.5, there always exists a smallest element t(1) ∈ Sn to

convert the sequence x to be a binary ϵ-balanced codeword c by flipping the first

t(1) bits of x. The binary ϵ-balanced encoding function in [36] is denoted as E1(·).

Then, the function can convert a binary sequence x to be a binary ϵ-balanced

codeword c as

c = E1(x) = (x
t(1)
1 ,xn

t(1)+1) for t(1) ∈ Sn. (2.1)

Let E−1
1 (·) be a corresponding binary decoding function that recovers the original

sequence x from the ϵ-balanced codeword c. A decoder can recover the original

sequence x from c if the index t(1) is transferred to the decoder. Then, a short

parity sequence r(1) of length R(1) is required to represent the value of t(1). Then,

the parity length R(1) to represent the value t(1) is given as

R(1) = ⌈log |Sn|⌉ = ⌈log n⌉. (2.2)

Note that if the original sequences x are already ϵ-balanced, then the flipped

codewords c = E1(x) in (2.1) are also ϵ-balanced. To understand Lemma 2.2.1,

we present a simple example of the binary ϵ-balanced code construction.

Example 2.2.2. A sequence x of length n = 10 is given by

x = (0, 1, 0, 1, 1, 1, 1, 1, 1, 0).

15

We consider that ϵ is 0.1. Then, the sequence x is not 0.1-balanced. For t(1) which

is from one to four, the flipped codeword c = E1(x) is still not 0.1-balanced. When

t(1) = 5, the flipped codeword c is obtained as

c = E1(x) = (x5
1,x

10
6) = (1, 0, 1, 0, 0, 1, 1, 1, 1, 0).

Since |w(c)− 0.5n| is ⌊ϵn⌋ = ⌊0.1× 10⌋ = 1, the codeword c is 0.1-balanced.

The authors of [49] proposed a more efficient way to construct ϵ-balanced codes

by modifying the Knuth algorithm for 0 < ϵ ≤ 0.5. In Lemma 2, we summarize

the construction of binary ϵ-balanced codes in [49].

Lemma 2.2.3. Let a set Sϵ,n be Sϵ,n = {0, 2⌊ϵn⌋, 4⌊ϵn⌋, ..., n}. For any binary

sequence x of length n and 0 < ϵ ≤ 0.5, an element t(2) ∈ Sϵ,n always exists such

that the binary codeword c becomes ϵ-balanced by flipping the first t(2) bits of x.

Then, we denote the binary ϵ-balanced encoding function as E2(·) in [49], which

can convert x to be the binary ϵ-balanced codeword c as

c = E2(x) = (x
t(2)
1 ,xn

t(2)+1) for t(2) ∈ Sϵ,n. (2.3)

The E−1
2 (·) corresponds to a binary decoding function. Additionally, a short parity

sequence r(2) of length R(2) is used to represent the element t(2) in the set Sϵ,n,

which can recover the original sequences of x from c. Then, the parity length R(2)

is calculated as

R(2) = ⌈log |Sϵ,n|⌉ = ⌈log(⌊ 1
2ϵ
⌋+ 1)⌉ for 0 < ϵ ≤ 0.5. (2.4)

Note that if the original sequences x are ϵ-balanced, the flipped codewords c =

E2(x) in (2.3) are also ϵ-balanced for t(2) = 0. The relation between binary ϵ-

balanced codes and the GC-balanced DNA codes were also presented in [49], which

16

is summarized in Lemma 2.2.4.

Lemma 2.2.4. Suppose that there are two binary sequences zo = (zo1 , z
o
2 , ..., z

o
n)

and ze = (ze1, z
e
2, ..., z

e
n) of length n. For i ∈ [1, n], the elements zi of a DNA

codeword z are mapped from the elements of two binary sequences as

zi = ϕ(zoi , z
e
i) =



A if (zoi , z
e
i) = (0, 0),

T if (zoi , z
e
i) = (0, 1),

G if (zoi , z
e
i) = (1, 0),

C if (zoi , z
e
i) = (1, 1).

(2.5)

The inverse mapping of a DNA symbol to two binary bits is denoted as ϕ−1(·).

Then, if the binary sequence zo is ϵ-balanced, the DNA codeword z is also GC-

balanced.

According to Lemma 2.2.4, we present the GC-balanced codes constructed by

the binary ϵ-balanced codes in [36] and [49]. It is assumed two binary sequences

a(1) of length n and b(1) of length n− R(1) are extracted from the binary data in

[36]. Similarly, two binary sequences a(2) of length n and b(2) of length n − R(2)

are given from the binary data in [49]. Then, the sequences a(1) and a(2) are

inputs of the binary ϵ-balanced encoding function E1(a(1)) in (2.1) and E2(a(2)) in

(2.3), respectively. Then, the binary ϵ-balanced codewords c(1) and c(2), and parity

sequences r(1) and r(2) can be obtained for [36] and [49], respectively. Finally, if

we set zo = c(1) and ze = (b(1), r(1)) or z
o = c(2) and ze = (b(2), r(2)), respectively,

the GC-balanced DNA codewords z can be obtained by the mapping rule ϕ(·) in

(2.5). Therefore, the parity lengths for GC-balanced DNA codes constructed by

[36] and [49] are also R(1) in (2.2) and R(2) in (2.4), respectively.

17

2.3 GC-balanced codes construction

We first explain a proposed DNA storage system in Fig. 2.1. Then, we present

the encoding and decoding algorithms for GC-balanced DNA codes construction in

detail, respectively, which are essential parts of the proposed DNA storage systems.

Figure 2.1: System model of the proposed GC-balanced code construction in DNA
storage.

2.3.1 Overall encoding processes

The overall system model of the proposed GC-balanced code construction for DNA

storage is shown in Fig. 2.1. Let f be the maximum number of flipping levels. Two

binary sequences x of length n and s of variable length in binary data are used for

generating one GC-balanced codeword. The length of s is determined by flipping

levels and parity lengths. B0
ϵ,n at level zero in Fig. 2.1 is a set that contains the all

binary ϵ-balanced sequences of length n among all 2n sequences. If the sequence

x is in B0
ϵ,n, two binary sequences x and s of length n− 1 are moved to E0. Then,

E0 produces a parity sequence p of length one and outputs two binary codewords

18

zo = x and ze = (s,p). If not, the sequence x is checked to determine whether it

belongs to the set B1
ϵ,n in the first level.

Let B1
ϵ,n be a set that does not contain any sequence in B0

ϵ,n and consists of the

binary sequences which become ϵ-balanced after flipping F1(x). If the sequence x

is in B1
ϵ,n, the flipped ϵ-balanced codeword c(1) and sequence s of length n− 2 are

the inputs of E1. Then, E1 produces z
o = c(1) and ze = (s,p), where p is a parity

sequence of length two. If not, the sequence x is determined whether in the set

B2
ϵ,n.

For i ∈ [2, f], let Bi
ϵ,n be a set that does not contain any sequence in ∪i−1

j=0B
j
ϵ,n

and consists of the binary sequences which become ϵ-balanced after flipping Fi(x).

The encoding steps for i ∈ [2, f] are similar to ones at the first level and outputs

of Ei are c(i), s of length n− i− 1, and p of length i+ 1.

Finally, if x is not included in ∪f
j=0B

j
ϵ,n, the binary ϵ-balanced encoding function

El(·) in (2.1) or (2.3) for l = 1 or l = 2 is used. Then, the ϵ-balanced codeword

El(x) and parity sequence r
(f)
(l) of length R

(f)
(l) are obtained. Efinal outputs the

sequences zo = El(x) and ze = (s, r
(f)
(l) ,p), where the lengths of binary sequences

s and p are n−R
(f)
(l) − f − 1 and f + 1, respectively.

2.3.2 Flipping functions

We firstly consider a F1(x) flipping function and subsequently, we discuss the Fi(x)

flipping functions for i ∈ [2, f] for length n = 2m, where a positive integer m is

defined as f ≤ m. Finally, we present the flipping functions for various values of

n.

If the sequence x is not in B0
ϵ,n, the flipping function F1(x) outputs c

(1) from

x. To reduce the average length of parity, F1(x) should be designed to maximize

the size of B1
ϵ,n. For random x /∈ B0

ϵ,n, we find that any flipping pattern F1(x)

with the same number of flipped bits yields the same size of B1
ϵ,n. Therefore, we

19

0 50 100 150 200 250

0

0.04

0.08

0.12

0.16

0.2

Figure 2.2: The ratios
|B1

ϵ,n|
2n

for the binary sequences which become c(1) for n = 102,
128, 174, and 255 and ϵ = 0.05.

only consider that F1(x) is flipping the first j bits of x. If the sequences x are not

ϵ-balanced, the sequences after flipping all bits of x be also not ϵ-balanced. Then,

the values of j should be considered as j ∈ [1, n− 1]. In Fig. 2.2, the ratios
|B1

ϵ,n|
2n

for the binary sequences which become the binary ϵ-balanced codewords c(1) after

flipping F1(x) are shown when n = 102, 128, 174, and 255 and ϵ = 0.05.

In Fig. 2.2, the maximum values of
|B1

ϵ,n|
2n

and the corresponding values j are

illustrated. In the case of n = 102 and 174, the maximum values of
|B1

ϵ,n|
2n

are

0.2029 and 0.1597 at j = 53 and 87, respectively, which correspond to n
2
bits.

Similarly, for n = 255, the maximum values of
|B1

ϵ,n|
2n

is 0.1154 at j = 127 or 128,

corresponding to ⌊n
2
⌋ or ⌈n

2
⌉ bits, respectively. However, for n = 128, at j = 63

and 65, which is not corresponding to n
2
bits, and the maximum

|B1
ϵ,n|
2n

is 0.1899.

At j = 64 for n = 128, the value of
|B1

ϵ,n|
2n

is 0.1872. The gap between 0.1872 and

the maximum
|B1

ϵ,n|
2n

is 0.0027, indicating a relatively small difference. Based on the

results in Fig. 2.2, the
|B1

ϵ,n|
2n

can be a maximum value or almost near a maximum

value by flipping the first ⌈n
2
⌉ bits for various lengths n. Therefore, we finally

20

determine the F1(x) for various lengths n as flipping the first ⌈n
2
⌉ bits, and the

ϵ-balanced codewords c(1) obtained from x ∈ B1
ϵ,n by F1(x) are

c(1) = (x
⌈n
2
⌉

1 ,xn
⌈n
2
⌉+1).

If the sequence x is not in ∪1
j=0B

j
ϵ,n, F2(x) are used to produce binary ϵ-

balanced codeword c(2). To find the optimal flipping pattern, we need to search all

possible patterns for F2(x) to maximize the size of B2
ϵ,n. However, it is not feasible

to determine the F2(x) for various lengths n since there are too many candidates.

Therefore, we attempt to develop a systematic approach for designing the flipping

methods. We first consider n as n = 2m and later discuss flipping pattern for

general n.

For n = 2m, from the (m+ 1)× n generator matrix G of the first-order Reed-

Muller codes [50], which is given as

G =



g(0)

g(1)

g(2)

...

g(m−1)

g(m)


=



1n
1

(1
n
2
1 ,0

n
2
1)

(1
n
4
1 ,0

n
4
1 ,1

n
4
1 ,0

n
4
1)

...

(12
1,0

2
1, ...,1

2
1,0

2
1)

(1, 0, 1, 0, ..., 1, 0, 1, 0)


, (2.6)

where the vectors 1j
i and 0j

i in (2.6) for 1 ≤ i ≤ j ≤ n are all ones and zeros

vectors of length j − i + 1. Since the generator vector g(0) in (2.6) stands for

flipping all bits in the proposed encoding, g(0) is not used. The generator vector

g(1) corresponds to the flipping F1(x) and the flipped sequence c(1) is expressed as

c(1) = x⊕ g(1) = (x
n
2
1 ,x

n
n
2
+1).

21

where ⊕ is a bitwise exclusive-or operation. Similar to c(1), for the sequences x of

length n = 2m, the flipped sequences c(i) are obtained as

c(i) = x⊕ g(i) for i ∈ [2, f].

Therefore, the codewords c(i) obtained from the sequences x by Fi(x) are

c(i) = (x
n

2i

1 ,x
n

2i−1
n

2i
+1, ...,x

n− n

2i

n− n

2i−1+1,x
n
n− n

2i
+1).

Since it is not feasible to exhaustively search the flipping functions Fi(x) for

i ∈ [2, f], it is clear that our determined Fi(x) flipping functions are not optimal,

and to find optimal flipping functions Fi(x) will be an interesting future work.

For n ̸= 2m, similar to F1(x) to support various lengths, the flipping Fi(x) for

i ∈ [2, f] are designed to be as similar as possible to generator functions g(i) in

(2.6) by using celling and floor functions. Finally, c(i) for the various lengths are

determined as

c(i) =(x
⌈ n

2i
⌉

1 ,x
⌈ n

2i−1 ⌉
⌈ n

2i
⌉+1, ...,x

⌈n
2
⌉−⌈ n

2i
⌉

⌈n
2
⌉−⌈ n

2i−1 ⌉+1,x
⌈n
2
⌉

⌈n
2
⌉−⌈ n

2i
⌉+1,

x
⌈n
2
⌉+⌊ n

2i
⌋

⌈n
2
⌉+1 ,x

⌈n
2
⌉+⌊ n

2i−1 ⌋
⌈n
2
⌉+⌊ n

2i
⌋+1, ...,x

⌈n⌉−⌊ n

2i
⌋

⌈n⌉−⌊ n

2i−1 ⌋+1,x
n
n−⌊ n

2i
⌋+1).

2.3.3 Encoding and mapping

If the binary sequences x are already ϵ-balanced, which means x ∈ B0
ϵ,n, the

encoding E0 produces two binary codewords zo and ze. Then, the encoding E0 is

determined as

zo = x

ze = (s, 0),
(2.7)

where s denotes the data with length n− 1 and 0 is a bit zero. The parity length

of the encoding E0 is one and parity is p = 0.

22

For the binary ϵ-balanced codewords c(1), the encoding E1 is defined as

zo = c(1)

ze = (s, 0, 1),
(2.8)

where s is the data with length n − 2 and p = (0, 1) is parity. The last bit one

in parity p denotes that the original binary sequence which becomes zo is not in

B0
ϵ,n, and bit zero in parity stands for the original binary sequence which becomes

zo is in set B1
ϵ,n.

Similar to E1, Ei for i ∈ [2, f] is determined as

zo = c(i)

ze = (s,p),
(2.9)

where s is the data with length n − i − 1 and the parity sequence p = (0,1i
1) of

length i+ 1.

If x is still not in ∪f
j=0B

j
ϵ,n, different encoding scheme needs to produce an

ϵ-balanced codeword. Then, the encoding Efinal is defined as

zo = El(x)

ze = (s, r
(f)
(l) ,1

f+1
1),

(2.10)

where El(·) in (2.10) for l = 1 or l = 2 is the binary ϵ-balanced encoding function

denoted in (2.1) or (2.3), the sequence r
(f)
(l) is the corresponding parity produced

by El(·), and the parity sequence p is p = (1f+1
1). We summarize the encoding

functions E0, Ei for i = [1, f], and Efinal in Fig. 2.3.

For a given f , the average parity lengths of our proposed GC-balanced DNA

23

Figure 2.3: Encoding functions E0, Ei for i = [1, f], and Efinal.

code construction, AR
(f)
(l) , can be calculated as

AR
(f)
(l) =

f∑
i=0

(
|Bi

ϵ,n|
2n

(i+ 1)) + (1−
f∑

i=0

|Bi
ϵ,n|
2n

)(R
(f)
(l) + f + 1), (2.11)

where l is l = 1 or l = 2 and 2n represents the total number of the binary sequences

of length n.

After obtaining the binary codewords zo and ze, the GC-balanced DNA code-

words z can be obtained by the mapping rule ϕ(zo, ze) in (2.5). Therefore, we

summarize the overall encoding algorithm for GC-balanced DNA codes in Algo-

rithm 1.

2.3.4 Decoding of the proposed GC-balanced codes

We present the overall decoding processes of the proposed GC-balanced codes for

DNA storage, which are shown in Fig. 2.1. From the received GC-balanced DNA

codeword z, two binary sequences zo and ze are obtained by the inverse function

ϕ−1(z) of the ϕ function in (2.5). Then, from last element zen to zen−f in the

sequence ze, we try to find the index where the first zero occurs. If the index is

denoted as σ, the parity p can be determined as zen
n−σ. According to the parity

24

Algorithm 1: Encoding GC-balanced DNA codes

Input: A fixed value f , and binary data x and s.
Output: GC-balanced DNA codewords z.

1 if x ∈ B0
ϵ,n then

2 E0 produces zo = x and ze = (s, 0) in (2.7).

3 else
4 set i = 1 and flag = 1,
5 while flag do
6 Flip x according to Fi(x) and produce c(i).

7 if c(i) ∈ Bi
ϵ,n then

8 Ei produces z
o = c(i) and ze = (s, 0,1i

1) in (2.8) and (2.9),
9 flag = 0.

10 else
11 i = i+ 1,
12 if i = f + 1 then

13 Efinal produces z
o = El(x) and ze = (s, r

(f)
(l) ,1

f+1
1) in (2.10),

14 flag = 0.

15 Encode a codeword z as z = ϕ(zo, ze).

p, the encoding for sequence zo is determined and finally the original binary data

can be recovered.

If the parity p is p = zen = 0, the decoding E−1
0 produces a concatenated

sequence by removing the parity p. Then, the decoding E−1
0 is determined as

(zo, zen−1
1) = E−1

0 (zo, ze), (2.12)

and according to the parity p, the sequence zo in (2.12) does not undergo any

flipping. Therefore, the original binary data is recovered as

(x, s) = (zo, zen−1
1). (2.13)

When the parity p is p = zen
n−i = (0,1i

1) for i ∈ [1, f], the decoding E−1
i is

25

Algorithm 2: Decoding GC-balanced DNA codes

Input: The fixed value f and DNA codeword z.
Output: the original binary data.

1 Inverse mapping ϕ−1(z) → binary sequences zo and ze.
2 Determine the parity p in the subsequence zen

n−f ,

3 if p = zen = 0 then
4 the original binary data is (x, s) = (zo, zen−1

1) in (2.13).

5 else if p = zen
n−i = (0,1i

1) for i ∈ [1, f] then
6 the original binary data is (x, s) = (Fi(z

o), zen−i−1
1) in (2.15).

7 else

8 the original binary data is (x, s) = (E−1
l (zo), z

en−R
(f)
(l)

−f−1

1) in (2.17).

defined as

(zo, zen−i−1
1) = E−1

i (zo, ze), (2.14)

and from the parity p, it is known that the sequence zo in (2.14) is obtained from

Fi(x). Therefore, the original binary data is given as

(x, s) = (Fi(z
o), zen−i−1

1). (2.15)

Otherwise, if the parity p is p = zen
n−f = 1f+1

1 , the decoding E−1
final is deter-

mined as

(zo, zen−f−1
1) = E−1

final(z
o, ze), (2.16)

where the sequence zo in (2.16) is obtained from El(x). Therefore, using the

parity sequence zen−f−1

n−R
(f)
(l)

−f
, the original binary data can be obtained by applying

the binary ϵ-balanced decoding function E−1
l (·) as

(x, s) = (E−1
l (zo), z

en−R
(f)
(l)

−f−1

1). (2.17)

We summarize the proposed decoding algorithm for GC-balanced DNA codes in

26

Algorithm 2.

2.4 Analysis of the average parity lengths for the

proposed codes

We present the exact calculation of average parity lengths of our proposed codes

construction based on the weights of sequences for f = 0 and f = 1, respectively.

We also derive the average parity lengths by using randomly generated sequences,

which are especially convenient for the calculation of the average parity lengths

for f > 1.

2.4.1 Average parity length for f = 0

We first present a simple case of the proposed codes at f = 0. For easy under-

standing, Fig. 2.4. illustrates the encoding and decoding for f = 0.

Figure 2.4: Encoding and decoding for f = 0.

The average parity length for our proposed GC-balanced DNA codes AR
(f)
(l) in

(2.11) can be rewritten as

AR
(0)
(l) =

|B0
ϵ,n|
2n

· 1 + (1−
|B0

ϵ,n|
2n

)(R
(0)
(l) + 1). (2.18)

Since the set B0
ϵ,n is composed of ϵ-balanced binary sequences among all 2n

27

sequences, the size of B0
ϵ,n for even n can be calculated as

|B0
ϵ,n| =

(
n
n
2

)
+ 2

⌊ϵn⌋∑
i=1

(
n

n
2
+ i

)
. (2.19)

For odd n, the size of B0
ϵ,n is determined as

|B0
ϵ,n| = 2

⌊ϵn⌋∑
i=0

(
n

⌈n
2
⌉+ i

)
. (2.20)

As shown in Lemma 2.2.1, the first flipping t(1) in (2.1) can be n in Sn if a

sequence x is ϵ-balanced and E1(x) is not ϵ-balanced when t(1) takes the value

from 1 to n − 1. Therefore, the parity length of [36] should be R(1) = ⌈log n⌉ in

(2.2). However, in our the proposed codes, t(1) does not need to be n in Sn since

inputs of E1(·) encoding are always not ϵ-balanced. Therefore, the parity length

of R
(0)
(1) in (2.18) produced by E1(x) is modified as

R
(0)
(1) = ⌈log(n− 1)⌉. (2.21)

Based on the values of |B0
ϵ,n| in (2.19) or (2.20), R

(0)
(1) in (2.21), and AR

(0)
(l) in (2.18),

the average parity length AR
(0)
(1) for our proposed codes is derived as

AR
(0)
(1) =

|B0
ϵ,n|
2n

· 1 + (1−
|B0

ϵ,n|
2n

)(⌈log(n− 1)⌉+ 1). (2.22)

Similarly, since t(2) cannot be zero and n, the length of parity r
(0)
(l) for E2(·)

encoding, R
(0)
(2), is also modified as

R
(0)
(2) = ⌈log(⌊ 1

2ϵ
⌋ − 1)⌉ for 0 < ϵ ≤ 0.5. (2.23)

28

The average parity length AR
(0)
(2) for our proposed codes is calculated as

AR
(0)
(2) =

|B0
ϵ,n|
2n

· 1 + (1−
|B0

ϵ,n|
2n

)(⌈log(⌊ 1
2ϵ
⌋ − 1)⌉+ 1). (2.24)

2.4.2 Average parity length for f = 1

For the value of f = 1, the average parity length AR
(1)
(l) is given as

AR
(1)
(l) =

|B0
ϵ,n|
2n

· 1 +
|B1

ϵ,n|
2n

· 2 + (1−
|B0

ϵ,n|+ |B1
ϵ,n|

2n
)(R

(1)
(l) + 2). (2.25)

The set B1
ϵ,n contains binary sequences x that become ϵ-balanced after flipping

F1(x), and do not contain any sequence in B0
ϵ,n. Therefore, the weight of these

sequences w(x) falls in the range of [⌊ϵn⌋+1, 0.5n]. Then, the size of B1
ϵ,n for even

n can be calculated as

|B1
ϵ,n| = 2

0.5n∑
j=⌊ϵn⌋+1

j−t∑
i=t

(
n
2

⌈n
4
⌉+ i

)(
n
2

⌈n
4
⌉+ j − i

)
, (2.26)

where t in (2.26) is t = ⌈ j−⌊ϵn⌋
2

⌉.

Similarly, for odd n, the size |B1
ϵ,n| is determined as

|B1
ϵ,n| = 2

0.5n∑
j=⌊ϵn⌋+1

j−t∑
i=t

(
⌈n
2
⌉

⌈n
4
⌉+ i

)(
n− ⌈n

2
⌉

⌈n
4
⌉+ j − i

)
, (2.27)

where t in (2.27) is also t = ⌈ j−⌊ϵn⌋
2

⌉.

Since the original input sequences of the output ϵ-balanced codewords E1(x)

are not in the sets B0
ϵ,n and B1

ϵ,n, t(1) does not need to be n and n
2
in Sn. Then,

the length of parity r
(1)
(1) produced by E1(x) can be modified as

R
(1)
(1) = ⌈log(n− 2)⌉. (2.28)

29

Based on the values of |B0
ϵ,n|, |B1

ϵ,n|, R
(1)
(1) in (2.28), and AR

(1)
(l) in (2.25), the average

parity length AR
(1)
(1) for the proposed codes can be calculated as

AR
(1)
(1) =

|B0
ϵ,n|
2n

· 1 +
|B1

ϵ,n|
2n

· 2 + (1−
|B0

ϵ,n|+ |B1
ϵ,n|

2n
)(⌈log(n− 2)⌉+ 2). (2.29)

Similarly, t(2) does not need to be zero, n, and n
2
if (n

2
mod ⌊2ϵn⌋) = 0. There-

fore, the length of parity r
(1)
(2) produced by E2(x) is modified as

R
(1)
(2) =

⌈log(⌊ 1
2ϵ
⌋ − 1)⌉ if (n

2
mod ⌊2ϵn⌋) ̸= 0,

⌈log(⌊ 1
2ϵ
⌋ − 2)⌉ if (n

2
mod ⌊2ϵn⌋) = 0.

(2.30)

Then, the average parity length AR
(1)
(2) for our proposed codes is given as

AR
(1)
(2) =



|B0
ϵ,n|
2n

· 1 + |B1
ϵ,n|
2n

· 2 + (1− |B0
ϵ,n|+|B1

ϵ,n|
2n

)

×(⌈log(⌊ 1
2ϵ
⌋ − 1)⌉+ 2) if (n

2
mod ⌊2ϵn⌋) ̸= 0,

|B0
ϵ,n|
2n

· 1 + |B1
ϵ,n|
2n

· 2 + (1− |B0
ϵ,n|+|B1

ϵ,n|
2n

)

×(⌈log(⌊ 1
2ϵ
⌋ − 2)⌉+ 2) if (n

2
mod ⌊2ϵn⌋) = 0.

(2.31)

2.4.3 Average parity length for f > 1

To derive the average parity length AR
(f)
(l) for f > 1, the size of Bi

ϵ,n for i ∈ [2, f]

is first calculated. However, for general n and f , it is not possible to calculate the

exact size of Bi
ϵ,n for i ∈ [2, f]. To address the average parity length AR

(f)
(l) for

f > 1, we derive the calculation of the average parity length by using randomly

generated sequences.

Let define B as the set of randomly generated sequences x of length n, and

B0
ϵ,n as the set of all ϵ-balanced sequences x in set B. Then, Bi

ϵ,n for i ∈ [1, f]

denote the set that does not contain any sequence in ∪i−1
j=0B

j
ϵ,n and consists of

the binary sequences which become ϵ-balanced after flipping Fi(x). Therefore, by

30

substituting sequences set sizes 2n to |B| and |Bi
ϵ,n| to |Bi

ϵ,n| for i = [0, f], the

average parity length AR
(f)
(l) in (2.11) is modified as

M-AR
(f)
(l) =

f∑
i=0

(
|Bi

ϵ,n|
|B|

(i+ 1)) + (1−
f∑

i=0

|Bi
ϵ,n|

|B|
)(R

(f)
(l) + f + 1). (2.32)

Similar to the calculation of AR
(f)
(l) , since the inputs of El(·) encoding for l = 1

and l = 2 are always not ϵ-balanced, t(1) and t(2) do not need to be some elements of

in Sn and Sϵ,n, respectively. For f = 0, the values of R
(f)
(l) in (2.32) are ⌈log(n−1)⌉

for l = 1 and ⌈log(⌊ 1
2ϵ
⌋ − 1)⌉ for l = 2. Similarly, for f = 1, the values of R

(f)
(l) in

(2.32) for l = 1 and l = 2 are ⌈log(n−2)⌉ and ⌈log(⌊ 1
2ϵ
⌋−2)⌉ if (n

2
mod ⌊2ϵn⌋) = 0,

respectively. However, for f > 1, since the bits in the sequences flipped by Fi(x)

for i ∈ [2, f] are not the first consecutive t(1) or t(2) bits of the sequences, it is

not possible remove more elements from Sn and Sϵ,n for El(·) encoding. Then, the

values of R
(f)
(l) in (2.32) for f > 1 should be same with R

(f)
(l) for f = 1.

2.5 Performance evaluation

To evaluate the performance of our proposed codes, we present the comparison

results of average parity lengths for our proposed codes and referenced ones for

various ϵ. Then, we also present the comparison results of the average parity

lengths for various f . Since the studies [20, 71, 57] indicated that the proper ratio

of GC contents in a DNA codeword is around 45− 55% or 40− 60%, we especially

focus on the results for ϵ = 0.05 and 0.1.

31

2.5.1 Comparison results of average parity lengths for var-

ious ϵ

We present the comparison results of average parity lengths of our proposed codes

and referenced ones for various ϵ. Since the length of synthesized DNA sequences

has been usually determined as 100-300 nt [4, 20, 36], the values of n are considered

as n = 128, 200, and 240.

For the convenience of estimating the average parity lengths AR
(0)
(1) in (2.22),

AR
(0)
(2) in (2.24), AR

(1)
(1) in (2.29), and AR

(1)
(2) in (2.31), we present the values of

|B0
ϵ,n|
2n

and
|B1

ϵ,n|
2n

for various ϵ since they are closely related to the average parity lengths.

The results of the ratios
|B0

ϵ,n|
2n

and
|B1

ϵ,n|
2n

for lengths n = 128, 200, and 240 are listed

in Figs. 2.5 and 2.6.

Figure 2.5: The ratio
|B0

ϵ,n|
2n

for lengths n = 128, 200, and 240.

From Fig. 2.5, as ϵ increases, the values of
|B0

ϵ,n|
2n

monotonically increase and are

saturated as 0.9999 if ϵ is over 0.2. For ϵ = 0.05, the values of
|B0

ϵ,n|
2n

are 0.7496,

0.8626, and 0.8936 for n = 128, 200, and 240, respectively. When ϵ is doubled as

0.1,
|B0

ϵ,n|
2n

are 0.9733, 0.9964, and 0.9985 for n = 128, 200, and 240, respectively.

32

0 0.05 0.1 0.15 0.2

0

0.05

0.1

0.15

0.2

0.25

0.1

0.01

0.02

0.03

Figure 2.6: The ratio
|B1

ϵ,n|
2n

for lengths n = 128, 200, and 240.

Based on Fig. 2.5 and the values of AR
(0)
(1) in (2.22) and AR

(0)
(2) in (2.24), we can

infer that the values of AR
(0)
(1) and AR

(0)
(2) will be close to one if the ratio

|B0
ϵ,n|
2n

is

near one. Since ϵ larger than 0.2 causes
|B0

ϵ,n|
2n

≈ 1 in Fig. 2.5, which will lead
|Bi

ϵ,n|
2n

for i ∈ [1, f] to be saturated as 0, we only consider the range of ϵ as 0 ≤ ϵ ≤ 0.2.

In Fig. 2.6, the ratios
|B1

ϵ,n|
2n

for n = 128, 200, and 240 are 0.1873, 0.1185, and

0.0951, respectively, when ϵ = 0.05. When ϵ = 0.1,
|B1

ϵ,n|
2n

are 0.0261, 0.0036, and

0.0015 for n = 128, 200, and 240, respectively. From Figs. 2.5 and 2.6, we can

obtain that the ratios (1 − |
|B0

ϵ,n|
2n

|+|
|B1

ϵ,n|
2n

|
2n

) for n = 128, 200, and 240 are 0.0631,

0.0189, and 0.0113 when ϵ = 0.05 and 0.0006, 0, and 0 when ϵ = 0.1, which are

also important results to calculate the average parity lengths.

The performance of GC-balanced DNA codes constructed by our proposed

encoding algorithm is compared with those constructed by the referenced ones

[36] and [49] for the same lengths n in order to provide a fair comparison. The

comparison results of the average parity lengths R(1) of [36], R(2) of [49], AR
(f)
(1)

in (2.22) or (2.29), and AR
(f)
(2) in (2.24) or (2.31) for n = 128, 200, and 240 are

presented in Figs. 2.7 and 2.8, when f = 0 and f = 1, respectively.

33

0.05 0.1 0.15 0.2

0

2

4

6

8

10

(a) n = 128

0.05 0.1 0.15 0.2

0

2

4

6

8

10

(b) n = 200

0.05 0.1 0.15 0.2

0

2

4

6

8

10

(c) n = 240

Figure 2.7: Average parity lengths for f = 0 and n = 128, 200, and 240.

In Fig. 2.7, we observe that R(1) of [36] remains fixed for each length n, whereas

the average parity lengths R(2) of [49], AR
(0)
(1) in (2.22), and AR

(0)
(2) in (2.24) de-

crease as the ϵ values increase. Two points (0.004, 6.5777) and (0.0079, 6.5371) in

Fig. 2.7(a) stands for minimum values of ϵ to ensure that the average parity length

AR
(0)
(1) or AR

(0)
(2) of our proposed codes is always less than R(1) of [36] and R(2) of [49],

respectively, for n = 128. Similarly, in Fig. 2.7(b), the points (0.002, 7.6056) and

(0.01, 6.7902), and in Fig. 2.7(c), the points (0.002, 7.6399) and (0.0167, 5.4909)

show the minimum values of ϵ required to ensure that the average parity lengths of

the proposed codes are less than those of [16] and [17]. According to the obtained

34

0.05 0.1 0.15 0.2

0

2

4

6

8

10

(a) n = 128

0.05 0.1 0.15 0.2

0

2

4

6

8

10

(b) n = 200

0.05 0.1 0.15 0.2

0

2

4

6

8

10

(c) n = 240

Figure 2.8: Average parity lengths for f = 1 and n = 128, 200, and 240.

results, it can be concluded that when ϵ is slightly larger than zero, specifically

at values of 0.002 and 0.0167, the average parity lengths of the proposed codes

yield smaller values. This implies that proposed codes are more efficient than two

referenced codes at the most values of ϵ.

Moreover, we provide performance comparison when values of ϵ are 0.05 and

0.1. In Fig. 2.7(a), g10.05 and g20.05 denote the gaps of average parity lengths of

the proposed codes in comparison with the codes in [36] and [49], respectively,

when ϵ is 0.05. Since the values of R(1) of [36] and AR
(0)
(1) are 7 and 2.7531,

respectively, g10.05 is 4.2469. This means that the proposed codes can reduce around

61% (4.2469
7

= 0.6067) of parity lengths for n = 128. Similarly, since the values of

35

R(2) of [49] and AR
(0)
(2) are 5 and 1.3768, respectively, g20.05 is 3.2487, which denotes

around 65% reduction in parity lengths. For ϵ = 0.1 in Fig. 2.7(a), g10.1 is 5.8129,

which is larger than g10.05, but g
2
0.1 is 2.9465, which is smaller than g20.05. When ϵ

is 0.2, the average parity lengths of proposed codes are almost one, while those of

[36] and [49] are 7 and 3. In Figs. 2.7(b) and 2.7(c), the gaps, g10.05, g
2
0.05, g

1
0.1, and

g20.1, are also denoted for n = 200 and 240, and show similar trends with ones in

Fig. 2.7(a). Moreover, as n increases, g10.05, g
2
0.05, g

1
0.1, and g20.1 also increase.

The minimum values of ϵ and gaps of average parity lengths are also denoted

in Fig. 2.8 when the value of f is f = 1. First, compared with Fig. 2.7, it can be

confirmed that the average parity lengths of the proposed codes decrease overall

as f increases by one. Therefore, the minimum values of ϵ to ensure that the

average parity lengths of the proposed codes are less than those of [36] and [49]

in Fig. 2.8 are smaller or equal to ones in Fig. 2.7. Moreover, the gaps of parity

length between the proposed codes and referenced ones become larger.

2.5.2 Average parity length comparison results for various

f

We present the comparison results of average parity lengths of our proposed codes

with those of [36] and [49] for various f at ϵ = 0.05 and 0.1, where the maximum

value of f is considered up to four. To evaluate the effectiveness of our proposed

codes, we determine n as n = 117, 174, and 255 since the same lengths of the DNA

codes were considered in [32, 71].

After obtaining the sizes of Bi
ϵ,n in randomly generated sequences set B, the

corresponding average parity lengths M-AR
(f)
(l) in (2.32) for l = 1 or l = 2 can be

calculated. The results comparing the average parity lengths R(l) of [36] and [49]

with M-AR
(f)
(l) in (2.32) for various f at ϵ = 0.05 and ϵ = 0.1 are presented in

Figs. 2.9 and 2.10, respectively. In Figs. 2.9 and 2.10, the dash lines and markers

36

are represented for the average parity lengths of R(l) of [36] and [49] and M-AR
(f)
(l)

in (2.32), respectively. The average parity lengths of the proposed codes M-AR
(f)
(l)

of lengths n = 117, 174, and 255 decrease as the f increases and gradually saturate

at certain values for ϵ = 0.05 and 0.1.

0 1 2 3 4

1

3

5

7

9

(a) l = 1

0 1 2 3 4

1

3

5

(b) l = 2

Figure 2.9: Average parity lengths of the proposed codes for various f for lengths
n = 117, 174, 255, and ϵ = 0.05.

Moreover, we present the performance improvement of our proposed codes for

37

0 1 2 3 4

1

3

5

7

8

9

(a) l = 1

0 1 2 3 4

1

2

3

4

(b) l = 2

Figure 2.10: Average parity lengths of the proposed codes for various f for lengths
n = 117, 174, 255, and ϵ = 0.1.

various values of f . In Fig. 2.9(a), the values of R(1) of [18] remain fixed at 7

for n = 117, while the values of M-AR
(f)
(1) are 3.4861, 2.2313, 1.7868, 1.6306, and

1.5758 for f = 0, 1, 2, 3, and 4, respectively. The gaps between R(1) of [18] and

M-AR
(f)
(1) are also shown above the blue dotted lines, which are 3.5139, 4.7687,

5.2132, 5.3694, and 5.4242, indicating around 50% (3.5139/7=0.5019), 68%, 74%,

38

77%, and 77% reductions in parity lengths, respectively. Additionally, for n = 174

and 255, the parity lengths R(1) of [18] are fixed at 8, but the average parity

lengths of M-AR
(f)
(1) decrease as f increases, and the gaps between R(1) of [18] and

M-AR
(f)
(1) are also illustrated above the red and purple dotted lines, respectively.

In Fig. 2.9(b), for n = 117, 174, and 255, the parity lengths R(2) of [45] are fixed

at 5, while the average parity lengths M-AR
(f)
(2) also decrease as f increases. For

instance, for n = 117, the gaps between R(2) of [45] and M-AR
(f)
(2) are 2.9345,

3.3945, 3.4321, 3.4455, and 3.4503 for f = 0, 1, 2, 3, and 4, respectively, which

correspond to 59%, 68%, 69%, 69%, and 69% reductions. From Fig. 2.9, it can

be concluded that for ϵ = 0.05, which ensures 45-55% GC-balanced DNA codes,

the proposed codes require over 50% reduction in parity lengths compared to two

referenced codes when considering the simplest type of the proposed codes, which

corresponds to f = 0.

For ϵ = 0.1, the average parity lengths of our proposed codes and referenced

codes, as well as their corresponding gaps are also presented in Fig. 2.10. Since

the value of |B0
ϵ,n| becomes larger as ϵ is doubled, the average parity lengths for

f = 0 in Fig. 2.10 become shorter than those in Fig. 2.9, and the corresponding

gaps become larger. For example, the average parity length and gap for n = 117 in

Fig. 2.10(a) are 1.2905 and 5.7095 while those in Fig. 2.9(a) are 3.4861 and 3.5139.

Moreover, when f is larger than one in Fig. 2.10(a) and zero in Fig. 2.10(b), the

average parity lengths and their gaps become saturated. One interesting point is

that the average parity lengths of the proposed codes cannot be less than one, and

in Fig. 2.10, the average parity lengths of the proposed codes are slightly larger

than one. From Fig. 2.10, it can be concluded that even for ϵ = 0.1, the proposed

codes exhibit better performance than two referenced codes, and the simplest type

of the proposed codes shows excellent results.

39

Chapter 3

Nonbinary single insertion or

deletion error correction codes

with a maximum run-length

constraint for DNA storage

3.1 Introduction

Although DNA storage has many potential advantages, recent studies [17, 26, 4, 32]

have indicated that insertion, deletion, and substitution errors occur in DNA syn-

thesis and sequencing processes. To improve the robustness of the DNA synthesis

and sequencing processes, error correction codes such as fountain codes [20], Reed-

Solomon codes [32], Bose-Chaudhuri-Hocquenghem codes [19], and low-density

parity-check codes [19, 15, 24] have been applied to DNA storage systems. Since

a DNA strand is subject to two constraints, i.e., balanced GC-content (45%–55%

or 40%–60%) and short homopolymer length (≤3 or 4), which enable low error

rates during DNA synthesis and sequencing processes [20], the constrained codes

40

[4, 33] without the capability of error correction have been considered to reduce

the occurrence of insertion, deletion, and substitution errors in DNA storage. Fur-

thermore, the constrained code combined with the error correction code has been

considered for DNA storage [70].

A binary single insertion/deletion error correction (SIDEC) code, which is

called a Varshamov-Tenengolts (VT) code [63], was first proposed in 1965. Leven-

shtein modified the binary VT code as an extended VT (EVT) code [40] to correct

a single insertion/deletion/substitution error. The nonbinary VT codes [60], which

also can correct a single insertion/deletion error, were proposed almost 20 years

later. The authors of [2] proposed an efficient systematic encoding algorithm for

nonbinary SIDEC codes whose codewords consist of parity symbols and message

symbols. A binary EVT code combined with a GC-balanced constrained code [70]

and a binary VT code combined with a GC-balanced and r run-length limited

constrained code [49] were applied for DNA storage systems. Additionally, a new

binary SIDEC code combined with the maximum run-length r constrained code

and efficient systematic encoding algorithm was proposed in [59].

All of these studies [19, 15, 49, 33, 70] focused on binary coding schemes for

DNA storage systems. So far, there have been few studies focusing on q-ary coding

schemes [27] for DNA storage systems. Moreover, insertion and deletion errors are

inevitably bound to occur in the process of DNA synthesis and sequencing. For

these purposes, we propose a new nonbinary SIDEC code with the maximum run-

length r constraint and systematic encoding algorithm. We can apply the proposed

code with q = 4 and the maximum run-length r = 3 which are suitable for DNA

storage.

The design of the codes is especially inspired by related works [2] and [59].

First, the nonbinary code design in [2] did not consider the maximum run-length

constraint and some of the codewords from the deign in [2] cannot be successfully

41

encoded. However, these issues are addressed in our code construction. Second,

although the binary SIDEC code in [59] involved the maximum run-length e con-

straint, the length of output codewords was limited by the maximum run-length

e. However, our proposed code has no limitations on codewords length.

We first present a method to convert the binary data into q-ary symbol se-

quences with the maximum run-length r constraint. These sequences can be used

as inputs for the proposed nonbinary SIDEC code with the maximum run-length r

constraint. The construction of the proposed q-ary SIDEC code and its correspond-

ing systematic encoding algorithm are also presented. The output codeword is a

sequence of the q-ary SIDEC code with the maximum run-length r constraint. Sim-

ulation results show that the encoding algorithm is feasible and the q-ary SIDEC

code with the maximum run-length r constraint can correct a single deletion or

insertion error.

3.2 Preliminaries

Some special notations are used in this chapter are introduced. For any positive

integer a and b, given a an integer c, ⟨a, c, b⟩ denotes the vector (a, a + c, a + 2c,

· · · , b). The value q is considered as q = 2ω for an integer ω > 1. The deca(·)

denote decimal representation of base a. Let Gb
a be the set of sequences v ∈ Zb

q

of length b with the maximum run-length a constraint. The Hamming weight of

a sequence v is the number of symbols that are different from the zero symbol. A

positive integer w ∈ [1, 2a − 1] is represented by
∑a−1

i=0 = gi · 2i, where gi ∈ Z2 and

a is any positive integer. We define a mapping as Lea(w) = (g0, g1, · · · , ga−1) and

Le−1
a ((g0, g1, · · · , ga−1)) = w. For example, Le3(1) = (1, 0, 0) and Le−1

3 ((1, 0, 0)) =

1.

42

3.2.1 Proposed code construction and algorithm

Figure 3.1: Overall block diagram of the proposed code.

The overall block diagram of the proposed code is shown in Fig 3.1. Since

the construction method that converts the binary data B into a q-ary sequence z

with the maximum run-length r constraint is similar in [27], we briefly explain the

method in Section 3.2.2. We also present an application of a codeword where the

maximum run-length r is three for DNA storage. We segment the q-ary sequence

with the maximum run-length r constraint into multiple sequences with the spec-

ified length; this is the message sequence of the proposed SIDEC code Ca,b(n+ 1)

in Section 3.3.1. The message sequences used as the inputs pass through the al-

gorithm of the systematic proposed SIDEC code in Section 3.3.2, and the output

codewords have properties of single insertion/deletion error correction and the

maximum run-length r constraint. The maximum run-length of the output code-

words is r = 3, since we design the fixed maximum run-length r to be three in

message the parity sequences and the last symbol of the parity sequence is always

different with the first symbol of the message sequence. The codewords with max-

imum run-length r = 3 can be used for DNA synthesis due to the constraints for

43

DNA storage systems [20].

3.2.2 Construction of sequences with the maximum run-

length constraint

Our method for constructing the maximum run-length r sequences is similar to the

method used in [27]. We extend the method in [27] to the general case to obtain

the q-ary maximum run-length r constrained sequence. First, we assume that the

binary data B can be divided into µ blocks of length ϵ bits, which are represented

as biϵ(i−1)ϵ+1 = (b(i−1)ϵ+1, b(i−1)ϵ+2, · · · , biϵ) ∈ Zϵ
2 for i ∈ [1, µ]. Then, we build one-to-

one mapping to convert biϵ(i−1)ϵ+1 into ((q−1)qr−1)-ary h elements, where h is given

by h = ⌈ϵ/ log((q − 1)qr−1)⌉. The binary data B with length µϵ can be converted

into a sequence x = (x1, x2, · · · , xµh) = (xh
1 ,x

2h
h+1, · · · ,xih

(i−1)h+1, · · · ,x
µh
(µ−1)h+1),

where xj is a ((q−1)qr−1)-ary element for j ∈ [1, µh]. Then, the mapping between

the binary subsequence biϵ(i−1)ϵ+1 with ϵ bits in B and the ((q − 1)qr−1)-ary subse-

quence xih
(i−1)h+1 with h elements in x is dec2(b

iϵ
(i−1)ϵ+1) = dec(q−1)qr−1(x

ih
(i−1)h+1),

for i ∈ [1, µ]. Next, we can build a one-to-one mapping to convert a ((q− 1)qr−1)-

ary element xj in x into a q-ary subsequence zjr
(j−1)r+1 with r symbols, since the

subsequence zjr
(j−1)r+1 in z has the property that zjr−1 ̸= zjr for j ∈ [1, µh]. It can

represent ((q−1)qr−1) different values. Then, the sequence x can be converted into

a q-ary sequence z = (z1, z2, · · · , zµhr) = (zr
1, z

2r
r+1, · · · , z

jr
(j−1)r+1, · · · , z

µhr
(µh−1)r+1)

of length µhr. Since zjr
(j−1)r+1 has zjr−1 ̸= zjr for j ∈ [1, µh], for any two subse-

quences zj1r
(j1−1)r+1, z

j2r
(j2−1)r+1 with r symbols in z for j1 ̸= j2 and j1, j2 ∈ [1, µh], the

maximum run-length of their concatenation (zj1r
(j1−1)r+1, z

j2r
(j2−1)r+1) is r − 1 when

the last symbol zj1r in zj1r
(j1−1)r+1 and the first symbol z(j2−1)r+1 in zj2r

(j2−1)r+1 have

zj1r ̸= z(j2−1)r+1, and the maximum run-length is r when zj1r = z(j2−1)r+1. There-

fore, the q-ary sequence z is the maximum run-length r sequence if the maximum

run-length of any two adjacent subsequences zjr
(j−1)r+1 and z

(j+1)r
jr+1 with concate-

44

Table 3.1: The example of one-to-one mapping between a 48-ary element and q-ary
subsequence zjr

(j−1)r+1 with r symbols.

48-ary Subsequence 48-ary Subsequence 48-ary Subsequence

element zjr
(j−1)r+1 element zjr

(j−1)r+1 element zjr
(j−1)r+1

0 AAT 16 TTG 32 GGC
1 AAG 17 TTC 33 GCA
2 AAC 18 TGA 34 GCT
3 ATA 19 TGT 35 GCG
4 ATG 20 TGC 36 CAT
5 ATC 21 TCA 37 CAG
6 AGA 22 TCT 38 CAC
7 AGT 23 TCG 39 CTA
8 AGC 24 GAT 40 CTG
9 ACA 25 GAG 41 CTC
10 ACT 26 GAC 42 CGA
11 ACG 27 GTA 43 CGT
12 TAT 28 GTG 44 CGC
13 TAG 29 GTC 45 CCA
14 TAC 30 GGA 46 CCT
15 TTA 31 GGT 47 CCG

nation (zjr
(j−1)r+1, z

(j+1)r
jr+1) in the sequence z is r. Finally, the sequence z of length

µhr is segmented into ⌊µhr/k⌋ blocks of sequences y = (y1, y2, · · · , yk) ∈ Zk
q with

specified length k, which can be used as the message sequences of the proposed

code. Since the sequences y are a subset of sequence z and the maximum run-

length of sequence z is r (as long as the maximum run-length of the concatenation

of any two adjacent subsequences with r symbols is r), the run-length of sequences

y is less than or equal to r.

Since the alphabet and maximal run-length are popularly used as q = 4 and

r = 3 in DNA storage, respectively, we can consider converting a block of ϵ = 16

bits to 48-ary h = 3 elements. If A = 0, T = 1, G = 2, and C = 3, an example

of one-to-one mapping between a 48-ary element and q-ary subsequence zjr
(j−1)r+1

with r symbols for j ∈ [1, µh] is given in Table 3.1.

45

3.3 Code construction and encoding for a non-

binary SIDEC with a maximum run-length

constraint code

We propose a method to construct a nonbinary SIDEC code and then present a

systematic encoding algorithm of the proposed nonbinary SIDEC code. We design

parity symbols that satisfy the following constraints: the maximum run-length

r is three and the symbols can be obtained by mapping through tables. The

outputs of the systematic encoding algorithm are the maximum run-length r = 3

constraint codewords when the maximum run-length r of the message sequence is

not larger than three. Hence, the output codewords have two properties: single

insertion/deletion error correction and the maximum run-length r constraint.

3.3.1 Code construction

Table 3.2: Forms of the proposed nonbinary systematic SIDEC code.

I I1 I2
I3
(d3)

· · · I3(σ−1)

(d3(σ−1))
· · · Im Im+1 · · · In

α α1 α2 α3 · · · α3(σ−1) · · · αm αm+1 · · · αn

c c0 c1 c2 c3 · · · c3(σ−1) · · · cm cm+1 · · · cn
(p0) (p1) (p2) (p3) (p3(σ−1)) (pm) (y1) (yk)

The form of the proposed nonbinary systematic code Ca,b(n + 1) is shown in

Table 3.2. The proposed code is constructed by the sequence I = (I1, I2, · · · , In+1)

of length n + 1, the auxiliary sequence α = (α1, α2, · · · , αn) of length n, and the

codeword c = (c0, c1, c2, · · · , cn) of length n+1. The codeword c is (pm
0 ,y

k
1), which

is the concatenation of the parity sequence pm
0 = (p0, p1, · · · , pm) of length m+ 1

and the message sequence yk
1 = (y1, y2, · · · , yk) of length k. To determine codeword

c, monotonically increasing integer sequence I is explained in Definition 3.3.1. In

46

Table 3.2, the subsequence In
1 of I is used, and In+1 will be used for syndrome

calculation later. When the length of message sequence k is given, In+1 should

be first determined for the sequence I and the number of the parity symbols

can be determined by In+1. However, since In+1 is also recursively calculated

after determining In
1 in Definition 1, it is not possible to determine In+1 and

B = ⌈log(In+1)⌉ directly. To solve this problem, we first provide the relationship

between the message sequence length k and the value of B in Table 3.3, which

can be understood after the sequence generation has ended. We also present the

number of parity symbols by (3.5) and the length of codeword c by (3.6), as as

shown in Table 3.3.

Table 3.3: The relationship between the message sequence length k, the value of
B, the number of parity symbols m+ 1, and the length of codeword c, n+ 1 .

Message sequence
length k

B =
⌈log(In+1)⌉

σ =
⌈B
2
⌉

Number of parity
symbols m+ 1

Length of
codeword c

[1, 2] =
[2B−2 − 1, 2B−1 − 2]

3 2 6
[7, 8],
k + 3σ

[3, 6]
[2B−2 − 1, 2B−1 − 2]

4 2 7
[10, 13],

k + 3σ + 1
[7, 14] =

[2B−2 − 1, 2B−1 − 2]
5 3 9

[16, 23],
k + 3σ

[15, 30] =
[2B−2 − 1, 2B−1 − 2]

6 3 10
[25, 40],

k + 3σ + 1
[31, 62] =

[2B−2 − 1, 2B−1 − 2]
7 4 12

[43, 74],
k + 3σ

[63, 126] =
[2B−2 − 1, 2B−1 − 2]

8 4 13
[76, 139],
k + 3σ + 1

[127, 254] =
[2B−2 − 1, 2B−1 − 2]

9 5 15
[142, 269],
k + 3σ

[255, 510] =
[2B−2 − 1, 2B−1 − 2]

10 5 16
[271, 526],
k + 3σ + 1

Moreover, since the number of parity symbols depends on whether B is even

or odd, and around half of B can make a special pattern in the sequence, we need

47

to define σ. From B, the value of σ is defined as

σ = ⌈B
2
⌉.

Conversely, from σ, the value of B can be defined as

B =

2σ − 1 if B is an odd number;

2σ if B is an odd number.

(3.1)

From the relationship between the message sequence length k and the value of B

in Table 3.3, we conclude that

k ∈ [2B−2 − 1, 2B−1 − 2]. (3.2)

Definition 3.3.1. We define a positive, monotonically increasing integer sequence

I = (I1, I2, · · · , In+1) of length n + 1. When the length of message sequence k is

predefined, the value of B can be determined according to (3.2). The sequence I

is defined as

I = (T 1,T 2, · · · ,T σ−1,L, In+1
m), (3.3)

where T i for i ∈ [1, σ − 1], L, m, n+ 1, and In+1
m are expressed as

T i = (22i−2, 22i−1, d3i) for i ∈ [1, σ − 1], (3.4)

L =

(22σ−2) for B = 2σ − 1;

(22σ−2, 22σ−1) for B = 2σ,

m =

3(σ − 1) + 2 for B = 2σ − 1;

3σ for B = 2σ,

(3.5)

48

n+ 1 = m+ k + 1, (3.6)

In+1
m =


Im =

22σ−2 + 1 for B = 2σ − 1;

22σ−1 + 1 for B = 2σ,

Ij = Ij−1 + 1 for j ∈ [m+ 1, n+ 1],

(3.7)

where d3i ∈ [22i−1 + 1, 22(i+1)−1 − 1] in (3.4) for i ∈ [1, σ − 1].

We present some examples of the construction of the positive, monotonically

increasing integer sequence I. In Example 3.3.2, we can intuitively see that the

integer sequence I is a monotonically increasing sequence. The reason why some

indices in T i for i ∈ [1, σ − 1] are a multiple of three in (3.4) is that the fixed

maximum run-length r is designed to be three in pm
0 of the proposed code.

Example 3.3.2. It is assumed that the lengths of message sequences are k = 126

and 145. Then, according to (3.2), it can be determined that the values of B

are 8 and 9, respectively. The values of m = 12 and 14, d3 ∈ [3, 3], d6 ∈ [9, 15],

d9 ∈ [33, 61], and d12 ∈ [129, 255]. Then, the integer sequences I in Definition 3.3.1

are given as

I =(1, 2, d3, 4, 8, d6, 16, 32, d9, 64, 128, Im = 129,

130, · · · , 255, 256) for k = 126,

I =(1, 2, d3, 4, 8, d6, 16, 32, d9, 64, 128, d12, 256,

Im = 257, 258, · · · , 402, 403) for k = 145.

Definition 3.3.3. Consider a sequence c = (c0, c1, c2, · · · , cn) ∈ Zn+1
q and its

corresponding auxiliary sequence α = (α1, α2, · · · , αn) ∈ Zn
2 , whose element αi for

i ∈ [1, n] is given by

αi =

0 if ci < ci−1;

1 if ci ≥ ci−1.

(3.8)

49

A syndrome Syn(α) of the auxiliary sequence α and the check summation sum(c)

of the codeword c are defined as

Syn(α) =
n∑

i=1

Iiαi (mod In+1), (3.9)

sum(c) =
n∑

i=0

ci (mod q). (3.10)

For a ∈ Zq and b ∈ ZIn+1 , the q-ary SIDEC code with parameters n + 1, a, and b

is defined as

Ca,b(n+ 1) ={c ∈ Zn+1
q : Syn(α) = b (mod In+1),

sum(c) = a (mod q)}.
(3.11)

Theorem 3.3.4. For any codeword c ∈ Ca,b(n + 1), a ∈ Zq and b ∈ ZIn+1, the

codeword c has the SIDEC property.

Proof. The sequence I is a positive, monotonically increasing sequence. Hence, the

sequence I is a monotonically increasing code [29]. Since monotonically increasing

codes are also SIDEC codes [29] and sum(c) = a (mod q) satisfies the property of

nonbinary VT codes [60], c ∈ Ca,b(n+ 1) is a codeword of a SIDEC code.

3.3.2 Encoding algorithm

We present a systematic encoding algorithm for nonbinary SIDEC codes, where

the maximum run-length r in the parity sequence is three. To satisfy the run-

length constraint between a sequence of parity symbols and a sequence of message

symbols, the last parity symbol is designed to be always different from the first

message symbol. The output codewords have the properties of nonbinary SIDEC

codes and the maximum run-length r which depends on the maximum run-length

50

of the message sequence.

Overview

This systematic encoding algorithm converts a message sequence yk
1 with the max-

imum run-length r constraint into a SIDEC codeword with the maximum run-

length r constraint. The output codeword c ∈ Ca,b(n + 1) ∩ Gn+1
r is defined by

c = (pm
0 ,y

k
1). The last symbol pm of pm

0 is used for avoiding the run-length be-

tween pm
0 and yk

1, and (σ− 1) symbols of pm
0 whose indices are a multiple of three

are used for avoiding the run-length in the parity sequence. The other symbols of

pm
0 are represented by the value of Syn(α).

We explain the encoding algorithm in six steps according to Table 3.2. The

parity sequence pm
0 and message sequence yk

1 correspond to the partial codeword

cm0 = (c0, c1, · · · , cm) and cnm+1 = (cm+1, cm+2, · · · , cn), respectively.

Encoding algorithm steps

Step 1. The length of the message sequence yk
1 is predefined as k. The subsequence

In
1 of I and the value of In+1 can be determined by Definition 3.3.1. Then, the

length m+ 1 of the parity sequence pm
0 can be obtained by (3.5) with I.

This encoding algorithm requires d3i for i ∈ [1, σ−1], a, b, and message sequence

yk
1 ∈ Gk

r as input parameters. The output codeword c ∈ Ca,b(n + 1) ∩ Gn+1
r is

obtained from the proposed encoding algorithm. The symbols p3i are used for

avoiding the run-length in the parity sequence pm
0 for i ∈ [1, σ−1] and the symbol

pm is used for avoiding the run-length between the parity sequence pm
0 and message

sequence yk
1. When the message sequence yk

1 embeds into the partial codeword

cnm+1, the corresponding partial auxiliary sequence αn
m+2 = (αm+2, αm+3, · · · , αn)

with length k − 1 can be obtained according to (3.8).

Step 2. Initialize αm = 0, since the parity symbol cm < cm−1 in (3.8) when

51

αm = 0. The constraint αm = 0 prevents an increase in the maximum run-length

r between the parity sequence pm
0 and message sequence yk

1. After initializing

αm = 0, we determine the symbol cm = min([q]\y1) according to the desirable

value of cm, as shown in Tables 3.4 and 3.5. The symbol cm can be determined

as cm = max([q]\y1) according to the desirable value of cm in Tables 3.4 and 3.5

if αm is flipped from 0 to 1. Meanwhile, the value of αm+1 can be determined

after the symbol cm is determined according to (3.8). Then, we set all the values

of α3i to 1 for i ∈ [1, σ − 1]. Due to the condition cj < cj−1 in (3.8) when

αj = 0, if the partial auxiliary sequence αj
j−q+1 = (αj−q+1, αj−q+2, · · · , αj) is

(0, 0, · · · , 0) of length q for j ∈ [q, n], then the symbol cj−q should be larger than

q − 1, even though the symbol cj = 0 and the value of symbol cτ increases by one

for τ = ⟨j − 1,−1, j − q + 2⟩. When αj = 1 and the paritial auxiliary sequence

αj
j−((q−1)r−1) = (αj−((q−1)r−1), αj−((q−1)r−2), · · · , αj) of length (q−1)r is (1, 1, · · · , 1)

for j ∈ [(q − 1)r, n], the symbol cj−(q−1)r should be less than 0, even though all

symbols in cjj−r+1 = (cj−r+1, cj−r+2, · · · , cj) are the same as q−1. Additionally, all

symbols in sequence cj−τr
j−(τ−1)r+1 = (cj−(τ−1)r+1, cj−(τ−1)r+2, · · · , cj−τr) are the same

and the symbol value of cj−τr
j−(τ−1)r+1 decreases by one for τ = ⟨1, 1, q− 1⟩, since the

codeword c should satisfy the run-length constraint and the condition cj ≤ cj−1 in

(3.8). We define these two situations, where a symbol should be larger than q − 1

or less than zero in the codeword c due to several ones or zeros in the auxiliary

sequence α, as codeword construct failure (CCF).

Step 3. The remaining bits (α1, α2, α4, α5, · · · , αm−1) in auxiliary sequence α

are used for checking that Syn(α) = b (mod In+1) and its corresponding Ij has a

52

Table 3.4: The relationship between αm
3(σ−1) and cm3(σ−1) .

(α3(σ−1), α3(σ−1)+1, αm) c3(σ−1) c3(σ−1)+1
Desirable value

of cm
cm

(0, 0, 0) cm + 2 cm+1 [0, q − 3]
cm ∈
min([q]\y1)

(0, 1, 0) 0 q − 1 [0, q − 2]
(1, 0, 0) q − 1 cm + 1 [0, q − 3]
(1, 1, 0) q − 1 q − 1 [0, q − 2]
(0, 0, 1) c3(σ−1)+1 + 1 0 [0, q − 1]

cm ∈
max([q]\y1)

(0, 1, 1) 0 cm − 1 [1, q − 1]
(1, 0, 1) q − 1 0 [0, q − 1]
(1, 1, 1) cm − 1 cm-1 [1, q − 1]

Table 3.5: The relationship between α3l
3(l−1) and c3l3(l−1) for l ∈ [1, σ] and m = 3σ.

(α3(l−1), α3(l−1)+1,
α3(l−1)+2, α3l)

c3(l−1) c3(l−1)+1 c3(l−1)+2
Desirable value

of c3l
c3σ

(0, 0, 0, 0) c3l + 3 c3l + 2 c3l + 1 [0, q − 5]

cm ∈
min([q]\y1)

(1, 0, 0, 0) q − 1 c3l + 2 c3l + 1 [0, q − 4]
(1, 0, 1, 0) q − 1 0 c3l + 1 [0, q − 2]
(1, 1, 0, 0) q − 1 q − 1 c3l + 1 [0, q − 3]
(1, 1, 1, 0) q − 1 q − 1 q − 1 [0, q − 2]
(0, 0, 1, 0) c3(l−1)+1 + 1 0 q − 1 [0, q − 2]
(0, 1, 0, 0) 0 q − 1 c3l + 1 [0, q − 3]
(0, 1, 1, 0) 0 q − 1 q − 1 [0, q − 2]
(1, 0, 0, 1) q − 1 c3(l−1)+2 + 1 0 [0, q − 1]

cm ∈
max([q]\y1)

(1, 0, 1, 1) q − 1 0 c3l [1, q − 1]
(1, 1, 0, 1) q − 1 q − 1 0 [0, q − 1]
(1, 1, 1, 1) c3l − 2 c3l − 1 c3l − 2 [1, q − 1]
(0, 0, 0, 1) c3(l−1)+1 + 1 c3(l−1)+2 + 1 0 [0, q − 1]
(0, 0, 1, 1) c3(l−1)+1 + 1 0 c3l − 1 [1, q − 1]
(0, 1, 0, 1) 0 q − 1 0 [0, q − 1]
(0, 1, 1, 1) 0 c3l − 1 c3l − 1 [1, q − 1]

power of 2. Hence, we define β as

β =
2∑

j=1

αj · 2j−1 +
σ−1∑
i=2

3i−1∑
j=3i−2

αj · 2j−i

+
m−1∑

j=3σ−2

αj · 2j−σ (mod In+1)

=b−
σ−1∑
i=1

∑
j=3i

αjdj − αmIm

−
k∑

j=1

αj+mIj+m (mod In+1).

(3.12)

53

From the calculation of (3.12), we can determine the unique remaining bits (α1, α2,

α4, α5, · · · , αm−1) to represent the value of β.

Step 4. After obtaining the unique auxiliary sequence α, we first determine the

symbols of cm3(σ−1) = (c3(σ−1), c3(σ−1)+1, cm) related to αm
3(σ−1) = (α3(σ−1), α3(σ−1)+1,

αm) according to Table 3.4 if the length of αm
3(σ−1) is three. If the length of

αm
3(σ−1) = (α3(σ−1), α3(σ−1)+1, α3(σ−1)+2, αm) is four, c

m
3(σ−1) = (c3(σ−1), c3(σ−1)+1,

c3(σ−1)+2, cm) related to αm
3(σ−1) is determined according to Table 3.5. After the

symbols cm3(σ−1) are determined, if CCF occurs, we flip αm.

Step 5. We determine c3t3(t−1) = (c3(t−1), c3(t−1)+1, c3(t−1)+2, c3t) related to

α3t
3(t−1) = (α3(t−1), α3(t−1)+1, α3(t−1)+2, α3t) according to Table 3.5, for t = ⟨σ −

1,−1, 2⟩. After the symbols c3t3(t−1) are determined, if CCF occurs or if the maxi-

mum run-length r > 3, we flip the current α3t.

Step 6. The rest of the symbols c20 = (c0, c1, c2) in the output codeword c is

used for computing to satisfy the sum(c) = a (mod q). We define γ as

γ =c0 + c1 + c2 (mod q)

=a−
n∑

i=3

ci (mod q).
(3.13)

According to the value of γ and the α3
1 = (α1, α2, α3), we can determine the

symbols c20. Since sometimes there is not only one case of c20 that satisfies the

value of γ and the α3
1, we should determine the case to aviod the run-length issue

as much as possible. Similarly, after the symbols c20 are determined, if CCF occurs

or if the maximum run-length r > 3, we filp α3.

From (3.8), the auxiliary sequence α has a strong relationship with the code-

word c. Obviously, if there are many consecutive ones in α, the codeword con-

struction can fail when the codeword should satisfy the maximum run-length con-

straint. Hence, we first consider α3l
3(l−1) = (1, 1, 1, 1) in Table 3.5 for l ∈ [1, σ]

54

and m = 3σ. Then, there are a total of 19 cases of c3l3(l−1) that correspond to

α3l
3(l−1) = (1, 1, 1, 1), e.g., c3l3(l−1) = (c3l−1, c3l, c3l, c3l), c

3l
3(l−1) = (c3l−2, c3l, c3l, c3l),

etc. Based on the trials, we finally determine c3l3(l−1) = (c3l − 2, c3l − 1, c3l − 1, c3l).

Similarly, for the case of αm
3(l−1) = (1, 1, 1) in Table 3.4, we determine its cor-

responding cm3(l−1) = (cm − 1, cm − 1, cm). For the concatenation issue, the first

symbol c3(l−1) in c3l3(l−1) will be the last symbol in the partial sequence c
3(l−1)
3(l−2).

Refer to the value of c3l in Table 3.5, which is the last symbol in c3l3(l−1), we can

determine the first symbol c3(l−1) in c3l3(l−1) as maximum available symbol (i.e.,

q − 1) and minimum available symbol (i.e., 0) when the first bit α3(l−1) in α3l
3(l−1)

is 1 and 0, respectively. According to (3.8), we know that ci < ci−1 if αi = 0.

Hence, when consecutive zeros occur in the partial auxiliary sequence α3l
3(l−1), we

determine the symbol corresponding to the last zero position in α3l
3(l−1) as the min-

imum available symbol (i.e., 0) and increase the value of each symbol to the left

of this symbol by one step by step. The symbol values of c3(l−1)+1 and c3(l−1)+2

are determined by α3(l−1)+1 and α3(l−1)+2. In most cases, we can determine the

c3(l−1)+1 = c3(l−1)+2 = q − 1 always satisfy α3(l−1)+1 = α3(l−1)+2 = 1 according to

(3.8) except α3l
3(l−1) = (1, 1, 1, 1) and (0, 1, 1, 1). If α

3(l−1)+2
3(l−1) = (0, 1, 0), we can

determine the symbol value c3(l−1)+1 as q − 1 to statisfy α3(l−1)+1 = 1 according

to (3.8). On the contrary, we can determine the symbol value c3(l−1)+1 = 0 if

α
3(l−1)+2
3(l−1) = (1, 0, 1). Similarity, the symbol value c3(l−1)+2 can be determined as

q − 1 and 0 if α3l
3(l−1)+1 = (0, 1, 0) and (1, 0, 1), respectively. The value of cm3(σ−1)

in Table 3.4 is determined similarly to c3l3(l−1) in Table 3.5.

3.3.3 Special case with k = 190 and 191 and the overall of

encoding algorithm

While simulating the encoding algorithm in Section III.B, we find that in most

of cases, codewords can be constructed without flipping α3i for i ∈ [1, σ − 1] in

55

Steps 5 and 6. However, flipping α3 in Step 6 occurs at two cases where the

message sequence length k = 190 and 191, corresponding to In+1 = 433 and 434,

respectively. In these cases, the codewords are not constructed successfully. When

β = 431 in (3.12) for In+1 = 433 and 434, the corresponding partial auxiliary se-

quence is αm
1 = (α1, α2, · · · , αm) = (1, 1, 1, 1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 0). Then, we can

acquire the partial codeword cm3 = (c3, c4, · · · , cm) = (1, 2, 2, 3, 0, 2, 3, 0, 2, 3, 3, cm)

for q = 4 according to Tables 3.4 and 3.5. We assume that γ = 3 in (3.13)

and the partial codeword c20 = (c0, c1, c2) = (1, 1, 1) to satisfy γ = 3 when

α3
1 = (α1, α2, α3) = (1, 1, 1). However, since the run-length of c30 is four, it vi-

olates the maximum run-length r = 3 in parity sequence. According to the en-

coding algorithm, α3 needs to be flipped from 1 to 0, and the value of β is again

calculated as β = 1 and 0. In this case, the corresponding partial auxiliary se-

quence αm
1 = (1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0) and (0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0),

respectively. Since there are more than three consecutive zeros in the correspond-

ing partial auxiliary sequence αm
1 and q = 4, the codeword cannot be constructed

successfully due to CCF occurs in Step 6. We conclude that these cases are spe-

cial cases that cannot be constructed successfully, even if the corresponding α3i is

flipped for i ∈ [1, σ − 1] in Steps 5 and 6.

To address special cases where the codeword cannot be constructed successfully,

even if the corresponding α3i is flipped for i ∈ [1, σ − 1] in Steps 5 and 6, we

make some modifications in Steps 5 and 6. Let δ = (α3, α6, · · · , α3(σ−1)) be a

sequence that consists of the values α3i in auxiliary sequence α for i ∈ [1, σ − 1]

and δj
i = (α3i, α3(i+1), · · · , α3j) for i, j ∈ [1, σ − 1] and i ≤ j. Notice that the

corresponding α3i in auxiliary sequence α should also be changed when the value

in sequence δ has been changed. The modification is that updating temp−δ =

δσ−1
t = (α3t, α3(t+1), · · · , α3(σ−1)) and δσ−1

t = Leσ−t(Le
−1
σ−t(temp−δ) − 1) until the

partial codeword c3t3(t−1) can be constructed successfully for t = ⟨σ,−1, 2⟩. For

56

Step 1

Step 2

Step 3

Step 4CCF

Step 5

Y

N

CCF or Run
length >3

Step 6

Update and
from Step 5
from Step 6

from Step 5

from Step 6

NCC

Y

YN

N from Step 5

Codeword Consruction

N from Step 6

Figure 3.2: The flow chart of the proposed encoding algorithm.

example, from Step 2, the initial sequence δ is set as δ = (1, 1, · · · , 1). If c3t3(t−1)

mapping from Table 3.5 causes CCF to occur or if run-length r > 3, we set

temp−δ = δσ−1
t = (1, 1, · · · , 1) and update δσ−1

t = (0, 1, · · · , 1), which represent

flipping α3t from 1 to 0. We then go back to Step 3. If c3t3(t−1) causes CCF to occur

again or if the run-length still r > 3, we update temp−δ = (0, 1, · · · , 1) and δσ−1
t =

(1, 0, · · · , 1), which represents flipping α3(t+1) from 1 to 0, and then initialize α3t

(since the codeword cannot be successfully constructed by only flipping α3t). The

update will stop until c3t3(t−1) be constructed successfully. If c3t3(t−1) always causes

CCF to occur or if the run-length r > 3 and Le−1
σ−t(temp−δ) − 1 is less than

zero, the codeword cannot be constructed and we define this situation as no code

construction (NCC). The modification in Step 6 is similar to the one in the

Step 5. The overall encoding algorithm and the accompanying flow chart are

57

summarized by Algorithm 3 and Fig. 3.2.

Algorithm 3: Encoding the SIDEC code with the maximum run-length
r constraint
Input: d3i for i ∈ [1, σ − 1], a, b, and message sequence yk

1 ∈ Gk
r .

Output: codeword c = (pm
0 ,y

k
1) ∈ Ca,b(n+ 1) ∩Gk

r

1 Step 1: Embed message sequence yk
1 → the partial auxiliary sequence

αn
m+2.

2 Step 2: Set αm = 0 → cm = min([q]\y1) → αm+1 and all α3i = 1 for
i ∈ [1, σ − 1].

3 Step 3: Calculate β in (3.12) to satisfy Syn(α) = b (mod In+1) .
4 Step 4: αm

3(σ−1) → cm3(σ−1).

5 if the length of αm
3(σ−1) is three then

6 determine cm3(σ−1) according to αm
3(σ−1) with Table 3.4.

7 else if the length of αm
3(σ−1) is four then

8 determine cm3(σ−1) according to αm
3(σ−1) with Table 3.5.

9 if cm3(σ−1) causes CCF then

10 flip αm → cm = max([q]\y1) → αm+1.
11 goto Step 3.

12 Step 5: α3t
3(t−1) → c3t3(t−1)

13 for t = ⟨σ − 1,−1, 2⟩ do
14 determine c3t3(t−1) according to α3t

3(t−1) with Table 3.5.

15 if c3t3(t−1) causes CCF or run− length r > 3 then

16 temp−δ = δσ−1
t ,

17 if Le−1
σ−t(temp−δ)− 1 < 0 then

18 print (NCC), exit.

19 δσ−1
t = Leσ−t(Le

−1
σ−t(temp−δ)− 1).

20 goto Step 3.

21 Step 6: Calculate γ in (3.13) to satisfy sum(c) = a (mod q) and γ → c20
according to α3

1.
22 if c20 causes CCF or run-length r > 3 then
23 temp−δ = δ. if Le−1

σ−1(temp−δ)− 1 < 0 then
24 print (NCC), exit.

25 δ = Leσ−1(Le
−1
σ−1(temp−δ)− 1).

26 goto Step 3.

58

According to the encoding algorithm, the codewords are successfully constructed.

The simulation results are shown in Section 3.5. In Fig. 3.2, Y, and N are repre-

sented encoding step number, yes, and no, respectively.

3.4 Decoding for an insertion or deletion error

Due to the strong relationship between the auxiliary sequence α and codeword c

of Ca,b(n+ 1) code, when a single insertion/deletion error occurs in the codeword

c of Ca,b(n+1) code, a single insertion/deletion error occurs in the corresponding

auxiliary sequence α at the same position. Recall that the sequence I is a mono-

tonically increasing sequence; hence, we can acquire the decoding algorithm by

the method used in [58]. Since the Ca,b(n + 1) code has similar properties as the

nonbinary VT codes [60], we can decode for a single insertion/deletion error. Since

decoding for an insertion error is similar, we will briefly introduce the decoding

method for the deletion error but omit the explanation of decoding for insertion

in this paper.

We assume that a deletion error occurs at the position f ∈ [1, n]. From the

received codeword c′ = (c′0, c
′
1, · · · , c′f−1, c

′
f+1, · · · , c′n+1) of length n, the auxiliary

sequence α′ = (α′
1, α

′
2, · · · , α′

f−1, α
′
f+1, · · · , α′

n) of length n−1 can be recalculated,

where α′
f ∈ [2] and c′f ∈ [q]. To determine the syndrome, two mappings are defined

as

L
(0)
I (f,α′) =


∑f−1

j=1 (1− α′
j) · (Ij+1 − Ij) for i ̸= 1;

0 for i = 1,

R
(1)
I (f,α′) =


∑n−1

j=f α
′
j · (Ij+1 − Ij) for i ̸= n;

0 for i = n.

Here, L
(0)
I (f,α′) and R

(1)
I (f,α′) represent the operations on all zeros to the

59

left of the f -th position and on all of the ones to the right of the f -th position in

the received auxiliary sequence α′, respectively. We denote wI(α
′) = R

(1)
I (1,α′),

which coincides with the Hamming weight of the received auxiliary sequence α′ if

the integer sequence I = (1, 2, · · · , n + 1). The difference in the syndrome values

between α and α′ is defined as ∆ = b −Syn(α′) (mod In+1).

The deleted value α′
f is determined by comparing the ∆ value and wI(α

′) as

α′
f =

0 for ∆ ≤ wI(α
′);

1 for ∆ > wI(α
′).

The sets of possible deletion positions f are {f ∈ [1, n], |R(1)
I (f,α′) = ∆} or

{f ∈ [1, n], |L(0)
I (f,α′) = ∆ −wI(α

′) − I1} if the deletion value α′
f = 0 or 1,

respectively.

After we find the deleted value and possible position of the recalculated aux-

iliary sequence α′, we can infer the deleted value and the possible position in the

received codeword c′ from the relationship between the deleted symbol c′f and

its left symbol c′f−1 according to (3.8). Similar to the decoding of nonbinary VT

codes, we define the deleted symbol c′f as

c′f = a− sum(c′) (mod q).

With the above method, we can successfully decode a deletion or insertion

error, and these results are shown in Section 3.5.

3.5 Simulation and Comparison results

We first present the simulation results for our proposed code construction, de-

termine the feasibility of the proposed encoding algorithm, and verify successful

60

decoding when a single insertion/deletion error occurs in the codeword. Then, we

present the comparison results between relevant work [2] and our work to present

the improvement of our code design.

In this simulation, we determine the values of q = 4 and r = 3. We segment

message sequences yk
1 into different lengths k = 60, 120, 127, 135, 145, 155, 165, 175,

185, and 400. The reason why the length k is chosen as 127 and 135 is that, even

though the two adapters of 24 nt [20] are appended to the head and tail of encoded

codeword, respectively, the total length still meets the length of strands in DNA

storage, which ranges from 160-200 nt [4, 20, 18]. Additionally, the length k is

chosen from 145 to 185 because the adapters are not considered, and the length

of encoded codeword is satisfied the length of strands in DNA storage. Moreover,

the reason why we choose k as 60, 120, and 400 is that different values B (i.e., 7,

8, and 10, respectively) need to be considered for general cases. Since the total

number of message sequences is very large, we randomly choose 1.5× 108 message

sequences from the entire message sequences set in order to verify the feasibility

of our proposed encoding algorithm. Then, the lengths of the encoded output

codewords are 72, 133, 138, 150, 160, 170, 180, 190, 200, and 415, respectively.

Since the predefined parameters a ∈ [q] and b ∈ [In+1] have many combinations,

we consider two representative scenarios: one where a = 0 and b = 1 and another

where a is a random number in [q] and b is a random number in [In+1]. The results

of the successful encoding are listed in Tables 3.6 and 3.7.

✓ and X in Tables 3.6 and 3.7 denote successful encoding result and encoding

failure result, respectively. From these results, the length of 190 codewords cor-

responds to In+1 = 433, and the proposed encoding algorithm can generate the

codewords construct successfully.

We assume that a single deletion or insertion error occurs in the received code-

words. The position of a single deletion or insertion error is randomly determined

61

Table 3.6: The encoding results for different codeword lengths with a = 0 and
b = 1.

Number of
sequences

Message length Codeword length
Successful
encoding

1.5× 108 60 72 ✓
1.5× 108 120 133 ✓
1.5× 108 127 138 ✓
1.5× 108 135 150 ✓
1.5× 108 145 160 ✓
1.5× 108 155 170 ✓
1.5× 108 165 180 ✓
1.5× 108 175 190 ✓
1.5× 108 185 200 ✓
1.5× 108 400 415 ✓

Table 3.7: The encoding results for different codeword lengths with a is a random
number in [q] and b is a random number in [In+1].

Number of
sequences

Message length Codeword length
Successful
encoding

1.5× 108 60 72 ✓
1.5× 108 120 133 ✓
1.5× 108 127 138 ✓
1.5× 108 135 150 ✓
1.5× 108 145 160 ✓
1.5× 108 155 170 ✓
1.5× 108 165 180 ✓
1.5× 108 175 190 ✓
1.5× 108 185 200 ✓
1.5× 108 400 415 ✓

and the inserted symbol is randomly chosen from [q] in the received codewords.

Then, the decoding algorithm in Section IV is used to correct a single deletion or

insertion. The simulation decoding results for single deletion and single insertions

are listed in Tables 3.8 and 3.9, respectively. ✓ and X in Tables 3.8 and 3.9 also

denote successful decoding result and decoding failure result, respectively. From

Tables 3.8 and 3.9, all codewords with a single deletion/insertion are successfully

62

decoded.

Table 3.8: The decoding results for different codeword lengths with a single dele-
tion error.

Number of
received sequences

Received codeword length
Successful
decoding

1.5× 108 71 ✓
1.5× 108 132 ✓
1.5× 108 137 ✓
1.5× 108 149 ✓
1.5× 108 159 ✓
1.5× 108 169 ✓
1.5× 108 179 ✓
1.5× 108 189 ✓
1.5× 108 199 ✓
1.5× 108 414 ✓

Table 3.9: The decoding results for different codeword lengths with a single inser-
tion error.

Number of
received sequences

Received codeword length
Successful
decoding

1.5× 108 73 ✓
1.5× 108 134 ✓
1.5× 108 139 ✓
1.5× 108 151 ✓
1.5× 108 161 ✓
1.5× 108 171 ✓
1.5× 108 181 ✓
1.5× 108 191 ✓
1.5× 108 201 ✓
1.5× 108 416 ✓

3.5.1 Comparison results of related work [2] and our work

Among the related works, the systematic encoding method for nonbinary SIDEC

code [2] is most relevant and we provide comparison results with our work. For fair

63

comparison with the related work [2], we still consider the 1.5 × 108 message se-

quences with maximum run-length r = 3 as inputs, and then make codewords with

length n = 150 by the systematic encoding method in [2]. The code construction

in [2] did not consider the maximum run-length constraint and CCF issues which

are caused by some parity symbols c2j located between two message symbols for

j ∈ [2, ⌈logn+1⌉]. Then, the parity symbols c2j should be less than zero according

to (3.8) if the message symbol c2j−1 = 0 and auxiliary bit α2j = 0. The ratios of

the CCF occurrence and maximum run-length violation in [2] are compared with

ones in our work.

Among the 1.5 × 108 outputs codewords from [2], the numbers of codewords

which only occur CCF and only violate the maximum run-length constraint are

5.779× 107 and 3.158× 107, respectively. The number of codewords which occur

CCF and violate the run-length constraint simultaneously is 2.599× 107, and the

number of codewords do not occur CCF and satisfy the maximum run-length con-

straint is 3.442× 107. However, the whole codewords of our proposed SIDEC code

do not occur CCF and satisfy the maximum run-length constraint. We present

the ratios of the CCF occurrence, violation of run-length constraint, and no CCF

occurrence and no maximum run-length constraint violation of output codewords

with n = 150 in Table 3.10.

Table 3.10: The comparison between referenced work [2] and our work for CCF
and maximum run-length constraint when the codeword length is n = 150.

Ref.[2] Our work
CCF only 38.66% 0%

CCF and maximum run-length constraint violation 17.33% 0%
Maximum run-length constraint violation 21.05% 0%

No CCF and no maximum run-length constraint violation 22.96% 100%

From Table 3.10, about 22.96% codewords of referenced work [2] (Ref.[2]) can

be used as DNA strands since the CCF do not occur and the maximum run-length

64

constraint is satisfied. Therefore, the outputs codewords in Ref.[2] are not suitable

for DNA storages. However, the whole codewords from our systematic encoding

method for our proposed nonbinary SIDEC code do not occur CCF and satisfy

the maximum run-length constraint, which has the potential advantages for DNA

storages.

65

Chapter 4

Weakly mutually uncorrelated

codes with maximum run-length

constraint for DNA storage

4.1 Introduction

While the advantages of DNA storage are appealing, such as the ability to store

1015−1020 bytes of information per gram [73], it is difficult to read specific segments

of data in the massive stored DNA sequences since the DNA sequences which

contain the data are unordered in the DNA pool. To achieve random-access to

the stored data in the DNA pool, Yazdi et al. [73] proposed a new random-access

method that appends two address sequences, called ‘primers’, to the head and

tail of the synthesized DNA sequences. Yazdi et al. [76] first designed mutually

uncorrelated (MU) codes as primers in DNA storage systems.

The MU code could be traced back to 1964 when it was first proposed by Lev-

enshtein [39]. It is a code in which the prefix of one codeword is different from the

suffix of itself or another codeword. In subsequent studies, Massey [46] and Wijn-

66

gaarden et al. [67] later rediscovered the code and applied it to frame-synchronous

communication. Blackburn [3] later proved an optimal explicit construction for

the code. Although MU code has been used as primers for DNA storage, its sup-

ply is gradually becoming insufficient to meet the growing demand for assembling

synthesized DNA sequences. Therefore, Yazdi et al. [74] proposed a variant of MU

code, called the k-weakly mutually uncorrelated (WMU) code, for some positive

integers k ≥ 2. This k-WMU code relaxes the prefix-suffix constraints of the MU

code to improve the size of the code, which is beneficial for the increasing demand

of DNA sequences assembly.

In certain DNA storage systems, some studies [62, 75] indicated that almost-

balanced GC-contents (with a ratio of around 45-55% or 40-60%) and large Ham-

ming distance can also be helpful for random-access in DNA storage. Although

codes for GC-balanced and large Hamming distance have been studied in great

depth, there has been no work on combining MU or WMU codes with GC-balanced

constraint and large Hamming distance for primer design. Therefore, Yazdi et al.

[74] proposed WMU codes with Hamming distance, GC-balanced and WMU codes,

and GC-balanced and WMU codes with Hamming distance. The authors of [11]

argued that the codes in [74] do not present the explicit code constructions, and

it is unclear whether efficient encoding is possible. Hence, they proposed a new

code construction for the almost-balanced code with Hamming distance.

Some studies [18, 65, 68, 8] in DNA storage systems indicated that the max-

imum run-length constraint has also been an important characteristic for primer

design since long run-length in DNA storage systems is easy to lead to errors in

primers synthesis and sequencing. Unfortunately, previous studies [74, 11] did not

consider the maximum run-length constraint for k-WMU code, which can poten-

tially affect the accuracy and reliability of primers in DNA storage systems. To

address this issue. our work aims to design a code to combine the k-WMU code

67

with maximum run-length constraint. Additionally, the studies [74, 8] indicated

that the occurrences of errors can be reduced to a greater extent during primers

synthesis and sequencing when multiple beneficial constraints are satisfied simul-

taneously. Thus, based on the k-WMU code with maximum run-length constraint,

we present simple ways to design a class of WMU codes to satisfy the maximum

run-length constraint and the proposed constraints in [74] and [11] simultane-

ously.We also provide explicit constructions for the proposed codes, considering

that certain explicit code constructions in [74] were not taken into account.

4.2 Preliminaries

Some special notations are used in this chapter are introduced. Let LJnK be an

Jn, a, dK-linear code of length n for any positive integers a < n and d < n, which

has an a-dimensional vector subspace over Zn
q , any two codewords in LJnK have

Hamming distance at least d, and the redundancy of LJnK is n− a.

4.2.1 MU and WMU code: definitions, constructions, and

properties

We present the definitions, constructions, and some properties of the MU and

WMU codes from [74]. The codes are introduced for the primer design in DNA

data storage systems with certain criteria to achieve more efficient random-access.

The definitions of MU and WMU codes are provided in Definition 4.2.1.

Definition 4.2.1 ([74]). A code C ⊆ Zn
q is a k-WMU code such that for any two

codewords a, b ∈ C, not necessarily distinct, no proper prefix of length m of a

appears as a suffix of length m of b for all k ≤ m ≤ n, which is expressed as

am
1 ̸= bnn−m+1.

68

If k = 1, the code C is an MU code.

Let the lengths of the MU code and k-WMU code be n(1) and n(k), respectively.

The construction of q-ary MU codes of length n(1) in Construction 1 (C. 1) was

originally proposed by Levenshtein [39]. Later, Gilbert [25]. Blackburn [62] and

Chee et al. [10] proved that the code in C. 1 can achieve the maximum size of the

code for the specific m and n(1), where m is given by k ≤ m ≤ n(1).

Construction 1 (Construction 1 in [39]). For two integers n(1) and f such that

n(1) ≥ 2 and f ∈ [2, n(1) − 1], all codewords a = (a1, a2, ..., an(1)
) of a MU code

C1 ⊆ Zn(1)
q satisfy the following three conditions:

• The prefix of a with length f holds that af
1 = 0f , where 0f is an all-zero

sequence of length f .

• The symbols af+1 and an(1)
hold that af ∈ [q]\0 and an(1)

∈ [q]\0.

• Any subsequence a
n(1)−1

f+2 does not contain 0f .

In [74], Yazdi et al. proposed a class of k-WMU codes for k ≥ 2 by modifying

the MU codes and presented the code construction of k-WMU codes based on the

MU codes, which is summarized in Construction 2 (C. 2).

Construction 2 (Construction 4 in [4]). It is assumed that C1 ⊆ Zn(1)
q is an MU

code of length n(1) in C. 1. Let n(k) be n(k) = n(1) + (k − 1). Then, a code

C2 ⊆ Zn(k)
q is a k-WMU code if each codeword in C2 is constructed by a simple

concatenation of a codeword a ∈ C1 of length n(1) and a sequence b ∈ Zk−1
q of

length k − 1. The form of the k-WMU code C2 is given as

C2 = {(a, b)|a ∈ C1, b ∈ Zk−1
q }. (4.1)

69

For k ≥ 2, the codeword (a, b) in (4.1) can also be expressed as

(a, b) = (a, bj−1
1 , bk−1

j). (4.2)

According to C. 2, the subsequence (a, bj−1
1) in (4.2) is a j-WMU codeword of

length n(j) = n(1) + j − 1 for j ≤ k. Therefore, the k-WMU codes are also con-

structed by a concatenation of the j-WMU codes of length n(j) and the sequences

of length k − j. □

Moreover, Yazdi et al. also presented some properties for the coupling con-

struction of the k-WMU code in [74]. We summarize them in Lemma 4.2.2.

Lemma 4.2.2 ([74]). Suppose that co = (co1, c
o
2, ..., c

o
n(k)

) ∈ Co ⊆ Zn(k)

2 and ce =

(ce1, c
e
2, ..., c

e
n(k)−1

) ∈ Ce ⊆ Zn(k)

2 are two binary codes of length n(k). For i ∈ [1, n(k)],

an element ci of a quaternary codeword c4 ∈ C4 ⊆ Zn(k)

4 is mapped from the

elements of two binary sequences as

c4i = ϕ(coi , c
e
i) =



0 if (coi , c
e
i) = (0, 0),

1 if (coi , c
e
i) = (0, 1),

2 if (coi , c
e
i) = (1, 0),

3 if (coi , c
e
i) = (1, 1).

(4.3)

Let CD be a DNA code, where an element cDi of a codeword cD ∈ CD is defined as

cDi =



A if c4i = 0,

T if c4i = 1,

G if c4i = 2,

C if c4i = 3.

70

Then, the codes C4 and CD satisfy the following three properties:

(P.1) If Co is balanced, CD is GC-balanced.

(P.2) If either Co or Ce is a k-WMU code, C4 is also a k-WMU code.

(P.3) If Co and Ce have minimum Hamming distances do and de, respectively, the

minimum Hamming distance of C4 is d4 = max(do, de). ■

4.3 Constrained WMU code constructions

Figure 4.1: Considered DNA storage system and proposed code constructions for
primers.

In Fig 4.1, we present proposed the class of WMU code constructions for primer

designs of DNA storage. First, we present the construction of 2-WMU codes with

the maximum run-length l constraint and explain a method to construct k-WMU

codes with the maximum run-length l constraint for any positive integer k ≥ 2

in subsection 4.3.1. Additionally, we also extend the proposed 2-WMU codes to

satisfy combinations of the maximum run-length constraint with the Hamming

distance constraint, the GC-balanced constraint, and both the GC-balanced and

Hamming distance constraints in subsections 4.3.2, 4.3.3, and 4.3.4, respectively.

71

4.3.1 k-WMU code with the maximum run-length l con-

straint

We present our proposed code of length n(2) in Construction 3 (C. 3), which

combines the q-ary 2-WMU codes with the maximum run-length l constraint.

Then, we also briefly introduce the method to generate the k-WMU codes with

the maximum run-length l constraint for any positive integer k ≥ 2.

Construction 3. Let l, r, and n(2) be positive integers such that l ≥ 3 and

n(2) = (r + 1)l + 1. A set S with sequences s = (s1, s2, ..., sl−2, sl−1, sl) of length l

is defined as

S = {s|sl−2 + sl−1 ̸= 0 (mod q) and sl−2 ̸= sl}. (4.4)

Then, the concatenated sequence x = (x1, x2, ..., xn(2)
) of length n(2) inX is defined

as

x = (0l, [q]\0, s1, s2, ..., sr)

= (xl+1
1 ,x

(1+1)l+1
l+2 , ...,x

(r+1)l+1
rl+2),

(4.5)

where the subsequences si for i = 1, 2, ..., r are elements of the set S in (4.4) and

may not necessarily be distinct. According to (4.4) and (4.5), the run-length of

the sequence x is guaranteed to be at most l. Then, the q-ary codeword y =

(y1, y2, ..., yn(2)
) in the 2-WMU code with maximum run-length l constraint, C3, is

obtained as

yi =

y1 = x1 for i = 1,

yi = xi−1 + xi (mod q) for 2 ≤ i ≤ n(2).
(4.6)

Since y = (yl+1
1 ,y

n(2)

l+2) = (yl+1
1 ,y

(1+1)l+1
l+2 , ...,y

(r+1)l+1
rl+2) is obtained from x and

xl+1
1 = (0l, [q]\0), the first l + 1 symbols of y, yl+1

1 , also start with (0l, [q]\0).

For an easy understanding of C. 3, we present Example 4.3.1.

Example 4.3.1. It assumed that q = 4, l = 3, and r = 5. Then, the length of

72

the sequence x in (4.5) is calculated by n(2) = (r + 1)l + 1 = 19. From the set

S in (4.4), the sequences si for i = 1, 2, 3, 4, and 5 are chosen as s1 = (0, 0, 1),

s2 = (0, 0, 2), s3 = (1, 1, 2), s4 = (1, 2, 2), and s5 = (3, 1, 1) respectively. Then,

the concatenated sequence x in the set of X from (4.5) is given by

x = (0, 0, 0, 1, 0, 0, 1, 0, 0, 2, 1, 1, 2, 1, 2, 2, 3, 1, 1).

The codeword y from (4.6) can be obtained as

y = (0, 0, 0, 1, 1, 0, 1, 1, 0, 2, 3, 2, 3, 3, 3, 0, 1, 0, 2).

The maximum run-length of y is three, which is same with l = 3.

From Example 4.3.1, we can intuitively observe that the maximum run-length

of symbols [q]\0 in the q-ary codeword y obtained by (4.6) is l. Additionally,

we can observe that the maximum run-length of the symbol zero in subsequences

yl+1
1 and y

n(2)

l+2 are l and l − 1, respectively. By referring to the definition of k-

WMU code in Definition 4.2.1 and the code constructions of the k-WMU codes

in Constructions 1 and 2, we can easily infer that the codeword y in C3 has the

maximum run-length l and becomes a 2-WMU codeword since y1 can be same

with yn(2)
.

Theorem 4.3.2. Let y ∈ C3 ⊆ Zn(2)
q from (4.6) be the codewords generated from

sequences x in C. 3. Then, the codewords y in C3 are 2-WMU codewords with the

maximum run-length l constraint.

Proof. From (4.4) and (4.5), we have x(i+1)l−1+x(i+1)l ̸= 0 (mod q) and x(i+1)l−1 ̸=

x(i+1)l+1 for i = 1, 2, ..., r. Then, from (4.6), we can derive that y(i+1)l ̸= 0 and

y(i+1)l ̸= y(i+1)l+1 for i = 1, 2, ..., r. Therefore, the maximum run-lengths of symbols

[q]\0 are l−1 in the subsequence y
(i+1)l+1
il+2 due to y(i+1)l ̸= y(i+1)l+1 for i = 1, 2, ..., r,

73

and the maximum run-length of symbol zero is l − 2 in the subsequence y
(i+1)l+1
il+2

because of y(i+1)l ̸= 0 for i = 1, 2, ..., r. Since the maximum run-lengths of the

symbols [q]\0 and zero in the subsequences y
(i+1)l+1
il+2 for i = 1, 2, ..., r are l− 1 and

l− 2, the maximum run-lengths of the symbols [q]\0 and zero in the concatenated

subsequences (yil+1,y
(i+1)l+1
il+2) for i = 1, 2, ..., r correspond to l and l − 1, respec-

tively. Since yl = 0, yl+1 = [q]\0, and y(i+1)l ̸= y(i+1)l+1 for i = 1, 2, ..., r, we always

have yil ̸= yil+1 for i = 1, 2, ..., r + 1. According to the conditions that yil ̸= yil+1

for i = 1, 2, ..., r + 1 and the run-lengths of the subsequences (yil+1,y
(i+1)l+1
il+2) for

i = 1, 2, ..., r are at most l, it can be concluded that the codeword y satisfies the

maximum run-length l constraint.

Since the codeword y also starts with (0l, [q]\0) and the maximum run-length

of symbol zero in the subsequence y
n(2)

l+2 is l−1, 0l does not exist in the subsequence

y
n(2)

l+2 . Since y1 can be the same as yn(2)
, it can be concluded that the codewords y

are 2-WMU according to Definition 4.2.1.

Finally, since the codewords y satisfy both the maximum run-length l con-

straint and the 2-WMU constraint, the codewords y ∈ C3 ⊆ Zn(2)
q in C. 3 are

2-WMU codewords with maximum run-length l constraints.

From C. 2, it is known that the k-WMU codes can be constructed by a concate-

nation of the j-WMU codes of length n(j) and the sequences of length k− j−1 for

j ≤ k− 1. Therefore, from the design of 2-WMU codes with maximum run-length

l in C. 3, we briefly introduce the extension to k-WMU codes with the maximum

run-length l constraint in Construction 4 (C. 4) for any positive values of k ≥ 2.

Construction 4. It is assumed that a sequence of length k − 2, e ∈ Zk−2
q ,

satisfies the maximum l run-length constraint. Let y be a codeword in C3 as

y = (y1, y2, ..., yn(2)
). Moreover, a concatenated sequence (yn(2)

, e) is also assumed

to satisfy the maximum l run-length constraint. Then, the general form of k-WMU

codes C4 of length n(k) = n(2) + k − 2 with the maximum run-length l constraint

74

is obtained by concatenating the sequences y and e, which is given as

C4 = {c = (y, e)|y ∈ C3 ⊆ Zn(2)
q , e ∈ Zk−2

q }. (4.7)

Theorem 4.3.3. Let c ∈ C4 ⊆ Zn(k)
q in (4.7) be the codeword generated by C. 4.

Then, the codewords c in C4 are k-WMU codewords with the maximum run-length

l constraint.

Proof. Since y in (4.6) is a sequence with the maximum run-length l constraint, the

sequences e and (yn(2)
, e) are sequences with the maximum run-length l constraint,

and yn(2)−1 ̸= yn(2)
from Theorem 4.3.2, the codewords c = (y, e) ∈ C4 ⊆ Zn(k)

q

satisfy the maximum run-length l constraint.

According to C. 2, the k-WMU codes can be constructed by a concatenation

of the 2-WMU codes of length n(2) and the sequences in Zk−2
q . Since y in (4.6) is

2-WMU sequence and the sequence e of length k − 2 is one of the sequences in

Zk−2
q , the concatenated codewords c = (y, e) ∈ C4 ⊆ Zn(k)

q are k-WMU codewords.

Finally, it can be concluded that the codewords c ∈ C4 are k-WMU codewords

with the maximum run-length l constraint.

In C. 3 and C. 4, we present code constructions methods for 2-WMU code

C3 and k-WMU code C4 with the maximum run-length l constraint, respectively.

From C3 and C4, the construction for general k-WMU codes with the maximum

run-length l constraint is similar to the one for the 2-WMU code. Moreover, the

explicit code design for 2-WMU codes is easier than the one for general k-WMU

codes. Therefore, from the following subsection, we still focus on the design of 2-

WMU codes with the maximum run-length l constraint and we will explain other

cases of k-WMU codes if necessary.

75

4.3.2 2-WMU code with the maximum run-length l con-

straint and Hamming distance d

Due to the error-prone nature of DNA synthesis and sequencing processing [73,

75], it is beneficial to ensure the Hamming distance between primers. From this

aspect, we provide a method to extend our proposed binary 2-WMU codes with the

maximum run-length l constraint in C. 3 to quaternary 2-WMU with the maximum

run-length l constraint and Hamming distance d in Construction 5 (C. 5), which

was inspired by Construction B in [11].

Construction 5. Let p, d, and n(2) be positive integers such that p < n(2) and

d < n(2). It is assumed that the binary sequence y ∈ C3 ⊆ Zn(2)

2 from (4.6) in

C. 3 as the input sequence. Let LJn(2)+pK be a binary Jn(2) + p, n(2), dK-linear code,

which is an n(2)-dimensional vector subspace of Zn(2)+p

2 , equipped with a systematic

encoder EJpK: Z
n(2)

2 → Zp
2. Then, a concatenated sequence (y,p) of length n(2) + p

can be obtained as

(y,p) = (y,EJpK(y)), (4.8)

where the subsequence p = EJpK(y) of length p is the parity sequence of y and (y,p)

is the corresponding codeword in binary Jn(2) + p, n(2), dK-linear code LJn(2)+pK.

Similarly, a binary Jn(2), p, dK-linear code LJn2K is assumed to be equipped with

a systematic encoder EJn(2)−pK: Zp
2 → Zn(2)−p

2 . After p ∈ Zp
2 is obtained from (4.8),

the sequence p is used as the input of the encoder EJn(2)−pK, and a binary sequence

u ∈ LJn(2)K ⊆ Zn(2)

2 with Hamming distance d can be obtained as

u = (p,EJn(2)−pK(p)). (4.9)

Finally, the 2-WMU quaternary codeword c = (c0, c1, ..., cn(2)−1) ∈ C5 of length

n(2) with Hamming distance d and maximum run-length l can be obtained by

76

applying the mapping function ϕ(·) in (4.3) to the binary sequences y ∈ C3 in

(4.8) and u ∈ LJn(2)K in (4.9), which is given as

C5 = {c|c = ϕ(y,u) ∈ Zn(2)

4 }. (4.10)

Theorem 4.3.4. Let c ∈ C5 ⊆ Zn(2)

4 in (4.10) be the codeword generated by C. 5.

Then, the quaternary codewords c in C5 are 2-WMU codewords with the maximum

run-length l constraint and Hamming distance d.

Proof. According to the obtained codewords c = ϕ(y,u) in (4.10), the maximum

run-lengths of the symbols two and three in the codewords c are smaller than or

equal to the maximum run-lengths of bit one in y, while the maximum run-lengths

of the symbols zero and one in the codewords c are also smaller than or equal to

the maximum run-lengths of bit zero in y. Therefore, if the sequence y satisfies

the maximum run-length l constraint, the codeword c must satisfy the maximum

run-length l constraint. According to (P.2) in Lemma 2.2.1, the codeword c is also

in the 2-WMU code since y is a binary 2-WMU code. Thus, the codewords c in

the set C5 are 2-WMU codewords with the maximum run-length l constraint.

According to (P.3) in Lemma 2.2.1, since the codewords u ∈ LJn(2)K have Ham-

ming distance at least d, any two codewords c = ϕ(y,u) in C5 also have Hamming

distance at least d.

4.3.3 Almost-balanced and 3-WMU code with the maxi-

mum run-length l constraint

For the DNA storage systems, the sequences that satisfy the GC-balanced and the

maximum run-length constraints simultaneously are more suitable during the syn-

thesis and sequencing processing. The Knuth’s balancing technique [36] was known

as an excellent algorithm to construct a binary balanced sequence of length n with

77

a small redundancy of ⌈log2n⌉ bits. Then, the authors of [33] extended the Knuth’s

algorithm to construct the almost GC-balanced sequences for DNA storage. Based

on these balanced methods in [36, 33], we propose an almost GC-balanced and 3-

WMU code with the maximum run-length l constraint in Construction 6 (C. 6).

To design the code in C. 6, we start with the sequences y ∈ C3 ⊆ Zn(2)
q from

(4.6) in C. 3 as the inputs for l ≥ 3. To ensure that the codewords satisfy the WMU

constraint, we exclude some input sequences y in C3, for which the subsequence

y
n(2)

l+2 contains all-one string 1l if q = 2, and all-two string 2l if q = 4. Then, We first

keep the first l + 1 symbols yl+1
1 of the input y, and then design the subsequence

y
n(2)

l+2 of y of length n(2)− l−1 so that they are exactly 50%-balanced if n(2)− l−1

is an even value. The codeword in C. 6 will be almost-balanced since the ratio of

one is (0.5− l−1
n(2)+2⌈logq(rl)⌉

) or (0.5− l−1
n(2)+2⌈logq(rl)⌉+2

) for q = 2 and the ratio of GC

contents is (0.5 − l±1
n(2)+2⌈logq(rl)⌉

) or (0.5 − l±1
n(2)+2⌈logq(rl)⌉+2

) for q = 4, respectively.

If n(2) is much larger than l, we can easily obtain GC-balanced codes.

For convenience in explaining C. 6, we first introduce Definition 4.3.5 as follows.

Definition 4.3.5 ([33]). Let the flipping rule in Knuth’s balancing technique as

f(0) = 1 and f(1) = 0 for q = 2, and f(0) = 2, f(1) = 3, f(2) = 0, and f(3) = 1

for q = 4, respectively. Then, for a sequence x = (x1, x2, ..., x|x|) of length |x|,

ft(x) denotes the sequence (f(x
t
1),x

|x|
t+1) = (f(x1), ..., f(xt), xt+1, ..., x|x|), which is

obtained by flipping the first t symbols of the sequence x for the value of t ∈ [1, |x|].

Construction 6. Let q = {2, 4}, l, r, and n(2) be positive integers such that l ≥ 3

and n(2) = (r + 1)l + 1. Given a q-ary sequence y ∈ C3 ⊆ Zn(2)
q from (4.6) in C. 3

as the input, the subsequence y
n(2)

l+2 does not contain 1l if q = 2 and 2l if q = 4.

First, we keep the first l + 1 symbols yl+1
1 of the sequence y to ensure that the

generated codeword maintains the WMU constraint. Next, for t ∈ [1, n(2) − l− 1],

by increasing t one by one, the smallest t can be determined so that ft(y
n(2)

l+2) is

almost 50%-balanced.

78

If the t-th symbol f(yl+t+1) of ft(y
n(2)

l+2) is not equal to the (t + 1)-th symbol

yl+t+2, the almost-balanced sequence with maximum run-length l constraint of

length n(2) is given as

y′ = (yl+1
1 , ft(y

n(2)

l+2)) = (yl+1
1 , f(yl+t+1

l+2),y
n(2)

l+t+2). (4.11)

Otherwise, the almost-balanced sequence with maximum run-length l constraint

of length n(2) + 1 is given as

y′′ = (yl+1
1 , f(yl+t+1

l+2), α,y
n(2)

l+t+2), (4.12)

where α is a symbol which is different with both of the last symbol of f(yl+t+1
l+2)

and the first symbol of y
n(2)

l+t+2.

In order to find the number of symbols flipped in receiver side, the value t

should be transferred to recover the input sequence. Since the maximum value of

t can be n(2) − l − 1 = rl, a q-ary vector τ of length ⌈logq(rl)⌉ to represent the

value of t is given as

τ = (τ1, τ2, ..., τ⌈logq(rl)⌉). (4.13)

To ensure that the symbol α in (4.12) and the sequence τ in (4.13) are also

balanced, the sequences δ′ of length 2⌈logq(rl)⌉ and δ′′ of length 2⌈logq(rl)⌉ + 1

are respectively determined as

δ′ = (τ1, f(τ1), τ2, f(τ2), ..., τ⌈logq(rl)⌉, f(τ⌈logq(rl)⌉)), (4.14)

δ′′ = (τ1, f(τ1), τ2, f(τ2), ..., τ⌈logq(rl)⌉, f(τ⌈logq(rl)⌉), f(α)). (4.15)

Finally, for the almost-balanced and WMU codewords with maximum run-

length l constraint, c′ in set C′
6 ⊆ Zn(2)+2⌈logq(rl)⌉

q or c′′ in set C′′
6 ⊆ Zn(2)+2⌈logq(rl)⌉+2

q

can be generated by concatenating the y′ in (4.11) with the sequence δ′ in (4.14)

79

or the sequence y′′ in (4.12) with the sequence δ′′ in (4.15), respectively, which are

given as

c′ = (y′, δ′), (4.16)

c′′ = (y′′, δ′′). (4.17)

The last symbol of δ′ in (4.14) and the last two symbols of δ′′ in (4.15) can be

zero, which implies the prefix of generated codewords can be same as the suffix of

the codewords with a length of at most two. Therefore, we can conclude that the

codes C′
6 and C′′

6 are the almost-balanced 3-WMU codes with maximum run-length

l constraint.

For convenience in understanding C. 6, we present Example 4.3.6.

Example 4.3.6. It is assumed that q = 4, l = 3, and r = 10. The sequence

y ∈ C3 of length n(2) = 34 from (4.6), which does not contain 2l in subsequence

y
n(2)

l+1 , is assumed as

y = (0, 0, 0, 2, 1, 1, 0, 0, 2, 1, 0, 1, 1, 1, 3, 0, 1, 2, 2, 1, 1, 0, 1, 2, 1, 3, 2, 3, 3, 1, 0, 1, 1, 0).

We keep the first l + 1 symbols yl+1
1 = (0, 0, 0, 2). Then, for t ∈ [1, 7], the flipped

sequence ft(y
n(2)

l+2) is still not 50%-balanced. When t = 8, the flipped sequence

f8(y
n(2)

l+2) is obtained as

f8(y
n(2)

l+2) = (3, 3, 2, 2, 0, 3, 2, 3, 1, 1, 3, 0, 1, 2, 2, 1, 1, 0, 1, 2, 1, 3, 2, 3, 3, 1, 0, 1, 1, 0),

which is exact 50%-balanced. Since the symbol f(yl+t+1) = 3 is not same with

yl+t+2 = 1, the almost-balanced sequence y′ in (4.11) with the maximum run-

80

length l constraint is obtained as

y′ = (0, 0, 0, 2, 3, 3, 2, 2, 0, 3, 2, 3, 1, 1, 3, 0, 1, 2, 2, 1, 1, 0, 1, 2, 1, 3, 2, 3, 3, 1, 0, 1, 1, 0).

The number of t = 8 can be represented as τ = (0, 2, 0) of length ⌈logq(rl)⌉ =

⌈log4(10×3)⌉ = 3 from (4.13), and then the balanced sequence δ′ = (0, 2, 2, 0, 0, 2)

in (4.14) can be obtained. The almost-balanced and 3-WMU codewords c′ =

(y′, δ′) with maximum run-length l constraint in (4.16) can be obtained as

c′ = (0, 0, 0, 2, 3, 3, 2, 2, 0, 3, 2, 3, 1, 1, 3, 0, 1, 2, 2, 1,

1, 0, 1, 2, 1, 3, 2, 3, 3, 1, 0, 1, 1, 0, 0, 2, 2, 0, 0, 2).

From Example 4.3.6, we can intuitively observe that though the ratio of GC

contents in the original sequence y is 29.41%. Since c′ = (y′, δ′) = (yl+1
1 , f8(y

n(2)

l+2), δ
′)

and both subsequences f8(y
n(2)

l+2) and δ′ are 50%-balanced, the output codeword c′

is a (50 − l−1
n(2)+2⌈logq(rl)⌉

)% = (50 − 3−1
34+6

)% = 45% GC-balanced WMU codeword

with the maximum run-length l = 3 constraint, where l − 1 denotes the number

of difference symbols between symbols zero and one and symbols two and three in

yl
1 and n(2) + 2⌈logq(rl)⌉ is the length of the codeword c′.

Theorem 4.3.7. Let c′ ∈ C′
6 in (4.16) and c′′ ∈ C′′

6 in (4.17) be the codewords

generated by C. 6. Then, the codewords in C′
6 and C′′

6 are almost GC-balanced

3-WMU codewords with the maximum run-length l constraint.

Proof. We first consider the subsequence of (yl+1
1 , f(yl+t+1

l+2)) of y′ in (4.11) and

y′′ in (4.12). If |f(yl+t+1
l+2)| = t ≤ l − 1, the maximum run-length of f(yl+t+1

l+2) is

also less than or equal to l − 1. Since the last symbol yl+1 in yl+1
1 is [q]\0 and

|f(yl+t+1
l+2)| ≤ l − 1, the maximum run-length of (yl+1, f(y

l+t+1
l+2)) can be l and

l − 1 when all the symbols of sequence f(yl+t+1
l+2) are [q]\0 and zero, respectively.

81

If |f(yl+t+1
l+2)| = t ≥ l, the maximum run-lengths of flipped symbols in f(yl+t+1

l+2)

should be same as the maximum run-lengths of unflipped symbols in subsequence

yl+t+1
l+2 . Since there are no strings 1l and 2l in subsequence yl+t+1

l+2 for q = 2

and q = 4, respectively, the string 0l does not appear in the sequence f(yl+t+1
l+2)

after flipping, and the maximum run-length of symbol zero in f(yl+t+1
l+2) is l − 1.

The flipped symbols f(y2l) and f(y2l+1) always satisfy f(y2l) ̸= f(y2l+1) since

the corresponding unflipped symbols y2l and y2l+1 have a relation as y2l ̸= y2l+1.

Because of three conditions that the last symbol yl+1 of yl+1
1 is [q]\0, the symbols

f(y2l) and f(y2l+1) satisfy f(y2l) ̸= f(y2l+1), and the maximum run-length of

symbol zero in f(yl+t+1
l+2) is l − 1, the maximum run-lengths of the symbols [q]\0

and zero in (yl+1, f(y
l+t+1
l+2)) are also l and l − 1, respectively.

According to Lemma 5 in [33] and Corollary 2 in [33], the maximum run-

lengths of the symbols [q]\0 and zero in the subsequences (f(yl+t+1
l+2),y

n(2)

l+t+2) of

length n(2) − l − 1 in (4.11) and (f(yl+t+1
l+2), α,y

n(2)

l+t+2) of length n(2) − l in (4.12)

are also l and l − 1, respectively.

Next, we consider the subsequences (y
n(2)

l+t+2, δ
′) in (4.16) and (y

n(2)

l+t+2, δ
′′) in

(4.17). If |yn(2)

l+t+2| ≥ 2, we always have yn(2)−1 ̸= yn(2)
. Since yn(2)−1 ̸= yn(2)

and

(τi, f(τi)) in δ′ and δ′′ satisfies τi ̸= f(τi) for i ∈ [1, ⌈logqrl⌉], the maximum run-

lengths of the subsequences (y
n(2)

n(2)−1, δ
′) and (y

n(2)

n(2)−1, δ
′′) are two if yn(2)

= τ0. Since

we consider the maximum run-length l as l ≥ 3 and the maximum run-lengths of

the symbols [q]\0 and zero in y
n(2)

l+t+2 are l and l − 1, the maximum run-lengths

of the symbols [q]\0 and zero in the subsequences (y
n(2)

l+t+2, δ
′) and (y

n(2)

l+t+2, δ
′′) are

also l and l − 1, respectively. Similarly, If |yn(2)

l+t+2| = 1, the maximum run-lengths

of the symbols [q]\0 and zero in the subsequences of (y
n(2)

l+t+2, δ
′) and (y

n(2)

l+t+2, δ
′′)

are also l and l − 1, respectively.

Based on the above analysis, the codewords c′ and c′′ satisfy the maximum run-

length l constraint since all of the subsequences (yl+1
1 , f(yl+t+1

l+2)), (f(yl+t+1
l+2),y

n(2)

l+t+2),

82

(y
n(2)

l+t+2, δ
′), (f(yl+t+1

l+2), α,y
n(2)

l+t+2), and (y
n(2)

l+t+2, δ
′′) satisfy the maximum run-length

l constraint. Additionally, since the codewords c′ and c′′ satisfy three conditions:

they start with (0l, [q]\0), the maximum run-length of symbol zero is l− 1 in sub-

sequences c
′n(2)+2⌈logq(rl)⌉−1

l+2 and c
′′n(2)+2⌈logq(rl)⌉
l+2 , and the last symbol of c′ and the

last two symbols of c′′ can be zero. These conditions ensure that the codewords c′

and c′′ are 3-WMU codewords with maximum run-length l constraint.

Since the subsequences (f(yl+t+1
l+2),y

n(2)

l+t+2) in (4.11) and (4.12) are almost 50%-

balanced, and (α, f(α)) and τ are exactly 50% balanced, the codewords c′ and c′′

are almost-balanced, where the ratio of one is either (0.5− l−1
n(2)+2⌈logq(rl)⌉

) or (0.5−
l−1

n(2)+2⌈logq(rl)⌉+2
) for q = 2 and the ratio of GC contents is either (0.5− l±1

n(2)+2⌈logq(rl)⌉
)

or (0.5 − l±1
n(2)+2⌈logq(rl)⌉+2

) for q = 4. Therefore, the codewords in c′ ∈ C′
6 and

c′′ ∈ C′′
6 are almost-balanced and 3-WMU codewords with the maximum run-

length l constraint.

4.3.4 Almost-balanced 2-WMU code with the maximum

run-length l constraint and Hamming distance d

From Theorem 4.3.7, it is known that both y′ in (4.11) and y′′ in (4.12) start

with (1l, [q]\0). Moreover, since except for the first l + 1 symbols, the string 0l

is not included in y′ and y′′ and last symbol is zero, it can be concluded that

the binary sequences of y′ and y′′ are almost-balanced 2-WMU sequences with the

maximum run-length l constraint. In this subsection, we present a code design that

incorporates more constraints for DNA storage, which can improve the efficiency of

random-access. To this end, we extend binary almost-balanced 2-WMU sequences

y′ and y′′ that satisfy the maximum run-length l constraint in C. 6 to quaternary

almost-balanced 2-WMU codewords with the maximum run-length l constraint

and Hamming distance d in Construction 7 (C. 7), where the code construction is

similar to that of Section III.B.

83

Construction 7. Let p, d, and n(2) be positive integers such that p < n(2) and

d < n(2). This code construction has three input components which are binary

sequences y′ in (4.11) and y′′ in (4.12) from C. 6, a binary vector τ of length

⌈logq(rl)⌉ in (4.13) which corresponds to the number of flipped symbols in y′

or y′′, and two binary systematic encoders EJp′K for Jn(2) + p′, n(2), dK-linear code

LJn(2)+p′K and EJp′′K for Jn(2) + 1 + p′′, n(2) + 1, dK-linear code LJn(2)+1+p′′K. Then,

concatenated sequences (y′,p′) of length n(2)+p′ and (y′′,p′′) of length n(2)+1+p′′

can be obtained as

(y′,p′) = (y′,EJp′K(y
′)), (4.18)

(y′′,p′′) = (y′′,EJp′′K(y
′′)), (4.19)

where the subsequences p′ of length p′ and p′′ of length p′′ are the parity parts of

y′ and y′′, respectively.

Similarly, a binary Jn(2), ⌈logq(rl)⌉+ p′, dK-linear code LJn(2)K with a system-

atic encoder EJn(2)−⌈logq(rl)⌉−p′K and a binary Jn(2) + 1, ⌈logq(rl)⌉+ p′′, dK-linear code

LJn(2)+1K with a systematic encoder EJn(2)+1−⌈logq(rl)⌉−p′′K are considered to ensure

a minimum Hamming distance. Then, the concatenated sequences (τ ,p′) and

(τ ,p′′) are as the inputs of the encoders EJn(2)−⌈logq(rl)⌉−p′K and EJn(2)+1−⌈logq(rl)⌉−p′′K,

respectively, and the sequences v′ ∈ LJn(2)K and v′′ ∈ LJn(2)+1K can be obtained as

v′ = (τ ,p′,EJn(2)−⌈logq(rl)⌉−p′K(τ ,p
′)), (4.20)

v′′ = (τ ,p′′,EJn(2)+1−⌈logq(rl)⌉−p′′K(τ ,p
′′)). (4.21)

Finally, by applying the mapping function ϕ(·) in (4.3) for the binary sequences

y′ and v′ in (4.20) or y′′ and v′′ in (4.21), the quaternary almost-balanced 2-WMU

codes c′ ∈ C′
7 of length n(2) and c′′ ∈ C′′

7 of length n(2)+1 with maximum run-length

84

l constraint and Hamming distance d, which are given as

c′ = (y′,v′), (4.22)

c′′ = (y′′,v′′). (4.23)

Theorem 4.3.8. The codes C′
7 and C′′

7 in C. 7 are quaternary almost-balanced

2-WMU codes with the maximum run-length l constraint and Hamming distance

d.

Proof. According to (P.1) and (P.2) in Lemma 2.2.1 and Theorem 4.3.4, it can be

easily concluded that the codes C′
7 ⊆ Zn(2)

4 and C′′
7 ⊆ Zn(2)+1

4 in C. 7 are quaternary

almost-balanced 2-WMU codes with the maximum run-length l constraint and

Hamming distance d.

4.4 Applying code construction to primer design

in DNA storage

According to some research works [32, 57, 33, 52], the available lengths of primers

for DNA storage are 18-24 nt and the proper maximum run-length of l should be

set as l = 3. However, the length n(2) = (r + 1)l + 1 of the proposed code C3 in

C. 3 cannot support various lengths of primers, 18-24 nt, for some positive integers

r and l. In this section, we first modify the code C3 in C. 3 to C8 in Construction

8 (C. 8), which can achieve 2-WMU constraint, maximum run-length l constraint,

and various code lengths. We also provide the size for the code C8, which is

essential for deriving the sizes of our proposed codes. Then, we present the sizes

for the 2-WMU code C8 with maximum run-length l = 3 constraint for lengths

18-24 nt, which can support primers for DNA storage.

85

4.4.1 2-WMU code construction with maximum run-length

l constraint for various lengths

To support various lengths of the proposed codes, we modify the code design in

C. 3 to C. 8, which can satisfy the 2-WMU constraint, maximum run-length l

constraint, and various code lengths.

Construction 8. For positive integers l and r, l ≥ 3, we consider primer lengths

ranging in 18-24 nt with the maximum run-length l in DNA storage. We impose the

condition r ≥ l since the value of (r+1)l+1 should be bounded as (r+1)l+1 ≥ 18.

Let µ be the target length of primer. Then, for an nonnegative integer value of

λ ∈ [l − 1], the target length µ can always be expressed as

µ = (r + 1)l + 1− λ. (4.24)

If λ = 0, we can directly apply the code design of C. 3 for the primer since µ

in (4.24) is equal to the code length n(2). If λ ∈ [1, l − 1], we define a sequence

g = (g1, ..., gl−3, gl−2, gl−1) of length l−1 in a set G, which has the similar constraint

with the subsequences of s ∈ S in (4.4) and is defined as

G = {g|gl−3 ̸= gl−1}. (4.25)

When l = 3, the set G in (4.25) becomes G = {g|g1 ̸= g2}.

Then, a sequence h in a set H can be defined as

H = {h|(h1, h2, ..., hµ)

= (0l, [q]\0, g1, g2, ..., gλ, sλ+1, ..., sr)}, (4.26)

where gi for i = 1, 1, ..., λ are sequences of the set G in (4.25), si for i = λ+1, λ+

86

2, ..., r are sequences of the set S in (4.4), and both of the sequences, gi and si,

are not necessarily distinct.

Finally, the q-ary codeword w = (w1, w2, ..., wµ) in the 2-WMU code with

maximum run-length l, C8, is defined as

wi =

w1 = h1 for i = 1,

wi = hi−1 + hi (mod q) for 2 ≤ i ≤ µ.
(4.27)

By defining g ∈ G in (4.25), we can ensure that the codewords w can be 2-

WMU codewords with maximum run-length l constraint. Similar to the analysis

in the proof of Theorem 4.3.2, we can easily prove that the codewords w in C8

are 2-WMU codewords with maximum run-length l constraint, and we omit the

detailed proof in here.

4.4.2 The size of the 2-WMU code with maximum run-

length l constraint for various lengths

In order to satisfy more constraints, the size of the code should be smaller. Al-

though the proposed codes satisfy the maximum run-length l constraint, they are

not suitable for primer design if the size of the code becomes much smaller. In

this subsection, we investigate the size of the 2-WMU code C8 with maximum

run-length l constraint in for various lengths in C. 8. Then, we provide the values

of the sizes of the codes C8 for l = 3 and lengths 18-24 nt, which indicate that our

proposed code can provide a sufficiently large number of primers for DNA storage.

The sizes of the proposed 2-WMU codes of length n(2) with maximum run-length

l constraint in Constructions 3 and 8 are given in Theorem 4.4.1.

Theorem 4.4.1. Let |C8|(2) be the size of the code C8 of length n(2) = ⌈µ−1
l
⌉l+1−λ

from C. 8 for l ≥ 3, where the value of µ is the target primer length given in (4.24).

87

Then, |C8|(2) is determined as

|C8|(2) = (q − 1)(ql−2(q − 1))λ(ql−2(q − 1)2)r−λ. (4.28)

Moreover, the size of the code C3, |C3|(2), is similarly defined as

|C3|(2) = (q − 1)(ql−2(q − 1)2)r. (4.29)

Proof. Since the codeword w ∈ C8 in (4.27) is obtained by the concatenated

sequence h in (4.26), we can determine the size of the code |C8|(2) from the number

of the concatenated sequence h. The number of subsequences si ∈ S for i =

λ+ 1, λ+ 2, ..., r in (4.26) can be calculated as

|S| = ql−3 · q · (q − 1) = ql−2(q − 1)2. (4.30)

Since the first l − 3 symbols sl−2
1 of sequences s = (s1, s2, ..., sl) in S have no

constraints, the cases of these l−3 symbols denote ql−3 choices. Since sl−2+sl−1 ̸=

0 (mod q) and the (l−1)-th symbol sl−2 of the sequence s in S is assumed to have

q choices, then the (l)-th symbol sl−1 only has q − 1 choices. Similarly, when the

symbol sl−2 is determined, the l-th symbol sl of the sequence s in S only has q−1

choices due to sl−2 ̸= sl.

Similar to the analysis for the number of subsequences si ∈ S in (4.26), the

number of subsequences gi ∈ G for i = 2, 2, ..., λ of length l − 1 in (4.26) can be

calculated as

|G| = ql−2(q − 1). (4.31)

From (4.30) and (4.31), the number of the concatenated sequences h ∈ H in (4.26)

88

can be calculated as

|H| = (q − 1)(ql−2(q − 1))λ(ql−2(q − 1)2)r−λ. (4.32)

Finally, from (4.32), the size of the code |C8|(2) is given as

|C8|(2) = (q − 1)(ql−2(q − 1))λ(ql−2(q − 1)2)r−λ.

According to (4.4), (4.5), (4.26), and (4.27), we can obtain that the size of the

code in C. 3 is the special case of (4.28) with λ = 0 in (4.24), and the size of the

code C3 in C. 3 is given as

|C3|(2) = (q − 1)(ql−2(q − 1)2)r.

As other works [32, 57, 33, 52] set a code length of 18-24 nt and a maximum

run-length constraint of l = 3 in their DNA storage systems, we consider the

parameters and list the results of the size of the 2-WMU code with maximum run-

length l = 3 in Table 4.1. From Table 4.1, the code of lengths n(2) = 19 and 22

can be constructed from C. 3 for the maximum run-length l = 3 and the codes of

the other lengths can be constructed from C. 8. For 20 nt which is popularly used

for primers length, the size of the code is 7.2559× 108. Since no previous work in

WMU code has presented its the size of the code, it is not possible to compare the

sizes of the referenced codes with the proposed codes. If the proposed codes satisfy

all the constraints which the referenced codes already satisfy and additionally the

maximum run-length l constraint, the sizes of the proposed codes will decrease.

However, as we can see in detail proof of Theorem 4.4.1, the expected size loss of

the proposed codes is relatively small.

89

Table 4.1: The size of the 2-WMU code with maximum run-length l = 3 for 18-24
nt.

n(2) (nt) |C8|(2) n(2) (nt) |C8|(2)
18 6.0467× 107 22 6.5303× 109

19 1.8140× 108 23 2.6121× 1010

20 7.2559× 108 24 7.8364× 1010

21 2.1768× 109

4.4.3 Comparison for the maximum run-length constraint

To examine the characteristics of the codes from the perspective of the maximum

run-length constraint for DNA storage, we present the number of codewords with

different maximum run-lengths results for the k-WMU code in [74] as well as the

almost GC-balanced WMU code in [74], considering q = 4. The results reveal

that a significant ratio of the codewords in the referenced codes fail to meet the

requirements for DNA storage, specifically the maximum run-length l = 3.

To easily distinguish different referenced codes, we denote the k-WMU code

in [74], almost GC-balanced k-WMU code in [74], k-WMU code with Hamming

distance in [74], and almost GC-balanced k-WMU codes with Hamming distance

in [74] and in [11] as CR8, CR8-GC, CR8-H, CR8-GH, and CR11-GH, respectively. Sim-

ilarly, the corresponding the sizes of the codes are defined as |CR8|(k), |CR8-GC|(k),

|CR8-H|(k), |CR8-GH|(k), and |CR11-GH|(k).

Since the explicit construction of the code CR8 was not given, we have devised

a method to determine the number of codewords with different maximum run-

lengths results for this code. We follow the MU code C1 in C. 1 and enumerate

all the codewords of length n(k) for CR8 by concatenating the MU code with any

sequence of length k − 1. This approach allows us to search the number of code-

words with different maximum run-lengths for CR8. To ensure a fair comparison

with our proposed codes, we consider two cases: the 2-WMU code of length n(2)

and the 3-WMU code of length n(3) = n(2)+1. Since the computational complexity

90

of enumerating all codewords for CR8 increases as the length n(k) increases, we de-

termine small lengths of n(2) = 12 and n(3) = 13 for this purpose. Similarly, as an

explicit construction for the code CR8-GC was not provided, for a fair comparison

with our proposed almost GC-balanced and 3-WMU codes C′
6 and C′′

6 , we enumer-

ate the entire set of codewords for CR8-GC among from the codewords for CR8 with

a length of n(3), where the ratio of GC contents in codewords is (0.5± l±1
n(3)

). Then,

we present the number of codewords with different maximum run-lengths results

for the codes CR8 of lengths n(2) and n(3) as well as the code CR8-GC of length

n(3) in Table 4.2. The explicit constructions of the codes CR8-H and CR11-GH allow

us to determine the number of codewords with different maximum run-lengths.

However, the sizes of the codes CR8-H and CR11-GH primarily depend on the value

of k. To fairly compare with our proposed codes, we would need to set k = 2,

resulting in a small size of at most q.

Table 4.2: Different maximum run-lengths results for the codes CR8 of lengths
n(2) = 12 and n(3) = 13, CR8-H of length n(2) = 12, |CR8-GC|(3) of length n(3) = 13,
and |CR11-GH|(2) of length n(2) = 12

|CR8|(3) % |CR8|(2) % |CR8-H|(2) % |CR8-GC|(3) % |CR11-GH|(2) %
l′ ≤ 3 2600280 81.86 658476 82.92 − − 745449 78.80 − −
l′ = 4 421413 13.27 99711 12.56 − − 148272 15.68 1 25
l′ = 5 115797 3.65 27021 3.40 − − 41418 4.38 2 50
l′ = 6 30195 0.95 6963 0.88 − − 9690 1.02 1 25
l′ = 7 5562 0.18 1215 0.15 − − 90 0.01
l′ = 8 2619 0.08 603 0.08 3 75 981 0.10
l′ = 9 519 0.01 114 0.01 − − 81 0.01
l′ = 10 138 − 30 − − −
l′ = 11 18 − 3 − 1 25
l′ = 12 3 −

In Tables 4.2, the maximum run-lengths l for the 2-MWU code and 3-WMU

code in [4] are l = n(2) − 1 = 11 and l = n(3) − 1 = 12, respectively, since

the codewords in CR8 can consist of the form (0, ([q]\0)n(k)−1). The ratios of the

codewords with the run-lengths greater than three in 2-MWU code and 3-WMU

code in [4] are 17.08% and 18.14%, respectively. This means that it is difficult to

91

use the code CR8 for satisfying the maximum run-length constraint l = 3 in DNA

storage systems. The 3-WMU code can be obtained from the 2-WMU code by

concatenating any sequence of length one, which leads to some 2-WMU codewords

with run-length l′ = 3 become 3-WMU codewords with run-length l′ = 4 after

concatenating any sequence of length one. Therefore, the number of codewords

in 3-WMU code decreases for the run-lengths l ≤ 3. However, from the proofs of

Theorems 4.3.2 and 4.3.3, it can be observed that the maximum run-lengths of our

proposed codes C4 and C8 are fixed to l. In other words, if l = 3, all codewords

(100%) in the proposed codes C4 and C8 satisfy the requirements for DNA storage.

From Table 4.2, when comparing the code CR8 of length n(3) with the code

CR8-GC, it is evident that the size of CR8-GC significantly decreases due to the

fulfillment of the additional GC-balanced constraint. The size loss of the code

is about (1 − |CR8-GC|(3)
|CR8|(3)

) = 70.22%. Similarly, it can be also observed that the

maximum run-length l of the referenced code CR8-GC is nine. Additionally, the

ratio of codewords with run-lengths greater than three in CR8-GC is measured to

be 21.20%. These findings indicate that the code CR8-GC also fails to satisfy the

maximum run-length constraint required for DNA storage. On the other hand,

as shown in the proof of Theorem 4.3.7, our proposed almost GC-balanced and

3-WMU codes C′
6 and C′′

6 meet the requirements for DNA storage.

Moreover, all codewords in the codes CR8-H and CR11-GH have run-lengths

greater than three, which violates the maximum run-length constraint for DNA

storage. The maximum run-lengths l of the codes CR8-H and CR11-GH are eleven

and six, respectively.

92

Chapter 5

Conclusions and Future works

5.1 Thesis Conclusion

DNA storage, as the next-generation storage method, possesses a lot of advantages.

Although errors may occur in the received DNA strands due to external factors

such as synthesis, amplification, and sequencing technologies, as well as internal

factors such as GC-content imbalance and long homopolymer run, the error rate

caused by external factors is gradually decreasing with technological development.

Additionally, some coding techniques have successfully generated DNA sequences

that meet GC-balanced and short homopolymer run criteria, even at the expense

of very small code rates. In this dissertation, we propose several coding methods

for DNA storage, which is beneficial for constructing GC-balanced codes, error

correction codes with maximum run-length constraint, and the primers codes with

with maximum run-length constraint. The conclusions of this dissertation are list

as follows.

• First, we propose a novel encoding algorithm to construct GC-balanced DNA

codes based on weight distribution of binary data. To verify effectiveness of

our proposed encoding algorithm, we compare the average parity lengths

93

of our proposed codes to those of referenced codes. From the comparison

results of the average parity lengths, our proposed codes exhibits a better

performance for most values of ϵ, which indicates that our proposed codes can

provide an efficient way to construct GC-balanced codes for DNA storage.

We also present a simple method to evaluate the average parity lengths of

our proposed codes for various numbers of flipping levels, which shows that

the average parity lengths decrease as the number of flipping levels increases

and gradually tend to saturate. Especially, the proposed codes can achieve

excellent parity lengths for small values of f .

• Next, we propose a nonbinary SIDEC code with the maximum run-length

r constraint and its systematic encoding algorithm for the proposed code.

Moreover, we verify the feasibility of the encoding and decoding processes

of the proposed code. The proposed code can be applied to DNA storage

systems due to the properties of this code design and the error-prone nature

of DNA channels.

• Finally, we propose a class of codes that satisfy the maximum run length l

and 2-WMU constraints and we also present the methods to extend 2-WMU

codes with maximum run length l constraints to general k-WMU codes with

maximum run length l constraints. Moreover, we extend the proposed codes

to satisfy almost-balanced, the maximum run length l, k-WMU, and larger

Hamming distance d constraints, simultaneously. The proofs corresponding

to the proposed code constructions for code are also presented. Since the

proposed code is designed to be used for primer in DNA storage, we modify

the code construction to achieve the various lengths and list the sizes of our

proposed codes. Finally, we compare the referenced codes with our proposed

codes to verify that our proposed codes always satisfy the maximum run

94

length constraint for DNA storage.

5.2 Future research directions

Deletion, insertion, as well as substitution errors occurring in the received DNA

strands can pose significant challenges for DNA storage systems. However, a de-

termined channel model for DNA storage has not yet been established. Some

researchers assume that the DNA channel to involve specific t and arbitrary t

deletion errors for some positive integers t. Some certain algebraic error correction

codes are designed to address these errors based on the assumption of the deletion

errors channel. It is crucial to note that combinations of deletion and substitu-

tion errors can also occur simultaneously in DNA storage systems. While some

algebraic error correction codes have been proposed to address combinations of

errors, the diverse nature of error combinations remains a open issue in the design

of error correction codes for DNA storage systems. The exploration of novel DNA

assumptions based on combinations of errors, along with the development of cor-

responding error correction codes for these assumptions, which can be a potential

future research direction in DNA storage. For proposed error correction codes,

researchers are actively working on optimizing these proposed codes to achieve

minimal redundancy to attain a higher code rate. Therefore, to optimize the re-

dundancy for the proposed codes can also be a future research direction in DNA

storage.

95

List of Publications

SCI(E) Journals

,[R1] X. Lu and S. Kim. “Weakly mutually uncorrelated codes with maxi-
mum run length constraint for DNA storage”. Computers in Biology
and Medicine, 165(1):107439, 2023.

[R2] X. Lu and S. Kim. “New Construction of Balanced Codes Based on
Weights of Data for DNA Storage”. Accepted to IEEE Transactions on
Emerging Topics in Computing, 2023.

[R3] X. Lu and S. Kim. “Design of nonbinary error correction codes with a
maximum run-length constraint to correct a single insertion or deletion
error for DNA storage”. IEEE Access, 9(10):135354-135363, 2021.

[R4] X. Lu, J. Jeong, J. W. Kim, J. S. No, H. Park, A. No, and S. Kim.
“Error rate-based log-likelihood ratio processing for low-density parity-
check codes in DNA storage”. IEEE Access, 8(10):162892-162902, 2020.

International Conferences

,[R5] X. Lu and S. Kim. “Log-likelihood Ratio for low-density parity-check
codes under binary symmetric erasure channel in DNA storage,”. In 2022
International Conference on Advanced Technologies for Communications
(ATC), pages 171-176, 2022.

96

Bibliography

[1] How much data is produced every day?, 2016. http://www.northeastern.

edu/levelblog/2016/05/13/how-much-data-produced-every-day/ [Ac-

cessed: (13 May)].

[2] M. Abroshan, R. Venkataramanan, and A. G. I. Fabregas. Efficient systematic

encoding of non-binary VT codes. In 2018 IEEE International Symposium

on Information Theory (ISIT), pages 91–95. IEEE, 2018.

[3] S. R. Blackburn. Non-overlapping codes. IEEE Transactions on Information

Theory, 61(9):4890–4894, 2015.

[4] M. Blawat, K. Gaedke, I. Hütter, X.-M. Chen, B. Turczyk, S. Inverso, B. W.

Pruitt, and G. M. Church. Forward error correction for DNA data storage.

Procedia Computer Science, 80(3):1011–1022, 2016.

[5] J. Bornholt, R. Lopez, D. M. Carmean, G L. Ceze, Seelig, and K. Strauss.

A DNA-based archival storage system. ACM SIGOPS Operating Systems

Review, 50(2):637–649, 2016.

[6] J. Brakensiek, V. Guruswami, and S. Zbarsky. Efficient low-redundancy codes

for correcting multiple deletions. IEEE Transactions on Information Theory,

64(5):3403–3410, 2018.

97

[7] V. Risca C. T. Clelland and C. Bancroft. Hiding messages in DNA microdots.

Nature, 399(33):533–534, 1999.

[8] B. Cao, P. Shi, Y. Zheng, and Q. Zhang. FMG: An observable DNA storage

coding method based on frequency matrix game graphs. Computers in Biology

and Medicine, 151(1):106269, 2022.

[9] S. Chandak, J. Neu, K. Tatwawadi, J. Mardia, B. Lau, M. Kubit, R. Hulett,

P. Griffin, M. Wootters, T. Weissman, and H. Ji. Overcoming high nanopore

basecaller error rates for DNA storage via basecallerdecoder integration and

convolutional codes. In 2020 IEEE International Conference on Acoustics,

Speech and Signal Processing (ICASSP), pages 8822–8826. IEEE, 2020.

[10] Y. M. Chee, H. M. Kiah, P. Purkayastha, and C. Wang. Cross-bifix-free codes

within a constant factor of optimality. IEEE Transactions on Information

Theory, 59(7):4668–4674, 2013.

[11] Y. M. Chee, H. M. Kiah, and H. Wei. Efficient and explicit balanced primer

codes. IEEE Transactions on Information Theory, 66(9):5344–5357, 2020.

[12] Y. Choi, T.n Ryu, A. C. Lee, H. Choi, H. Lee, J. Park, S.H. Song, S. Kim,

H. Kim, W. Park, and S. Kwon. High information capacity DNA-based data

storage with augmented encoding characters using degenerate bases. Scientific

Reports, 9(1):6582, 2019.

[13] G. M. Church, Y. Gao, and S. Kosuri. Next-generation digital information-

storage in DNA. Science, 337(6102):1628, 2018.

[14] J. Davis. Microvenus. Art Journal, 55(1):70–74, 1996.

98

[15] L. Deng, Y. Wang, M. Noor-A-Rahim, Y. L. Guan, Z. Shi, E. Gunawan, and

C. L. Poh. Optimized code design for constrained DNA data storage with

asymmetric errors. IEEE Access, 7(1):84107–84121, 1997.

[16] A. Doricchi et al.. Emerging approaches to DNA data storage: challenges and

prospects. ACS Nano, 16(1):17552 – 17571, 2022.

[17] L. Organick et al.. Random access in large-scale DNA data storage. Nature

Biotechnology, 36(3):242–248, 2018.

[18] R. Lopez et al.. DNA assembly for nanopore data storage readout. Nature

Communications, 10(1):2933–2942, 2019.

[19] S. Chandak et al. Improved read/write cost tradeoff in DNA-based data stor-

age using LDPC codes. In 2019 57th Annual Allerton Conference on Com-

munication, Control, and Computing (Allerton), pages 147–156. IEEE, 2019.

[20] Y. Erlich and D. Zielinski. DNA fountain enables a robust and efficient storage

architecture. Science, 355(6328):950–954, 2017.

[21] P. Fei and Z. Wang. LDPC codes for portable DNA storage. In 2019 IEEE

International Symposium on Information Theory (ISIT), pages 76–80. IEEE,

2019.

[22] R. Gabrys, H. M. Kiah, and O. Milenkovic. Asymmetric lee distance codes for

DNA-based storage. In 2015 IEEE International Symposium on Information

Theory (ISIT), pages 909–913. IEEE, 2015.

[23] R. Gabrys and F. Sala. Codes correcting two deletions. IEEE Transactions

on Information Theory, 65(2):965–974, 2019.

99

[24] M. Gholami and M. Samadieh. Design of binary and nonbinary codes from

lifting of girth-8 cycle codes with minimum lengths. IEEE Communications

Letters, 17(4):777–780, 2013.

[25] E. Gilbert. Synchronization of binary messages. IEEE Transactions on In-

formation Theory, 6(4):470–477, 1960.

[26] N. Goldman, P. Bertone, S. Chen, C. Dessimoz, E. M. LeProust, B. Sipos,

and E. Birney. Towards practical, high-capacity, low-maintenance information

storage in synthesized DNA. Nature, 494(7435):77–80, 2013.

[27] R. N. Grass, R. Heckel, M. Puddu, D. Paunescu, and W. J. Stark.

Robust chemical preservation of digital information on DNA in silica

with errorcorrecting-codes. Angewandte Chemie International Edition,

54(8):2552–2555, 2015.

[28] V. Guruswami and J. H̊astad. Explicit two-deletion codes with redundancy

matching the existential bound. IEEE Transactions on Information Theory,

67(10):6384–6394, 2021.

[29] M. Hagiwara. On ordered syndromes for multi insertion/deletion error cor-

recting codes. In 2016 IEEE International Symposium on Information Theory

(ISIT), pages 625–629. IEEE, 2016.

[30] B. Hamoum, E. Dupraz, L. C. Canencia, and D. Lavenier. Channel model

with memory for DNA data storage with nanopore sequencing. In 2021 11th

International Symposium on Topics in Coding (ISTC), pages 1–5, 2021.

[31] S. K. Hanna and S. El Rouayheb. Guess & check codes for deletions, in-

sertions, and synchronization. IEEE Transactions on Information Theory,

65(1):3–15, 2019.

100

[32] R. Heckel, G. Mikutis, and R. N. Grass. A characterization of the DNA data

storage channel. Scientific Reports, 9(1):9663, 2019.

[33] K. A. S. Immink and K. Cai. Design of capacity-approaching constrained

codes for DNA-based storage systems. IEEE Communications Letters,

22(2):224–227, 2018.

[34] K. A. S. Immink and K. Cai. Properties and constructions of constrained

codes for DNA-based data storage. IEEE Access, 8(1):49523–49531, 2020.

[35] K.A.S. Immink. A practical method for approaching the channel capacity of

constrained channels. IEEE Transactions on Information Theory, 43(5):1389–

1399, 1997.

[36] D. Knuth. Efficient balanced codes. IEEE Transactions on Information The-

ory, 32(1):51–53, 1986.

[37] A. Leier, C. Richter, and H. Rauhe W. Banzhaf. Cryptography with DNA

binary strands. Biosystems, 57(1):13–22, 2000.

[38] A. Lenz, L. Welter, and S. Puchinger. Achievable rates of concatenated codes

in DNA storage under substitution errors. In 2020 IEEE International Sym-

posium on Information Theory and Its Applications (ISITA), pages 269–273.

IEEE, 2020.

[39] V. Levenshtein. Decoding automata, invariant with respect to the initial state.

Problemy Kibernet, 12(1):125–136, 1964.

[40] V. I. Levenshtein. Binary codes capable of correcting deletions, insertions,

and reversals. Doklady Akademii Nauk SSSR, 163(4):845–848, 1965.

101

[41] M. Li, J. Wu, J. Dai, Q. Jiang, Q. Qu, X. Huang, and Y. Wang. A

self-contained and self-explanatory DNA storage system. Scientific Reports,

11(1):18063, 2021.

[42] Y. J. Liu, x. He, and X. H. Tang. Capacity-achieving constrained codes with

gc-content and runlength limits for DNA storage. In 2022 IEEE International

Symposium on Information Theory (ISIT), pages 198–203. IEEE, 2022.

[43] X. Lu and S. Kim. Log-likelihood ratio for low-density parity-check codes

under binary symmetric erasure channel in DNA storage. In 2022 Inter-

national Conference on Advanced Technologies for Communications (ATC),

pages 171–176. IEEE, 2022.

[44] D. J. C. MacKay and R. M. Neal. Near shannon limit performance of low-

density parity-check codes. Electronics Letters, 33(6):457–458, 1997.

[45] W. Mao, S. N. Diggavi, and S. Kannan. Models and information-theoretic

bounds for nanopore sequencing. IEEE Transactions on Information Theory,

64(4):3216–3236, 2018.

[46] J. Massey. Optimum frame synchronization. IEEE Transactions on Commu-

nications, 20(2):115–119, 1972.

[47] M. S. Neiman. Some fundamental issues of microminiaturization. Ra-

diotekhnika, 132(1):3–12, 1964.

[48] M. S. Neiman. On the molecular memory systems and the directed mutations.

Nature, 103(6):1–8, 1965.

[49] T. T. Nguyen, K. Cai, K. A. Schouhamer Immink, and H. M. Kiah. Capacity-

approaching constrained codes with error correction for DNA-based data stor-

age. IEEE Communication Letters, 67(8):5602–5613, 2021.

102

[50] I. Reed. A class of multiple-error-correcting codes and the decoding scheme.

Transactions of the IRE Professional Group on Information Theory, 4(4):38–

49, 1954.

[51] J. H. Reif, T. H. LaBean, M. Pirrung, V. S. Rana, B. Guo, C. Kingsford, and

G. S. Wickham. Experimental construction of very large scale DNA databases

with associative search capability. In The 7th International Workshop on

DNA-Based Computers, Tampa, USA, pages 231–247. SPRINGER LINK,

2002.

[52] A. E. Shaikh, M. Welzel, D. Heider, and B. Seeger. High-scale random access

on DNA storage systems. NAR Genomics and Bioinformatics, 4(1):126–136,

2022.

[53] B. Shen, P. Piskunen, S. Nummelin, Q. Liu, M. A. Kostiainen, and V. Linko.

Advanced DNA nanopore technologies. ACS applied bio materials, 3(1):5606–

5619, 2020.

[54] J. Sima and J. Bruck. On optimal k-deletion correcting codes. IEEE Trans-

actions on Information Theory, 67(6):3360–3375, 2021.

[55] J. Sima, R. Gabrys, and J. Bruck. Optimal systematic t-deletion correcting

codes. In 2020 IEEE International Symposium on Information Theory (ISIT),

pages 769–774. IEEE, 2020.

[56] J. Sima, N. Raviv, and J. Bruck. Two deletion correcting codes from indicator

vectors. IEEE Transactions on Information Theory, 66(4):2375–2391, 2020.

[57] W. Song, K. Cai, M. Zhang, and C. Yuen. Codes with run-length and gc-

content constraints for DNA-based data storage. IEEE Communication Let-

ters, 22(10):2004–2007, 2018.

103

[58] H. Takahashi and M. Hagiwara. Decoding algorithms of monotone codes and

azinv codes and their unified view. In 2020 IEEE International Symposium

on Information Theory and Its Applications (ISITA), pages 284–288. IEEE,

2020.

[59] R. Takemoto and T. Nozaki. Encoding algorithm for run-length limited single

insertion/deletion correcting code. In 2020 IEEE International Symposium

on Information Theory and Its Applications (ISITA), pages 294–298. IEEE,

2020.

[60] G. M. Tenengolts. Nonbinary codes, correcting single deletion or insertion.

IEEE Transactions on Information Theory, 30(5):766–769, 1984.

[61] K. J. Tomek, K. Volkel, A. Simpson, A. G. Hass, E. W. Indermaur, and A. J.

Keung. Driving the scalability of DNA-based information storage systems.

ACS Synthetic Biology, 32(1):1241–1248, 2019.

[62] D. Tulpan, D. H. Smith, and R. Montemanni. Thermodynamic post-

processing versus GC-content pre-processing for DNA codes satisfying the

Hamming distance and reverse-complement constraints. IEEE/ACM Trans-

actions on Computational Biology and Bioinformatics, 11(2):441–452, 2014.

[63] R. R. Varshamov and G. M. Tenengolts. Codes correcting single asymmetric

errors. Avtomatika i Telemekhanika, 26(2):288–292, 1965.

[64] Y. Wang, M. Noor-A-Rahim, E. Gunawan, Y. L. Guan, and C. L. Poh. Con-

struction of bio-constrained code for DNA data storage. IEEE Communica-

tions Letters, 23(6):963–966, 2019.

[65] Y. Wang, M. Noor-A-Rahim, J. Zhang, E. Gunawan, Y. L. Guan, and C. L.

Poh. Oligo design with single primer binding site for high-capacity DNA-

104

based data storage. IEEE/ACM Transactions on Computational Biology and

Bioinformatics, 17(6):2176–2182, 2020.

[66] J. D. Watson and F. H. Crick. Molecular structure of nucleic acids. Nature,

171(5):737–738, 1953.

[67] A. J. D. L. V. Wijngaarden and T. J. Willink. Frame synchronization using

distributed sequences. IEEE Transactions on Communications, 48(12):2127–

2138, 2000.

[68] C. Winston, L. Organick, D. Ward, L. Ceze, K. Strauss, and Y.-J. Chen.

Combinatorial PCR method for efficient, selective oligo retrieval from complex

oligo pools. ACS Synthetic Biology, 302(1):10482, 2022.

[69] Y. Xin and I. J. Fair. Algorithms to enumerate codewords for DC/sup 2/-

constrained channels. IEEE Transactions on Information Theory, 47(7):3020–

3025, 2001.

[70] T. Xue and F. C. M. Lau. Construction of GC-balanced DNA with dele-

tion/insertion/mutation error correction for DNA storage system. IEEE Ac-

cess, 8(2):140972–140980, 2020.

[71] Z. Yan, C. Liang, and H. Wu. A segmented-edit error-correcting code with re-

synchronization function for DNA-based storage systems. IEEE Transactions

on Emerging Topics in Computing, 2012. early access.

[72] C. N. Yang and D. J. Lee. Some new efficient second-order spectral-null codes

with small lookup tables. IEEE Transactions on Computers, 55(7):924–927,

2006.

[73] S. M. H. T. Yazdi, R. Gabrys, and O. Milenkovic. Portable and error-free

DNA-based data storage. Scientific Reports, 7(1):5011, 2017.

105

[74] S. M. H. T. Yazdi, H. M. Kiah, R. Gabrys, and O. Milenkovic. Mutually

uncorrelated primers for DNA-based data storage. IEEE Transactions on

Information Theory, 64(9):6283–6296, 2018.

[75] S. M. H. T. Yazdi, H. M. Kiah, E. Garcia-Ruiz, J. Ma, H. Zhao, and

O. Milenkovic. DNA-based storage: Trends and methods. IEEE Transac-

tions on Molecular, Biological, and Multi-Scale Communications, 1(3):230–

248, 2015.

[76] S.M.H.T. Yazdi, Y. Yuan, H.Z. J. Ma, and O. Milenkovic. A rewritable,

random-access DNA-based storage system. Scientific Reports, 5(3):14138,

2015.

106

	목차
	1. Introduction 1
	1.1 Motivation and Objective 1
	1.2 DNA storage: system model 3
	1.3 The methodology for DNA storage 6
	1.3.1 Error-correcting codes for DNA storage 7
	1.3.2 Constrained codes for DNA storage 10
	1.3.3 Codes for random-access in DNA storage 11
	1.4 Contribution and layout 11
	2. New construction of balanced codes for DNA storage 13
	2.1 Introduction 13
	2.2 Preliminaries 14
	2.2.1 Related works for binary ϵ-balanced code construction 14
	2.3 GC-balanced codes construction 18
	2.3.1 Overall encoding processes 18
	2.3.2 Flipping functions 19
	2.3.3 Encoding and mapping 22
	2.3.4 Decoding of the proposed GC-balanced codes 24
	2.4 Analysis of the average parity lengths for the proposed codes 27
	2.4.1 Average parity length for f = 0 27
	2.4.2 Average parity length for f = 1 29
	2.4.3 Average parity length for f > 1 30
	2.5 Performance evaluation 31
	2.5.1 Comparison results of average parity lengths for various ϵ 32
	2.5.2 Average parity length comparison results for various f 36
	3. Nonbinary single insertion or deletion error correction codes with a maximum run-length constraint for DNA storage 40
	3.1 Introduction 40
	3.2 Preliminaries 42
	3.2.1 Proposed code construction and algorithm 43
	3.2.2 Construction of sequences with the maximum run-length constraint 44
	3.3 Code construction and encoding for a nonbinary SIDEC with a max-imum run-length constraint code 46
	3.3.1 Code construction 46
	3.3.2 Encoding algorithm 50
	3.3.3 Special case with k = 190 and 191 and the overall of encod-ing algorithm 55
	3.4 Decoding for an insertion or deletion error 59
	3.5 Simulation and Comparison results 60
	3.5.1 Comparison results of related work [2] and our work 63
	4. Weakly mutually uncorrelated codes with maximum run-length constraint for DNA storage 66
	4.1 Introduction 66
	4.2 Preliminaries 68
	4.2.1 MU and WMU code: definitions, constructions, and properties 68
	4.3 Constrained WMU code constructions 71
	4.3.1 k-WMU code with the maximum run-length l constraint 72
	4.3.2 2-WMU code with the maximum run-length l constraint and Hamming distance d 76
	4.3.3 Almost-balanced and 3-WMU code with the maximum run- length l constraint 77
	4.3.4 Almost-balanced 2-WMU code with the maximum run-length l constraint and Hamming distance d 83
	4.4 Applying code construction to primer design in DNA storage 85
	4.4.1 2-WMU code construction with maximum run-length l con-straint for various lengths 86
	4.4.2 The size of the 2-WMU code with maximum run-length l constraint for various lengths 87
	4.4.3 Comparison for the maximum run-length constraint 90
	5. Conclusions and Future works 93
	5.1 Thesis Conclusion 93
	5.2 Future research directions 95
	Bibliography 97

