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ABSTRACT 

 

An investigation on the effects of key input parameters to 

electric bicycle for high performance  

 

Department of Mechanical Engineering 

Le Trong Hieu 

 

The purpose of this research is to study how the operating and structure parameter affect the 

dynamic, require power and electric consumption of electric bicycles (EBs). To achieve this 

goal, a simulation model was established through MATLAB Simulink software to investigate 

dynamic and electricity consumption characteristics. Based on the established mathematical 

models, the motion, dynamic and electric consumption of the EB are analyzed and optimized 

under the effects of frontal area, bicycle mass, wheel radius, and sprocket transmission ratio. 

On the other hand, to improve bicycle performance, the research applied an artificial neural 

network and genetic algorithm (ANN-GA) to forecast the bicycle performance and identify its 

optimal power demand. The MATLAB-Simulink model created 1000 data points, which are 

utilized for training, testing, verifying the ANN model. The ANN model is developed with 

transmission ratio, frontal area, wheel radius, bicycle velocity as an input, and power demand 

and battery voltage as an output parameter. After the ANN is trained, it is applied into the 

genetic algorithm to identify the optimal value. The study showed that the electric bicycle 

configuration can achieve optimal power 546.3 W at 30.7 km/h under speed level_5, wheel 

radius of 0.42 m, frontal area 0.423 m2. Besides that, the experimental test was conducted on 

real road test at Taehwa river to verify the simulated results. The experimental and simulation 

results have the same trend under the same conditions. 

 

 

Keywords: electric bicycle model, electric consumption, artificial neural network, genetic 

algorithm, effective performance area. 
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1. INTRODUCTION 

The depletion of fossil fuels and the growth in environmental pollution generated by internal 

combustion engine cars are major global challenges that must be addressed. The use of electric 

vehicles is one of the most promising answers to issues of energy security and pollution. The 

electric bicycle is one of the most popular electric vehicles due to its numerous benefits, 

including zero emissions, reduced traffic congestion, excellent energy efficiency, and reduced 

noise pollution. This chapter introduces the research basis behind the study. Correlating 

relevant literature with the author's laboratory's recent progress yields an overview of the trends 

in electric bicycle research on dynamic and performance. The research objectives are presented 

at the end of this chapter, followed by the organization of the thesis  

1.1 Background 

The notion of the electric bicycle originated in the late nineteenth century, with early patents 

for electrically powered bicycles appearing in the 1890s. However, it took until the late 

twentieth and early twenty-first centuries for e-bikes to gain substantial commercial momentum 

[1]. The development of compact and efficient lithium-ion batteries, advances in electric motor 

technology, and increased environmental concerns have all contributed to the current surge in 

e-bike popularity. E-bikes have an electric motor and battery system that help with pedaling, 

making them more accessible to a larger range of users, including those with restricted physical 

ability or those who commute long distances [2,3]. E-bikes are now seen as both pleasure 

vehicles and practical options for urban commuting. The electric bicycle (e-bike) market has 

grown significantly over the last decade, owing to technology developments, increased 

environmental awareness, and changing urban mobility needs. E-bikes provide a sustainable 

and efficient means of transportation by combining the advantages of traditional cycling with 

the additional power of an electric motor [4,5]. So, studying e-bike performance is crucial for 
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maximizing their efficiency, durability, and user pleasure, addressing critical factors such as 

battery technology, motor efficiency, structural design, and environmental impact. 

There are some research on battery to improve electric bicycle performance such as. Chuanxue 

Song et al. develop a novel Battery Monitoring System (BMS) for lithium-ion electric bicycles 

that uses Android and ARM microcontroller technologies. This technology intends to improve 

safety, lengthen battery life, and simplify battery state monitoring. Real-time monitoring of 

voltage, current, and temperature is one of the key aspects, as is estimating State of Charge 

(SOC) and State of Health (SOH). They validated the system's effectiveness in managing 

electric bicycle batteries [6]. Heshou Wang et al. present a unique resonator design for wireless 

battery charging in electric bicycles. This system supports load-independent constant current 

(CC) and constant voltage (CV) charging for battery loads, simplifying control algorithms and 

communication routes between transmitter and receiver. The study employed Maxwell 

software to establish continuous mutual inductance, and the experimental results showed 

effective regulation of output current (1.2 A) and voltage (24 V) across a range of load 

circumstances. Efficiency peaks at 97.17% in CC mode and 91.17% in CV mode, with 

consistent performance found throughout a range of distances between transmitter and receiver 

[7]. Yan Hong et al. present a unique charging cabinet with flood cooling capabilities, which 

aims to reduce thermal dangers and environmental concerns connected with lithium-ion 

batteries (LIBs) used in electric bikes. Flood cooling is effective at preventing thermal runaway 

propagation. Flood cooling produces substantially higher cooling rates than air cooling 

(1.80°C/s vs. 0.18°C/s). The study emphasizes the crucial roles of heat transfer power, self-

heating generation, and cooling power in thermal runaway propagation suppression to improve 

battery thermal safety in electric bicycles [8]. Furthermore, there are some studies on motor 

technology to improve electric bicycle performance.  Józef Gromba discusses several BLDC 

motor control methods, electric bike dynamics, load torque calculation approaches, and 



3 

electromagnetic torque control. Simulations and laboratory research are used in the study to 

validate the effectiveness of the newly created control system. The measurements included 

watching motor current and velocity with a constant power supply voltage, a set load torque of 

20 Nm, and changing accelerometer inclination angles (0° to 3°). Results showed that 

increasing terrain slope angles increased motor current draw and electromagnetic torque, 

verifying the system's performance against specified assumptions [9]. Ji-Chang Son et al. 

presented a unique stator design for a permanent magnet-assisted synchronous reluctance 

motor used in electric bicycle propulsion. The proposed stator design considerably enhances 

the torque density, efficiency, and iron loss properties of the PMa-SynRM for electric bicycles. 

The use of GO on stator teeth boosted torque and efficiency by 9.89% and 1.7%, respectively, 

while no-load iron loss was reduced by 14.93%. This yields a smaller, more efficient motor 

with improved performance. Aside from that, some research have identified structure factors 

to increase the performance of electric bicycles. [10]. Chih-Lyang Hwan et al investigated two 

methods for stabilizing an electric bicycle: adjusting the center of gravity (CG) and steering 

handle angle. A pendulum modifies the CG, and the bicycle's lean angle also affects stability. 

Three parameters influence the system's dynamics: pendulum angle, lean angle, and steering 

angle. The study uses a variable structure under-actuated control approach to generate the 

torques required for handle and pendulum adjustments. The results demonstrated that a variable 

structure under-actuated control had improved performance and efficiency in maintaining the 

dynamic balance of the electric bicycle under different conditions [11]. I Ketut Adi Atmika et 

al studied the usage of composite materials for electric bicycle frames, which are typically 

made of metals and alloys for strength. The results demonstrate that the composite laminate 

with a woven fiber arrangement of C (45°/45°/45°) has the maximum strength, with a 

compressive stress value of 58.64 MPa in the axial plane and 1.539 MPa in the tangential plane. 
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This study supports the use of composite materials to construct lighter yet stronger bicycle 

frames [12].  

In the aforementioned studies, numerous researchers worked to improve the dynamic and 

performance of electric bicycles by innovations in battery technology, motor improvement, and 

structural design, namely bicycle frame innovation. However, relatively few researchers have 

explored the effect of transmission ratio, frontal area, bicycle weight, and wheel size on the 

dynamic, voltage fluctuation during the starting phase, and performance of an electric bicycle.  

As a result, a thorough investigation into enhancing maximum velocity, reducing duration to 

reach stable velocity, and improving electric consumption based on transmission ratio, frontal 

area, wheel size, and bicycle weight is necessary. Finally, this work is expected to operate as a 

basis for visualization of critical structure parameters in enhancing maximum velocity and 

optimal power of an electric bicycle.  

1.2 Approach  

In this study, an electric bicycle with a capacity of 250W weighing 21kg was used to test the 

maximum speed, acceleration and power consumption with variations of important structural 

factors such as gear ratio, bike mass, wheel size. 

Firstly, the zero dimension model of electric bicycle including bicycle dynamics, lithium-ion 

battery model, direct current motor model were performed under mathematical equation. 

Among design parameters the transmission ratio wheel size, bicycle mass, bicycle weight, 

frontal area was chosen as the numerical and experimental parameters to investigate. To 

analyze the effects of these design parameters on maximum velocity acceleration, fluctuation 

of voltage value. The variation of wheel radius is 0.3-0.42 m, frontal area is 0.423-1.623 m2, 

transmission ratio is 2.18-3.43, bicycle weight 21-43 kg, while the model also considers 

additional parameters in the common range to analyze the above results comprehensively. 
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Secondary, preparing the experiment apparatus for to measure e-bike speed and acceleration 

and voltage value. The device to measure e-bike speed and acceleration is using a photo sensor. 

Which can detect wheel movement of e-bike as digital signal. The digital signal was transfer 

to electric control unit to calculate bicycle velocity and travel distance. Besides that, the NI-

9221 was used to measure the analog signal of voltage value. All signals were collected and 

saved in LabVIEW program. E-bike speed and acceleration and voltage value were examined 

by changing transmission ratio and bicycle mass. 

Next step is validating the experiment results with the numerical method. The effect of various 

wheel radius, frontal area, transmission ratio and bicycle weight on dynamic characteristics 

power, fluctuations of voltage value in starting period is necessary to investigate during bicycle 

operation. Therefore, the zero dimension e-bike was performed in MATLAB Simulink 

software to provide velocity, travel distance, battery voltage value, maximum propulsion 

torque characteristics.  

 1.3 Objective of study  

This thesis will mainly focus on simulation and experiment a electric bicycle to investigate the 

electric bicycle mass, transmission ration, wheel size, frontal area and additional parameters 

include wind velocity, slope ratio effect on maximum bicycle velocity, duration to reach stable 

velocity, fluctuation of battery in starting period. The objective of this study are given below: 

(i) Setup an experimental system for electric bicycles to provide the basic data for 

validation of the simulation model. The basic data are velocity curve, travel 

distance, duration reach stable velocity, fluctuation of battery voltage in starting 

period.  
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(ii) Setup zero-dimension model for electric bicycle including bicycle dynamic, li-ion 

battery, direct current motor MATLAB-Simulink program based on mathematical 

equation. 

(iii) To investigate the influence of e-bike weight on maximum velocity, travel distance, 

and fluctuation of battery voltage.   

(iv) To investigate the effect of transmission ratio on maximum velocity, duration reach 

stable velocity, travel distance, and fluctuation of battery voltage. 

(v) To investigate the influence of frontal area on maximum velocity, travel distance, 

maximum propulsion torque, and fluctuation of battery voltage. 

(vi) To investigate the effect of wheel size on maximum velocity, travel distance, 

maximum propulsion torque, and fluctuation of battery voltage. 

(vii) To optimize the crucial structure parameters of frontal area, transmission ratio, 

wheel size on bicycle performance.  

To obtain above targets, the brief explanation in the effect flowchart as seen in the Fig 1.1 

Fig. 1.1 The flowcharts of the potential strategies to enhance bicycle performance through 

experimental and simulation approach 
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1.4 Organization of the thesis  

The thesis comprises seven chapters which are organized into five main sections, as illustrated 

in Table. 1.1.  

Firstly, Chapter 1 presents the scope of thesis and gives a brief explanation of the topic of e-

bike research with preceding studies done on the same issue. The improvements are briefly 

described with the research aim and objectives. Meanwhile, in chapter 2 a review of the 

important findings of previous research related to objectives and present study is given. This 

review summary some study related to consider the crucial design parameters. Based on these 

reviews some issues can be inferred as a starting point for present study. Chapter 3 explained 

and described the experiment apparatus for e-bike the experiment test and condition were 

detailly introduced in this chapter. Furthermore, specification of measurement devices also 

detailly presented. The purpose of Chapter 4 is to provide zero-dimension model to simplified 

representation which easier analysis and understanding of the key dynamics of e-bike. Chapter 

5 discussed and analyzed numerical and experimental results of dynamic characteristics and 

voltage value of e-bike for various crucial parameters, this study also considers the influence 

level of each parameter to dynamic and performance characteristics. Chapter 6 discusses and 

analyses numerical and experimental results of maximum velocity and power e-bike based on 

variation of crucial design parameters. And this study also utilized optimal method to 

improved e-bike performance. Finally, summary and conclusions of this study to understand 

the influence level of pivotal parameters on dynamic and battery voltage value characteristics.  

Based on the results obtained, this thesis provides an insight into the performance of electric 

bicycles.  

 



8 

Research objectives and 

literature review 

Chapter 1. INTRODUCTION 

Key point: background, approach, objectives 

Chapter 2. LITERATURE REVIEW 

Key point: motor control, battery technology, review on 

previous study 

Research platform  Chapter 3: EXPERIMENTAL RESEARCH 

Key point: Testing condition 

Chapter 4: SIMULATION MODEL 

Key point: Zero-dimension model, boundary condition 

Research on dynamic and 

propulsion characteristics 

Chapter 5: AN INVESTIGATION ON THE EFFECTIVE 

PERFORMANCE AREA OF THE ELECTRIC BICYCLE 

WITH VARIABLE KEY INPUT PARAMETER 

Key points: structure factor, environment factor, maximum 

velocity, voltage value characteristic.  

Research on optimization 

crucial structure parameters  

Chapter 6: A MACHINE LEARNING APPROACHES 

FOR PREDICTING POWER AND PERFORMANCE FOR 

ELECTRIC BICYCLE UNDER THE EFFECTS KEY 

PARAMETERS 

Key point: ANN modeling, Genetic Algorithm optimization  

Research outcomes Chapter 7: CONCLUSION AND CONTRIBUTION 

Key point: summary, contribution 

Table 1.1 Thesis outline 

 

 

 

 



9 

 

2. LITERATURE REVIEW 

2.1 Introduction  

This chapter comprehensively explains the previous research endeavors relevant to the current 

investigation. Additionally, a comprehensive summary of additional pertinent research studies 

is also included. This review is organized chronologically to provide an understanding of how 

previous research endeavors have established the basis for subsequent studies, including the 

current research effort. The initial section will explain the advantages and benefits of the 

electric bicycle. In this section presents previous research efforts in improving e-bike 

performance such as improved battery technology and methods for motor control. Finally, 

some. In next section, some previous studies on the effect of structural factors and external 

factors related to this study are specifically explained. Author will find out the drawbacks that 

have not been well researched or solved. This gap will be filling up by this thesis work at the 

end of this section. 

2.2 Electric bicycle advantages 

Electric bicycles are referred to as green vehicles due to their low exhaust gas emissions [13]. 

E-bikes are a popular mode of transportation in cities, because to their fewer hazardous 

emissions as compared to traditional vehicles powered by internal combustion engines [14]. In 

some countries, such as Germany and China, electric bicycles are utilized to replace fossil-

fueled mopeds and small motorcycles [15]. Electric bicycles provide numerous benefits, 

making them an appealing means of transportation for a diverse spectrum of consumers. E-

bikes are a versatile and sustainable alternative to traditional modes of transportation, offering 

health and environmental benefits as well as economic savings and convenience [16]. Their 
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expanding popularity demonstrates their effectiveness in improving urban mobility, 

encouraging physical activity, and contributing to a cleaner environment [17]. 

2.3 Electric bicycle classify.  

EBs are divided into three types: pure EBs, power-assisted bicycles, and EBs with both pure 

and power-assisted modes. The pure EB uses an electric motor installed on the bicycle frame 

or wheels, with the driving force controlled via a handlebar throttle [18]. Somchaiwong and 

Ponglangka created a regenerative power control for a pure EB, using a permanent magnet 

brushless DC motor mounted inside the EB's wheel [19]. P Vishnu Sidharthan and Yashwant 

Kashyap completed a simulation research utilizing proportional-integral (PI) and a fuzzy 

controller in Matlab/Simulink to build an appropriate speed controller for a brushless direct 

current (BLDC) hub motor fitted on an EB's wheel [20]. 

A power-assisted bicycle, commonly known as a pedelec (pedal electric cycle), is a bicycle 

with an electric motor mounted on the bicycle frame or a wheel to assist the user in pedaling. 

Abagnale et al. performed a model-based control study of a power-assisted bicycle in which an 

electric motor was put on a motor shaft and coupled to a pedal shaft through two separate 

gearboxes [21]. Hung et al. investigated the impact of input settings on the dynamics and power 

requirements of a power-assisted bicycle (EB) with an electric motor mounted on the rear 

wheel. Because the electric motor is employed as a power assist, the motor power of a pedelec 

is usually smaller than that of a pure electric bicycle [22]. 

There are also differences in the maximum motor power allowed for bicycles in various 

countries [23]. According to McLoughlin et al., the highest motor power for electric motor 

assisted bicycles in the United States is 750 W, whereas 250 W is the maximum in Europe, 

India, and Japan [24]. Pedelecs are especially good for those living in mountainous locations 

or riders who not only want assistance but also desire to exercise in order to improve their 
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health. Many research on pedelecs have been undertaken throughout the world and, which 

provide helpful information for planning and developing high-performance pedelecs 

[25,26,27,28]. 

The third form of EB is a hybrid of two modes, pure and power-assisted, in which the driving 

power of the EB can be controlled using either. In pure mode, the power from an electric motor 

is only regulated by a handlebar throttle. In the power-assisted mode, the driving force is a 

combination of rider and motor power, comparable to a pedelecs [29]. Hung et al. simulated 

and tested the operating performance of an EB integrated with a semi-automatic transmission, 

with driving power controlled by pure and power-assisted modes. Sharma et al. researched an 

EB with a combination of pure and power-assisted modes [30]. 

2.4 Review of previous studies on environmental benefit of electric 

bicycles 

There are many studies connected to the environmental benefits of electric bicycles, 

consequently improving people's awareness of environmental issues and encouraging people 

to utilize electric bicycles, especially in urban and heavily populated areas to enhance urban 

air quality: 

Thomas Elliot et al. proposed Electric bicycles (E-bikes) could help to reduce these emissions. 

A life cycle review revealed that E-bikes have a lesser environmental impact than petrol or 

diesel vehicles, owing to New Zealand's 80% renewable electricity generation. The study 

assessed the environmental implications of E-bikes for various battery charging times and 

discovered minimal variance in performance [31]. Min Liu et al. performed a life cycle study 

in China, comparing the environmental and economic performance of EBs powered by four 

different battery types. EBs with lead-acid batteries had the worst environmental impact, while 
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those with lithium iron phosphate batteries did the best. Motor manufacture, which used 

copper, had the largest potential for metal depletion and toxicity. Promoting a circular economy 

may alleviate these effects. The use stage posed the most environmental pressure due to energy 

use, which may be lowered by 10-25% with power cleaning [32]. Dominik Bucher et al. 

demonstrate that substituting car commutes with e-bike excursions can cut GHG emissions by 

up to 10% of total emissions from diesel and gasoline cars. When combined with a more 

widespread deployment of electric vehicles (EVs), overall savings might reach up to 17.5%. 

[33]. Lorenzo Stilo et al. discovered the changing landscape of electric assisted bicycles (e-

Bikes) as a sustainable means of transportation in future smart cities, with an emphasis on 

design difficulties and legislative implications in the UK, Europe, and the United States. As e-

bike usage grows, there is an increasing need for research to inform the industry on essential 

cycling features that support broader and sustainable adoption [34]. Yan Chen et al. investigate 

the environmental benefits of bike-sharing systems in urban sustainable development, using 

New York City as a case study. The environmental implications of bike-sharing are assessed 

regionally and temporally using a quantitative analysis of substantial data from January 2014 

to December 2017. During the four-year study period, bike-sharing in New York City saved 

approximately 13,370 tons of oil equivalent, reduced carbon emissions by 30,070 tons, and 

nitrogen oxide emissions by 80 tons [35]. The collective research presented provides a 

comprehensive overview of various aspects of sustainable transportation solutions, particularly 

focusing on electric bicycles (E-bikes) and bike-sharing systems, and their environmental 

impacts. 

2.5 Review of previous studies on motor technology on electric 

bicycle 
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 Ivan Arango et al. presented advances in optimizing the range and energy efficiency of mid-

drive motor electric bicycles (e-bikes), focusing on the use of experimental models to describe 

various components and their efficiencies. The study found considerable differences in 

efficiency across subsystems, with the Chain, Motor, and Reduction Gears (CMRGs) 

subsystem having the greatest influence on overall efficiency (20% to 80% variance). Other 

components, such as the battery and charger, influenced efficiency to a lesser amount [36]. 

Sheng-Peng Zhang et al. propose a method for precisely estimating the efficiency of electric 

bicycle powertrain systems, which include components such as electric motors, gears, 

sprockets, and chains. By properly estimating these losses and validating the computational 

method through experiments, the study provides a strong foundation for enhancing powertrain 

efficiency and driving the design of electric bicycles toward improved energy efficiency and 

performance [37]. Reza Nasiri-Zarandi et al. investigated the development and performance 

evaluation of an outer rotor Permanent Magnet-assisted Synchronous Reluctance Motor 

designed specifically for electric bike (e-bike) applications, with the goal of overcoming the 

limitations associated with conventional Brushless DC Motors. Simulations and actual studies 

show that the Permanent Magnet-assisted Synchronous Reluctance Motor increases torque 

density by 28% while reducing cogging torque by 50% and torque ripple by 8% when 

compared to a commercial 500-W Brushless DC Motor. Furthermore, permanent magnet usage 

and associated costs are reduced by 40% [38]. S. Farina et al. investigated the design and 

analysis of a Brushless DC motor with a Double Stator Slotted Rotor that was specifically 

designed for electric bicycle applications, with the goal of improving performance over 

standard Single Stator motors. The results showed that the Double Stator Slotted Rotor motor 

meets torque requirements for electric bicycles, with a maximum average torque of 16.2 Nm. 

This performance exceeds that of single-stator BLDC motors, improving total motor efficiency 

and power delivery [39]. These studies collectively showcase advancements in e-bike motor 
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technologies, emphasizing efficiency improvements, torque enhancements, and reductions in 

cost.  

 2.6 Review of previous studies relate to battery technology on 

electric bicycle 

Felipe Tobar et al. investigate improving the prediction accuracy of battery voltage in electric 

vehicles, notably electric bicycles, by using external variables such as altitude alongside typical 

battery voltage measurements. The study emphasizes the significance of incorporating external 

environmental parameters to improve the predictive capabilities required for maximizing 

electric vehicle performance and autonomy [40]. S. A. Farisi et al. analyze the environmental 

and energy security advantages of electric vehicles, with a special emphasis on electric bicycles 

(e-bikes) powered by various battery technologies. The study compares the performance of 

valve-regulated lead acid and lithium iron phosphate batteries in an e-bike context, 

demonstrating that lithium iron phosphate batteries provide better voltage stability and longer 

travel distances (up to 50.16 km versus 37.83 km for valve-regulated lead acid) [41]. Wayan 

Nata Septiadi et al. present a Battery Thermal Management System that uses (Composite Phase 

Change Material and heat pipes) and was specifically built and tested for e-bike battery cooling 

under varied discharge rates and airflow circumstances. By adding 20% Ethylene Glycol into 

the Phase Change Material, the Battery Thermal Management System achieves improved mass 

stability and a staggering 104-fold improvement in thermal conductivity. Experimental testing 

done at 0.5C, 1C, and 1.5C discharge rates reveal that the Battery Thermal Management 

System is effective at maintaining battery temperature, with findings showing a drop to 37°C 

at high discharge rates. Adding forced convection with airflow at 3 m/s enhances thermal 

performance by decreasing the battery temperature to 35.25°C and ensuring consistent 

temperature distribution across the battery pack [42]. Chuanxue Song et al. developed a 
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revolutionary battery monitoring system for electric bicycles that uses an Android client and 

an ARM microcontroller. The Battery Monitoring System is effective and viable for electric 

bicycle applications after undergoing extensive testing that includes charging/discharging 

cycles, estimating accuracy, and communication protocols [43]. These studies contribute 

significantly to the advancement of electric bicycle technology, addressing key challenges such 

as battery performance, thermal management, and monitoring systems. By improving 

efficiency, extending range.  

2.7 Review of previous studies on structure and operating 

parameters to improve electric bicycle performance 

The performance of EABs is also an important aspect, there are several studies that have 

explored various aspects of EABs to enhance their performance and functionality. Chiharu 

Misaki et al. explored the use of metal hydrides (MHs) for hydrogen storage in fuel cell (FC) 

systems for EAB The power demand was measured at 54 W for flat roads and 215 W for 

gradient roads from actual running tests—conducted on flat and gradient roads. The results 

showed that the FC system, combined with an auxiliary battery, provides significant benefits 

in terms of power capacity and weight capacity [44]. Sen-Yung Lee et al. proposed a method 

to enhance the fatigue safety factor of an electric assisted bicycle frame through the integration 

of various techniques including uniform design, entropy weighting method, grey relational 

analysis, and genetic algorithm. The revised design shows a maximum improvement of 19.59% 

in the fatigue safety factor after analyzing a fatigue finite element for each model in the uniform 

design table to calculate the fatigue safety factor [45]. Norihito Fukushima et al. proposed a 

Recursive Least Square (RLS) method for pedaling torque estimation in electric power assisted 

bicycles without using an expensive torque sensor. The results show that the proposed method 

successfully estimates the coefficients of the load torque, even on roads with upward slopes 
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[46]. Zhang Kai et al. conducted simulation study of control adaptive to load and road slope on 

speed and torque of EAB through evaluating bike body load and road slope load by handling a 

pedal force and bike speed signal [47]. Okan Uyar et al. presented a mini sensor system for 

load cells to measure a pedal force of electric bicycle by simulation and experimental research. 

The study results showed that when the pedal forced an oscillation appeared with high velocity 

and the driver torque and oscillation dropped when an electric power was assisted by DC motor 

[48]. Tinghua Li et al. presented a method of speed control without torque sensor for EAB. The 

proposed method based on the real-time of wheel angular velocity to decide assistance power 

instead of using torque sensors. The proposed method demonstrated that, the rapidity and 

stability of performance was improved [49]. C. Abagnale et al. placed the electric motor in the 

central position, which transmits torque to the central hub via a bevel gear and utilized a strain 

gauge load cell to measure instantaneous power and speed with the aim to optimize 

performance and environmental impact [50]. Berno J.E. Misgeld et al introduced a new method 

for reconstructing the physical pedaling torque based on estimating the external force acting 

on the bicycle due to the road slope by reconstructing the inclination angle using an orthogonal 

filter. To increase an accuracy in pitch angle estimation and high dynamics required to supply 

a good torque estimation due to fast changes in the road's slope angle [51]. In addition, there 

are some studies related to convenience and flexibility of EBs were conducted [52]. Qing Yu 

et al proposed a dynamic electric fence planning method to solve the problem of random 

parking. However, it may negatively impact the convenience of bike sharing. But the research 

indicated that the dynamic electric fence approach can save 25.31% and 27.76% of bike 

resources and reduce. It also improved the efficiency and organization of bicycle-sharing 

services while reducing energy consumption [53]. A detailed charging approaches have been 

studied to enhance the efficiency and convenience of bicycle use [54]. Rumeng Yin et al. 

advocated installing a modest off-grid solar photovoltaic system in urban public places or on 
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the roofs of urban facilities to encourage the use of solar energy in cities. Photovoltaic power 

may be stored in shared electric bike batteries for flexible use, according to the research. 

According to the study, the optimal sizes of one PV array unit ranged from 2 m2 to 6 m2 for 

several cities with varying climates [55].  Besides that, another research with the aim of 

improving the performance of electric bicycle has been also conducted [56]. Ximing Chang et 

al. presented a Smart Predict-then-Optimize method to balance bicycle supply and demand The 

study is carried out on real-world bike-sharing data in Shenzhen, China, demonstrating 

reductions of 11.69% in relocation distance and 14.09% in carbon emission costs when 

relocating operational and unusable bicycles simultaneously [57]. Nguyen Ba Hung et al. 

presented the dynamic characteristics of an electric bike using a 9-speed semi-auto 

transmission. The study varied the parameters of gear speed level, slope ratio to control and 

optimize the bike velocity and power generation for electric bikes [58]. Le Trong Hieu et al. 

provided an experimental investigation and mathematical model simulation to increase bike 

performance by modifying transmission ratio, wheel radius, and slope ratio parameters. The 

research indicated that the bicycle velocity can significantly improve though improving the 

transmission ratio and wheel radius [59]. Roushan Kumar et al. provided an experimental and 

simulated model of a parallel hybrid electric bicycle for a mountainous location. The study 

examined cycle speed and power generation though changing slope gradient and wheel radius 

[60].  

2.8 Summary 

This chapter gives an introduction to e-bikes and a literature review regarding motor control, 

battery technology and external parameters effects on maximum velocity acceleration 

characteristics and performance of EBs. All previous studies have focused on improving 

bicycle performance through innovative battery management systems and motor technology. 
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However, there are still many limitations in research on the influence of structure design on 

electric bicycle performance. Therefore, comprehensive investigations is needed to provide a 

best understanding of effects of crucial design parameters in bicycle performance. To fill this 

gap, the experiment and simulation work will be carried out to examine the influence of 

importance parameters to maximum velocity acceleration characteristics, and fluctuations of 

voltage value to improved overall performance of EBs. A brief description of how to achieve 

a target can be summarized in the flow chart as shown in figure 2.1. And information on the 

experiment set up that will be applied in this study on chapter 3. 

 

 

Fig. 2.1 The flowcharts of the potential strategies to enhance bicycle performance  
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3.  EXPERIMENTAL SYSTEM 

This part introduces the research electric bicycle and experimental system. Electric bicycles, 

commonly known as e-bikes, are bicycles equipped with an integrated electric motor used to 

assist propulsion. They come in a variety of styles and configurations, catering to a range of 

uses from commuting and recreational riding to off-road adventures. The purpose of the 

experimental setup is to support the basic electric behavior data such as bicycle velocity, travel 

distance and the fluctuation of battery voltage in starting period to valid simulation model. The 

details of researching bicycles and experimental system will be introduced below. 

3.1 Research electric bicycle 

The electric bicycle with key features including:  

• Electric Motor: E-bikes are powered by an electric motor that assists the rider's 

pedaling efforts. 

• Battery: The battery provides power to the motor. It is usually rechargeable and can 

be located on the down tube, rear rack, or integrated into the frame. 

• Pedal Assist and Throttle: E-bikes often have pedal-assist systems (PAS), which 

engage the motor as you pedal, providing varying levels of assistance. 

• Control System: Most e-bikes feature a control system with a display unit mounted on 

the handlebars. This display provides information on battery level, speed, distance 

traveled, and allows the rider to adjust the level of motor assistance 

3.2 Experimental setup 

The experimental system and research engine are introduced in this section. The experimental 

setup's sole goal is to provide credible simulation model support for fundamental electric 
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bicycle behavior data, including maximum velocity, acceleration characteristic, voltage value 

characteristics. Below is an introduction to the experimental system and research bicycle in 

detail: A 21 kg weight of bicycle, A Permanent Magnet brushed DC motor is utilized. The Li-

ion battery types 18650 Lithium-ion battery cells were employed in this experiment as the 

intention is to reduce the overall weight of the e-bicycle. NI 9221 model is used for voltage 

input value with detail future mentioned in the table 3.1 Besides that, the NI 9221 is connected 

to cDAQ 9171, which interacts with LabView program. Compact data acquisition specification 

was shown in table 3.2.  The speed sensor, which was used to measure bicycle velocity and 

travel distance with specification as mentioned in the table 3.3 

Table 3.1: NI 9221 specification 

Characteristics 

Number of channels 8 

ADC resolution 12 bit 

Maximum Sample Rate  

R Series Expansion Chassis 475 kS/s 

Input range ±60 V 

Measurement voltage, channel-to-COM (V) 

Minimum ±61.4 

Typical ±62.50 

Maximum ±63.8 

Overvoltage protection, channel-to-

COM 
±100 V 

Input impedance 

Resistance 1 MΩ 

Capacitance 5 pF 

Input bandwidth ( -3 dB) 950 kHz min 
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Table 3.2: cDAQ 9171 specification 

General-Purpose Counters/Timers 

Number of counters/timers 8 

Resolution 32 bits 

Internal base clocks 80 MHz, 20 MHz, 100 kHz 

External base clock frequency 0 MHz to 20 MHz 

Output frequency 0 MHz to 20 MHz 

Base clock accuracy 50 ppm 

Bus Interface 

USB specification USB 2.0 Hi-Speed 

High-performance data streams 6 

Data stream types available 

Analog input, analog output, digital 

input, digital 

output, counter/timer input, counter/tim

er output 

 

Table 3.3: Speed sensor specification 

Specification 

Main chip  LM393 

Detection Distance 2~30cm 

Detection Angle 35 ° 

Working Voltage 3.3V~5V 

Board Size 31 * 14mm 

Board Weight 3g 

supply current 20mA 
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Table 3.4 Electric bicycle specifications 

Parameters Value 

Mass of bicycle 21 kg 

Wheel radius  0.33m 

Motor power 350W 

Crank length  0.17m 

Battery type  Rechargeable Li-ion 

Battery voltage  36 V 

Battery capacity 10 Ah 

Gear speed 5 level 

Speed level1 3.43 

Speed level2 3 

Speed level3 2.66 

Speed level4 2.4 

Speed level5 2.18 

 

3.3 Experimental testing condition 

The conditions for conducting the experimental test are set as follows: an electric assisted 

bicycle mass of MEB =21 kg, a wheel radius of Rw= 0.33 m, a Rider mass of Mr = 75 kg. The 

60-sec experimental test was conducted on real road test at Taehwa river in South Korea with 

the road grade of 0% and almost wind speed of 0 km/h. Table. 3.4 shows the specification of 

electric assisted bicycle, which is used in the real test at Taehwa river. Fig.3.1 presents the 

experimental system for electric assisted bicycle including Lithium-ion battery (LIB), DC 

motor, NI-9221 module, photo sensor, electric control unit (ECU), a computer (PC). The 

lithium-ion battery (LIB) was equipped on a frame of electric assisted bicycle, a DC motor 

was installed in the rear wheel to create propulsion torque. In addition, the computer is 

equipped with a Lab-view program to collect and store experimental data transferred from 
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ECU module. When the EAB is operating the photo sensor will detect wheel movement by 

digital signal and send it to ECU module to calculate bicycle velocity. Besides that, an NI-

9221 module with sample rate of 800kS/s was used to measure voltage of Lithium-ion battery 

in real time. Afterward, all the above signals will be transmitted to the computer through a 

USB cable, and they are monitored and stored by the Lab-view program [60]. Boundary 

condition for real road test for various transmission ratio and bicycle weight were mentioned 

in table.3.6 and 3.7  

3.4 Accuracy of measurements and uncertainty 

To ensure the reliability of measurement instruments, each piece of equipment was calibrated 

within a set amount of time. After every measurement, all electric equipment is cleaned and 

calibrated before the next measurement cycle. Three repeated measurements of each set of test 

conditions were made in order to remove reading uncertainty. To estimate the limiting 

inaccuracy associated with each calculated parameter, a comprehensive uncertainty analysis 

is performed based on the confidence of the instrument utilized and the measured rate. The 

uncertainty range of the measured parameters is summarized in Table 3.5. 

Table 3.5: Uncertainty of measured parameters 

Measured parameters Uncertainty 

Velocity <2% 

Travel distance <2% 

Voltage value <2% 
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Fig.3.1 Experimental system of an electric bicycle 

Table 3.6 Experiment conditions for changing transmission ratio 

Transmission 

ratio 
Bicycle weight (kg) Rider weight (kg) 

Slope ratio 

(%) 

Wind velocity 

(km/h) 

2.18 21 75 0 0 

2.4 21 75 0 0 

2.66 21 75 0 0 

3 21 75 0 0 

3.43 21 75 0 0 

 

Table 3.7 Experiment conditions for changing bicycle weight  

Bicycle weight 

(kg) 
Transmission ratio Rider weight (kg) 

Slope ratio 

(%) 

Wind velocity 

(km/h) 

21 3.43 75 0 0 

26 3.43 75 0 0 

31 3.43 75 0 0 

36 3.43 75 0 0 

41 3.43 75 0 0 
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3.5 Summary 

This chapter has detailly explained about the electric bicycle testing specification, experimental 

system setup, procedures and experimental condition. Based on this experimental system, the 

real road test was conducted at Taehwa river in South Korea to provide data. Which was 

analyzed to examine bicycle velocity, travel distance, and the fluctuation of battery in starting 

period under initial conditions. 
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4.  SIMULATION MODEL 

 

4.1 Introduction  

MATLAB Simulink is a powerful tool for simulating and modeling dynamic systems, 

including electric bicycles (e-bikes). Simulink provides a block diagram environment where 

users can model complex systems using interconnected blocks that represent mathematical 

operations, system components, and data flows. Simulink is tightly integrated with MATLAB, 

allowing for seamless use of MATLAB functions and scripts within Simulink models. This 

integration facilitates complex computations and data analysis. Simulink includes a wide range 

of toolboxes and libraries tailored for specific applications, such as control systems, signal 

processing, and physical modeling. By using Simulink, the study can create detailed 

simulations of e-bike systems to analyze performance, optimize components, and test control 

strategies. 

4.2 Governing formulas for the electric bicycle model 

The model analyzed kinetic and dynamic inputs in motion conditions of an electric bike on the 

road, as shown in Fig.4.1. 

Newton’s second law was applied to electric bike dynamics as below: 

𝐹𝑝𝑓  − 𝐹𝑠𝑓  − 𝐹𝑎𝑓 − 𝐹𝑟𝑓 = 𝑀
𝑑2𝑥

𝑑𝑡2
 (1) 

The force of air resistance can be determined by: 

𝐹𝑎𝑓 =
1

2
𝐴𝑎𝐶𝑎𝜌(𝑣𝑤 + 𝑣𝐸𝐵)2 (2) 

The force of rolling resistance can be determined by: 
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𝐹𝑟𝑓 = 𝑔𝑀𝐶𝑟𝑟 cos 𝛼 (3) 

The force of slope resistance can be determined by: 

𝐹𝑠𝑓 = 𝑀𝑔𝐶𝑠 (4) 

where Cs is the slope resistance coefficient (Cs=sin(α)). 

The propulsion force can be calculated by: 

𝐹𝑝𝑓 = 𝐹𝑠𝑓 + 𝐹𝑎𝑓 + 𝐹𝑟𝑓 + 𝑀
𝑑2𝑥

𝑑𝑡2 (5) 

Therefore, the total driving torque required is: 

𝑇 = (𝐹𝑠𝑓 + 𝐹𝑎𝑓 + 𝐹𝑟𝑓 + 𝑀
𝑑2𝑥

𝑑𝑡2)𝑅𝑤 = 𝐹𝑐ℎ𝑅𝑟𝑔 = 𝐹𝑝𝑓𝑅𝑤 (6) 

The electric bicycle uses a battery as the power source to supply energy for the DC motor. The 

battery installed on the EB is a lithium-ion battery. Fig. 4.2 shows a typical discharge curve of 

the battery. The model battery used on the EB is a discharge model, it is similar to the Shepherd 

model, which can present accurately the voltage dynamic while the current varies and considers 

the open circuit.  A term concerning the polarization voltage is added to represent the open-

circuit voltage behavior, concerning the polarization resistance was modified. The voltage of 

the  battery is given by: 

𝑉𝑏 = 𝐸0 −
𝐾𝑄

𝑄−𝑖(𝑡)
(𝑖) − 𝑅. 𝑖 + 𝐴𝑒(−𝐵.𝑖(𝑡)) −

𝐾𝑄

𝑄−𝑖(𝑡)
𝑖∗ (7) 

The electric bicycle uses a direct current (DC) motor attached to the rear wheel, front-wheel, 

or both wheels. When the driver operates the e-bike the DC motor generates torque to assist 

the driver. The propulsion torque of an electric bicycle can be calculated by: 

𝑇 = 𝐹𝑝𝑓𝑅𝑤 (8) 
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𝑇 = 𝛾𝑇𝑚 (9) 

By combining Eqs. (8), (9). The propulsion torque of electric bicycle can be restated as 

follows: 

𝐹𝑝𝑓𝑅𝑤 = 𝛾𝑇𝑚 (10) 

Figure. 4.3 shows the continuous-time electromechanical equations of a separately excited DC 

motor circuit. Equation (11) is the electrical circuit equation of the armature, and Eq. (12) is 

the mechanical equation of the DC motor with a load [61]. 

𝐸𝑐 + 𝑅𝑎𝑖𝑎(𝑡) + 𝐿𝑎
𝑑𝑖𝑎

𝑑𝑡
= 𝑈𝑎 (11) 

𝐵1𝑤𝑚 + 𝑗
𝑑𝑤𝑚

𝑑𝑡
= 𝑇𝑒 −𝑇𝑚 = 𝑇𝑎 (12) 

The electrical equivalent circuit of the armature, related to Eq. (12) is given in Fig. 4.4. The 

back emf is modeled by a dependent voltage source whose value is controlled by speed, a 

mechanical variable [62]. 

The electric variable of the DC motor is armature current, and the mechanical variable is speed. 

In Eqs. (11) and (12), back EMF (Ec) is proportional to speed, while produced torque (Te) is 

proportional to armature current, as shown in Eqs. (13) and (14). 

𝐸𝑐 = 𝐾𝑏𝑤𝑚 (13) 

𝑇𝑒 = 𝐾𝑏𝑖𝑎 (14) 

where Kb is the torque constant or back EMF constant in separately excited DC motors. 

Combining Eqs. (11), (12), (13), and (14) present the dynamic of the DC motor as Eqs. (15) 

and (16): 
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𝐿𝑎
𝑑𝑖𝑎

𝑑𝑡
+ 𝑖𝑎(𝑡)𝑅𝑎 + 𝐾𝑏𝑤𝑚 = 𝑈𝑎 (15) 

𝐽
𝑑𝑤𝑚

𝑑𝑡
+ 𝐵1𝑤𝑚 + 𝑇𝑚 = 𝐾𝑏𝑖𝑎(𝑡) (16) 

By combining Eqs (10), (15), (16). The propulsion torque of electric bicycle can be re-

written as follows: 

𝐹𝑝𝑓 =
1

𝑅𝑤
[

𝐾𝑏𝐾𝑎

𝑅𝑎
𝑢 −

𝐾𝑏𝐿𝑎

𝑅𝑎

𝑑𝑖𝑎

𝑑𝑡
− 𝐽

𝑑𝑤𝑚

𝑑𝑡
− (𝐵1 +

𝐾𝑎𝐾𝑏

𝑅𝑚
) 𝑤𝑚] (17) 

Fig 4.1. The model of the electric bicycle 



30 

Fig. 4.2 Typical discharge cure 

Fig. 4.3. The armature equivalent circuit of DC motor 
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Fig. 4.4. The electrical equivalent circuit of armature  

The total power utilized to propel an electric bicycle and driver using to overcome friction, 

slope, and air resistance is given by equation. 

𝑃𝑡𝑜𝑡𝑎𝑙 = 𝑃𝑓𝑟𝑖𝑐𝑡𝑖𝑜𝑛 + 𝑃𝑠𝑙𝑜𝑝𝑒 + 𝑃𝑎𝑖𝑟  (18) 

𝑃𝑎𝑖𝑟 =
1

2
𝐴𝑎𝐶𝑎𝜌(𝑣𝑤 + 𝑣𝐸𝐴)2𝑣𝐸𝐴 (19) 

𝑃𝑠𝑙𝑜𝑝𝑒 = 𝑀𝑔𝐶𝑠𝑣𝐸𝐴 (20) 

𝑃𝑓𝑟𝑖𝑐𝑡𝑖𝑜𝑛   = 𝑔𝑀𝐶𝑟𝑟 cos 𝛼 𝑣𝐸𝐴  (21) 

The selection of the electric motor power (Pm) for assisting the rider during pedaling is 

determined based on the consumed power (Ptotal). The calculation process for determining the 

required power (Prq) of the electric bike is outlined in the flowchart depicted in Fig. 4.5. The 

input parameters include the gear speed (γ(i)), frontal area (A(i)), and slope grade (G(i)), with 

the index 'i' representing each specific input factor 
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Fig.4.5 The calculated power flowchart of EB 

4.3 Zero-dimension model 

MATLAB Simulink 2021a was used to generate the simulation. The main component of 

electric bicycle was defined under mathematical equation including bicycle dynamic, electric 

direct current motor, lithium battery. Utilizing information from experimental observations, 

main variable wheel size, battery capacity, acceleration due to gravity, air density were 

determined. A Windows PC with an Intel® Core i7™ 77003 60 GHz processor and 32 GB of 

RAM was used for this experiment. Additionally, this section describes the basic calculation 

process and covers the material properties treatment, beginning and boundary requirements, 

computer network computation, and post-treatment of the preprocessor. 
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The DC motor block was connected to DC Voltage Source, and then connected to the 

mechanical components representing the bicycle’s inertia. The PID controller was connected 

to DC motor to control the motor’s speed. The PS-Simulink Converter and Simulink-PS 

Converter blocks were used to interface between Simulink and Simscape blocks. Finally, the 

sensor was connected to measured output data. Set the parameters according to specification 

of bicycle including battery voltage in DC Voltage Source, motor parameters such as 

resistance, inductance, and back EMF constant in the DC motor block. Fig. 4.6, Fig4.7 and Fig 

4.8 show the main component properties of an electric bicycle model. The boundary conditions 

for each simulation case were shown in table below: 

 

Fig 4.6: The bicycle properties 
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Fig 4.7: The DC motor properties 

 

Fig 4.8: Li-on battery properties 

Table 4.1 Description of the simulated cases regarding the various transmission ratio  

Transmission 

ratio 
Bicycle 

weight (kg) 

Rider weight 

(kg) 

Slope ratio 

(%) 

Wind 

velocity 

(km/h) 

Frontal area 

(m2) 

2.18 21 75 0 0 0.423 

2.4 21 75 0 0 0.423 

2.66 21 75 0 0 0.423 

3 21 75 0 0 0.423 

3.43 21 75 0 0 0.423 

2.18 21 75 0 0 0.423 

2.4 21 75 0 1 0.423 

2.66 21 75 0 2 0.423 

3 21 75 0 3 0.423 

3.43 21 75 0 4 0.423 

2.18 21 75 0 0 0.423 

2.4 21 75 0.36 0 0.423 
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2.66 21 75 0.48 0 0.423 

3 21 75 0.65 0 0.423 

3.43 21 75 0.85 0 0.423 

 

Table 4.2. Description of the simulated cases regarding the various to bicycle weight  

Bicycle weight 

(kg) 
Transmission 

ratio 

Rider weight 

(kg) 

Slope ratio 

(%) 

Wind 

velocity 

(km/h) 

Frontal area 

(m2) 

11 3.43 75 0 0 0.423 

16 3.43 75 0 0 0.423 

21 3.43 75 0 0 0.423 

26 3.43 75 0 0 0.423 

31 3.43 75 0 0 0.423 

11 3.43 75 0 0 0.423 

16 3.43 75 0 1 0.423 

21 3.43 75 0 2 0.423 

26 3.43 75 0 3 0.423 

31 3.43 75 0 4 0.423 

11 3.43 75 0 0 0.423 

16 3.43 75 0.36 0 0.423 

21 3.43 75 0.48 0 0.423 

26 3.43 75 0.65 0 0.423 

31 3.43 75 0.85 0 0.423 

 

Table 4.3. Description of the simulated cases regarding the various frontal area  

Frontal area (m2) 
Bicycle 

weight (kg) 

Rider weight 

(kg) 

Slope ratio 

(%) 

Wind 

velocity 

(km/h) 

Transmission 

ratio 

0.423 21 75 0 0 3.43 

0.723 21 75 0 0 3.43 

1.023 21 75 0 0 3.43 

1.323 21 75 0 0 3.43 

1.623 21 75 0 0 3.43 

0.423 21 75 0 0 3.43 

0.723 21 75 0 1 3.43 

1.023 21 75 0 2 3.43 

1.323 21 75 0 3 3.43 

1.623 21 75 0 4 3.43 
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0.423 21 75 0 0 3.43 

0.723 21 75 0.36 0 3.43 

1.023 21 75 0.48 0 3.43 

1.323 21 75 0.65 0 3.43 

1.623 21 75 0.85 0 3.43 

 

Table 4.4. Description of the simulated cases regarding the various wheel radius  

Wheel radius (m) 
Bicycle 

weight (kg) 

Rider weight 

(kg) 

Slope ratio 

(%) 

Wind 

velocity 

(km/h) 

Frontal area 

(m2) 

0.3 21 75 0 0 0.423 

0.33 21 75 0 0 0.423 

0.36 21 75 0 0 0.423 

0.39 21 75 0 0 0.423 

0.42 21 75 0 0 0.423 

0.3 21 75 0 0 0.423 

0.33 21 75 0 1 0.423 

0.36 21 75 0 2 0.423 

0.39 21 75 0 3 0.423 

0.42 21 75 0 4 0.423 

0.3 21 75 0 0 0.423 

0.33 21 75 0.36 0 0.423 

0.36 21 75 0.48 0 0.423 

0.39 21 75 0.65 0 0.423 

0.42 21 75 0.85 0 0.423 

 

4.4 Summary  

This chapter has explained the simulation modeling in MATLAB-Simulink software with 

version 2021. By utilizing MATLAB Simulink, this study can gain deep insights into the 

performance and optimization of electric bicycles, facilitating efficient and effective 

development processes. To ensure the accuracy of simulation model, the outcomes will be 

validated with experimental results. 
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5. AN INVESTIGATION ON THE EFFECTIVE 

PERFORMANCE AREA OF THE ELECTRIC BICYCLE 

WITH VARIABLE KEY INPUT PARAMETER 

5.1 Comparison experiment and simulation results  
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Fig. 5.1. (a) Validation of bicycle velocity at speed1 and speed4 by simulation model; (b) 

Validation of battery voltage at speed1 and speed4 by simulation model; (c) Validation of 

bicycle velocity with a chanced rider mass by simulation model; (b) Validation of battery 

voltage with a chanced rider mass by simulation model. 

Fig.5.1 shows the validation of bicycle velocity and battery voltage between the simulation and 

experiment results by variable the transmission ratio and rider mass. The experimental test was 

conducted within 60 second under initial condition including bicycle mass of 21 kg, wind speed 

of0km/h, slope grade of 0%, wheel radius of 0.33m while the rider mass and gear speed was 

changed from 75kg to 85kg and from speed level 1 to speed level 4. It can be seen that, the 

simulation results have shown good agreement with experimental results under identical 

condition, demonstrating the accuracy of the simulation model. The maximum difference was 
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notified 0.6% at 36.7 seconds with rider mass was 75 kg. This can be acceptable because the 

experimental result values are considered as an average value during the experiment test. 

 

5.2 Effect of operating parameters 
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(d) 

Fig. 5.2. Impact of driver mass to (a) velocity, (b) distance, (c) and (d) battery voltage 

 

Driver mass directly affects EB motion through inertial force. The simulation and experimental 

trials were conducted under the same initial conditions of 21 kg bicycle mass, 0.33 m wheel 

radius, 3.43 transmission ratio, 0% slope ratio, and 0 km/h wind speed, while driver mass varied 

from 78 kg to 88 kg. Following the simulation results, Figures (5.2a) and (5.2b) shown that the 

EBs reach maximum velocity at 27.21 Km/h and 26.29 km/h when the driver mass is 78 kg 

and 88 kg within 14.93 seconds and 16.13 seconds. Besides that, the velocity and moving 

distance are slightly decreased by 2% and 6.17% when driver mass increases from 78 kg to 88 

kg, respectively. The decreasing of velocity and moving distance with increasing of driver mass 

can be explained as follow: The increasing of driver mass led to increasing in the friction force 

and slope resistance force, therefore the resistance force total was increased, while the initial 
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experimental condition is the same. So, the velocity and moving distance of EB were decreased.  

Moreover, the required time is 16.1 seconds and 17.3 seconds to reach a stable velocity it 

implies that, the velocity and time to reach a stable velocity of EBs can be optimized with 

decreasing driver mass. Figures (5.2a) and (5.2b) shown that, the experimental and simulation 

data have the same trend. The maximum difference of velocity was 8.47% and 5.81% at 24.5 

seconds and 14.9 seconds when the driver mass was 78 kg and 88 kg, similar to the maximum 

difference of moving distance of 2.04% and 4.3%, respectively. This maximum scale is 

acceptable because the velocity value flow average value during the experiment. A sudden 

wind can lead to such error. The electric consumption was known as an important indicator of 

effective performance area during operating behavior of EBs, which was shown in Figures 

(5.2c) and (5.2d). With increased driver mass from 78 kg to 88 kg, electric consumption slightly 

increased by 0.05%. This can be explained by the increased driver mass led to increase the 

resistance force total, therefore the load to motor was increased, so the energy demand for 

motor was increased.  Furthermore, the required time to reach a stable battery voltage was 18.5 

and 19.7 seconds at driver mass 78 kg and 88 kg, which implies that electricity consumption 

and duration of fluctuating voltage during acceleration can be optimized by reducing EB mass. 

Figures (5.2c) and (5.2d) compare the simulated and experimental battery voltages. The 

maximum difference of battery voltage during operating behavior with driver mass of 78 kg 

and 88 kg was 3.02% and 2.55% at 54.5 seconds and 35.3 seconds, respectively. Battery 

voltage is an average of the experimental values and is acceptable. To reduce the error of 

battery voltage between simulation and experimental results, in addition to correct input 

parameters, sudden wind and device error should be minimized. 
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Fig. 5.3  Impact of slope ratio to (a) velocity, (b) distance, (c) propulsion torque and (d) 

battery voltage 

 

The effects of slope ratio on the operating characteristics of the EB are presented in Eqs. (3) 

and (4). The simulation was conducted with initial conditions of 21 kg electric bicycle mass, 

48 kg driver mass, 0.33 m wheel radius, 0 km/h wind speed, 3.43 transmission ratio, and 1.225 

air density while the slope ratio is varied at 0%, 0.36%, 0.48%, 0.65%, and 0.82%. Figures 

(5.3a) and (5.3b) present the effects of slope ratio on velocity as well as moving distance. The 

EB’s velocity and moving distance significantly decrease by 15.02% and 15.38%, the EB 

reaches maximum velocity at 27.95 km/h and 23.78 km/h when slope ratio is 0% and 0.82%, 

respectively. Moreover, the required time to reach a stable velocity is 14.9 seconds and 16.1 

seconds at 0% and 0.82%. The decreasing of velocity and moving distance can be explained 

as follow: The increased slope ratio led to a significant increase in slope resistance force and 

slight decrease of rolling resistance force, therefore the resistance force total was increased. 

So, the load on the motor was increased. This is why the time to reach a stable velocity is 

longer. 

In addition, propulsion torque increases when slope ratio increases from 0 % to 0.84%, as 

presented in Fig. (5.4c). This could be interpreted by the increased load generated by the DC 

motor to produce the higher propulsion torque was required to overcome the resistive load. 

Figure (5.4d) shows the electricity consumption under the effect of slope ratio. The electric 

consumption slightly increases by about 0.08%. when the slope ratio increases from 0% to 

0.84%. the increasing of electric consumption can be explained by: the increasing of slope ratio 

led to increasing resistance force total, therefore the load on motor was increased, while the 

initial condition is same, so the energy demand supplies for DC motor was increased to adapt 

for DC motor overcome the increase of load. Besides that, the time to stable voltage is 18.5 
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seconds and 19.7 seconds at slope ratio is 0% and 0.82%, respectively. It implies that the 

electric consumption and time required for the battery to reach a stable voltage can be 

optimized by reducing slope ratio. Based on the observed results, Slope ratio 0% is the optimal 

parameter for future investigation. 

 

5.3 Effect of structure parameters 
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Fig. 5.4. Impact of EB mass to (a) velocity, (b) distance, (c) and (d) battery voltage 

 

The mass of the electric bicycle (MEB) is one of the factors that directly influences the 

operating behavior of electric bikes because it has a relationship with rolling resistance force 

and slope resistance force, which is shown in Eqs. (3) and (4). According to the simulation 

results, we can observe Fig. (5.4a) and (5.4b), the EB reaches maximum velocity at 27.95 km/h 

and 25.98 km/h when EB mass is 21 kg and 43 kg within 14.9 seconds and 16.1 seconds, 

respectively. The EB’s velocity and moving distance decreased 5.7% and 6.2% when EB mass 

increases from 21 kg to 43 kg. The decreasing of velocity and moving distance can be 

explained as follow: The increasing of EB mass led to increasing friction resistance force and 

slope resistance force, therefore the resistance force total was increased while the initial 

condition is same, so the velocity and moving distance have a decreasing trend. Furthermore, 
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the 23.3 seconds and 24.53 seconds are the required time to reach a stable velocity with the 

EB mass are 21 kg and 43 kg, which implies that the timing to reach stabile operating behavior 

of EB is increased by increasing of EB mass. Figure. (5.4a) and 5.4b) show that the velocity 

and moving distance from simulation results have the same trend as experimental results. The 

maximum difference of velocity at EB mass 21 kg and 43 kg are 8.82% and 8.92%, similar to 

the maximum difference of moving distance of 2.1% and 2.3%, respectively. This maximum 

scale is acceptable because the velocity value flows average value during the experiment. To 

reduce the error of velocity and moving distance between simulated and experimental results, 

besides input correct input parameters, the sudden appearance of wind should be controlled. 

Figures (5.4c) and (5.4d) show that electric consumption increases by 0.53% when EB mass 

increases from 21 kg to 43 kg. This can be explained by increasing the resistance force total 

led to increasing the load to motor, so the energy demand for the motor was increased.  Further, 

the time required for the battery to achieve a stable voltage status is 18.53 seconds and 14.93 

seconds at EB mass 43 kg and 21 kg, which implies that electricity consumption and duration 

of fluctuating voltage during acceleration can be optimized by reducing EB mass. Based on the 

achieved results, electric bicycle mas MEB= 21 kg is chosen as input parameter of future 

investigation.  Figures (5.5c) and (5.5d) compare the simulation and experimental results of 

battery voltage. The Maximum difference of 3.02% and 2.1% was observed at 54.5 seconds 

and 27 seconds when EB mass was 21 kg and 43 kg, respectively. It is acceptable because the 

battery voltage value flows average value during the experiment. The error can be caused by 

device noise as well as sudden wind. 
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Fig. 5.5. Impact of transmission ratio to (a) velocity, (b) distance, (c) and (d) battery voltage 
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The experiment and simulation were conducted with initial conditions of 76 kg driver mass, 

21 kg EB mass, 0 km/h wind speed, 0% slope ratio, and 0.33 m wheel radius with transmission 

ratios varying at 2.18 and 3.43 (Table 1). Figures (5.5a) and (5.5b) show the effect of 

transmission ratio on velocity as well as the distance of the EB. Following the change in gear 

speed, the velocity and moving distance of the EB significantly increased with 31.76% and 

32.18% when gear speed is increased from 1-speed to 5-speed. Moving distance increases 

from 316.2 to 421.4 m when gear speed changes from 1-speed to 5-speed, respectively. 

Further, the required time to achieve stable velocity is 16.13 and 13.73 seconds with 1-speed 

and 5-speed, respectively. As shown in Fig. (5.5a), the experimental velocity slightly differs 

from the simulation velocity, with a maximum difference of velocity when 1-speed and 5-

speed were notified 8.5 % and 7.1 % at 31.73 seconds and 23.3 seconds. This velocity is an 

average of the experimental values and is acceptable. The sudden appearance of wind can 

cause the error. 

Figures (5.5c) and (5.5d) show the simulated and experimental battery voltage. The maximum 

voltage difference of 1-speed and 5-speed was 2.41% and 3.02% at 29.3 seconds and 54.5 

seconds, respectively. Electric consumption slightly increased 0.54% by increasing the 

transmission ratio from 2.18 to 3.43. The increase in electric consumption can be explained as 

follows: The wheel revolutions are high to adapt higher velocity for EB, therefore the 

propulsion torque from the motor was increased. This is the reason why the energy demand 

for motors was increased.  Besides that, the required time to achieve a stable battery voltage 

is 14.9 seconds and 17.3 seconds when 5-speed and 1-speed respectively. This implies that the 

required time to reach a stable battery voltage and electricity consumption can be optimized 

by transmission ratio change. Through the results obtained, the transmission ratio 3.43 is 

selected as one for key input parameter for future investigation. 
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Fig. 5.6. Impact of wheel radius to (a) velocity, (b) distance, (c) propulsion torque and 

(d) battery voltage 

Wheel radius directly affects EB motion through the revolution of the wheel. Figures (5.6a) 

and (5.6b) show that the velocity as well as moving distance of the EB slightly increase with 

the increase of wheel radius from 0.3 m to 0.39 m but slightly decrease with the increase of 

wheel radius from 0.39 m to 0.42 m, respectively. The maximum velocity and moving 

distances are 28.31 km/h and 429.43 m at wheel radius Rw= 0.39 m while the maximum 

velocity and moving distance are 27.5 km/h and 424.66 m at wheel radius Rw=0.42. 

Furthermore, the time to reach a stable velocity is 16.1 seconds and 17.5 seconds when the 

wheel radius increases from 0.3 m to 0.42 m. This result can be explained by the larger wheel 

radius leading to increased revolutionary inertia while the initial energy is constant. 

Furthermore, the increased wheel radius leads to an increase of propulsion torque, because the 

larger wheel radius leads to increased rotational inertia, so higher energy is needed to reach a 

certain velocity, but the initial energy is constant because the initial condition is the same as 

driver mass, EB mass, transmission ratio, slope ratio, wind speed. This explains why the 

increase of propulsion torque when the wheel radius is increased, as shown in Fig. (5.6c). 

Figure. (5.6d) shows the effect of wheel radius on electricity consumption. When the wheel 

radius decreases from 0.42 m to 0.3 m, the electricity consumption decreases by 0.13%, and 

the time required for stable voltage increases 16.1 seconds and 18.5 seconds, respectively. This 

could be explained by the decreasing rotational inertia leading to a decrease in load torque on 

the motor and extension of the time to reach a stable velocity. This implies that electricity 

consumption can be optimized when the wheel radius is decreased from 0.42 m to 0.3 m. Based 

on the observed result, wheel radius Rw= 0.3 m is chosen for future investigation. 
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Fig. 5.7 Impact of frontal area to (a) velocity, (b) distance, (c) propulsion torque and (d) 

battery voltage 



59 

 

Front area (A) is selected for further investigation because it influences wind resistance force. 

The velocity and moving distance of the EB significantly increase from 18.23 km/h to 27.22 

km/h and from 284.71 m to 417.413 m, respectively, when front area decreases from 1.623 m2 

to 0.423 m2.  Moreover, the respective time required to reach a stable velocity was 12.5 

seconds and 14.9 seconds, as shown in Fig. (5.7a) and (5.7b). The increase of velocity and 

moving distance can be explained as follow: The decreasing of the frontal area led to decrease 

the wind resistance force during operating behavior, therefore the resistance force total was 

decreased while the initial experimental condition is same. So, the velocity and moving 

distance was increased.   

Furthermore, when the front area is increased from 0.423 m2 to 1.623 m2, propulsion torque is 

increased by about 1.156%, as presented in Fig. (5.7c). This could be interpreted by the 

increasing of frontal area led to decrease the resistance force total, therefore the load placed 

on the DC motor was decreased. Figure (5.7d) presents the influence of front area on electricity 

consumption. The electric consumption decreased by 0.14% when front area decreased from 

1.623 m2 to 0.423 m2, and the time required for a battery to reach a stable voltage was 14.9 

seconds and 17.3 seconds at frontal area 1.623 m2 and 0.423 m2, respectively. This is because 

the decreasing of front area led to decrease the load torque on the motor, so the energy demand 

was decreased besides that the time to reach a stable velocity was extended. Through the 

research results, the effective performance area can be optimized when front area is decreased. 

Based on the observed results, front area A= 0.423 m2 is the optimal parameter for future 

investigation. 
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5.4 Summary  

The section presents a method of modeling an EB to investigate effective performance areas 

through analysis of the electric bicycle dynamic, DC motor model, and battery models by the 

MATLAB-Simulink. In addition, to validate the results from simulation, the experimental 

system was installed on the bicycle frame and the experiment was conducted on the real road 

to exam dynamic characteristics and electric consumption during operating behavior. 

The importance results was summarized:  

• The e-bike weight has a minor impact on e-bike dynamic. The maximum velocity 

increased from 25.9 km/h to 27.95 km/h and the travel distance increased 6.2 %, 

duration to reached stable velocity reduced from 24.5 to 23.3 seconds with reducing 

bicycle mass from 43 to 21 kg. 

• The transmission ratio significantly influenced e-bike performance. The maximum 

velocity increased 31%, the travel distance increased 32%, duration to reach stable 

velocity extended 13.7 – 16.1 seconds with increased gear speed level from level 1 to 

level 5.  

• The wheel size has significantly impacted on e-bike dynamic. The maximum velocity 

increased from 21 to 28 km/h, duration to reach stable velocity extended 16.1 – 17.5 

seconds, timing to reach stable voltage extended 16.1 – 18.5 seconds with increased 

wheel radius 0.3 – 0.42 m.  

• The frontal area has significantly influenced e-bike performance. The maximum 

velocity increased 18.2 – 27.2 km/h, duration to reach stable velocity reduced 14.9 – 

12.5 seconds, propulsion torque reduced 1.6% duration to reach stable voltage reduced 

17.3 – 14.9 seconds with decreasing frontal area 1.623 – 0.423 m2.  
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The contributions of this paper are as follow: By combining the results from experimental and 

simulation study, not only the timing to reach velocity and battery voltage stable status are 

completely investigated with the key input parameters effect of transmission ratio, bicycle 

mass, wheel radius, frontal area, slope ratio and driver mass of e-bike but also the electric 

consumption during operating behavior of electric bicycle is comprehensively evaluated. 

Through the timing to battery voltage reach stable period can be optimized to reduce aging 

and extend long life of battery by suitable key parameters adjustment. Furthermore, the 

performance efficiency of electric bicycles can be easily improved by suitable adjustment of 

input parameters.  

 

 

 

 

 

 

 

 

 

 

 

 



62 

6. A MACHINE LEARNING APPROACHES FOR 

PREDICTING POWER AND PERFORMANCE FOR 

ELECTRIC BICYCLE UNDER THE EFFECTS KEY 

PARAMETERS 

6.1 Machine learning 

Artificial neural networks 

ANN architecture  

An Artificial Neural Network (ANN) is a computational model inspired by the human brain's 

biological neural networks. ANNs are widely applied for tasks such as pattern recognition, 

image and speech recognition, natural language processing, regression analysis, and decision-

making. They excel at handling complex and nonlinear problems and are a crucial component 

of deep learning, a subset of machine learning that utilizes neural networks with multiple 

hidden layers. The standard feed-forward neural network structure, along with the widely 

employed backpropagation algorithm and the effective Levenberg-Marquardt training 

function, are commonly used in most applications. This choice is motivated by the well-

established theoretical foundation and the neural network's robust ability for nonlinear 

mapping [63]. In the present study, the paper also employed the backpropagation neural 

network with the Levenberg-Marquardt training function, forming the basis for all developed 

ANN models. 
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A neural network including multiple layers: the output, hidden, input layer. Each layer contains 

a specific number of neurons. Neurons perform two main functions: the summation function, 

which calculates weighted inputs, and the activation function, which processes this sum to 

generate the neuron's output. Information flows unidirectionally through the network, moving 

from the input layer to the output layer. Each layer receives signals from the previous layer's 

neurons and passes its own output to the next layer. In backpropagation (BP) neural networks, 

the cumulative error between the final network output and the actual value, often obtained 

from experimental data, is propagated backward through the network [64]. This backward 

propagation enables the adjustment of weight values throughout the entire network 

mechanism. Refer to Fig. 6.1 for a visual representation of this process.  

Fig. 6.1 The artificial neural network using multi-layer feed-forward architecture. 

Artificial Neural Networks (ANNs) provide faster predictions than conventional simulation 

programs. Neurons, which are interconnected processing nodes in ANNs, accept input from 

outside sources, aggregate it, perform a nonlinear operation on it, and then produce an output. 

The feedforward network, which has an input layer, an output layer, and numerous hidden 

layers, is a well-known ANN model. Each neuron in the network has weighted inputs and 
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outputs, allowing for flexible information processing [65]. The process of adjusting these 

weights between network layers to achieve the desired outcome is known as "training" the 

network. The output equation can be presented by following. 

𝑦 = ∑ 𝑤𝑖𝑥𝑖 + 𝑏𝑝
𝑖=1   

In evaluating and optimizing Artificial Neural Network (ANN) models, three main criteria are 

commonly used. Firstly, the primary criterion is the least Mean Square Error (MSE) during 

the validation phase. Secondly, the correlation coefficient (R2) is analyzed to assess the 

regression between the network outputs and the corresponding targets. Finally, the Mean 

Absolute Percentage Error is used in a model performance evaluation index. The correlation 

coefficient ranges from 0 to +1, with values closer to +1 indicating a strong positive linear 

correlation, and values closer to 0 indicating a weak correlation. Choosing the network 

configuration with the least MSE during validation is given priority when determining the 

hidden neuron number [66]. However, the other two criteria are also important for a 

comprehensive evaluation. 

𝑀𝑆𝐸 =
1

𝑁
∑ (𝑡𝑖 − 𝑜𝑖)2𝑁

𝑖=1   

𝑅2 = 1 − (
∑ (𝑡𝑖−𝑜𝑖)2𝑛

𝑖=1

∑ (𝑜𝑖)2𝑛
𝑖

  

𝑀𝐴𝑃𝐸 =
1

𝑁
∑ |

𝑡𝑖−𝑜𝑖

𝑡𝑖
|𝑁

𝑖=1   

where t is actual, o is predicted. 
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Table 6.1. The selected ANN network was generated by the MATLAB framework. 

 

Type of network 

Function for training 

Function for learning 

Transfer function 

Performance function 

Feed-forward back propagation 

Levenberg-Marquardt 

LEARNDGM 

Mean squared error (MSE) 

Tan sigmoid 

Data selection Training data set: 70% Training (randomly selected) 

Validation data set: 15% validation (randomly 

selected) 

Test data set: 15% test (randomly selected) 

Input parameters wheel radius, bike velocity, mass, slope ratio, 

transmission ratio. 

Output parameters Power demand, battery voltage 

 

Input and output parameter choice 

The choice of input and output variables plays a crucial role in determining the system's 

process proceeds. It is essential to choose variables that have a significant influence on the 

system, as selecting the wrong variables with less impact can prevent the attainment of the 

desired output. Therefore, careful consideration is given to the selection of input variables 

based on their influence over the process, prioritizing those that can be measured and adjusted 

[67]. In the current study, numerous parameters affect the performance and the EB. However, 

to examine the outcomes, the input variables are carefully chosen by focusing on the major 

influential parameters and those that are deliberately varied. This selection ensures that the 

most relevant and impactful factors are included as input variables in the analysis. The five 



66 

input variables are speed levels (from speed level_1 to speed_5), wheel radius (0.3, 0.33, 0.36, 

0.39, 0.42 m), frontal area (0.423, 0.723, 1.023, 1.323, 1.623 m2), slope ratio (0, 0.36, 0.48, 

0.65, 0.85%). Meanwhile, the power demand and battery voltage are chosen as output 

parameters for the performance model. The relationship between the input and output factors 

are expressed by the following equation, which captures their inclusive correlation: 

 

𝑗 = 𝐹(𝑅𝑤, 𝑣, 𝐴𝑎, 𝐺, 𝛾 ) 
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Fig. 6.2 Variation of MSE and R2 in regard to the amount of hidden neurons. 

 (a) Mean square error, (b) Correlation coefficient 

 

Development of ANN structure 

The neural network architecture encompasses various components that are crucial for training, 

testing, validating, and predicting data. These components include the network type, training 

function, transfer function, performance function, learning function, number of neurons, 

number of hidden layers, number of input parameters, number of output parameters, and the 

interlinking between each layer [68]. In this study, the network parameters utilized are 

provided in Table 6.1. The input layer consists of 5 neurons, the output layer consists of 2 

neurons, and the number of neurons in the hidden layer needs to be optimized. To determine 
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the ideal number of hidden neurons, a sensitivity analysis was conducted to examine the 

relationship between mean squared error (MSE) and R-squared (R2) values and the number of 

hidden neurons. Fig. 6.2 illustrates the fluctuation of MSE with respect to the number of hidden 

neurons using the trained network model. The largest correlation coefficient (R2) between the 

actual and predicted value during validation phase is 0.998 with 12 hidden neurons. The MSE 

was minimized (0.003) at 12 hidden neurons. The architecture of the ANN model used in this 

analysis was configured as 5-12-2, indicating five input neurons, 12 hidden neurons, and two 

output neurons, as shown Fig. 6.3 

Fig. 6.3 Recognized ANN structure of 5-12-2 

Genetic algorithm 

A genetic algorithm (GA) is a metaheuristic optimization algorithm inspired by the process of 

natural selection and genetic evolution. It is commonly used to solve complex optimization 



69 

problems where traditional methods may be inefficient or infeasible. The common component 

of genetic algorithm including: 

• Population: A set of potential solutions to the given problem. Each individual in the 

population is called a chromosome. 

• Chromosomes: Representations of solutions encoded in a way that can be manipulated 

by the algorithm, often as strings of bits (0s and 1s), but they can also be more complex 

structures. 

• Genes: Parts of a chromosome that encode specific traits of the solution, typically 

represented by bits, numbers, or symbols. 

• Fitness Function: A function that evaluates how close a given solution is to the optimal 

solution of the problem. It assigns a fitness score to each chromosome. 

• Selection: The process of choosing the fittest individuals from the population to 

reproduce. Common methods include roulette wheel selection, tournament selection, 

and rank selection. 

• Crossover (Recombination): A genetic operator used to combine the genetic 

information of two parents to generate new offspring. Common techniques include 

single-point crossover, multi-point crossover, and uniform crossover. 

• Mutation: A genetic operator used to maintain genetic diversity within the population 

by randomly altering the genes of individual chromosomes. This helps prevent 

premature convergence to suboptimal solutions. 

• Generation: A single iteration of the algorithm where a new population of solutions is 

created through selection, crossover, and mutation 
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Genetic algorithms are powerful and flexible tools for solving optimization problems where 

traditional methods may fall short. Their ability to mimic natural evolutionary processes makes 

them particularly useful for complex and high-dimensional search spaces. 

An n-dimensional chromosome is a structure of data that provides a prospective answer to an 

issue in the context of an genetic algorithm. It consists of n genes, where each gene represents 

a choice varying in the solution space. In this case, the chromosome could be expressed using 

the following equation [69]: 

 

𝐶ℎ𝑟𝑜𝑚𝑜𝑠𝑜𝑚𝑒 = [𝑐1, 𝑐2, … , 𝑐𝑛]  

where ci is the i-th value of parameters, n is the number of genes. This research incorporates 

five parameter values, namely wheel radius (Rw), bike velocity (v), frontal area (Aa), slope 

ratio (G), and speed level (𝛾). To reach an optimization target, it is chosen as a suggested 

element in the ANN-GA approach, with the following details: the power demand and voltage. 

In order to solve optimization problems, the fitness function is utilized to assess each 

chromosome's quality, and genetic operators like crossover and mutation are used to create 

new offspring chromosomes. In this instance, the chromosomal possibility yielding's optimal 

necessary power can be expressed as follows [70]: 

 

𝐶(𝑣𝑗𝑚𝑎𝑥
, 𝐴𝑎,𝑗𝑚𝑎𝑥

, 𝐺𝑗𝑚𝑎𝑥
, 𝑅𝑤,𝑗𝑚𝑎𝑥

, 𝛾𝑗𝑚𝑎𝑥
) =

𝑗(𝑣𝑗𝑚𝑎𝑥 ,𝐴𝑎,𝑗𝑚𝑎𝑥 ,𝐺𝑗𝑚𝑎𝑥 ,𝑅𝑤,𝑗𝑚𝑎𝑥 ,𝛾𝑗𝑚𝑎𝑥)

∑ 𝑗(𝑣𝑗𝑚𝑎𝑥 ,𝐴𝑎,𝑗𝑚𝑎𝑥 ,𝐺𝑗𝑚𝑎𝑥 ,𝑅𝑤,𝑗𝑚𝑎𝑥 ,𝛾𝑗𝑚𝑎𝑥)𝑁
1
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6.2 Comparison experiment and simulation results 
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Fig. 6.4. Validation of dynamic and battery voltage electric bike with various transmision 

ratio and rider mass: (a), (b), (c) various speed level; (d), (e), (f) various rider mass 
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The experiments were carried out to provide basic EB performance data which was validated 

with the simulation study. Fig. 6.4 presents the validation between the experimental and 

simulation output data. The straight lines describe the simulated results while the segmented 

line describes the experimental results. The speed level was adjusted from speed_level1 to 

speed_level5 to evaluate the dynamic and electric consumption of EB during moving condition. 

Fig. 6.4 (a) shows the highest difference in bike speed is 8.25% at 37 seconds. The bike velocity 

is an experimental average value and is thus acceptable. When the wind speed, slope grade, 

wheel radius and ES mass are kept at a constant, the bicycle velocity increases with the increase 

in speed level. Fig. 6.4 (b), (c) show the validated moving distance and battery voltage. The 

same trend could be seen in the simulation and experimental data values. The highest difference 

in the moving distance and battery voltage are 3.53% at 56 second and 0.4% at 3 seconds, 

respectively. 

Fig. 6.4 (d), (e), (f) validate the simulation results and experiment results when the rider mass 

was varied. Rider mass was an important factor impacting EB characteristics. It was selected 

as an input factor in validating the dynamic characteristics and battery voltage of EB. With 

increased rider mass, the velocity decreased from 25.3 to 24.1 km/h and the maximum 

difference was 9.42% at 32 seconds. Fig. 6.4 (e), (f) showed that the moving distance 

decreased and the electric consumption increased following the rider mass. The moving 

distance and battery voltage were well correlated with simulated and experimental time. The 

highest difference of moving distance and battery voltage were 3.38% at 54 second and 0.47% 

at 27 second. 
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6.3 Comparison simulated and predicted results 

After being correctly trained under 75% data points for training, 15% validation, and 15% 

testing, the ANN model with 5 and 2 input and output parameters and 12 hidden neurons serves 

as the fitness function for the Genetic Algorithm optimization process. Furthermore, to increase 

the accuracy of prediction model, the mean absolute percentage error is used in ANN model. 

Fig. (6.5) showed a comparison of prediction accuracy with using 600, 800, 1000 data points. 

The results showed that the 1000 data point-based ANN offers the best prediction accuracy 

with a MAPE of 0.2% during the training process.  By feeding input data to the trained ANN 

and receiving power demand and electric consumption forecasts, the GA optimization makes 

use of the trained ANN to establish the operating state. Initially, a set of random chromosomes 

is generated, and although the GA predictions may contain random errors, this study addresses 

this issue by utilizing a large number of initial chromosomes (around 5000). To ensure 

computational efficiency, the total number of evolutionary generations is set to 200. The 

flowchart depicted in Fig. 6.6 illustrates the training and prediction process of the ANN-GA 

method. Once the ANN is effectively trained, each GA optimization, involving the 

determination of maximum power demand and its corresponding operating condition, can be 

completed within a fraction of a second on a single node. This efficiency allows for the rapid 

control of electric bikes in real-world applications. 
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Fig. 6.5 The prediction model comparison instructed with 600, 800, 100 data point using  one 

power-velocity curve.  
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Fig. 6.6 The ANN-GA approach, informed from Simulink model. 
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6.4 Effect of key structure factor on electric bicycle performance  
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Fig. 6.7 Comparison between the simulated and ANN-GA predicted results of power 

demand-velocity, battery voltage-velocity curve under varying transmission ratio. 

 

The paper thoroughly summarizes and discusses the key parameters affected to dynamic and 

consumed energy of EB during operation conditions. Which hasn’t been shown elsewhere in 

the literature. Therefore, the ANN model with 1 hidden layer including 12 neurons was 

incorporated with a GA optimization to predict and enhance power demand and voltage of 

battery using wheel radius, slope ratio, bike velocity, transmission ratio, frontal area as input 

parameter. The 1000 data point from simulation study was applied into ANN training. Fig. 6.7 

presents the power demand and consumed energy versus the bike velocity under speed level 

changing. In using electric bicycles, the transmission ratio is one of the important operating 

factors, which has significantly effect on the power demand and consumed energy. To examine 

the transmission ratio dependence on the optimized power demand and consumed energy, the 

combined ANN-GA method was applied under five typical speed levels. As shown in Fig. 6.7 

(a), when the speed level 1 to level 5, the power demand showed an uptrend as well as the 

bicycle velocity uptrend, specifically increasing 531 to 546 W and from 20.9 to 30.7 km/h. The 

maximum differences in the power demand between predicted and simulated results were 3.4% 

at 4.27 km/h with speed level_3 case, respectively. A lager wheel revolution to adapt the higher 

bike speed while the other parameters were kept at constant, therefore the power demand will 

be greater to accommodate the increase in bike velocity. Fig. 6.7 (b) presents the effect of speed 

level on battery voltage. Here, the speed level changed from level_1 to level_5; the battery 

voltage during stable bike velocity showed a downtrend. This is compatible with the physical 

mechanism of EB operation that, when the bicycle kinetic is faster and the energy demand is 

greater because of the larger bike velocity. This is why the voltage fell when the speed level 

was changed from level_1 to level_5. 
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Fig. 6.8 Comparison between the simulated and ANN-GA predicted results of power demand-

velocity, battery voltage-velocity curve under varying slope grade 

 

The slope grade has a sensitive effect to power demand and battery voltage of EB during 

operation. As shown in Fig. 6.8 (a), the power demand increased when the slope grade 

increased. This is because the increase in power demand was due to an increased slope 

resistance force, that will make a larger total resistance force. Therefore, the power to bicycle 

overcome will be greater. As a result, when the slope grade rose from 0% to 0.85%, the 

demanded power rose from 540.3 to 554.4 W and the maximum velocity decreased from 27.9 

to 21.3 km/h, besides that, the highest difference between simulated and predicted results was 

5.2% at 0.89 km/h with slope grade of 0.85%.  

Fig. 6.8 (b) presents the effect of slope grade on battery voltage. It could be observed that the 

voltage dropped as the slope grade increased. This is also congruent with the physical 

mechanism of bicycle operation: when the slope ratio increases, the resistance force increases 

and the energy demand increases. This explains why the battery voltage decreased 0.08% when 

slope grade rose from 0% to 0.85%. 
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Fig. 6.9 Comparison between the simulated and ANN-GA predicted results of power 

demand-velocity, battery voltage-velocity curve under varying frontal area 

During using bicycle, frontal area is a design factor that has a significant effect on bicycle 

dynamic because the frontal area changing will directly affect to total resistance force of 

electric bike during operation process. Here, the effect of frontal area on the power demand is 

presented. As shown in Fig. 6.9 (a), when frontal area increases, the bike velocity shows a 

downtrend and the power demand shows an uptrend. The power demand increases from 486 to 

553.6 W when the frontal area increases from 0.423 to 1.623 m2. The highest difference 

between simulated as predicted results is 4.6% at 3.2 km/h with frontal area case of 1.023 m2. 

A larger frontal area will raise air resistance force while the other parameters were kept constant; 

it will make a larger power demand to bike overcome resistance force. This explains why the 

power demand for bike increases with rise in wind speed.  

The battery voltage decreases 0.3% when the frontal area increases from 0.423 to 1.623 m2, as 

shown Fig. 6.9 (b). This could be linked to the fact that increased frontal area led to increased 

air resistance force, resulting in a higher energy demand to adjust to a bigger total resistance 

force. This is why, when the wind speed increased, the battery voltage decreased. 
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Fig. 6.10 Comparison between the simulated and ANN-GA predicted results of power 

demand-velocity, battery voltage-velocity curve under varying wheel radius. 

 

Fig. 6.10 shows the power demand and battery voltage versus bicycle speed under wheel radius 

changing. During EB's operating conditions, the wheel radius has a sensitive effect on the bike 

performance. The ANN-GA approach was used in this work to forecast the optimal necessary 

power and voltage output under five typical wheel radiuses including 0.3, 0.33, 0.36, 0.39 and 

0.42 m. When the wheel radius increased from 0.3 to 0.42 m, the power demand increased from 

536.4 to 554.9 W, as shown in Fig. 6.10 (a). The highest difference between forecasted and 

simulated results is 4.5% at 1.03km/h with Rw of 0.39m, respectively. This is explained by the 

fact that increasing the wheel radius causes an increase in the bike's speed and inertia, therefore 

the power demand is raised to overcome a greater inertial force and reach a specific speed.  

Fig. 6.10 (b) shows the battery voltage versus bike velocity under five typical wheel radius. 

The wheel radius has a significant effect on battery voltage status during scooter operation; the 

voltage reduced from 34.26V to 34.21V during stable velocity behavior when the wheel radius 

increased from 0.3 to 0.42m. This is explained by the fact that raised inertial force and speed 

result in increased energy demand. When the wheel radius grows, the battery voltage falls to 

accommodate the increased energy requirement. 

6.5 Enhancing electric bicycle performance by optimizing key 

structure parameters. 
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Fig. 6.11 The ANN-GA identified four input factor that yields maximum power demand and 

velocity, (a) five slope ratio, (b) five wheel radius, (c) five frontal area, (d) five speed level. 

 

A genetic algorithm (GA) optimization method is merged with a trained artificial neural 

network (ANN) model, with the ANN acting as the fitness function. The input factors for this 

enhancement include the wheel radius, slope grade, speed level, frontal area, while the outputs 

are the power demand and voltage. The ANN-GA approach showed that the electric bike could 

achieve an efficient performance range, with an optimized required power of 546.3 W and a 

maximum velocity of 30.7 km/h under wheel radius 0.185m, slope grade 0% and wind speed 

0 km/h. To validate the powerful performance range and identify the associated input factors, 

the ANN-GA approach was applied for forecasting and optimizing power demand under five 

typical wheel radius (0.3, 0.33, 0.36, 0.39 and 0.42m), five typical speed level (from speed 

level_1 to speed level_5), five typical slope grade(0, 0.36, 0.48, 0.65 and 0.85%), five typical 

frontal area (0.423, 0.723, 1.023, 1.323, 1.623 m2). The improved power demand and bicycle 

velocity by using the ANN-GA approach are illustrated in Fig. 6.11. The relationship between 

the optimized power demand and slope grade can be observed in Fig. 6.11 (a), where it is 

evident that the optimum power demand rises as the slope ratio increases from 0% to 0.85%. 

This observation aligns with the physical principles governing bicycle dynamics. As the slope 

grade increases, the bicycle's motion slows down, resulting in an increase in the required 

power. This is due to the fact that an raising in slope grade leads to an raising in both the slope 

resistance force and the total resistance force experienced by the bicycle. In Fig. 6.11 (b), it 

can be observed that the highest optimum power demand is 551.3 W, which occurs at a wheel 

radius of 0.42m. Interestingly, this wheel radius also corresponds to the highest achievable 

velocity for the electric bicycle within the range of wheel radius tested (0.3-0.42m). As 
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depicted in Fig. 6.11 (c), the optimum power demand grows with a larger in the frontal area. 

This observation aligns with the kinetic principles governing the operation of electric bicycles. 

When the frontal area rises within the range of 0.423-1.623m2 km/h, the bicycle's velocity 

decreases. This reduction in velocity is attributed to the higher air resistance force. 

Consequently, the total resistance force experienced by the bicycle increases, resulting in an 

increase in the required power. In Fig. 6.11 (d), it may be observed that the optimum power 

demand increases and the bicycle velocity changes from speed level_1 to speed level_5. This 

observation is in accordance with the physical principles governing the operation of electric 

bicycles. With an change in speed level, the bicycle velocity becomes larger, resulting in a 

greater total resistance power. Consequently, a higher power demand is necessary to overcome 

the increased resistance and maintain the desired velocity. The findings of this study 

demonstrate that the forecasted results accurately reflect the significant physical motion and 

dynamic kinetics that impact the optimum power demand of electric bicycle. The suggested 

ANN-GA method proves to be an effective tool in providing a prompt guideline for 

determining the optimum power demand and identifying the key input factors associated with 

it. 

6.6  Summary  

The MATLAB-Simulink simulation model of electric bicycle is established to create 1000 

data point, that is applied in an ANN for training, testing and verifying. The one hidden layer 

ANN structure with 12 neurons was applied with five input parameters of the slope ratio, 

transmission ratio, bike velocity, wheel radius, frontal area and the power demand, battery 

voltage as output parameters. Additionally, the GA is used to find effective performance once 

the ANN has been trained.  

The important results in this section were summarized below: 
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The power demand showed an uptrend as well as the bicycle velocity uptrend, specifically 

increasing 531 to 546 W and from 20.9 to 30.7 km/h with speed level changing level1 to level5. 

The maximum difference in the power demand between predicted and simulated results was 

3.4%. 

The maximum velocity decreased from 27.9 to 21.3 km/h; power demand increased 540 – 554 

W when the slope grade rose from 0% to 0.85%. Besides that, the highest difference between 

simulated and predicted results was 5.2%. 

The power demand increases from 486 to 553.6 W when the frontal area increases from 0.423 

to 1.623 m2. The battery voltage decreased 0.3% in the same condition. The highest difference 

between simulated as predicted results is 4.3%.  

The power demand increased from 536.4 to 554.9 W when the wheel radius increased from 

0.3 to 0.42 m. The highest difference between forecasted and simulated results is 4.5% 

The ANN-GA approach was used to improve the electric bike performance and its 

accompanying structure and operating parameters, it demonstrated that the EB could reach 

30.7 km/h with an optimum power demand of 546.3 W at speed level_5, frontal area of 0.423 

m2, wheel radius of 0.42 m, slope grade of 0%. Furthermore, the forecasted results were 

correlated with simulated results with R2 value of 0.998. It demonstrated that the ANN-GA 

approach is an effective approach to solve complex problems such as performance prediction, 

identification, operating control of electric bicycle. 
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7. CONCLUSION AND CONTRIBUTION 

The objective of this thesis is to investigate the effects of pivotal structure parameters such as 

transmission ratio, wheel size, frontal area, bicycle weight on dynamic characteristics, 

acceleration and fluctuations and battery voltage during starting period of electric bicycle by 

combining experimental and simulation approach.  

Chapter 1: The research background of the work undertaken is introduced. An overview of the 

trends and challenges of electric bicycle research on improving bicycle efficiency is produced 

by correlating the relevant literature and the recent progress of the previous author's research 

methods. Furthermore, the research objectives are presented at the end of this chapter, followed 

by the organization of the thesis. 

Chapter 2: Based on literature review, most of previous studies have focused on the 

environmental benefit, innovative motor, torque measurement, control strategies, battery 

technology. However, the previous studies haven’t mention to the crucial structure parameters 

such as transmission ratio, wheel size, frontal area, bicycle weight and consider addition 

external factor to have comprehensive assessment results on power, acceleration, maximum 

velocity of electric bicycle. All these drawbacks and gaps in the existing literature are the 

motivation for this study to be carried out. 

Chapter 3: The experimental system setup of electric bicycle was detailly explained. The 

experimental outcome for maximum velocity, duration to reach stable velocity, and fluctuation 

and voltage value in starting period of electric bicycle under each case will be obtained in real 

road test with detail ambient conditions. This output experimental data will be used in 

validating the outcome of simulation model to ensure the accuracy of simulation model. 
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Chapter 4: The zero-dimension model of electric bicycle has been analyzed under mathematical 

equation and performed in MATLAB-Simulink program. The simulations are conducted under 

full boundary conditions with each specific parameter to obtain comprehensive results.  The 

results from the simulation closely match the experimental data, as evidenced by the negligible 

difference in velocity profiles over the 60-second test period. The comparison between 

simulation and experimental results showed that, highest different velocity of 7.42%, travel 

distance of 3.38%, voltage value of 1.7%. It demonstrates that the simulation model accurately 

performed the real-world behavior of the electric bicycle under the specified test conditions. 

Chapter 5: The objective of this section is to determine crucial parameters, which affect 

maximum velocity, acceleration, fluctuation of voltage value in the starting period of electric 

bicycle. The results were obtained by an experimental and simulation technique. Following the 

investigation, the influence level of each critical parameter was determined. The importance 

results in chapter 5 were summarized as below: 

- This study investigated the dynamic behavior of electric bicycles under varying 

conditions and identified critical factors influencing performance and battery voltage 

fluctuation. The external factors including slope ratio, wind speed have crucial role with 

acceleration and fluctuation of battery voltage in start period. To enhance the reliability 

of the results, this research also considered the above factor with detail value in 

common range. Minimizing the impact of these factors can improve velocity and 

electric consumption.  

- With adjusting of wheel radius. The maximum of bicycle velocity could be improved 

[9.1-12,7%] with wheel radius changing (0.3-0.42m), However the duration for 

reaching stable velocity was extended and battery voltage value in stable period was 

decreased. 
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- The frontal area has a significant impact on bicycle dynamics. The maximum velocity 

could be improved [25.6-31.2%] with reducing frontal area (1.623-0.423m2). The 

duration for reaching stable velocity was reduced. 

- The transmission ratio has a significant impact on bicycle dynamics. The velocity could 

be increased [26.3-29.2%], however the battery voltage value in stable period was 

decreased. Meanwhile, bicycle weight has slightly effects performance and reduce 

electric consumption. 

Chapter 6: The objective of this chapter is to optimize power and dynamic by using crucial 

parameters as input parameters in ANN model for training, testing and verifying to predict 

output parameters including power and velocity. After the ANN is exactly trained, it is applied 

into the GA method to find the optimal output parameters with the best input value. The 

importance results in chapter 6 were summarized as below: 

- The ANN model has 5-12-2 structure including 5 inputs consisting of transmission 

ratio, frontal area, slope ratio, velocity, wheel radius result with largest correlation 

coefficient (R2) of 0.998 and minimum MSE of 0.003.  

- The transmission ratio significantly impacted on maximum velocity and power of e-

bike such as increasing 34% of velocity, and 2.82% of power. Additionally, voltage 

value in stable period decreased by changing speed level 1 to speed level 5. 

- The frontal area can improve e-bike performance. Maximum velocity improved 35%, 

power improved 15.3% by reducing frontal area. 

- Maximum velocity increased 16.3% by increasing wheel radius. However, the power 

rose 3.6 %. Additionally, voltage value in stable period decreased by increasing wheel 

radius (0.3 – 0.42 m).  

- The maximum difference between predicted and simulated results of power and 

velocity curve with wheel radius changing, frontal area changing, gear speed level 
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changing are 4.5%, 4.3%, 3.4%. After ANN-GA was exactly trained, the study found 

that, the electric bicycle could reach optimized power (546.3W) with velocity was 30.7 

km/h at speed level_5, frontal area of 0.423 m2, wheel radius of 0.42 m, slope grade of 

0%. 

The research contributions: The research has discovered different influence levels of design 

factors in electric bicycles, and the important levels of influences are arranged as follows: gear 

ratio, frontal area, wheel size and finally vehicle mass. It provides an information platform to 

optimize performance through applications such as: Firstly, providing useful information to 

develop high-performance powertrain systems suitable for motor capacity, secondly 

optimizing streamlined shapes aim to reduce drag and improve efficiency, provide a suitable 

size range of wheel to improve acceleration, stability and efficiency, lastly applying lightweight 

frame and optimize structure deign to enhance acceleration, handing and efficiency. 

Additionally, the study determined the complex correlation between input and output 

parameters for the optimization process using ANN-GA. Besides that, the prediction model 

demonstrated high accuracy on predicting optimum parameters with having the minimum MSE 

of 0.03 and correlation coefficient (R2) of 0.998. By leveraging ANN-GA, the study found the 

optimal gear ratio to balance power consumption and maximum speed, in addition found the 

appropriate wheel size and smallest drag coefficient to improve maximum velocity and optimal 

power of electric bicycle. The above contributions provide a comprehensive insight into the 

work of electric bicycle performance advancement as well as providing useful information in 

the electric bicycle performance field for manufacturers and researchers. 
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NOMENCLATURES 

Nomenclature 

Abbreviation 

ANN Artificial neural network 

EB Electric bicycle 

GA Genetic algorithm 

LIB Lithium-ion battery 

MAPE Mean absolute percentage error 

PV Photovoltaic 

OCV Open circuit voltage 

MSE Mean square error 

ECU Electric control unit 

LM Levenberg-Marquardt  

SOC State of charge 
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Latin symbols 

Aa Frontal area, m2 

B1 Coefficient of viscous friction 

Ca Coefficient of aerodynamic drag 

Crr Colling coefficient 

Cs Slope coefficient  

Tpf Propulsion torque, N 

Ua Motor voltage terminal, V 

vEB Bicycle velocity, km/h 

Vw Wind speed, km/h 

M Bicycle and rider mass, Kg 

Fpf Propulsion force, N 

Frf Rolling resistance force, N 

Fsf  Slope resistance force, N 

Faf Air resistance force, N 

ia Armature current, A 

J Inertia torque, N.m 

Kb Torque constant, N.m 

La Armature inductance 

MEB Electric bicycle mass 

Mr Rider mass 

Pfriction Friction power, W 

Pslope Slope grade power, W 

Ptotal Total power, W 

Pair Air power 

R2 Correlation coefficient 
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Ra Armature resistance 

Rw Wheel radius, m 

Tl Load torque, N.m 

wm Motor speed, rpm 

b Bias value of neuron 

xi Input value if neuron 

wi Linked weight of neuron 

t Time, s 

p The number of inputs 

Greek symbols  

α Slope ratio 

𝜌 Air density, kg/m3 
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APPENDIX 

1. The architecture of ANN with inputs, hidden layers, and output. 

 

 

 

 

2. ANN performance plot showing best validation in terms of mean square error 
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3. The training state plot comprises gradient, scalar μ, and validation check 

 

4. The histogram showing the difference between the actual and the target output 
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5. The Regression plot showing regression relation between the actual output and the 

targets 
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6. Properties of GA algorithm in MATLAB 
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