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ABSTRACT 

By virtue of extremely high force/torque output capability, smooth motion generation, great 
durability, and less maintenance requirement compared to electrical actuators, hydraulic actuation 
systems have been widely employed in heavy-duty industrial applications including hydraulic 
manipulators in manufacturing factories, hydraulic presses, construction machines, and so on in recent 
years. As one of the control problems for such hydraulic systems, motion tracking control has become 
an interesting research topic and attracted great attention from the research community in both 
academia and industry. Nonetheless, achieving high-accuracy tracking performance of hydraulic 
actuators is still a major concern that requires further consideration due to their high-order dynamics, 
nonlinear characteristics, model uncertainties, and unknown time-varying payload. Therefore, several 
attempts to enhance the trajectory-following ability of the electro-hydraulic systems (EHSs) have been 
made and presented in this thesis.  

Firstly, control algorithms based on the nominal system model of the studied EHS, which was 
offline identified in advance, were proposed. To overcome the problem of velocity measurement 
shortage, a Levant's differentiator was utilized to precisely attain the angular speed of the actuator 
based on the position information. Besides, to lower the negative impacts of disturbances resulting 
from the mismatch between the nominal system model and the actual system dynamics, uncertain 
nonlinearities, and unknown time-varying payload on the closed-loop system, dual disturbance 
observers (DOBs) with very few tuning parameters were established. Based on that, improved 
performance was achieved in comparison with some extended state observer (ESO)-based controllers.  

Secondly, as an alternative solution to the well-known ESO design, extended sliding mode 
observers (ESMOs) were first developed to cope with both the non-existence of measurement 
mechanisms and disturbances. By using the discontinuous function of the error between the measured 
signal and its estimate, the constructed ESMOs are able to react better against the fast-changing 
disturbances and estimate immeasurable system states more accurately compared to the ESOs. The 
stability of the suggested ESMOs was confirmed by using the Lyapunov theory. Subsequently, an 
ESMO-based controller was developed based on the traditional backstepping framework for an EHSS. 
Numerical simulations were conducted to demonstrate the effectiveness of the ESMO-based control 
approaches in comparison with ESO-based controllers.   

Thirdly, to avoid the time-consuming and painstaking identification process, adaptive neural 
networks (NNs) were developed to approximate unknown dynamics, the so-called unstructured 
uncertainties, that are functions of system states and control input in the system model. Different from 
the existing methods in the literature, in which only partial state-dependent model uncertainties were 
assumed to be unknown, the problem of completely unknown dynamics were considered in this 
research. To surmount this obstacle, multiple NNs are utilized for tracking control of systems suffering 
from completely unknown dynamics. In addition, imperfections of NN-based approximations are 
solved by using disturbance observers. Based on the sliding mode theory, a composite controller was 
synthesized to not only increase the robustness of the closed-loop system but also avoid the 
computational complexity of the standard backstepping control. The boundary layer approach was 
adopted to effectively decrease the chattering that naturally exists when applying conventional sliding 
mode controllers. The obtained results indicated the effectiveness of the suggested method and 
unveiled its applicability to real applications subject to completely unknown dynamics.  

Finally, in addition to the servo-valve-controlled EHSs, the tracking control for pump-controlled 
EHSs was also investigated in this study. For the sake of cost-effectiveness, an output feedback robust 
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control was developed based on an ESMO. To address the computational burden of the traditional 
back-stepping because of the analytic derivative calculation of a virtual control law at each back-
stepping iteration, a dynamic surface control (DSC) technique was adopted. Additionally, compared to 
the existing method in which only mismatched uncertainties in the pressure dynamics were considered, 
both total matched and mismatched disturbances were sufficiently estimated by the integration of 
multiple ESOs then they were compensated by feedforward compensation in the synthesized control 
laws. Subsequently, the composite control approach was introduced and the stability of the 
recommended method was confirmed through Lyapunov theory. Numerous comparative experiments 
were conducted to verify the efficacy of the developed controller in comparison with some reference 
methods.  
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Chapter 1   
INTRODUCTION 

1.1 Overview 

By virtue of the various aforementioned advantages, electro-hydraulic systems (EHS) have been 
broadly employed in numerous industrial and commercial applications in recent decades. For example, 
in industrial machinery, EHSs were extensively used for material handling, assembly lines, metal 
forming, and pressing operations [1-3]. For construction machinery [4] such as excavators [5], cranes, 
loaders, and bulldozers, EHSs were utilized to manipulate heavy loads with accuracy and safety. In 
addition, EHSs are the main parts of landing support systems and flight control surfaces in aviation 
and aerospace [6, 7]. Besides, EHSs were integrated into robotic and automation systems for tasks that 
require precise force and motion control [8]. Nonetheless, due to the high-order dynamics, strong 
nonlinear behavior, model uncertainties, and external disturbances, it is extremely difficult to achieve 
high-accuracy tracking performance for such EHSs [9]. 

It is worth noting that model-free control approaches such as proportional-integral-derivative (PID) 
[10], and fuzzy logic-based control [11], still are valuable solutions to tracking control problems of 
EHSs. Among them, PID controllers are preferable since they do not require a complicated 
identification process, simple implementation, information on internal states, and very few tuning 
parameters [12]. Research works on PID control design have been reported in the literature [13-15]. 
Generally, the control parameters, pK , iK , dK , of a conventional PID controller are fixed during 
operation, hence, the system performance cannot be guaranteed in the case that the system is disturbed 
by external impacts or changes in the working conditions. Additionally, the determination of PID 
gains is an ad hoc, meticulous, and tedious process. To overcome this obstacle, gain scheduling 
algorithms based on Ziegler-Nichols [16], fuzzy logic paradigm [17], auto-tuning mechanism [18], 
and so on, have been extensively studied. Furthermore, optimal PID controllers for EHSs have been 
carefully investigated for years. Besides, fractional auto-tuning PID controllers that are able to 
improve the transient response and steady-state control error of EHSs, were developed [19]. Although 
various attainments were achieved, some drawbacks of distinct PID designs should be pointed out. 
Firstly, although PID controllers were verified to be effective for linear systems, the stability of the 
overall control system by using such controllers for nonlinear EHSs could not be explicitly 
theoretically proven. Secondly, the control performance when using PID controllers cannot be assured 
due to changes in working conditions and system parameters. Finally, owing to the lack of 
compensation mechanisms for system dynamics and external disturbances, PID controllers with high 
gains must be used to suppress their influences, and the closed-loop system might become unstable at 
some working points as a consequence [20]. 

In order to cope with nonlinearities in the system dynamics of EHSs, nonlinear control techniques 
including feedback linearization, sliding mode control, and backstepping control, were generally 
utilized. The key idea of the feedback linearization theory is that the original nonlinear system is 
transformed into a linearized one, then control design techniques for linear systems can be easily 
adopted. This control methodology has been successfully applied to EHSs [21-24]. Nonetheless, it 
requires complicated computation steps and cannot be available for all nonlinear systems. Meanwhile, 
sliding mode theory can be considered as a powerful tool for designing robust controllers that are able 
to suppress unknown disturbances and model uncertainties in system dynamics of EHSs [25-27] by 
using high switching gains. However, severe chattering with finite frequency and amplitude can be 
endured due to unmodeled dynamics and switching time delays. Hence, several techniques [28] have 
been investigated to reduce this drawback of the traditional sliding mode control method. In addition, 
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designing control laws by using the sliding mode theory becomes more complicated for high-order 
nonlinear systems and sliding mode controllers are merely effective against matched uncertainties [29]. 
Compared to the aforementioned control design methods, backstepping emerged as one of the most 
effective methods, which is broadly utilized to synthesize control laws for nonlinear systems in 
various applications [30-33]. The key concept of this technique is that instead of designing a unique 
control law for the overall system, each control law is separately synthesized for individual first-order 
subsystems at each design step [34]. By doing this, the actual control input is designed at the final step 
to stabilize the overall system. Additionally, nonlinearities are completely compensated at each 
backstepping iteration, and consequently, tracking performance is significantly improved. Nonetheless, 
the control design by using the backstepping approach becomes extremely complicated due to repeated 
analytical differentiations. Some techniques have been developed to reduce this computational burden 
of the traditional backstepping control theory, such as dynamic surface control (DSC) [35, 36] and 
command filtered approach (CFA) [37, 38]. Various DSC-based and CFA-based backstepping 
controllers have been successfully constructed in numerous applications [39-47]. However, system 
states and disturbances information which is not always available, is required to be known when 
employing the above control techniques. 

Intuitively, the observer-based control approach is a valuable and effective solution to not only 
deal with the shortage of states and disturbances information but also reduce the system cost and 
complexity of control systems by not using expensive and additional sensors. In addition, some signals 
are impractical to measure and/or influenced by inevitable noise from the working environment [48]. 
Observers are constructed by combining sensed signals and knowledge of the system model, observed 
signals can be produced as a result [49]. It is worth noting that these estimated signals may be more 
accurate, less expensive to produce, and more reliable than directly observed signals. The full-order 
observer was originally introduced in 1964 by D.G. Luenberger, an American mathematician [50, 51] 
and further developed in [52] for linear time-invariant systems. However, these concepts cannot be 
applied to nonlinear systems. Therefore, an extended Luenberger observer design [53] and extended 
Kalman Filter (EKF) [54-56] have been introduced for estimating missing states of single-input single-
output nonlinear systems. In addition, in [57], observers for a class of nonlinear systems were 
developed. Moreover, based on the concept of sliding mode and equivalent control theories [58] 
proposed by Utkin, sliding mode observers [59-61] have been constructed to robustly estimate system 
states by using switching terms in the existence of unknown inputs and model uncertainties. In 
practice, an exact model of a dynamical system could not be attained since system parameters or 
system behaviors may change under different operation conditions. Furthermore, external disturbances 
naturally exist in many engineering systems and deteriorate the system performance. The concept of 
disturbance observer [62] was first discussed by Kouhei Ohnishi in 1983 [63] and it has been 
successfully applied to various applications such as robotic manipulators [64], marine vehicles [65], 
direct drive motors [66, 67], electro-hydraulic systems [68-70], and so on to deal with model 
uncertainties and external disturbances due to its simplicity and efficacy [71]. The integration of state 
observers and disturbance observers provides a complete solution to address the shortage of system 
information and attenuate the effects of model uncertainties and disturbances on control systems [72]. 
Besides, active disturbance rejection control (ADRC) [73] has been initiated by Jingqing Han, and is 
also an alternative way for solving problems of model imperfections and external disturbances. The 
core component of this control approach is an extended state observer (ESO) that is able to observe 
not only system states but also lumped uncertainties caused by model uncertainties and external 
disturbances in system dynamics. Hence, ESOs have been adopted in many practical applications [74-
77]. Nonetheless, the disadvantages of ESOs including peaking phenomenon when using high gains 
and slow convergence of estimation restrict their applications in practice. Development of advanced 
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observers for both state and disturbance estimation and observer-based control strategies is still open 
research problems that need to be further studied. 

Another control problem which is how to achieve high-accuracy tracking performance for systems 
subject to unstructured uncertainties has become an intriguing research question in recent years. By the 
capability of self-learning and online weight update, radial basis function neural networks (RBFNN) 
[78] have been successfully employed in numerous applications including space flexible manipulator 
[79], robot manipulators [80-83], underwater vehicles [84], active suspension systems [85], servo 
motor systems [86, 87], and so on [88, 89]. For tracking control problems of EHSs, RBFNNs were 
widely used to approximate unknown dynamical functions. For example, in [8], model uncertainties 
and load disturbances of an EHS were approximated and compensated using RBFNNs. Multilayer 
neural networks [90] were developed to deal with the residual mismatched disturbance, and 
consequently, improved tracking accuracy was achieved. Nevertheless, it should be pointed out that in 
the previous studies, only partial system dynamics were assumed to be unknown, dealing with 
nonlinear systems suffering from fully unknown dynamical functions remains a challenging control 
problem. 

1.2 Research Objectives 

This thesis investigates the tracking control problem for valve-controlled and pump-controlled 
hydraulic systems suffering from parametric uncertainties, unknown dynamics, and external load. 
These difficulties make the control design challenging. The nominal controllers are first designed by 
using the backstepping control technique and sliding mode control theory, in which uncertainties and 
disturbances in the mechanical subsystem and pressure dynamics are lumped into total mismatched 
and matched disturbances, respectively. To reduce the influences of such disturbances on the overall 
control system, control algorithms based on Levant's differentiator-based disturbance observers and 
extended sliding mode observers are developed. Subsequently, these disturbances are compensated by 
feedforward compensation mechanisms in the control laws. In addition, adaptive neural network 
control is also adopted to approximate unstructured uncertainties in the system dynamics, and 
consequently, the tracking performance is significantly improved. The stability of recommended 
control algorithms is analyzed through the Lyapunov theory. Finally, numerical simulations and 
experiments are conducted to validate the superiority of the proposed methods over some existing 
control approaches. 

In detail, the objectives of the thesis are discussed as follows: 

 To obtain the immeasurable speed of the actuator based on the position signal, a Levant's 
differentiator is adopted. Subsequently, dual disturbance observers (DOB) are presented to 
online estimate both lumped matched and mismatched uncertainties. Finally, a DOB-based 
backstepping controller is constructed to improve the control accuracy for the motion tracking 
problem of the considered EHSS. 

 To avoid the complexity of the control structure due to the combination of a state observer and 
DOBs for dealing with the shortage of internal system states and the influences of the model 
uncertainties and external load, dual extended sliding mode observers (ESMO) are introduced. 
Based on this, a composite controller is constructed accordingly. Compared to some well-
known ESO-based control algorithms, significantly improved tracking performance for EHSS 
is achieved. 

 It should be admitted that the identification process of a system model for a real system is 
always a time-consuming and painstaking task. With the help of adaptive NN-based 
approximators, unknown dynamical functions in the system dynamics can be online 
approximated. To cope with the adverse effects of not only the approximation imperfections 
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but also external disturbances, DOBs are employed. In addition, to effectively mitigate the 
computational complexity of the standard backstepping due to the analytic derivative 
calculation of the virtual control law at each backstepping iteration, sliding mode control 
theory is used to design the actual control input for stabilizing the closed-loop system. Hence, 
the tracking error is considerably reduced as a result. 

 Owing to the high energy efficiency and cost-effectiveness, tracking control for pump-
controlled hydraulic systems besides the valve-controlled hydraulic actuation systems has also 
been a trendy research topic in recent years. To avoid measurement noise and reduce the 
overall system cost, output feedback motion tracking control is considered. Firstly, an ESMO 
is developed to estimate immeasurable states and lumped-matched disturbances in the system 
dynamics. The control algorithm is then synthesized by employing the traditional 
backstepping control framework and dynamic surface control technique. The stability of the 
closed-loop system is verified by using Lyapunov theory and the superiority effectiveness of 
the proposed method is illustrated by comparative experiments.  

 With the same control objective as above, multiple-ESO configuration is employed, in which 
an ESO is utilized for observation of immeasurable states, i.e., angular speed and load 
pressure-relating term, and lumped matched disturbances. In light of this, another ESO works 
as a DOB for estimating the lumped mismatched disturbance. The dynamic surface control 
(DSC) approach is adopted to remarkably diminish the “explosion of complexity” of the 
conventional backstepping control technique. Accordingly, an improved tracking performance 
is attained. 

For each proposed control method, the Lyapunov theory is utilized to theoretically analyze the 
stability of not only constructed observers but also the overall closed-loop system. Simulation and 
experiment results are given to demonstrate the effectiveness of the proposed methods in comparison 
with several well-known reference control algorithms reported in the literature. 

1.3 Limitations 

In this thesis, several advanced control approaches for enhancing the tracking performance of 
electro-hydraulic systems subject to model uncertainties and external disturbances are constructed. 
The stability of the closed-loop system is theoretically proven using the Lyapunov theory. The 
advantage of each control algorithm is confirmed by both comparative simulation examples and 
experiment studies. However, some limitations of the dissertation are remaining as follows: 

 The dynamics of servo valves and bidirectional pumps have not been considered in the control 
design process. 

 The derivatives of lumped uncertainties and disturbances are assumed to be bounded. 
 In most research works, the nominal system models are assumed to be available. 
 The relationship between the desired performance and the input saturation problem has not 

been explicitly pointed out. 
 Control algorithms for servo valve-controlled hydraulic systems are merely verified by 

numerical simulations. Due to the lack of a real test bench, the influences of measurement 
noises on the measured signals have not been considered. 

1.4 Thesis Outline 

The dissertation is organized as follows: 

 Chapter 1 shows the research motivations, goals, limitations, and the outline of the thesis. 
 Chapter 2 presents the construction of a system model of studied electro-hydraulic systems 

and some mathematical notations and Lyapunov stability theory. 
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 Chapter 3 investigates an active disturbance rejection framework by using disturbance 
observers. 

 Chapter 4 discusses the extended sliding mode observer for enhancing the reference trajectory 
tracking qualification. 

 Chapter 5 gives an adaptive neural network control for electro-hydraulic servo systems subject 
to completely unknown dynamics and external disturbances. 

 Chapter 6 presents an extended sliding mode observer-based output feedback control for 
tracking problems of an electro-hydrostatic actuator. 

 Chapter 7 provides output feedback robust control based on multiple ESOs configuration for 
the motion tracking problem of an electro-hydrostatic actuator considering lumped 
mismatched uncertainties. 

 Chapter 8 concludes the thesis and gives a discussion about future works. 
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Chapter 2  
PROBLEM FORMULATION AND PRELIMINARIES 

2.1 Problem Formulation 

2.1.1 Electro-Hydraulic Servo System 

 

Fig. 2-1: The configuration of the studied EHSS 

The schematic of the studied EHSS is illustrated in Fig. 2-1. On the basis of the second Newton’s 
law, the motion dynamic of the actuator is given by 

 m L f dJ D P      (2.1) 

where J  and   are the inertial moment and the angular position of the actuator shaft, respectively; 

mD  denotes the radian displacement of the HRA; 1 2LP P P   represents the load pressure with 1P  

and 2P  reflex the pressures in the forward chamber and reverse chamber of the HRA; f B    is the 

frictional torque with B  as the viscous friction coefficient; and d  signifies the torque disturbances 

caused by unmodeled dynamics, parameter deviations, and unknown external load. 

The load pressure dynamics in the HRA are given by [91] 

  
4

t
L m t L

e

V
P D Q Q q t


     (2.2) 

where tV  is the total control volume of the HRA, e  denotes the effective buck modulus of the 

hydraulic oil, t t LQ C P  represents the internal leakage caused by the pressure deviation between two 

chambers of the actuator with tC  is the internal leakage coefficient, LQ  signifies the load flow, and 

( )q t  reflects the modeling uncertainties. 

Based on the flow through an orifice formula, the load flow through the servo valve is determined 
by [92] 

   1
signL d v s v LQ C wx P x P


   (2.3) 

where dC  denotes the discharge coefficient, w  is the spool valve area gradient,   represents the oil 

density, vx  is the displacement of the servo valve's main spool, and sP  is the supply pressure. 

In previous works, scholars have pointed out that the tracking performance is only negligibly 
improved when considering the servo valve dynamics [76, 93, 94]. In addition, due to the extremely 
high bandwidth of the servo valve compared to the dynamics of the other hydraulic components and 
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for the sake of simplicity in designing the controller, the valve dynamics can be ignored. The 
simplified servo valve model is employed as [91, 93, 95] 

 v vx k u  (2.4) 

where vk  is the servo valve coefficient and u  denotes the control voltage. 

Substituting (2.4) into (2.3) yields 

   signL t s v LQ k u P x P   (2.5) 

where 1 /t d vk C wk   represents the overall load flow coefficient. The function sign( )  stands for 

the standard signum function which is defined by 

   0s iig

1, if 0

0, f

1, if

  

0

n

u

u

u

u

   




 

Defining 1 2 3[ , , ] [ , , / ]T T
m Lx x x D P J x   as the state vector, the whole system dynamics are 

represented as 

    
     

1 2

2 3 1 2 1

3 2 2 3 2 3 2, ,

x x

x x f x d t

x f x x g x u u d t




  
  





 (2.6) 

where the dynamical functions and lumped disturbances are determined by 

 

 

       

2

1 2 1 2 2 3 2 3

2 3 3 2

4 4
( ) ; ( ) ; , ;

4 4
, sign ;  and .

f d m e e t

t t

m e t e m
s

t m t

D C
f x d t f x x x x

J J JV V

D k DJ
g x u P u x d t q t

JV D JV

   

 

   

  
 

For convenience, some reasonable assumptions are made as follows [76, 95]: 

Assumption 2-1. The desired reference trajectory is smooth and bounded up to the second-order 

derivative, i.e., 3
1dx C , and the absolute value of load pressure | |LP , is adequately smaller than the 

supply pressure sP  to guarantee that the dynamical function 2 2 3( , )g x x  is far away from zero. 

Assumption 2-2. The dynamical function 1 2( )f x  is Lipschitz with respect to 2x  in its operational 

range and 2 2 3( , )f x x  is globally Lipschitz with respect to 2x  and 3x . 

Hence, there exist positive constants 
1f

c  and 
2f

c  such that the following inequalities hold 

    
11 2 1 2 2 2ff x f x c x x    (2.7) 

    
22 2 3 2 2 3 2 2, , ff x x f x x c x x    (2.8) 

Assumption 2-3. The internal uncertainties and external disturbances in the system dynamics of 
the studied EHSS are grouped into two lumped disturbance terms 1( )d t  and 2 ( )d t  which are assumed 

to be differentiable. In addition, the first-order derivatives 1( )d t  and 2 ( )d t  are supposed to be 

bounded but their bounds are unknown, i.e., 1 1| ( ) |d t   and 2 2| ( ) |d t  . 
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Remark 2-1. In practice, the load capacity of hydraulic systems is restricted by their kinematic 
and dynamic constraints such as maximal velocity, acceleration, and torque/force being able to be 
generated. Hence, the system performance cannot be guaranteed or some unexpected problems with 
the system may occur in the conditions in which these constraints are violated. For example, under the 
heavy-load condition and exceedingly fast-changing reference trajectory, the control input will be 
saturated in its range, whereas the system output still cannot follow the desired trajectory as closely as 
expected. The system performance will deteriorate as a result. The same phenomenon will happen in 
the existence of excessive internal and external leakages in the case of the aged actuator. Therefore, 
from the practical perspective, the lumped uncertainties 1( )d t  and 2 ( )d t  are bounded by positive 

constants which are determined by system parameters. Due to the limited scope, the problem of the 
heavy-load condition and the aging actuator is not considered in this research. 

The principal control objective is to design robust controlles that are capable of attaining a high-
accuracy tracking performance for positioning control of the above EHSS without angular velocity 
measurement under the presence of lumped mismatched and matched disturbances in the system 
dynamics of the EHSS. In this regard, several advanced control approaches are presented in Chapter 3 
and Chapter 4. To avoid the complicated system identification process, i.e., dynamical functions are 
assumed to be unknown, a neural network control based on disturbance observer is constructed in 
Chapter 5 to achieve a high control accuracy. 

2.1.2 Pump-controlled Hydraulic System 

 

Fig. 2-2: The configuration of the pump-controlled hydraulic system 

The schematic of the considered pump-controlled hydraulic system is illustrated in Fig. 2-2. A 
bidirectional hydraulic pump controlled by an electric motor was used to manipulate the motion of the 
hydraulic rotary actuator (HRA). To ensure that the system pressure does not surmount the maximal 
predefined pressure, two relief valves V3 and V4 were utilized. The two pilot-operated check valves 
V1 and V2 were employed to regulate the flow of the hydraulic oil into and out of the actuator. 
Meanwhile, the general check valves V5 and V6 guaranteed that there was no flow from the system to 
the tank. A gravitational load rigidly connected to the actuator shaft through a drum and pulley system 
was intentionally added to evaluate the system's performance. 

Remark 2-2. According to the schematic of the studied EHS, it should be pointed out that, in the 
normal working condition, the pilot-operated check valves V1 and V2 allow the flow from the 
hydraulic pump to a chamber of the HRA and from the remaining chamber to the suction of the 
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hydraulic pump for lifting or lowering the gravitational load. In the non-working state, i.e., the 
hydraulic pump does not run, no flow is supplied by the pump to the hydraulic components; therefore, 
the pilot-operated check valves V1 and V2 are completely blocked to securely lock the load at the 
current position and guarantee that there is no adverse impact on the hydraulic pump. 

According to Newton’s second law, the motion dynamics of the hydraulic actuator are derived by 

    1 2A A f f lJ D P P B A S           (2.9) 

where AJ  denotes the total inertial moment of the actuator shaft;   and   are the angular speed and 

acceleration of the hydraulic actuator, respectively; AD  signifies the displacement of the actuator; B  

signifies the total viscous friction coefficient; fA  presents the Coulomb friction coefficient; ( )fS   

denotes the continuous approximation of the standard signum function; 1P  and 2P  are the pressures in 

the left and the right chambers of the actuator; l  reflects the total torque disturbance caused by the 

modeling errors and unknown external load. 

The pressure dynamics of the two chambers of the hydraulic actuator were determined in the 
following equations: 

 

  

  

1 1 1 2
01

1 2 1 2
02

e
A At

A

e
A At

A

P Q D C P P
V D

P Q D C P P
V D

 


 


   


   


 

 
 (2.10) 

where e  is the bulk modulus of the hydraulic oil, 01V  and 02V  denote the initial volumes of the two 

chambers of the actuator including the volume of the pipeline,   is the angular position of the 

actuator shaft, AtC  is the leakage coefficient of the actuator, and 1Q  and 2Q  are the flow rates into the 

hydraulic actuator chambers, which are determined by 

 1 1 5 3

2 2 6 4

P v v

P v v

Q Q Q Q

Q Q Q Q

      
 (2.11) 

The flow rates supplied to the chambers of the hydraulic actuator are presented as 

 
 
 

1 1 2

2 1 2

P P P Pt

P P P Pt

Q D C P P

Q D C P P




      
 (2.12) 

where PD  is the pump displacement, P  denotes the speed of the pump, and PtC  signifies the total 

leakage coefficient of the pump. 

Assuming that the system pressure does not surmount the setting pressure of the relief valve, 
hence, we have 

 3 40; 0 v vQ Q  (2.13) 

Combining (2.10), (2.11), (2.12), and (2.13) yields 

 

  

  

1 1 2 5
01

2 1 2 6
02

e
P P t v A

A

e
P P t v A

A

P D C P P Q D
V D

P D C P P Q D
V D

  


  


    


     


 

 
 (2.14) 

where t At PtC C C   is the total equivalent leakage coefficient. 
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Remark 2-3. Since the system parameters AJ , AD , B , fA , e , 01V , 02V , PD , and tC  cannot be 

exactly known, their nominal values AJ , AD , B , fA , e , 01V , 02V , PD , and tC , respectively, were 

experimentally identified, which were adopted to design the observers and control law in the following 
sections. The effects of parameter deviations, external load, and unmodeled dynamics were lumped 
into total mismatched and matched disturbances. 

Defining 1 2 3 1 2[ , , ] [ , , / ( )]T T
A Ax x x D J P P   x  , according to (2.9) and (2.14), the overall 

system dynamics can be derived in the strict feedback form as 

    
     

1 2

2 3 2 2 1

3 3 1 3 2 3 2,

x x

x x f x d t

x g x u f x x d t


  
  





 (2.15) 

where Pu   is the control input, and the dynamical functions are given by 
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        
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A

D
g x u f x x

J
  

 (2.16) 

where 2 2( )f x , 3 2 3( , )f x x , and 3 1( )g x  are uncertain functions due to the parameter perturbation 

and modeling errors. 

Remark 2-4: Considering the system dynamics (2.15), since the nominal system parameters were 
assumed to be known, the dynamical functions 2 2( )f x , 3 2 3( , )f x x , and 3 1( )g x  can be defined 

according to system states. The influences of parametric uncertainties, unmodeled dynamics, and 
external disturbances on the mechanical and pressure dynamics were treated as the lumped terms 1( )d t  

and 2 ( )d t , the so-called lumped mismatched and matched disturbances, respectively, which were to be 

online estimated and then adequately compensated in the control laws. 

Model-based control strategies that guarantee the system output 1x  tracks the desired trajectory 

1dx  as closely as possible in the case that only the angular position of the actuator is measurable and in 

the presence of both mismatched and matched uncertainties, are provided in Chapter 6 and Chapter 7. 
To facilitate the control design, some practical assumptions are made as follows: 

Assumption 2-4: The desired position trajectory 1dx  is sufficiently smooth up to the third-order 

derivative, that is 3
1dx C . 

Assumption 2-5: The function 2 2( )f x  is globally Lipschitz with respect to 2x  and 3 2 3( , )f x x  is 

Lipschitz with respect to 2x  and 3x . 

Assumption 2-6: The lumped disturbances 1( )d t  and 2 ( )d t  were assumed to be differentiable, 

and their first-order derivatives 1( )h t  and 2 ( )h t , respectively, were bounded by unknown positive 
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constants, i.e.,  1 1h t h  and  2 2h t h . In addition, the lumped mismatched disturbance 1( )d t  is 

also supposed to be bounded by an unknown nonnegative constant, that is 1 1( )d t d . 

Remark 2-5: It should be admitted that the torque generation ability of a hydraulic system is 
restricted in a specific range because of the maximal working pressure that the pumping system can 
provide and the safety constraints. The load-carrying capacity of it is limited as a result. Hence, the 
assumption that the lumped mismatched uncertainty is bounded is practically reasonable. 

2.2 Preliminaries 

2.2.1 Stability Definitions 

Consider a nonlinear time-invariant system  x f x , where : n nf R R , a point n
ex R  is an 

equilibrium point of the system if   0ef x  . 

Definition 2-1. The system is globally asymptotically stable if, for every trajectory  x t , we have 

  ex t x  as t  . 

Definition 2-2. The system is locally asymptotically stable near or at ex  if there is an 0  such 

that  0 ex x   , we have   ex t x  as t  . 

2.2.2 Lyapunov Theory 

a) Lyapunov function definition 

A function : nV R R  is positive definite if 

   0V z   for all nz R  

   0V z   if and only if 0z   

  V z   as z   

A function TV x Px  is positive definite if and only if P  is a positive definite matrix. 

Suppose there is a positive definite function V  that satisfies 

  V z   as z   

   0V z   for all z  

then, all trajectories are bounded, i.e., for each trajectory x , there is a positive constant   such 

that x   for all 0t  . In this case, V  is called a Lyapunov function that proves the trajectories are 

bounded. 

b) Globally Asymptotic Stability  

Suppose there is a function V  such that 

 V  is positive definite 

   0V z   for all 0z   

  0 0V   

then, every trajectory of  x f x  converges to zero as t  . 
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c) Globally Exponential Stability 

Suppose there is a function V  such that 

 V  is positive definite 

    V z V z  for all z  

then, there is an M  such that every trajectory  x f x  satisfies    2 0tx t Me x . 

2.2.3 Fundamental Lemmas for Stability Analysis 

Lemma 2-1 [96]. Consider a positive definite function 1( )V t  satisfying the following inequality 

 1 1( ) ( )V t kV t  (2.17) 

where 0k   and 0 1  . 

The function 1( )V t  converges to zero in finite time ft  given by 

 
1

1(0)

(1 )f

V
t

k









 (2.18) 

Lemma 2-2 [97]. Consider the following Lyapunov function 2 ( )V t  satisfying 

 2 2( ) ( )V t aV t b   (2.19) 

where a  and b  are adjustable parameters. 

According to (2.19), the function 2 ( )V t  is bounded by 

 2 2( ) (0)e (1 e )at atb
V t V

a
     (2.20) 

It can be observed that the function 2 ( )V t  reaches the region prescribed by /b a  as time goes to 

infinity. The bound of this region depends on the selection of parameters a  and b . 

Lemma 2-3. Consider a positive function 3 ( )V t  that satisfies the following inequality 

    3 3V t V t    (2.21) 

where   and   are positive adjustable parameters. 

This function approaches the vicinity of the region bounded by /   in finite time. 

Proof of Lemma 2-3: In the circumstance that at the initial time 0t  , if 3(0)V  lies in the region 

defined by /  , because of the dynamics (2.21), 3 ( )V t  is eternally constrained in this region.  

Assuming that at the beginning, 3(0)V  is far from this region. According to (2.20), for all 0 , 

3 ( )V t  reaches the region bounded by /    in finite time rt  determined by 

  3

1
ln

0 /rt V


  

 
     

 (2.22) 

This completes Proof of Lemma 2.3. 

2.2.4 Mathematical Inequalities 

Lemma 2-4 [98]: For   2,a b R , Young’s inequality holds as follows: 
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p qva b

ab
p vq

   

where  , 1,p q  ; 1 1 1p q  , and v R . 

Lemma 2-5 [99]: For any  1,p   and ia R , the following inequality holds 

    1
1 1

p p p p
n na a n a a       
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Chapter 3  
DISTURBANCE OBSERVER-BASED CONTROL FOR POSITION 

TRACKING OF ELECTRO-HYDRAULIC SERVO SYSTEMS 
3.1 Introduction 

Electro-hydraulic servo systems (EHSSs) have been widely employed for years in a wide range of 
industrial applications such as load simulators [100], robot manipulators [101-105], vehicle active 
suspension [106, 107], and hydraulic press [108] due to their advantages of high produced force/torque, 
high stiffness, high power-to-weight ratio, high load efficiency, and fast and smooth response [95]. 
However, high-accuracy position tracking control of electro-hydraulic systems is still challenging 
owing to highly nonlinear characteristics [109], parametric uncertainties (i.e., significant changes in 
effective bulk modulus and viscosity with temperature, etc.), unmodeled uncertainties, and external 
disturbances. 

To deal with the nonlinearities of the electro-hydraulic systems, feedback linearization methods 
such as full-state feedback linearization [110], input-output feedback linearization [22], and partial 
input feedback linearization [111] were investigated under the assumption that the exact model 
information is available. In [112], a modified feedback linearization-based position control with 
supply pressure uncertainty was introduced to improve the tracking performance; however, the 
parametric uncertainties have not been fully considered in this work. In addition, the feedback 
linearization controller [113] was proven to not be robust in modeling uncertainty and sensor noise 
due to the high-order derivative terms in control inputs. Hence, to overcome the challenge of modeling 
uncertainty, nonlinear robust control, such as sliding mode control (SMC), is proposed in several 
studies [76, 114, 115]. The main advantage of SMC is that it is well established, simple, and widely 
applicable [26] to hydraulic servo systems. It has proven to be robust in modeling inaccuracies that 
satisfied matching conditions. If the chosen switching gains of SMC are bigger than the upper bound 
on the uncertainties, robust stabilization can be achieved [116]. However, in practice, the upper bound 
is partly known or even completely unknown, so the switching gains must be sufficiently large to 
suppress the influence of the uncertainties. The adoption of high-gain feedback control and the sign 
function in the control law cause chattering problems [117], resulting in insufficient control accuracy, 
high heat losses in electrical power circuits, and high wear of moving mechanical parts [34]. Therefore, 
some modifications of the SMC approach [118-121] were introduced to reduce these chattering effects, 
but there is a tradeoff between tracking accuracy and chattering. Overall, the parametric uncertainties 
have not been effectively treated in these works. To cope with the parametric uncertainties, the 
methodology of adaptive control, which utilizes the adaptive mechanism to update the system 
parameters in the control design, has been studied for the past decades [122, 123]. Based on this 
adaptation technique, the gains of the controller can be significantly reduced. By merging adaptive 
control and robust control, nonlinear adaptive robust control (ARC) approaches [124, 125] have been 
introduced to obtain better performance. In these studies, only bounded tracking performance can be 
achieved in the presence of mismatched and/or matched disturbances. To obtain an asymptotic 
tracking performance, a robust integral of the sign of the error (RISE)-based adaptive control [123] has 
been investigated where unknown parameters are estimated via adaptive technique and all unmodeled 
uncertainties are compensated by the RISE feedback. However, in this study, the disturbances are 
assumed to be bounded up to the second-order derivative, therefore this assumption might be restricted 
in some real applications. Generally, in the above-mentioned works, although model uncertainties 
have been carefully considered, the influence of external disturbances, i.e., torque/force while 
interacting with the environment, have not been fully addressed. Therefore, to enhance the tracking 
performance these disturbances need to be estimated and compensated in the control system design. 
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To deal with the effects of external disturbances on the control system, disturbance observers 
(DOs) have been investigated for years with the assumption that their derivatives are bounded [126]. 
Typically, disturbance observers are broadened to estimate not only the external disturbances but also 
the model uncertainties. Disturbance and uncertainty are lumped in a generalized term, which is called 
lumped uncertainties/disturbances. Active disturbance rejection control (ADRC) approaches have been 
introduced in recent years with various structures to improve the system performance in the presence 
of disturbances and unmodeled uncertainties such as high-gain disturbance observer [127, 128], 
sliding perturbation observer [129], uncertainty and disturbance estimator (UDE) [130, 131], sliding 
mode observer (SMO) for state and disturbance estimation [132], extended disturbance observer [108], 
adaptive high gain observer [133], and high-order disturbance observer (DOB) [134]. Among them, 
extended state observers (ESOs) have been widely used in many works [76, 95, 109, 135-138] in 
recent years because they can estimate not only the unmeasurable system states but also the external 
disturbances. For example, in [76], an extended state observer (ESO)-based control for a hydraulic 
rotary actuator originated from [73] was proposed to approximate angular velocity and matched 
disturbance by using an extended state. In this paper, the mismatched disturbance was only attenuated 
by using a high-gain ESO. The modification of ESO [76] was introduced in [95] by separating the 
original system into two subsystems to obtain better performance in which the matched and 
mismatched disturbances are simultaneously estimated. An integral sliding mode backstepping 
controller based on ESO for the asymmetric electro-hydrostatic actuator was introduced in [138]. 
However, from the design of the ESO, one can observe that the disturbance estimation performance 
depends on not only the physical disturbance in the real system but also the unmeasurable state 
estimation which currently is estimated by the ESO. In contrast, the state estimation of ESO is 
essentially based on the Luenberger observer, which can be improved by exact differentiators [139, 
140]. Hence, combining DOs and exact differentiators is potential to produce a better disturbance 
estimation compared to the ESO. 

Inspired by the aforementioned discussion, this chapter proposes a novel active disturbance 
rejection control to improve the tracking performance of a hydraulic servo system. In this study, a 
highly accurate and robust Levant’s differentiator [141] is applied to exactly calculate the angular 
velocity of the actuator. Based on that, two disturbance observers (DOs) with the linear structure are 
proposed to estimate the matched and mismatched disturbances in the subsystems then the estimated 
disturbances are fed back into the control law. The DOs-based backstepping controller is proposed to 
attenuate the influence of the disturbances, unmodeled uncertainties caused by weak modeling, and 
parameter perturbations as well. The stability of the closed-loop system is proven using the Lyapunov 
theory. Simulations are conducted in comparison with other control approaches to show the 
superiorities of the proposed control algorithm. 

The remainder of this chapter is organized as follows: The entire control system design including 
state observers, disturbance observers, and backstepping control, and the system stability analysis are 
introduced in Section 3.2. Section 3.3 contains the simulation results. The conclusion is provided in 
Section 3.4.  

3.2 Controller Design 

The proposed control scheme is designed to improve the tracking performance and robustness 
with respect to the uncertainties of the hydraulic system. In this stage, nominal system parameters are 
used to design the observers and the controller. The modeling errors are lumped to the unmodeled 
terms 1d  and 2d  in the second and third equations of (2.6). The proposed control system is 

demonstrated in Fig. 3-1 The proposed control system based on disturbance observers with 
backstepping control. 
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Fig. 3-1 The proposed control system based on disturbance observers with backstepping control.  

In this control system, the state observer based on the Levant’s differentiator is designed to 
accurately approximate the angular velocity of the inertial load. The output of this observer is fed back 
to the controller and two disturbance observers as well. The disturbance observers are constructed to 
estimate the lumped uncertainties 1d and 2d , then they are integrated into the control design step to 

compensate for their effects on the closed-loop control system. The controller is synthesized by using 
the backstepping method, which utilizes the measured states (the angular position and the pressures of 
chambers of the actuator), the estimated state (angular velocity) produced by the state observer, and 
the estimation of unmodeled uncertainties generated by the disturbance observers. This control 
algorithm guarantees globally bounded tracking performance in the presence of modeling errors and 
unmodeled uncertainties. 

3.2.1 State Observer Design 

The state observer is designed to estimate the angular velocity of the inertial load based on the 
information from the position sensor. In this research, a second-order Levant’s differentiator [139] is 
employed to estimate exactly and in a finite time the first-order derivative of the position of the inertial 

load  1x t . 

The second-order Levant’s differentiator is mathematically formulated as follows: 

 

 
 

 

2 3
1 1 1 1 1 1 1 1 2

1 2
2 2 2 2 2 1 2 1 3

3 3 3 2 3 2

; sign

; sign

sign

y v v y x y x y

y v v y v y v y

y y v y v






             






 (3.1) 

where 1 , 2 , 3  are the parameters of the differentiator that are positive constants. The trade-off is as 
follows: the larger parameters, the faster convergence, and the higher sensitivity to input noise and the 
sampling step. The estimated angular velocity is defined as 

 2 2x̂ y  (3.2) 

The stability of this differentiator has been proven in previous works [141]. In the steady-state 
condition, the estimation error 2 2 2ˆx x x   of the angular velocity and its derivative satisfy the 

following equations:  

 2 2;x x     (3.3) 

where   is the arbitrarily small positive constant depending on the selection of differentiator 
parameters and   is a bounded constant that is defined as 
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 2max 2min 2x x

T T




 
 

 (3.4) 

with T  being the sampling time. 

3.2.2 Disturbance Observer Design 

The disturbance observers are designed to estimate the lumped uncertainties of the mechanical and 
hydraulic systems. Then, the estimated values are fed back to the control law to compensate for their 
effects on the control system. 

Consider the subsystem that is represented in the second equation of (2.6) as 

  2 3 1 2 1x x f x d    (3.5) 

The first disturbance observer is constructed to approximate the mismatched lumped uncertainties 
in the mechanical system, which is depicted as 

 
  

1 1 1 2

1 1 1 1 3 1 2

ˆ ˆ

ˆ ˆ

d z l x

z l d l x f x

      
 (3.6) 

where 1z  is an intermediary variable of the observer, 1l  is the observer gain with 1 0l  . 

Define the estimation error 1 1 1
ˆ

de d d  , the estimation error dynamics is obtained as follows: 

 1 1 1 1 1 1 2 1d de l e l f l x d        (3.7) 

where  

    1 1 2 1 2ˆf f x f x   (3.8) 

Theorem 3-1: Based on Assumptions 2-2 and 2-3, the disturbance observer (3.6) which utilizes 
the state estimation (3.2) guarantees that the disturbance estimation error in (3.7) can be bounded in an 
arbitrarily small region based on the selection of the DO gain. 

Proof of Theorem 3-1:  

A candidate Lyapunov function is chosen as 

 2
1 1

1

2d dV e  (3.9) 

Combining the error dynamics in (3.7) and (2.7), the time derivative of (3.9) can be obtained as 

  

2
1 1 1 1 1 1 1 1 2 1 1

1 1 2 2 2 2 21
1 1 1 1 1 1 1 12 2

1 1

1 1 1
     

2 2 22 2

d d d d d

f
d f

V l e l e f l e x e d

l c l
l e l c l   

 

   
           

 
 (3.10) 

Define a set of known constants as 

  1 1 2 2 2 21
1 1 1 1 1 1 1 1 12 2

1 1

1 1 1
;

2 2 22 2
f

f

l c l
l l c l     

 
        (3.11) 

where constants 1l  and 1  are chosen such that 1  is positive. 

Based on Assumption 2-3 and (3.3), (3.10) is transformed into 

 2
1 1 1 1d dV e    (3.12) 
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From (3.9) and (3.12), we obtain 

 1 1 1 12d dV V    (3.13) 

Based on Lemma 2-2 and (3.13), the function (3.9) is bounded by 

 1
1

12dV



  (3.14) 

It is clearly seen that the larger observer gain 1l  is, the smaller estimation error 1de  will be. Hence, 

Theorem 3-1 is completely proven. 

Similarly, we consider the second subsystem to be defined as 

      3 2 2 3 2 3 2, , ,x f x x g x u u d x t    (3.15) 

The second disturbance observer is designed to estimate the lumped uncertainties of the subsystem 
defined as follows 

 
   

2 2 2 3

2 2 2 2 2 3 2 2 3

ˆ

ˆ ˆ, ,

d z l x

z l d l g u x u f x x

         
 (3.16) 

where 2l  is the disturbance observer gain chosen such that 2 0l  . 

Define the estimation error 2 2 2
ˆ

de d d  , the estimation error dynamics is computed as follows: 

 2 2 2 2 2 2d de l e l f d     (3.17) 

where  

    2 2 2 3 2 2 3ˆ, ,f f x x f x x   (3.18) 

Theorem 3-2: The disturbance observer (3.16) based on Assumptions 2-1 and 2-3, which utilizes 
the state estimation (3.2), guarantees that the disturbance estimation error in (3.17) can be bounded in 
an arbitrarily small region based on the selection of the DO gain. 

Proof of Theorem 3-2:  

Select a candidate Lyapunov function as 

 2
2 2

1

2d dV e  (3.19) 

Taking the time derivative of it and combining it with (3.17), one obtains 

 

2
2 2 2 2 2 2 2 2

2 2 2 2 2 2
2 2 2 2 2 2 22
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1 1 1
     

2 2 22

d d d d

f
d f

V l e l e f e d

l c
l e l c x 



  
         




 (3.20) 

Define a set of known constants as 

 2 2 2 2 2
2 2 2 2 2 2 2 22

2

1 1 1
;

2 2 22
f

f

l c
l l c x   


      (3.21) 

where 2l  and 2  are chosen such that 2 0  . 

Based on Assumptions 2-3 and (3.3), (3.20) is transformed into 
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 2
2 2 2 2d dV e    (3.22) 

Combining (3.22) and (3.19), we obtain 

 2 2 2 22d dV V    (3.23) 

Based on Lemma 2-2 and (3.23), 2dV  is bounded by 

 2
2

22dV



  (3.24) 

It is clearly seen that the larger the observer gain 2l  is, the smaller the estimation error 2de  will be. 

Hence, Theorem 3-2 is completely proven. 

Remark 3-1: The proposed DOBs are able to compensate for not only the external disturbances 
but also model uncertainties caused by large parameter variations and weak modeling as long as 
Assumption 1 is satisfied. 

3.2.3 Backstepping Controller Design 

The proposed controller is synthesized by using the recursive backstepping method based on the 
measured states, estimated state, and approximated lumped uncertainties. The design procedure is 
intuitive because the unmatched uncertainty in the second equation and the matched uncertainty in the 
third equation of (2.6) have been completely estimated in the previous sections. 

The state errors  1,2,3ie i  are defined as 

 1 1 1 2 2 2 3 3 3; ;d d de x x e x x e x x       (3.25) 

where 1dx  is the desired position trajectory, 2dx  and 3dx  are the virtual control inputs. Based on the 

estimated state and observed disturbances, the virtual control inputs are designed to stabilize the 
subsystems as follows: 

 
     

2 1 1 1

3 1 2 1 1 2 1 1 2 2 2
ˆˆ ˆ ˆ

d d

d d d d

x k e x

x f x d k x x x k x x

 

      



 
 (3.26) 

where 1k  and 2k  are positive feedback gains. The virtual control function 3dx  is designed for the 

virtual control input 3x , such that the output tracking performance is ensured. 

The actual control input u  is designed to stabilize the whole system, which is defined as  

 
      2 2 3 3 3 3 3 2

2 3

1 ˆˆ ,
, d du f x x x k x x d

g x u
       (3.27) 

The state error dynamics of the augmented system are given by 

  
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2 2 2 3 1 1 2 2 1

3 3 3 2 2

d

d

e k e e

e k e e k k x e

e k e e




           


 
 

 (3.28) 

Theorem 3-3: Based on Assumptions 2-1, 2-2, and 2-3, the control laws (3.26) and (3.27), which 
employ the estimated state in (3.2) and the estimation values of disturbances in (3.6) and (3.16) 
guarantee the ultimately uniformly bounded tracking performance of the system (2.6) under the 
presence of uncertain nonlinearities and external disturbances. 

Proof of Theorem 3-3: 
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Controller stability analysis is performed by using the Lyapunov theory with the Lyapunov 
candidate function as 

 2 2 2
1 2 3

1 1 1

2 2 2cV e e e    (3.29) 

Combining with (3.3), (3.7), (3.17), and (3.28), the time derivative of cV  can be obtained as 
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 

 (3.30) 

Using (2.7), (2.8) in Assumption 2-2 and Assumption 2-3, the time derivative of cV  in (3.30) is 

bounded by 
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 (3.31) 

The inequality (3.31) can be rewritten in the following form 

 2 2 2
1 1 2 2 3 3cV e e e        (3.32) 

where 
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 (3.33) 

From (3.32), Lemma 2-2, Theorem 3-1, and Theorem 3-2, cV  is bounded by 

        0 exp 1 expcV t V t t
 

        (3.34) 

where  1 2 32 min , ,      

When t  goes to infinity, cV  will stay in a bounded region defined by cV   . Therefore, 

bounded tracking performance is achieved as follows: 

 1

2
e




  (3.35) 

From (3.33), (3.34), and (3.35), when the control gains 1k , 2k , and 3k  increase, the tracking error 

will decrease. This completes the proof of Theorem 3-3. 

3.3 Simulation Results 

3.3.1 Simulation Setup 

In this section, numerical simulations are conducted to verify the superior effectiveness of the 
proposed algorithm. The simulations were performed on MATLAB/Simulink 2019b, using a Runge-
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Kuta solver with a fixed step size 1T ms  as shown in Fig. 3-2. The system parameters of the 
hydraulic system [76] are listed in Table 3-1. 

Table 3-1: The hydraulic system parameters 

Parameter (Unit) Value Parameter (Unit) Value 

 2kg mJ   0.2   1N m s radB     90 

 3 1m radmD   55.8 10   Pae  87 10  

 3 1 1m s PatC     121 10   3 1 1 1 2m s V Patk      81.1969 10  

 PasP  71 10   3mtV  41.16 10  

 

 

Fig. 3-2: Control design in MATLAB/Simulink environment: 

In practice, the output signal of the controller needs to be in a determined range. Generally, the 
voltage of the input signal u  applied to a servo-valve is bounded in a range from 10 ~ 10 V V , 
therefore, in this case, we have to use a saturation function as follows: 
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 (3.36) 

where cu  is the output of the controller. 

3.3.2 Controllers for Comparison 

To illustrate the superiority of the proposed control law, some controllers are compared as follows: 

1) The proposed disturbance observers (3.6) and (3.16) in combination with the exact 
differentiator (3.1) are employed in the backstepping controller (3.27). The parameters of the two 
disturbance observers and the state observer are 1 450l  , 2 450l  , 1 5  , 2 5  , and 3 10  , 

respectively. 

2) ESOBC: This is the extended state observer-based backstepping control in [76]. The extended 
state observer was introduced as 
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      0 1 1ˆ ˆ ˆ ˆ ˆ,x A x x G u x u H x x      (3.37) 

in which 2 3 4
0 0 0 04 ,6 ,4 ,

T
H          is the observer gain matrix with 0 450.   

3) 2-ESOBC: This is the two extended state observer-based backstepping control. The two state 
observers [95] were investigated as  
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 (3.38) 

where observer gains are chosen as 1 450e   and 2 450e  . 

4) UDEBC: This is the unknown disturbance estimation-based backstepping control. The 
disturbance observer [142] is designed as follows: 
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where 1q  and 2q  are low-pass filters which are chosen based on the dynamics of the considered 

system. The structure of these filters is a first-order transfer function as 

  1
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i

q i
T s
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

 (3.40) 

where 1T  and 2T  are manually tuned to achieve the sufficiently accurate estimation of 1d  and 2d . The 

larger iT , the better the noise filtering but the higher lag on the filtered signal and vice versa. The 

values of 1T  and 2T  are chosen as 1 2 0.01T T  . 

The controller gains are given by 1 450k  , 2 350k  , and 3 100k   in all cases. 

To measure the effectiveness of each control approach, three performance indexes were employed 
i.e., the maximum, average, and standard deviation of the tracking errors [76]. These indexes are 
defined as follows: 

(a) Maximal absolute value of tracking errors is used to evaluate the tracking accuracy, which is 
represented as 

  
1, ,

maxe i
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M e





 (3.41) 

where N  is the number of recorded digital signals. 

(b) Average tracking error is defined as 
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(c) Standard deviation performance index is defined as 
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3.3.3 Numerical Simulation 

In this case study, the desired trajectory of the inertial load and the matched, mismatched 
disturbances are applied to the system as follows: 

      1 45 1 cos 1 degree
2

t
dx t t e

           
 (3.44) 
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 (3.46) 

where the magnitudes of  1d t  and  2d t  are chosen based on the system specifications and the 

operation conditions of the real systems. These disturbances are intentionally injected into the 
considered system to verify the effectiveness of two proposed disturbance observers in improving the 
tracking performance of the proposed control system. 

 

Fig. 3-3 The tracking errors of the proposed method and other approaches in the presence of 
matched and mismatched disturbances. 

 

 

Fig. 3-4 The tracking performance of the proposed method compared with those of other 
approaches. 
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The desired trajectory is designed based on the sinusoidal-like function (3.44) to guarantee that it 
is smooth enough. To compare the tracking performance of the aforementioned control approaches, 
the mismatched (3.45) and matched disturbance functions (3.46) are injected into the system from the 
first 20th second and 40th second, respectively. 

The tracking errors and tracking performances of four considered controllers are shown in Fig. 3-3 
and Fig. 3-4, respectively. The maximum, average, and standard deviations of tracking errors in the 
steady-state phase are illustrated in Table 3-2, Table 3-3, and Table 3-4 in detail, correspondingly. 

Table 3-2 The maximal absolute values of tracking error in the steady-state phase.  

Controller No Disturbance Mismatched Disturbance 
Mismatched/Matched 

Disturbance 
Proposed Controller 0.0045  0.0093  0.0521  
ESOBC Controller 0.0045  0.0500  0.2860  
2-ESOBC Controller 0.0045  0.0123  0.0895  
UDEBC Controller 0.0057  0.0236  0.1572  

Table 3-3 The average tracking errors in the steady-state phase. 

Controller No Disturbance 
Mismatched 
Disturbance 

Mismatched/Matched 
Disturbance 

Proposed Controller 0.0030  0.0048  0.0331  
ESOBC Controller 0.0030  0.0219  0.1728  
2-ESOBC Controller 0.0030  0.0065  0.0584  
UDEBC Controller 0.0038  0.0131  0.0997  

Table 3-4 The standard deviation of tracking errors in the steady-state phase. 

Controller No Disturbance 
Mismatched 
Disturbance 

Mismatched/Matched 
Disturbance 

Proposed Controller 0.0014  0.0030  0.0151  
ESOBC Controller 0.0014  0.0189  0.1698  
2-ESOBC Controller 0.0014  0.0038  0.0254  
UDEBC Controller 0.0018  0.0068  0.0469  

In the absence of mismatched and matched disturbances in the first 20s, the tracking performance 
and tracking error plots are roughly similar. The maximal absolute values of tracking errors of the 
proposed controller, ESOBC, and 2-ESOBC are 0.0045  degrees, whereas that of the UDEDC is 
slightly bigger with 0.0057  degrees. 

In the presence of the mismatched lumped disturbance from the 20 th second, the maximal value 
of tracking errors of the system with the ESOBC is significantly higher than other controllers with 
0.05  degrees, because this mismatched term is only suppressed by using high gain feedback while this 
disturbance is estimated and compensated in other methods, while that of UDEBC is 0.0236 degrees. 
It can be seen from Table 3-2 that the tracking errors of the 2-ESOBC and proposed controller are 
better than the ESOBC and UDEBC, since the angular velocity and matched disturbance are 
approximated more precisely. In this case, the maximal absolute values of tracking errors of 2-ESOBC 
and the proposed method are 0.0123  degrees and 0.0093  degrees, respectively. This indicates that the 
proposed control approach achieves a better tracking performance than other approaches. 

In the worst case, i.e., both mismatched and matched disturbances occur in the system from the 
40 th second, the tracking performances of all controllers deteriorate considerably. However, similar 
to the previous situation, it also illustrates the effectiveness of the proposed controller compared to the 
remaining controllers in the presence of both mismatched/matched uncertainties and external 
disturbances. In this case, the tracking performance of ESOBC and UDEBC is seriously deteriorated 
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due to the effects of heavy disturbance with the maximum absolute values of the tracking errors being 
0.2860  and 0.1572  degrees, respectively. Meanwhile, the maximal absolute value of tracking errors 
of 2-ESOBC is 0.08695  degrees, and the proposed controller has the most outstanding feature with 
this value being 0.0521  degrees under the effects of both mismatched and matched disturbances. 

In addition, to evaluate the tracking performance of the compared methods in terms of smooth 
tracking performance, the average and standard deviation of tracking errors can be used. From Table 
3-3 and Table 3-4, it can be observed that the average tracking error and standard deviation indexes of 
the proposed control algorithm are considerably smaller than other control approaches in the presence 
of mismatched and matched disturbances. They illustrate that smoother tracking performance is 
achieved by the proposed method in comparison with others.  

 

Fig. 3-5: The estimation error of the angular velocity of the inertial load. 

 

Fig. 3-6: The estimation of the mismatched disturbance. 

As above analysis, in the steady-state condition, the proposed controller achieves the best tracking 
performance in terms of steady-state tracking errors compared with other control methods, since the 
angular velocity of the actuator is estimated more accurately by employing Levant’s differentiator, and 
the matched/mismatched disturbances are also approximated then fed back to the controller to 
compensate for the effects of these disturbances on the control system. 

The estimation error of the angular velocity is depicted in Fig. 3-5. It is immediately apparent that 
the angular velocity of the actuator is approximated by using the Levant’s differentiator much more 
exactly than using ESO [48]. It also can be seen from this figure, the estimation error of the 2ESOBC 
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is much better than the ESOBC. In the occurrence of mismatched disturbance from the 20 th second to 
40 th second, the velocity estimation errors of ESOBC and 2-ESOBC increase significantly, whereas 
that of the proposed controller remains unchanged. This error of ESOBC continues to enlarge 
dramatically under the influence of the matched disturbance in the last 20 s on the control system. 
Hence, the tracking performance of ESOBC deteriorates markedly under the presence of matched 
disturbance. An interesting point is observed that compared to the ESOBC, the angular velocity 
estimation in the 2-ESOBC is better since the pressure information is measured and fed back to the 
mismatched ESO which estimates the mismatched disturbance and also cancels its effect on the 
angular velocity estimation. In addition, based on the Levant’s differentiator, the angular velocity 
estimation in the proposed controller is the best compared to those in the remaining controllers 
because this estimation is independent of the system model and uncertainties/disturbances. Hence, it 
contributes to the best tracking performance in the above discussion as well as the best matched and 
mismatched dis-turbances estimations in the next section of the proposed controller compared to those 
of the remaining controllers. 

 

 

Fig. 3-7: The estimation error of the mismatched disturbance. 

 

 

Fig. 3-8: The estimation of the matched disturbance. 
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Fig. 3-9: The estimation error of the matched disturbance. 

The estimation and estimation errors of mismatched disturbance are illustrated in Fig. 3-6 and Fig. 
3-7. As shown in Fig. 3-7, it is clearly seen that although the UDEBC can estimate the mismatched 
disturbance, the estimation error is considerably bigger than 2-ESOBC and the proposed method. 
From Table 3-5, it can be observed that while the maximal absolute value of the mismatched 

estimation error of UDEBC is 47.2756  2rad s , those of 2-ESOBC and the proposed approach are 

20.4977  2rad s  and 16.3231 2rad s , respectively. The results show that the proposed controller is 
able to estimate the mismatched disturbance the most accurately in comparison with UDEBC and 2-
ESOBC. 

Table 3-5: The maximal absolute value of estimation errors of mismatched and matched 
disturbances. 

Controller 

Maximal Value of Estimation Error 
Mismatched Disturbance 

 2rad s  

Matched Disturbance 

 3rad s  

Proposed Controller 16.3231 41.1843 10  
ESOBC Controller  58.5159 10  
2-ESOBC Controller 20.4977  42.1428 10  
UDEBC Controller 47.2756  43.2072 10  

The estimation and estimation errors of matched disturbance are illustrated in Fig. 3-8 and Fig. 3-9. 
In Fig. 3-9, the proposed disturbance observer is able to estimate more accurately the matched 
disturbance compared with other methods. It is worth noting that the matched disturbance estimation 
of the ESOBC and 2-ESOBC are affected by the mismatched disturbance due to the coupling problem 
between state and disturbance estimation. This leads the estimation errors even in the absence of 
matched disturbances, and hence, they degrade the tracking performance of the control system. 
Furthermore, the ES-OBC uses high-gain feedback to suppress the matched disturbance, but in the 
case of heavy disturbance, this method cannot work well. 

The maximal absolute values of matched disturbance of the estimation error are illustrated in 
Table 3-5. As can be seen from this table, the maximal absolute values of estimation error of ESOBC, 

UDEBC are 58.5159 10  3rad s  and 43.2072 10  3rad s , respectively, whereas these values of 2-

ESOBC and the proposed method are 42.1428 10  3rad s  and 41.1843 10  3rad s , respectively. 
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Fig. 3-10: The control actions of considered controllers. 

 

Fig. 3-11: The load pressures of the actuator corresponding to the control actions. 

The control action and load pressures are shown in Fig. 3-10 and Fig. 3-11, respectively. Due to 
the same desired position trajectory and similar tracking performances, all four controllers generate the 
equivalent profiles of control input. It can be seen that in the presence of matched disturbance in the 
last 20  s, the value of control input increases significantly to compensate for the effect of this 
uncertainty. The load pressure also changes to guarantee the tracking performance of the control 
system in the presence of mismatched and/or matched disturbances, and hence, the shapes of load 
pressures are also quite similar. 

3.4 Conclusion 

In this study, a novel backstepping controller based on Levant’s differentiator-based disturbance 
observers has been proposed for a hydraulic servo system. In this work, the angular velocity of the 
actuator is exactly estimated by employing the exact robust Levant’s differentiator. Lumped matched 
and mismatched disturbances are simultaneously considered and by using new DOs that approximate 
not only the uncertain nonlinearities but also the external disturbances. Based on that, the novel 
nonlinear controller is synthesized using the systematic backstepping method. The closed-loop system 
stability is completely proven using Lyapunov theory, which shows that the proposed controller 
guarantees a better tracking performance in the presence of time-varying uncertainties and external 
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disturbances compared with other approaches. Comparative simulation results are attained to 
demonstrate the effectiveness of the proposed method. Future works include applying advanced 
nonlinear disturbance observers to improve the tracking performance and experiment validation on the 
real hydraulic systems  
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Chapter 4  
EXTENDED SLIDING MODE OBSERVER-BASED CONTROL FOR 

ELECTRO-HYDRAULIC ACTUATOR 
4.1 Introduction 

Owing to excellent characteristics including a small weight-to-power ratio, fast and smooth 
response, ability to generate tremendous force/torque, and so on [72], electro-hydraulic servo systems 
(EHSSs) have been broadly adopted as major actuation components for hydraulic robot manipulators 
[143-145], hydraulic active suspensions [146], hydraulic human power amplifiers [147], and so forth 
in both industry and academia. Hence, as one of the most popular control problems for such EHSSs, 
position tracking control has been currently receiving a vast amount of attention in recent years. By 
virtue of model compensation mechanisms, nonlinear control techniques such as feedback 
linearization control [21, 112], sliding mode control(SMC) [120, 148], and back-stepping control (BC) 
[93, 149] are powerful tools to synthesize controllers for highly nonlinear EHSSs. However, the 
controllers constructed based on the aforementioned control techniques cannot achieve a high-
accuracy position tracking performance for EHSSs subject to uncertainties and disturbances arising 
from parameter deviations, modeling errors, unknown external loads, and so on, since these terms are 
not fully taken into consideration in the control mechanisms. Therefore, several key techniques are 
required to be integrated into the above-mentioned control approaches to cope with uncertainties and 
disturbances existing in the EHSSs, which improve the overall control performance. 

Firstly, universal approximators predicated upon radial basis function neural networks (RBF NNs) 
[90, 150, 151] and fuzzy logic systems (FLSs) [152-154] have been successfully adopted to cope with 
state-dependence lumped uncertainties in EHSSs. However, due to the heavy computational burden 
and long convergence time of adaptive laws, their applications to real-life applications are restricted 
[155]. Compared to such approximators, disturbance observers (DOBs) such as linear disturbance 
observers (LDOBs) [97], nonlinear disturbance observers (NDOBs) [102], and high-gain disturbance 
observers (HGDOBs) [127] are effective to cope with not only state-dependence lumped uncertainties 
but also unknown external disturbances which are not generally easy to be directly quantified by 
sensors. In Reference [156], Hamid Razmjooei et al. proposed a novel DOB structure for position 
tracking control of a proportional valve-controlled-based electro-hydraulic system, although some 
strong assumptions were given, the finite-time convergence property of disturbance estimation was not 
pointed out explicitly. Therefore, it should be noted that the above-mentioned DOB designs only 
achieve ultimately uniformly bounded (UUB) estimation performance in the case of time-varying 
disturbance. Besides, separate state observers are required to realize such DOBs, which may 
complicate the design and reduce the reliability of the closed-loop system as a consequence. Hence, 
for the simplification of the control system, inspired by the well-known Luenberger observer [50-52], 
extended state observer (ESO) which was initially developed by J. Han [157-159], can be regarded as 
a powerful tool to simultaneously estimate immeasurable state and lumped disturbances in uncertain 
nonlinear systems. Based on the noticeable features of ESOs such as intuitive concept and simplicity 
for implementation, they have been broadly applied to EHSSs to actively compensate for the effects of 
lumped uncertainties and disturbances which are assumed to be differentiable and bounded in 
changing rate [76] on the control system. For example, an ESO-based output feedback controller for 
EHSSs [93] was introduced to achieve a high position tracking accuracy, in which only lumped model 
uncertainties in pressure dynamics were addressed. Besides, an ESO [94] was constructed to estimate 
not only velocity but also disturbance for the mechanical system of EHSSs, however, only mismatched 
disturbance was compensated. To adequately address both matched and mismatched disturbances, 
dual ESOs [95] were established, hence, the tracking performance was significantly enhanced. 
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Additionally, in References [160, 161], finite-time continuous ESOs with time-varying observer gains 
were established to improve the convergence rate of the state and disturbance estimation errors in the 
dynamics of an electro-hydraulic actuation system, and consequently, improved tracking performance 
was achieved. Generally, the ESO whose stability is guaranteed by terms proportional to the error 
between the measured and estimated values of a system output, has been considered to be a valuable 
solution for states and disturbances estimation up to now. However, it is worth noticing for research 
whether the estimation ability can be improved if a nonlinear switching function of that deviation is 
adopted for the design of observers. 

In the literature, a sliding mode observer (SMO) [162] utilized the standard signum function, that 
is, the “sign” function, of the estimated-measured output error to drive the estimated states to a sliding 
surface where there is no difference between the estimated output and the measured output. 
Additionally, by using the “sign” function, the SMO can rapidly react to fast-changing state variables 
required to observe and the observer trajectories become insensitive to many forms of noise [163]. 
Besides, based on the finite-time convergence attribute of SMC, SMOs are expected to achieve a 
shorter convergence time compared to conventional state observers [164]. As a result of the above-
mentioned superiority, the SMO was employed to robustly estimate immeasurable states in previous 
studies for EHSSs. In Reference [132], an SMO was constructed to estimate the velocities of the load 
and main spool valve of an EHSS, then the lumped disturbances were algebraically computed based 
on the system dynamics. As another modification of SMO, an adaptive high-order SMO [165] was 
introduced in which the derivatives of estimated states were obtained by means of a high-order sliding 
mode differentiator. In contrast to the state estimation capability of the SMO, sliding mode disturbance 
observers (SMDOs) based on the equivalent theory were investigated in previous studies [166-171] for 
disturbance estimation. In particular, an adaptive SMDO [166] was developed for the track-following 
system of an optical disk with the assumption that the disturbance model is known in advance. A 
deadbeat predictive current control based on a second-order SMDO [167] for induction machine (IM) 
drives, was introduced to tackle lumped mismatched disturbance. In Reference [170], a robust tracking 
control scheme based on an SMDO for omnidirectional mobile robots was proposed to deal with 
kinematic uncertainties due to incomplete measurement. As an extended version to take the valuable 
features of the SMO, which inherits the simple structure of ESO designs, ESMOs can be considered as 
a great solution to estimate both system states and disturbances. In the literature, ESMOs were 
successfully applied to various applications such as Markovian jump linear systems [172], permanent-
magnet synchronous motor (PMSM) [173, 174], descriptor stochastic systems [175], satellites 
autonomous navigation [176], electro-optical tracking system [177], and so on. However, in these 
studies, the system models are in linear-time-invariant form and thus there is a gap in adopting 
ESMOs for nonlinear systems. In Reference [144], an ESMO was introduced to observe joint 
velocities and contact force with the environment in the mechanical system of hydraulic robots only. It 
should be mentioned that the employment of ESMO for EHSSs has not been sufficiently considered in 
the literature. Hence, in this study, dual ESMOs are first constructed to approximate the angular 
velocity of the actuator and lumped disturbances simultaneously accurately in both the mechanical 
system and pressure dynamics of the considered EHSS. 

Motivated by the above comprehensive analysis, in this chapter, an ESMO-based backstepping 
controller is proposed to achieve a high-accuracy tracking performance for an EHSS without velocity 
measurement in the presence of parameter deviations, unmodeled dynamics, and external disturbances 
in the mechanical part and pressure dynamics, which are lumped into generalized mismatched and 
matched disturbances, respectively. The main contributions of this study are summarized as follows: 
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1) For the first time, a novel active disturbance rejection control strategy based on dual ESMOs is 
developed for EHSSs in the presence of both lumped mismatched and matched uncertainties and 
disturbances in the mechanical system and hydraulic pressure dynamics, respectively 

2) Compared to the well-known ESO designs [76, 95], a better estimation performance with 
higher accuracy, faster response, and more robustness against uncertainties, can be achieved by 
employing the proposed ESMOs. The introduction of ESMO could satisfy the fundamental 
requirement for a new alternative to ESO for both state and disturbance estimation in high-order 
nonlinear EHSSs. 

3) On the strength of the proposed ESMOs, the suggested composite control strategy for the 
studied EHSS is able to perform better in comparison with the existing ESO-based control approaches 
in terms of not only position tracking performance but also state and disturbance observation 
capability. 

The remainder of this chapter is organized as follows. The modeling of the studied EHSS is 
considered in Section 4.2, whereas in Section 4.3, the design of the proposed SMO and control 
strategy is introduced in detail. Comparative numerical simulation results with several case studies are 
provided in Section 4.4. Finally, Section 4.5 concludes the chapter. 

4.2 Extended Sling Mode Observer-Based Control Design 

The control scheme of the proposed method is illustrated in Fig. 4 2. In this framework, dual 
ESMOs are established to exactly estimate the immeasurable angular velocity, lumped mismatched 
and matched disturbances whose observed values are then integrated into the control law synthesized 
using the backstepping technique to compensate for their effects on the system dynamics. Finally, the 
control action is restricted to a reasonable range before applying to the control valve of the EHSS. 

 

Fig. 4-1 The proposed control scheme for position tracking of an EHSS with a HRA 

4.2.1 Dual Extended Sliding Mode Observer Design 

The total system dynamics (2.6) are split into two augmented subsystems as follows: 

a) Mechanical subsystem dynamics 
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where 1ex  is an extended state which denotes the unmatched lumped disturbance 1( )d t  and 1( )h t  

reflects the first-order derivative of 1( )d t . 
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b) Load pressure dynamics 
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where 2ex  is the second extended state which represents the matched lumped disturbance 2 ( )d t  and 

2 ( )h t  signifies the first-order derivative of 2 ( )d t . 

For simplicity of expression, the terms comprising 1 2ˆ( )f x , 2 2 3ˆ( , )f x x , and 2 3( , )g x u  are 

abbreviated by 1f̂ , 2f̂ , and 2g , respectively. To estimate not only the angular velocity of the actuator 

but also both lumped unmatched and matched disturbances, dual ESMOs are constructed as 
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where ˆix , 1,2,3i  denote the estimated values of ix  and ˆi i ix x x   are the estimation errors of the 

system states; ˆejx , 1,2j   are the estimates of ejx  and ˆej ej ejx x x   reflect the approximation errors 

of the lumped mismatched and matched disturbances. 1  and 2  are designed positive constants that 

guarantee the existence of the sliding mode for dual ESMOs; 1  and 2  are the bandwidths of the two 

observers, which will be determined later. 

Combining (4.1), (4.2), (4.3), and (4.4), the estimation error dynamics of the proposed ESMOs can 
be derived as 
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where 1 1 1
ˆf f f  , 2 2 2

ˆf f f  . 

Moreover, according to Assumption 2-2, we have 
11 2| | | |ff c x   and 

22 2| | | |ff c x  . 

Theorem 4-1. For subsystems (4.1) and (4.2) with Assumption 2-2, the two recommended 
ESMOs presented in (4.3) and (4.4) guarantee that the velocity and disturbance estimation errors, i.e., 

2x , 1ex , and 2ex , converge to arbitrarily small regions depending on the selection of the observer 

bandwidths 1  and 2 . 

Proof of Theorem 4-1: Consider a candidate Lyapunov function as 

 2
11 1

1

2
V x   (4.7) 

Taking the time derivative of (4.7) and combining with (4.5) yields 
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It can be observed that in the region 2 1 0| |x     with 0 0  , the following inequality holds 

 1/2
11 0 1 0 11| | 2   V x V  (4.9) 

Based on (4.9) and Lemma 2-1, it can be concluded that the estimation error 1x  converges to zero 

in finite time 1t . From 1t t , the equivalent error dynamics of (4.5) are obtained as 
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Defining 1 11 1 12 2 1[ , ] [ , ]T T
ex x   ε    as scaled estimation error vector, the error dynamics (4.10) 

can be transformed into 
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  ε A ε B C  (4.11) 

where 1
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B ; and 1
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1

 
    

C . 

Since the matrix 1A  is negative definite, there exists a positive definite matrix 1P  that satisfies the 

following Lyapunov equation 

 1 1 1 1 2 22T
 A P P A I  (4.12) 

where 2 2I  is the identity matrix of size 2 2 . 

A candidate Lyapunov function is chosen as 

 
1 1 1 10.5  TV ε P ε  (4.13) 

Taking time derivative, then applying Young's inequality yields 
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Notation: max ( ) X  and min ( ) X  are the maximal eigenvalue and minimal eigenvalue of the 

matrix X , respectively. 

For conciseness, defining  1 max 1 1 1 1
T T  B P P B  and  2 max 1 1 1 1

T T  C P P C , (4.14) can be 

rewritten as 
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According to Lemma 2-2, the estimation errors 2x  and 1ex  are bounded by 
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A Lyapunov function is chosen as 2
21 30.5V x  . Taking time derivative of it then combining with 

(4.6), one obtains 

  21 3 3 2 2 2 3eV x x f x x         (4.17) 

In the case that 2  is chosen such that 2 2 2ef x    , the estimation error 3x  converges to zero 

in finite time 2t . After that, the equivalent error dynamics of (4.6) are given by 

 2 2 2 2 2 22 2e ex x f h      (4.18) 

Consider a candidate Lyapunov function given by 
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Taking a time derivative and then substituting (4.18) into it yields 
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Remark 4-1. According to Lemma 2-3, it can be seen that the velocity estimation error converges 
to the vicinity of its bound determined in (4.16) finite time and is constrained in this region after that. 
Without loss of generality and for the sake of simplicity, after the velocity estimation error reaches its 
bounded region, this bound will be used to specify the bounded region of the lumped matched 
disturbance estimation error. 

According to (4.16), (4.20) can be transformed into 
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To reduce the complexity of the tuning procedure of the designed observers, the observer 
bandwidth of the second ESMO is chosen as 2 1    , (4.21) can be rewritten as 
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Based on Lemma 2-2, when the time goes to infinity, the estimation error 2ex  is bounded by 
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This completes the proof of Theorem 4-1. 

Remark 4-2. From (4.16) and (4.23), it can be observed that the dual ESMOs (4.5) and (4.6) 
guarantee an ultimate boundedness estimation performance depending on the bandwidths of the 
observers if the switching gains 1  and 2  are selected so that the sliding mode existence conditions 

are assured. By choosing the same bandwidth, i.e., 1 2    , the number of adjusting parameters 

are reduced. Hence, the complexity of tuning process is reduced. 

Remark 4-3. To guarantee a high-accuracy position tracking performance, a state feedback 
controller is synthesized. Hence, the estimated values which are awaited to be chattering-free, are fed 
back into both inner and outer control loops, i.e., pressure loop and position loop. For chattering 
reduction, the hyperbolic tangent function is employed instead of the “sign” function in the ESMO 
design. 

4.2.2 ESMO-based Controller Design 

Considering the system dynamics (2.6), it can be observed that the relative degree of each virtual 
system is one. Hence, the control strategy can be designed by adopting the conventional recursive 
backstepping method. 

Step 1: Defining the actual position tracking error as 1 1 1dz x x  , then taking the time derivative 

of it and combining it with the system dynamics (2.6), one obtains 

 1 2 1dz x x    (4.24) 

The virtual control law 1  for ensuring the system output tracks the desired trajectory is designed 

as 

 1 1 1 1dx k z    (4.25) 

where 1k  is a positive feedback gain. 

Step 2: Let 2 2 1z x    as the virtual tracking error for the second step. Differentiating the above 

virtual tracking error in this step and considering (2.6), one obtains 

 2 3 1 2 1 1( )z x f x d       (4.26) 

Since the mismatched disturbance 1( )d t  and the angular velocity 2x  are not measurable, the 

virtual control signal for (4.26) is designed using estimated values 2x̂  and 1ˆex  as 

 2 1 2 1 1 2 2 1ˆ ˆ ˆ( ) ( )ef x x k x        (4.27) 

where the control gain 2k  is a positive constant. 

Step 3: To construct the final control action u , an auxiliary error signal is introduced as 

3 3 2z x   . Taking the time derivative of it and noting (2.6) yields 

 3 2 2 3 2 3 2 2( , ) ( , )z f x x g x u u d       (4.28) 
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To compensate for the effect of matched disturbance 2 ( )d t  on the closed-loop control system, the 

actual control action is constructed as 

  2 2 3 2 2 3 3
2 3

1
ˆ ˆ( , )

( , ) eu f x x x k z
g x u

      (4.29) 

where 3k  is a positive feedback control gain which is determined later. 

4.2.3 Closed-loop System Stability Analysis 

Theorem 4-2. The control strategy established by (4.25), (4.27), and (4.29) along with dual 
ESMOs (4.5) and (4.6) assures the UUB tracking performance of the closed-loop control system under 
the effects of both lumped matched and mismatched disturbances and unmeasurable angular velocity. 

Proof of Theorem 4-2:  

Consider the Lyapunov function given by 
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Taking time derivative yields 

 1 1 2 2 3 3cV z z z z z z       (4.31) 

Based on the definition of control errors 1z , 2z , and 3z  then combining with (4.24)-(4.29), the 

derivative of the Lyapunov function can be transformed into 
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Applying Young's inequality, one obtains 
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From (4.16) and (4.23), we have 
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where 
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It can be recognized that the Lyapunov function cV  converges to a bounded area /cV    as 

time goes to infinity. The boundary of this region decreases if the controller gains 1k , 2k , and 3k ; and 

the bandwidth of observers   increase. 

Remark 4-4: First of all, a simple controller with an open-loop structure is designed and applied 
to the system such that the system stability is guaranteed. Based on the initial conditions of the system, 
the constants 1  and 2  of the ESMOs must be carefully chosen to be sufficiently large to guarantee 

that the estimated state tracks the measured state as closely as possible. It is worth noting that if these 
values are designed excessively, the estimation performance may be degraded due to the occurrence of 
chattering issues. Then the observer bandwidth is determined to obtain an expected estimation 
performance without the chattering phenomenon. In the subsequent step, the estimated states and 
disturbances are integrated into a model-based controller by using nonlinear control design techniques 
such as a backstepping framework. Finally, the controller gains must also be thoroughly selected so as 
to achieve the desired tracking performance. 

4.3 Numerical Simulation Evaluation 

The nominal parameters of the considered EHA with HRA [76] are given in Table 4-1, which are 
adopted for designing observers the positioning-tracking controllers. Numerical simulations are 
conducted in MATLAB/Simulink 2019b environment with the fixed step size of 1ms. 

Table 4-1 Nominal system parameters 

Symbol Quantity Value Unit 
B  Viscous damping coefficient 90  1N m s rad    
J  Inertial moment of the actuator 0.2  2kg m  

mD  Radian displacement 55.8 10  3 1m rad  

tV  Total control volume 41.16 10  3m  

tC  Internal leakage coefficient 121 10  3 1 1m s Pa    

tk  Total load flow coefficient 81.1969 10  3 1 1 1 2m s V Pa      

sP  Supply pressure 71 10  Pa  or 2N m  

e  Effective buck modulus 90.7 10  2N m  

4.3.1 The Influence of Observer Bandwidth on Estimation Performance 

In order to examine the influence of the observer bandwidth on the estimation performance of the 
proposed ESMO, numerical simulations with open-loop structure and different values of observer gain 
are performed. The system is driven by an external control input signal 5sin(2 )u t V . In addition, 

the two lumped disturbance terms 1( ) 1500sin(2 )d t t  2rad/s  and 6
2 ( ) 10 sin(2 )d t t  3rad/s  are 

purposely injected into the system dynamics to assess the observation capability of the recommended 
ESMO. The observer bandwidths are chosen as 350 , 400 , and 450  for assessing the influence of the 
observer bandwidth on estimation performance. 

The estimation errors of angular velocity, mismatched disturbance, and matched disturbance are 
given in Fig. 4-2. As shown in this figure, the observer bandwidth has a great influence on the 
estimation performance of the proposed ESMOs. Specifically, the estimation errors will be 
considerably decreased if the observer bandwidth increases. For example, the maximal values of 
velocity estimation errors are 0.0573  rad/s, 0.0657 rad/s, and 0.0778  rad/s corresponding to the 
observer bandwidths of 450, 400, and 350, respectively. In terms of disturbance estimation capability, 

the maximal values of disturbance observation errors are 62.8146 2rad/s , 73.5998 2rad/s , and 88.4152 
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2rad/s  for mismatched disturbance estimation, and 43.0224 10  3rad/s , 43.4567 10  3rad/s , and 
44.0516 10  3rad/s  for matched disturbance estimation when the observer bandwidths are selected as 

450, 400, and 350, correspondingly. Hence, it can be observed that the results support the conclusion 
given in Theorem 4-1 in the previous section. In addition, the superior features of the proposed ESMO 
in comparison with the existing well-known ESO will be analyzed in the following section. 

 

Fig. 4-2 The velocity, mismatched, and matched disturbance estimation errors of the proposed 
ESMOs with three distinct observer gains. 

4.3.2 Observer-based Control Performance Evaluation 

a) Performance Evaluation Setup 

To demonstrate the preeminence of the recommended ESMO-based controller, control strategies 
are used for fair comparison as follows: 

1) DESMO-BC: The proposed controller with the controller gains being selected as 1 450k  , 

2 350k  , and 3 100k  . The parameters of ESMOs (4.5) and (4.6) are 1 2 450   ; 1 1  ; and 

4
2 2 10   . 

2) DESO-BC: The dual ESO-based backstepping controller [95] with the same control structure 
and controller parameters as the proposed control approach. The two ESOs are designed as 
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3) SESO-BC: With the assumption that only the angular position of the HRA is measurable, an 
output feedback controller [76] with similar control architecture and controller gains to the above 
control strategies. The angular velocity, load pressure, and matched disturbance are estimated by an 
ESO whose dynamics are mathematically presented as 

      0 1 1ˆ ˆ ˆ ˆ ˆ,u u x x    x A x F x G x H  (4.38) 

where 1 2 3 4[ , , , ]Tx x x xx  with 4 2 ( )x d t  and 
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A F x G x H  

with the observer bandwidth being chosen as 0 450  . 

Performance indexes including absolute maximum, average, and standard deviation of the tracking 
errors [76, 178] are used to statistically evaluate the reference-following ability of the above 
controllers, which are denoted by eM , e , and e , respectively. 

b) Numerical Simulation Verification 

To evaluate the robustness of the considered controllers in both two case studies, the lumped 
mismatched and matched disturbances which are mathematically formulated, are intentionally inserted 
into the studied EHSS as 

 
2

1

6 3
2

( ) 1500sin(2 /12) (rad/s )

( ) 10 sin(2 /16) (rad/s )

d t t

d t t

 
 

 
 

 (4.39) 

where the magnitudes of disturbances are chosen based on the system specifications [178]. 

First of all, a slow-motion reference trajectory 1 ( ) 45(1 cos( / 4))(1 )t
dx t t e      is utilized to 

evaluate the tracking performance. In addition, the non-zero initial angular position of the actuator is 

chosen as 5  for demonstrating both the transient responses and steady-state performances of all 
controllers. The output tracking performances and tracking errors of all three control approaches under 
the slow-motion reference trajectory are illustrated in Fig. 4-3.  

As shown in the upper part of this figure, in general, the charts constituted by angular positions 
overlap with the graph of the desired trajectory. This result reflexes that all controllers are able to 
ensure that the system outputs track the desired reference trajectory tightly despite the existence of 
both mismatched and matched disturbances and the non-existence of the velocity measurement 
mechanism. Based on this, it can be concluded that all control algorithms possess anti-disturbance 
capability at a certain level. The tracking errors are demonstrated in the lower part of Fig. 4-3 where 
the transient tracking performances and steady-state tracking qualifications of all considered 
controllers are represented more distinctly. At a glance, compared to the DESO-BC and DESMO-BC 
controllers, although the SESO-BC controller possesses cost-effectiveness, it performs the worst 
tracking performance due to the lack of pressure sensors and mismatched disturbance compensation 
mechanisms.  
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Fig. 4-3 The tracking performance in slow-motion desired trajectory 

 

Fig. 4-4 The velocity estimation performance in slow-motion desired trajectory 

The tracking performances of all controllers in the transient regime and steady-state regime are 
illustrated more explicitly in the zoom-in subfigures of the lower part of Fig. 4-3. The left-hand side 
zoom-in subfigure depicts the transient performances of all control approaches. As shown, the SESO-
BC controller has possession of the longest convergence time and largest overshoot in comparison 
with the remaining controllers. It is worth noting that although the DESMO-BC controller and DESO-
BC controller possess a similar transient tracking performance at the beginning, the tracking error 
curve obtained by the proposed control algorithm reaches the origin faster than the DESO-BC 
controller. The superiority of the recommended method is revealed more plainly in the right-hand side 
subfigure which exhibits the tracking errors of all controllers in the steady-state regime. As displayed, 
the suggested controller outperforms the remaining controllers in terms of tracking error. To 
quantitatively examine the control performance of the compared three controllers in the steady-state 
regime, the maximum, average, and standard deviation of the tracking errors are provided in. As 
indicated in this table, in the steady-state regime, the maximal absolute value of the final tracking error 
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of the DESMO-BC control approach is only o0.0864  compared to o0.1818  and o0.4877  obtained by 
DESO-BC and SESO-BC controllers, respectively. In terms of the two remaining performance indices, 
i.e., average, and standard deviation of the tracking errors, the proposed controller also performs 
considerably better than the others. 

Table 4-2 Performance indexes in the slow-motion trajectory scenario. 

Controller  degeM   dege   dege  

DESMO-BC 0.0864 0.0578 0.0255 
DESO-BC 0.1818 0.1185 0.0548 
SESO-BC 0.4877 0.3188 0.1196 

 

Fig. 4-5 The matched disturbance estimation performance in slow-motion desired trajectory 

The angular velocity and lumped matched disturbances estimation performances of the proposed 
ESMOs in the ESMO-BC control approach and well-known ESOs in SESO-BC and DESO-BC 
control schemes are illustrated in Fig. 4-4 and Fig. 4-5. Due to the lack of pressure measurement, the 
SESO-BC control approach uses the measured angular position information only to estimate 
immeasurable states, i.e., the velocity and load pressure, simultaneously. The estimated velocity and 
load pressure are then employed to observe the lumped matched disturbances. Therefore, as shown in 
these figures, the SESO-BC performs the worst performance in terms of both state and disturbance 
estimation. Meanwhile, the DESO-BC and DESMO-BC control approaches with the existence of 
position and pressure sensors, the angular velocity and lumped matched disturbances are observed 
more accurately. The mismatched disturbance estimation performances of the DESO-BC and 
DESMO-BC control methods are illustrated in Fig. 4-5. From this figure, it is noteworthy that under 
the same condition, the ESMOs of the suggested control algorithm outperform the ESOs of the DESO-
BC controller in terms of both state and disturbance estimation accuracies. In addition, Fig. 4-5 and 
Fig. 4-6 and their zoom-in subfigures show that the ESMOs of the DESMO-BC controller perform 
better than the ESOs integrated into the SESO-BC and DESO-BC control algorithms in not only the 
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steady-state regime but also the transient response. Consequently, better tracking performances are 
achieved by the proposed controller. More importantly, the smooth estimated values of both state and 
disturbances are obtained by the proposed ESMOs verifying their applicability in real-life applications. 

 

Fig. 4-6 The mismatched disturbance estimation performance in slow-motion desired trajectory 

 

Fig. 4-7 The control actions of all controllers in the slow-motion desired trajectory 

Furthermore, control actions in the slow-motion scenario are generated by all three control 
approaches illustrated in Figure 8. As shown, the continuous and smooth control actions are achieved 
as a consequence of the chattering-free feature of the state and disturbance estimation. In addition, 
because the identical reference trajectory is adopted and the close tracking accuracy is attained, these 
control actions are relatively indistinguishable. 

To further examine the contribution of dual ESMOs in exactly estimating fast-changing system 
states and improving the position tracking performance, a fast-motion reference trajectory 

1 ( ) 10(1 cos(3 ))(1 )t
dx t t e      is employed. In addition, the lumped disturbances 

1( ) 1500sin(2 )d t t  2rad/s  and 6
2 ( ) 10 sin(2 )d t t  3rad/s  are intentionally inserted into the system 
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dynamics to evaluate the robustness of the closed-loop system. As shown in Fig. 4-8, owing to the 
non-existence of the pressure measurement mechanism, the lumped mismatched disturbances are not 
observed and compensated in the SESO-BC approach. Similar to the previous case study, the SESO-
BC control approach performs the worst tracking performance and estimation performance. In contrast, 
the DESO-BC controller and DESMO-BC controller are capable of estimating both lumped 
mismatched and matched disturbances, therefore, higher accurate tracking accuracies are attained. 
However, it is worth noting that similar to the slow-motion case, compared to the remaining 
controllers, the proposed controller is still able to follow the desired trajectory more accurately. 

 

Fig. 4-8 The tracking performance in case of fast-motion desired trajectory 

Table 4-3 Performance indexes in the fast-motion trajectory scenario. 

Controller  degeM   dege   dege  

DESMO-BC 0.0864 0.0578 0.0255 
DESO-BC 0.1818 0.1185 0.0548 
SESO-BC 0.4877 0.3188 0.1196 

The tracking performance indexes in the steady-state regime are presented in Table 4-3. As shown 
in this table, the DEMSO-BC controller achieves better performance with the maximal tracking error 

is only 0.1133  compared to 0.2223  and 0.6686  attained by the DESO-BC and SESO-BC 
controllers, respectively. In terms of the remaining performance indices, the proposed control strategy 
also performs better than DESO-BC and SESO-BC with significantly smaller values. The obtained 
comparative results exhibit the superiority and robustness against disturbances of the proposed method 
in comparison with the remaining control strategies. 

4.4 Conclusion 

In this chapter, a novel dual ESMO-based control scheme was introduced to achieve a high-
accuracy tracking performance for an EHSS with an HRA in the presence of both matched and 
mismatched disturbances without angular velocity information. By employing the nonlinear switching 
function instead of the proportional term as in the ESO design, the suggested EMSO is not only robust 
again uncertainties but also able to strongly react to fast-changing immeasurable system states and 
disturbances. Then their estimated values are integrated into the control law synthesized via the 
backstepping technique to compensate for the effects of uncertainties and disturbances on the whole 
system. The closed-loop system stability was proven using the Lyapunov theory. Finally, comparative 
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numerical simulations were conducted to validate the effectiveness of the recommended approach in 
comparison with the existing ESO-based strategies. The results showed that compared to the well-
known ESO, a better estimation performance, i.e., higher accuracy and shorter convergence time, was 
achieved. Based on that, the suggested ESMO-based control approach so-called DESO-BC controller 
with its simple structure and intuitive concept outperformed the existing ESO-based control algorithms 
in terms of transient and steady-state performances. Nevertheless, in this work, the effectiveness of the 
proposed ESMO is only verified via simulation, hence, experimental validation for real EHSSs with 
valve dynamics and input saturation will be included to demonstrate the advantage of the suggested 
approach in future works. Moreover, the application of the proposed ESMO to tracking control of 
general high-order nonlinear systems subject to disturbances and uncertainties will be carefully 
investigated. In addition, adaptive and finite-time ESMO for attaining an enhanced tracking 
performance also will be considered in forthcoming studies. 
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Chapter 5  
ADAPTIVE NEURAL NETWORK-BASED CONTROL FOR ELECTRO-

HYDRAULIC SYSTEMS SUFFERING FROM COMPLETELY 
UNKNOWN DYNAMICS AND EXTERNAL DISTURBANCES 

5.1 Introduction 

Hydraulic servomechanisms have been broadly employed in various industrial applications e.g., 
hydraulic robot manipulators [179], hydraulic press [108], load simulators [100], vehicle active 
suspension systems [180], and so on, due to their superiorities such as high power-to-weight ratio, fast 
and smooth response, high stiffness, and ability to generate a tremendous force/torque [90]. However, 
the inherent highly nonlinear characteristics, parameter variations, modeling uncertainties, and 
external disturbances of the EHSS are still the major obstacles to achieving high-accuracy tracking 
performance. Hence, the position-tracking problem of the EHSS has attracted many studies in recent 
years. 

To control EHSSs, proportional-integral-derivative (PID) control law [181] was initially employed 
due to its simple structure and easy implementation. However, it is difficult to achieve satisfactory 
performance since the system dynamics are not compensated in the control law. Alternatively, model-
based control strategies for EHSSs such as feedback linearization control (FLC) [112], backstepping 
control (BC) [93], and adaptive control (ADC) [122] have been widely employed to achieve better 
tracking performance. Although in these control methods, the system dynamics are taken into account 
in control design, they are sensitive to the modeling uncertainties and disturbances that naturally exist 
in EHSSs. In contrast, SMC [34, 162, 182-184] which was originally introduced by Utkin [185], is 
considered as a powerful candidate to deal with disturbances and uncertainties, satisfying the matching 
condition in nonlinear systems that are assumed to be bounded. However, it can be seen that all the 
above model-based control approaches for EHSSs require the system dynamics to be known, which 
are complicated and difficult to precisely acquire due to high nonlinearities in pressure dynamics and a 
number of unknown parameters that need to be identified from experimental input-output data [186]. 

By virtue of the excellent properties of their self-learning capability and online weight adaptive 
mechanisms, radial basis function (RBF) neural networks (NNs) have been employed in various fields 
such as robot manipulators [82, 187-189], magnetic levitation systems [89], aircraft [190], hydraulic 
systems [85, 90, 151, 191, 192], and so on to approximate the unknown dynamic components of 
control systems. For EHSSs, Z. Yao et al. introduced multilayer RBF NNs to approximate partly 
mismatched and matched uncertainties [90], and semi-global asymptotic stability was achieved 
accordingly. In [85], an NN-based estimator was proposed to approximate an unknown term generated 
in the control design of the hydraulic active suspension systems (ASSs). Besides, an RBF NN-based 
function approximator [191] was developed to compensate for the effects of the nonlinear friction in 
EHSSs. In [151], parametric uncertainties and an unknown external load in hydraulic systems were 
grouped into so-called generalized uncertainties, which were compensated by using RBF NNs. 
However, in the above-mentioned works, RBF NNs were only exploited to partially approximate 
model uncertainty in the control system. Hence, the employment of RBF NNs for approximating full 
model uncertainties is still an open problem. 

Besides, although RBF NNs are capable of dealing with model uncertainties, they cannot 
effectively treat disturbances whose effects on system dynamics are independent of the system states. 
Hence, the employment of disturbance observers (DOBs) can be considered as an effective way to 
cope with disturbances in EHSSs. Extended state observers (ESOs) were employed [95, 193] for 
EHSSs to estimate both unmeasurable system states and matched/mismatched disturbances; therefore, 
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high-accuracy tracking performances were achieved. In another approach to cope with disturbances, 
some DOB designs based on exact differentiators [139] have been applied in hydraulic systems. For 
example, a linear disturbance observer (LDOB) [97] for hydraulic rotary actuator (HRA) control 
systems and nonlinear disturbance observers (NDOBs) [103, 179] for hydraulic robot manipulators 
have been successfully employed to actively reject the influence of the grouped disturbances on the 
tracking performance. It is noted that the above-mentioned DOB designs require the construction of an 
observer with a careful tuning process of observer gains to achieve highly efficient disturbance 
compensation. Hence, to simplify the parameter tuning, the unknown disturbance estimator (UDE) 
[155] has been proposed with only one parameter that needs to be selected. Nevertheless, similar to 
model-based control approaches, DOB designs require system dynamic information, which inhibits 
the applications of DOBs. In addition, the employment of RBF-NNs and DOBs to cope with partial 
uncertainties and disturbances has been studied [194, 195]. However, to the best of the authors’ 
knowledge, the integration of RBF NNs and DOBs into a controller to treat the problem of full model 
uncertainties and disturbances is still challenging, and this is considered in this study. 

Motivated by the above comprehensive analysis, in this chapter, a novel adaptive robust control 
mechanism for the EHSS with completely unknown dynamics and disturbances is originally proposed. 
In this framework, high-order sliding mode exact differentiators [141] are adopted to exactly calculate 
the angular velocity, acceleration, and pressure derivative. Based on that, all unknown dynamic 
functions in system dynamics are approximated by RBF-NN-based approximators. For the first time, a 
pair of NN-based DOBs are established to estimate and compensate for the effects of the NN 
approximation imperfections, unmodeled dynamics, and external load on the control system of the 
EHSS simultaneously. Finally, the full-state feedback robust control law is synthesized to ensure the 
high-accuracy tracking performance in the presence of completely unknown dynamic functions and 
both matched/mismatched lumped disturbances. The overall system stability is proven by utilizing the 
Lyapunov theory. Several simulations are conducted to verify the effectiveness of the proposed control 
strategy. 

The main contributions of this research are summarized as follows: 

1) The RBF NN-based function approximators with adaptive mechanisms are designed to online 
approximate all unknown dynamic functions in the dynamics of the EHSS. 

2) A pair of DOBs based on the HOSM differentiators along with NNs are first developed to 
effectively estimate and actively compensate for not only the effects of both mismatched and matched 
disturbances but also the imperfections of the function approximation of RBF NNs. 

3) A robust control law based on the RBF NNs and DOBs is synthesized to guarantee the high-
accuracy tracking performance of the EHSS control system under the impacts of large model 
uncertainties and disturbances. 

4) The combination of RBF NNs and DOBs in order to take all their advantages is originally 
introduced to efficiently treat both full model uncertainties and disturbances in the dynamics of EHSSs. 

The remainder of the chapter is organized as follows. The high-order differentiator, neural 
network-based system dynamic approximators, disturbance observers, and control strategy are 
developed in Section 5.2. The total system stability is analyzed in Section 5.3 and comparative 
numerical simulations are conducted in Section 5.4. Finally, Section 5.5 concludes this chapter. 

5.2 Adaptive Robust Control Design 

The control scheme of the proposed method is depicted in Fig. 5-1 In this configuration, the 
angular velocity, angular acceleration, and the first-order derivative of the load pressure are 



50 
 

determined by employing Levant’s high-order exact differentiators. Then, the unknown dynamic 
functions caused by unknown system parameters are approximated based on RBF NN-based 
approximators. A pair of NN-based DOBs are designed to estimate not only mismatched/matched 
lumped disturbances but also approximation errors of RBF NNs. Finally, a control law is synthesized 
to guarantee the stability of the overall system and achieve high-accuracy tracking performance. 

 

Fig. 5-1 The control scheme of the proposed control strategy. 

5.2.1 Robust Control Law Design 

To facilitate the controller design, it is assumed that the system dynamic functions 1 2( )f x , 

2 2 3( , )f x x , and 2 3( , )g x u  in (2.6) which will be approximated later, are completely known. In addition, 

the mismatched/matched lumped disturbances and angular velocity of the inertial load are measurable. 
The control objective is to design a robust control law that ensures high-accuracy tracking 
performance. 

The tracking errors are defined as follows: 

 1 1 1

2 2 1

d

d

e x x

e x x



 
    (5.1) 

where 1dx  and 1dx  are desired angular position and velocity. 

The sliding surface for the actual tracking error is constructed by 

 2 1s e e   (5.2) 

where   is a positive constant. 

To guarantee the convergence for the sliding variable (5.2), an auxiliary sliding surface is designed 
as 

 s ks    (5.3) 
where k  is a positive constant. 

The time derivative of the auxiliary sliding surface   defined in (5.3) can be derived as 
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 s ks     (5.4) 

For the sake of simplicity, we will use 1f , 1f
 , 2f , and 2g  instead of 1 2( )f x , 1 2( )f x , 2 2 3( , )f x x , 

and 2 3( , )g x u . Taking the first and second-order derivatives of the sliding variable (5.4) and 

combining them with the system dynamics and combining them with the system dynamics (2.6), one 
obtains 

    
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 (5.5) 

Substituting (5.5) into (5.4), the derivative of   is given by 
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 (5.6) 

Based on this, the equivalent control is synthesized as 

 
 

   

3
2 2 1 1 1

2 3 1 1 1 2 1

1

( )

d

eq

d d

f d f d x
u

g k x f d x k x x 

                 

 

 
 (5.7) 

The switching control term is designed as 

   1 2
2

1
sgnswu

g
      (5.8) 

where 1  and 2  are positive constants that will be determined later. 

Based on (5.7) and (5.8), the complete control law is derived as 

 weq suu u   (5.9) 

Theorem 5-1: The control laws (5.7), (5.8), and (5.9) guarantee the finite-time convergence of the 
auxiliary sliding variable without singularity. Based on that the tracking error asymptotically 
converges to zero in the case that the functions 1 2( )f x , 2 2 3( , )f x x , and 2 3( , )g x u  are known and the 

angular velocity along with lumped disturbances 1d  and 2d  are measurable. 

Proof of Theorem 5-1: Consider the candidate Lyapunov function as 

 21

2cV   (5.10) 

Taking time derivative of (5.10), one obtains 

 cV    (5.11) 

Substituting (5.7), (5.8), and (5.9) into (5.11), we derive 

 1cV    (5.12) 

Combining with (5.11), (5.12) can be rewritten as 

 1 22c cV V  (5.13) 

It can be observed from (5.13), cV  converges to zero in finite time with convergence time 

computed as 
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  1/22
0r ct V


  (5.14) 

Based on this, it can be concluded that by using the control laws (5.7), (5.8), and (5.9), the 
auxiliary sliding variable converges to zero in finite time, hence, the control system is asymptotically 
stable. 

This completes the proof of Theorem 5-1. 

5.2.2 Levant’s High-Order Exact Differentiator 

To exactly compute the angular velocity and the angular acceleration of the inertial load, the first 
Levant's differentiator [139] is designed as 
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 (5.15) 

where 1 , 2 , 4 , and 4  are positive constants and 1x , 2x , and 2x  denote the estimated position, 

velocity, and acceleration, respectively. 

Similarly, the second Levant's differentiator to calculate the first-order derivative of load pressure 
is determined by 
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 (5.16) 

where 1 , 2 , and 3  are positive constants; 3x  and 3x  denote estimates of load pressure and its first-

order derivative. 

Remark 5-1: The angular velocity and acceleration of the load and the derivative of load pressure 
of the HRA are computed based on the well-known Levant's exact differentiator [139] with negligible 
calculation error. The differentiation term of ( )  is denoted by ( ) . For the sake of condensation, the 

dynamics of this differentiator are not presented in this study. 

5.2.3 Unknown Dynamic Estimators 

Consider an arbitrary unknown smooth multivariate function ( )f x  with x  is the input vector. This 

function can be represented in RBF NN form as [196] 

 ( ) ( )T
f f ff  x W h x  (5.17) 

where fW  is the ideal neural network weights, [ ]Tf jhh  with jh  represents the radial-basis 
function output of the thj  node in the hidden layer, and f  denotes the function approximation error. 

Assumption 5-1: The weight value and the approximation error of NN are bounded as 

f fMWW  and f fM   where fMW  and fM  are positive constants. 

The radial-basis function is usually chosen as the Gaussian function which has the form [197] 
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x c
 (5.18) 

where jc  is the center vector of the thj  node in the hidden layer, which has the same dimension as the 

input vector x , •  represents the Euclid distance of a vector. 

The estimation of the function ( )f x  denoted by ˆ( )f x  .which is the output of RBF NN as 

 ˆ ˆ( ) ( )T
f ff x W h x  (5.19) 

In (5.7), since the system parameters are unknown, therefore, the functions 1f , 1f
 , 2f , and 2g  are 

unknown smooth functions which are approximated by employing RBF NN-based approximators as 
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 (5.20) 

where the weight values 
1f

W , 
1dfW , 

2f
W , 

2gW  and approximation errors 
1f

 , 
1df , 

2f
 , 

2g  are 

bounded by 
1f MW , 

1df MW , 
2f MW , 

2g MW  and 
1f M , 

1df M , 
2f M , 

2g M , respectively; and the input vector 

 1 2 3, , ,
T

x x x uχ . 

The estimates of 1f , 1f
 , 2f , and 2g  are determined as 
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 (5.21) 

The approximation errors are determined by 
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 (5.22) 

where  
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The adaption mechanisms are determined as 
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 (5.24) 

where 
1f , 

1df , 
2f , and 

2g  are learning rates of the neural networks,   is the auxiliary sliding 

variable defined in (5.3), u  is the control input, 
1f , 

1df , 
2f , and 

2g  are positive constants, and 

1  is the time constant of a disturbance observer, which will be designed later. 

5.2.4 Disturbance Observer Design 

To actively compensate for the effect of unmodeled disturbances, uncertain nonlinearities, external 
load, and the imperfection in approximating unknown continuous functions in system dynamics (2.6) 
on the control system, a pair of NN-based disturbance observers are proposed as 
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 (5.25) 

where 1  and 2  are small positive constants, 1d̂  and 2d̂  are estimates of 1d  and 2d , respectively. 1Ĝ  

is the NN-based approximation of 1 2G g u   which is generated by the NN weighting approximation 

error of 2g . The function 1G  is represented by RBF NN as 

  
1 1 11

T
G G GG  W h χ  (5.26) 

where the weight value 
1GW  and approximation error 

1G  are bounded by positive constants, i.e., 

1 1G G MWW , 
1 1G G M  . 

From (5.26), approximated value 1Ĝ  and the approximation error 1G  are given by 

 1 1

1 1 1
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W h
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 (5.27) 

where 
1 1 1

ˆ
G G G W W W  and the weight is updated according to the following law 

 
1 1 1 1 1

ˆ ˆ0.5  
G G G G GW h W  (5.28) 

where 
1G  and 

1G  are positive constants. 

The disturbance estimation errors are defined by 

 1 1 1

2 2 2

ˆ

ˆ

d d d

d d d





 




 (5.29) 

Assuming that the state derivatives are perfectly calculated, based on (2.6) and (5.25), the 
disturbance estimation error dynamics are obtained as 
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 (5.30) 

Remark 6-2: With the help of the exact high-order differentiators (5.15) and (5.16), and the 

system dynamics are assumed to be known, i.e., 1 0f  , 2 0f  , and 2 0g  , the disturbance 

observers (5.25) guarantee the uniformly asymptotic stability under the constant disturbances and 
boundedness stability under the time-varying disturbances 

Based on (5.7), (5.8), (5.9), (5.15), (5.16), (5.21), and (5.25), the control law is redesigned as 
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where 

 1 1 1 2 2 1 2 1; ;;           d de x x e x x s e e s ks  (5.32) 

and the function 
22 gG u  is approximated by adopting RBF NN as 

  
2 2 22

T
G G GG  W h χ  (5.33) 

with 
2 2G G MWW  and 

2 2G G M  . 

The approximation value of 2G  is determined by 

 
2 22

ˆ ˆ T
G GG  W h  (5.34) 

The weight update law is designed as 

 
2 2 2 2 2

ˆ ˆ0.5  
G G G G GW h W  (5.35) 

where 
2G  and 

2G  are positive constants. 

5.3 Stability Analysis 

Theorem 5-2: For system (2.6) by using the control laws (5.31) with unknown function 
approximators (5.21), (5.27) and (5.34), the pair of disturbance observers (5.25), adaptive mechanisms 
(5.24), (5.28), and (5.35), and differentiators (5.15) and (5.16), the ultimately uniformly bounded 
tracking performance is ensured in the presence of unknown dynamics and both mismatched and 
matched disturbances. 

Proof of Theorem 5-2: Consider the candidate Lyapunov function as 
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Taking time derivative of (5.36), one obtains 
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 (5.37) 

Based on (5.6), (5.30), and (5.31), (5.37) can be transformed into 
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 (5.38) 

Applying adaptation mechanisms (5.24), (5.28), and (5.35), (5.38) becomes 
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 (5.39) 

Based on the Cauchy-Schwarz inequality, the following inequality holds 

     2
T T TW h W W h h  (5.40) 

Applying Young's inequality and (5.40), (5.39) can be transformed into 

 

1 1 1

1 1 1 1

1 1

2 2 1 1 2

2 2 1 1 2

2 2 1 2

2
2

1 1

2
2 2

2 2

25 5 5
4

2 2 2 2 2

2 2

2 2 2 2

f f dfT T
f f df df

f df

f f G G GgT T T T
f f g g G G G

f g G G

k
V

 
   

 
     

                    
                       

W W W W

W W W W W W W

    

      
2

1 1 2

1 1 2

1 1 2

1 2 1

2 1 2 1 2

2 1 2

2 2 2 2 2
1 2

1 2

2
2 2 2 2 2 2

1 2

7 1 1 5

8 8 8 2 2 8 2 2 2

3 1 2

2 2 2 2 2 2 2 2

G

f df f
f M df M f M

f df f

G G df Mg
g M G M G M f M f M

g G G

k
d d W W W

k
W W W


    

  
    

                         
                        



W

 

1 2

2
2 2 2 2

1
2

1 2 1

4 4 2G M G M

  


        

 (5.41) 
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where 
1f

 , 
2f

 , and 
1G  are the number of nodes in the hidden layers of NNs for approximating 1f , 

2f , and 1G , respectively; control gains, disturbance observer parameters, and NN parameters are 
chosen such that 
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 (5.42) 

Equation (5.41) can be rewritten in the simple form as 

 V V    (5.43) 

where 
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and 
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 (5.45) 

From (5.45), one obtains 

    0 1t tV V e e
   


 (5.46) 

Based on this, one can conclude that   is bounded which implies that the tracking errors of the 
system are also bounded. Therefore, the ultimately uniformly bounded tracking performance of the 
system is guaranteed by using the proposed control strategy. 

Hence, Theorem 5-2 is completely proven. 

5.4 Numerical Simulation 

5.4.1 Simulation Setup 

To verify the effectiveness of the proposed control strategy, the hydraulic servo system [76] is 
adopted. System parameters for the simulation are given in Table 5-1 

Table 5-1 System parameters of the studied EHSS. 

Parameter (Unit) Value Parameter (Unit) Value 

 2kg mJ   0.2   3 1 2
0 m s PaC     0  

 1N m s radB     90   3 1 1
1 m s PaC     121.0 10  
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Parameter (Unit) Value Parameter (Unit) Value 

 3 1m radmD     3 1
2 m sC   121.0 10  

 Pae  87 10   PasP  71.0 10  

 3 1 1 1 2m s V Patk      81.1969 10   3mtV  41.16 10  

 1
0 N m s radc

    35   1rad ss
  0.01  

 1
0 N m s rads

    40    

To illustrate the superiority of the proposed method, some controllers are employed for 
comparison as follows: 

1) The proposed controller with the control parameters 1000 , 150k  , 1 1000  , and 
4

2 4.1 10   . The parameters for the first Levant's differentiator are chosen as 1 100  , 2 50  , 

3 100  , and 4 100  . For the second differentiator 1 350  , 4
2 1.5 10   , and 4

3 1.5 10    are 

selected. The RBF NNs with single hidden layer are designed with 51 nodes in the hidden layer and 

their parameters are 
1

0.15f  , 
1

0.2df  , 
2

0.02f  , 
2

0.1g  , 
1

0.01G  , 
2

0.1G  , 
1

310f  , 

1

710df
  , 

2

310f  , 
2

710g
  , 

1

32 10G   , and 
2

710G
  . The disturbance observer gains 

are chosen as 1 0.005   and 2 0.005  . 

2) RBF NN-based sliding mode control without disturbance observer (RBF-SMC) in which larger 

controller gains are designed 1 1500   and 4
2 4.1 10    to attenuate the effects of disturbances 

while avoidance of chattering phenomenon is guaranteed. The structures and parameters of RBF NNs 
are the same as the proposed method. 

3) Extended state observer-based backstepping controller (ESO-BC) [95] with the assumption that 
nominal system parameters are known. The control laws are designed based on the backstepping 
control framework as 

 

  
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 (5.47) 

where tracking errors 1 2 3, ,z z z  are given by 1 1 1dz x x  , 2 2 1ˆz x   , 3 3 2z x   , respectively, 

and the nominal dynamical functions are presented as 
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 
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To estimate the immeasurable angular velocity of the actuator and both lumped mismatched and 
matched disturbances, the two ESOs are designed as follows: 
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 (5.48) 

where 10 2( )f x , 20 2 3( , )f x x , and 20 3( , )g x u  are nominal system dynamic functions using known 

nominal system parameters, 1  and 2  are the observer gains, 1̂d  and 2d̂  are the estimates of 

mismatched and matched disturbances, respectively, and ˆix  is the estimated value of the system state 

ix . The control parameters and observer gains are chosen as 1 450k  , 2 350k  , and 3 350k  ; 

1 1000   and 2 1000  , respectively, to achieve the tracking performance as well as possible 

without chattering issues. In this case, the nominal system parameters which are slightly different from 
the actual system parameters employed to design the backstepping control law are illustrated in Table 
5-2. 

Table 5-2 Nominal system parameters of the EHSS for backstepping control design. 

Parameter (Unit) Value Parameter (Unit) Value 

 1
0 N m s radB     80  3 1

20 m sC   0  

 0 Pae  87 10   3 1 1 1 2
0 m s V Patk      81.0 10  

 3 1 2
00 m s PaC     0   3

0 mtV  41.0 10  

 3 1 1
10 m s PaC     121.0 10    

4) Proportional-Integral-Derivative (PID) controller with controller gains are manually tuned to 
achieve a tracking performance as good as possible without chattering in the control input as 

750PK  , 500IK  , and 0.02DK  . 

The time-varying sinusoidal-like mismatched and matched disturbances 1( )d t  and 2 ( )d t  are 

intentionally injected into the control system for performance examination as follows: 

 
     
     
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2

1.5 10 sin rad s

10 sin rad s

d t t
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







 


 (5.49) 

where the magnitudes of these disturbances are chosen based on the specifications of the EHSS. 

Performance indexes in the steady-state regime including the maximum, average, and standard 
deviation of the tracking errors [76] are used to measure the tracking qualifications of the above 
controllers. These terms are given by: 

 Maximal absolute tracking error 

   1
1, ,

maxe
i N

M ie
 

  (5.50) 

where 1  is the output tracking error and N  denotes the number of samples. 

 Average tracking error 
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   (5.51) 

 Standard deviation of the tracking errors 

   2

1
1

1 N

e e
i

e i
N

 


   (5.52) 

5.4.2 Simulation Results 

a) Slow-Motion Reference Trajectory 

In this case, the smooth reference trajectory is chosen to evaluate the effectiveness of the proposed 
controller as 

     1 1 cos 1 rad
8 2

t
dx t t e

            
 (5.53) 

 

Fig. 5-2 The tracking performance of the proposed strategy compared with other control laws with 
slow-motion reference trajectory. 

The tracking performances and tracking errors of all four controllers are depicted in Fig. 5-2 and 
Fig. 5-3, respectively. As shown in Fig. 5-2, all four controllers guarantee the system output tracks the 
desired trajectory at an acceptable level.  

Nevertheless, from Fig. 5-3, it is obviously seen that the proposed controller performs better than 
others with the smallest tracking errors, whereas the ESO-BC controller can track the reference 
trajectory closer than RBF-SMC and PID controllers. For more details, the final tracking accuracies of 
all controllers are indicated via the three performance indexes given in Table 5-3. It is clear that, 
although having some robustness, the PID controller can do little with uncertainties and disturbances 
due to the lack of model-based compensation mechanisms. Consequently, it performs the worst 
tracking performance in all performance indexes (maximal value, average, and standard deviation of 
the tracking error are about 0.4684 degrees, 0.2169 degrees, and 0.1326 degrees, respectively). 
Meanwhile, with the support of ESOs (5.48), both mismatched and matched disturbances are 
estimated and efficiently compensated, based on that, the ESO-BC controller (maximal error of about 
0.0315 degrees) achieves better tracking performance in comparison with the RBF-SMC controller 
(maximal error about 0.0358 degrees). It is noted that the maximal tracking error is only about 0.0148 
degrees in the case of the proposed controller. The results demonstrate the effectiveness of the 
suggested control strategy in which the combination of DOBs and NNs is able to effectively deal with 
full unknown system dynamics and both mismatched and matched disturbances. 
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Fig. 5-3 The tracking errors of the considered four control strategies with slow-motion reference 
trajectory. 

Table 5-3 Performance indexes in slow-motion reference trajectory of all considered controllers 

Controller  degreeeM   degreee   degreee  

Proposed Controller 0.0148  0.0097  0.0038  
RBF-SMC Controller 0.0358  0.0233  0.0092  
ESO-BC Controller 0.0315  0.0151  0.0104 0 

PID Controller 0.4684  0.2169  0.1326  

 

Fig. 5-4 The estimates of the mismatched and matched disturbances of the proposed method 

The estimates of the mismatched and matched lumped disturbances and the weighting values of 
RBF NNs for approximating all unknown dynamic functions are illustrated in Fig. 5-4 and Fig. 5-5, 
respectively. It is noted that from Fig. 5-5, the weighting values of RFB NNs are smooth and bounded. 
Moreover, the estimates of both mismatched and matched disturbances have the same frequencies as 
the injected disturbances (5.49). However, they are not in sinusoidal shapes since the estimates of 
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disturbances also include the approximation errors of RBF NNs. The control inputs of all controllers 
are depicted in Fig. 5-6. With the same desired reference trajectory, the control input shapes of all 
controllers are relatively similar. The interesting thing is that the control input is generated without 
chattering by the proposed controller, which demonstrates the effectiveness of the combination 
between RBF NNs and DOBs in dealing with the problem of full model uncertainties and disturbance 
of the recommended control method. 

 

Fig. 5-5 The weighting values of RFB NNs employed of the proposed method. 

 

Fig. 5-6 The control signal of all controllers with slow-motion reference trajectory. 
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b) Fast-Motion Reference Trajectory 

For further capability investigation of the suggested control algorithm, a smooth fast-motion 
reference trajectory is chosen as 

       1 1 cos 2 1 rad
16

t
dx t t e

      (5.54) 

 

Fig. 5-7 The tracking performance of the proposed strategy compared with other control laws in 
fast-motion reference trajectory. 

 

 

Fig. 5-8 The tracking errors of the four controllers in fast-motion reference trajectory. 

The tracking characteristics of all controllers with the fast-motion reference trajectory are 
illustrated in Fig. 5-7. As in the above case, all controllers still follow the desired trajectory. Due to 
bandwidth limitations of EHSSs, the tracking errors of all control approaches depicted in Fig. 5-8 rise 
remarkably along with the increase in the frequency of reference trajectory. The tracking accuracies of 
all controllers in terms of the three performance indexes are illustrated in Table 5-4. As shown, the 
tracking performances of the PID controller and the RBF-SMC controller significantly degrade with 
the maximal final tracking errors are 0.5364 degrees and 0.0621 degrees, respectively. Meanwhile, the 
ESO-BC controller demonstrates robustness against uncertainties and disturbances based on the 
support of ESOs and known nominal system dynamics. However, it is worth noting that the proposed 
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controller tracks the reference trajectory more accurately than others. This once again demonstrates the 
effectiveness of the recommended method in dealing with full model uncertainties and disturbances. 

Table 5-4 Performance indexes in fast-motion reference trajectory of all considered controllers 

Controller  degreeeM   degreee   degreee  

Proposed Controller 0.0148  0.0097  0.0038  
RBF-SMC Controller 0.0358  0.0233  0.0092  
ESO-BC Controller 0.0315  0.0151  0.0104 0 

PID Controller 0.4684  0.2169  0.1326  

5.5 Conclusions 

In this chapter, adaptive robust control for the EHSS subject to completely unknown dynamics  
and disturbances based on RBF NNs and NN-based DOBs was proposed. For the first time, the 
combination of DOBs and RBF NNs was developed to effectively deal with both disturbances and 
completely unknown dynamics. In addition, the employment of the excessive switching gain of the 
controller was avoided; hence, the chattering issue was efficiently eliminated. The system stability was 
successfully proven by using the Lyapunov theory. The high-accuracy tracking performance achieved 
with several case studies demonstrated the effectiveness of the recommended control approach. In 
addition, the proposed method can be considered as a new framework dealing with control systems 
with limited knowledge about the system dynamics. Sophisticated control laws and experiments on a 
real test bench will be considered in further studies. 
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Chapter 6  
EXTENDED SLIDING MODE OBSERVER-BASED OUTPUT 

FEEDBACK CONTROL FOR MOTION TRACKING OF ELECTRO-
HYDROSTATIC ACTUATORS  

6.1 Introduction 

By means of some noteworthy features including high power density, great endurance, smooth 
operation, less maintenance, and precise control capability [198] compared with electric actuator-
based drive systems, hydraulic actuators have become a great solution for heavy-duty industrial 
applications [199-201]. Being considered as one of the configurations of hydraulic systems, valve-
operated actuation electro-hydraulic systems (VEHSs) or electrohydraulic servo systems (EHSSs) 
have some advantages, including fast response, smooth motion, and high controllability [202]. 
Nonetheless, there are some drawbacks of EHSSs, such as low energy efficiency because of high flow 
throttling loss, considerable system construction and maintenance cost, and they require more space 
for installation compared to the so-called pump-controlled EHSs or electro-hydrostatic actuators 
(EHAs) [20]. In addition, the pumping system in EHSSs must supply constant pressure to the system 
regardless of the working conditions, which contributes to electrical extravagance. Therefore, recently, 
EHAs with simple structures have been broadly adopted in various applications such as exoskeleton 
robots [203, 204], aerospace applications [205, 206], hydraulic robot manipulators [207], and so on 
[208] to avoid the aforementioned shortcomings of the EHSSs. However, the dynamic behaviors of 
EHAs are extremely complex and highly nonlinear. Achieving a high-accuracy tracking performance 
with such EHAs is a challenging control problem, particularly in the presence of modeling errors, 
unmodeled dynamics, and unknown external load.  

To achieve a satisfactory tracking performance, numerous controllers have been introduced in the 
literature. It can be observed that proportional-integral-derivative (PID) controllers are the most 
commonly applied model-free controller in industrial applications due to their simplicity, easy 
implementation, and limited tuning parameters. In addition, the requirement for an accurate system 
model is mitigated and the stability of the closed-loop system can be guaranteed by applying this 
control law. However, the desired performance may not be satisfied because of the highly nonlinear 
factors such as complicated friction and pressure dynamics of EHAs, and unmodeled dynamics. To 
this end, advanced control techniques have been introduced to overcome this problem and achieve a 
high-accuracy tracking performance for pump-controlled EHSs. For example, in [209], an adaptive 
robust control using a backstepping framework was established for a pump-controlled hydraulic 
system. In this control scheme, a deterministic model of pump flow rate at low speeds based on 
experimental data was originally constructed and compensated in the controller design, and 
consequently, improved tracking performance was achieved. However, in practice, the parameters of 
the pump flow rate model can change depending on different working conditions; hence, the accuracy 
of this model can be reduced. To overcome this drawback, an adaptive nonlinear pump flow model 
[210] was formulated, and better tracking performance was obtained as a result. For further 
improvement of tracking accuracy, in [211], Chen Li et al. developed an adaptive robust control 
framework of an independent metering hydraulic system by introducing a nonlinear valve flow model. 
To enhance the convergence speed of the adaptation parameter, a composite learning adaptive motion 
following control for electro-hydraulic servo systems was constructed [212]. Nonetheless, it should be 
noted that there are two major disadvantages of the above-mentioned control approaches. Firstly, all 
system states are assumed to be directly measured, many sensors are required, and system cost and 
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structure complexity increase as a consequence. In addition, uncertainties are compensated by adaptive 
methods under the assumption that the exact model of the considered hydraulic system is available. 

Disturbance and uncertainty attenuation for motion tracking problems has attracted great attention 
from the research community to improve the control accuracy and the robustness of the closed-loop 
control system of EHSs. To cope with state-dependent unstructured uncertainties, adaptive 
approximators based on neural network or fuzzy logic system approaches have been utilized [90, 150, 
213, 214]. Nevertheless, due to the complexity of excessive tuning parameters, expert knowledge 
requirements, and heavy computational burden, these approaches are difficult to implement in 
practical systems. On the other hand, they are no longer available for state-independent uncertainties. 
As one of the valuable solutions to this problem, disturbance observers (DOBs) have been carefully 
studied and successfully applied to EHSs to lessen the adverse effects of model uncertainties and 
external disturbances. Specifically, in [69, 97, 215], high-gain disturbance observers (HGDOBs) were 
developed for estimating lumped uncertainties in an EHSS, then their estimated values were fed back 
into backstepping control laws to compensate for their influences on the position-tracking capability. 
Furthermore, a coupled DOB [70] was designed to attenuate the independent and coupled elements of 
external load on hydraulic actuators of multi-degree-of-freedom manipulators. Based on that, the 
tracking errors were constrained within a prescribed steady-state level. In addition, Hamid Razmjooei 
et al. developed estimation error-based DOBs to counteract uncertainties and estimation errors of state 
observers and guarantee finite-time tracking performance [156]. However, it is worth noting that all 
system states are required to be accessible to implement the above control algorithms, and this 
requirement may complicate the control system structure and increase the system cost as a result. 

Considering the shortage of system states and negative effects of model uncertainties, inherited 
from the Luenberger observer [51, 52], a linear extended state observer (LESO), which was first 
introduced by Jingqing Han [73], can be considered a great solution. The convergence of an ESO for 
nonlinear systems subject to uncertainties was rigorously proven in [216]. ESO does not require an 
exact system model, and the burden of an offline identification process can be reduced [217]. Because 
of such a favorable feature, ESO-based control approaches, which are known as active disturbance 
rejection control (ADRC) schemes, have been widely employed in various engineering systems in 
recent years. However, for nonlinear systems subject to the so-called mismatched uncertainties, ESO-
based control algorithms are no longer available. To this end, in [218], a generalized ESO-based 
control for systems with mismatched uncertainties was introduced. To improve the convergence time 
of the conventional ESO, a novel ESO [219, 220], employing nonlinear and/or switching terms that 
ensure the estimation errors converge to a neighborhood of the origin in finite time, was put forward. 
Although conventional ESOs have been successfully adopted in various applications in recent years, 
they have several disadvantages, such as the peaking phenomenon, insufficient estimation accuracy, 
and long convergence time. Inheriting from sliding mode observer (ESO), recently, ESMOs have been 
successfully implemented in several applications. For instance, in [173], an ESMO was constructed for 
current control of permanent magnet synchronous motor systems to estimate the stator current and 
lumped disturbance. Jinyong Yu et al. proposed a fault-tolerant control based on an ESMO that is 
introduced to estimate states and faults of descriptor stochastic systems [175]. However, as far as the 
authors know, the development of an ESMO for high-order pump-controlled EHSs to estimate not 
only immeasurable states but also modeling uncertainties has not been considered in the literature. 

Inspired by the above observations, in this chapter, a novel output feedback control scheme for 
motion tracking of an EHA suffering from model uncertainties, unknown dynamics, and external load 
was presented. The main innovations of this study are summarized as follows: 
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1) For the first time, an ESMO based on a system model was constructed to estimate 
immeasurable system states, i.e., angular velocity and load pressure, and lumped matched disturbance 
in the pressure dynamics caused by parameter deviations and modeling errors. 

2) Based on the designed ESMO, a novel output feedback robust control scheme using the 
backstepping control framework and dynamic surface control technique is synthesized for the motion-
tracking problem of the studied EHA. 

3) The stability of the ESMO and the overall closed-loop system is theoretically verified by the 
Lyapunov theory. Experiments on the real test bench are conducted to illustrate the practicability and 
advantage of the suggested controller in comparison with some reference methods under various 
working scenarios. 

The rest of this chapter is organized as follows. In Section 2, the development of the ESMO and 
observer-based output feedback control approach are provided. Section 3 presents comparative 
experiment results of the proposed control algorithm and several reference controllers. Finally, a 
conclusion is given in Section 4. 

6.2 Observer-Based Output Feedback Control Design 

The proposed control methodology is illustrated in Fig. 6-1. In this control scheme, an ESMO is 
designed to estimate immeasurable states and lumped disturbance simultaneously. Based on the state 
estimates of the ESMO, an observer is then developed to reconstruct the lumped mismatched 
disturbance. To achieve desired tracking performance, an output feedback controller is designed using 
the backstepping control technique combined with the DSC approach, in which estimated values of 
immeasurable states and disturbances are fed back into the system, and consequently their influences 
on the system output tracking qualification are effectively attenuated. 

 

Fig. 6-1: The control structure of the proposed method. 

6.2.1 Extended Sliding Mode Observer 

Considering the system dynamics (2.15) by defining 1 2 ) (ex d t  as an extended state, augmented 

system dynamics are obtained as 
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An extended sliding mode observer is constructed as 



68 
 

 

1 1

1 2

2 3 1 2

2
3 2 2 1

3

ˆsign( )

ˆ ˆ

ˆ ˆ ˆ( ) 3

ˆ ˆ ˆ( ) ( ) 3

ˆ

eq

eq

eq

e eq

e eq

x x

x x

x x f x

x f g x u x

x

 





 

 



 

 

  

   



x









 (6.2) 

where 0   is the switching gain, 0  is the bandwidth of the observer to be selected, and sign( )  

is the standard signum function. 1x̂ , 2x̂ , 3x̂ , and ˆex  are the estimates of 1x , 2x , 3x , and ex , 

respectively. 

Theorem 6-1: Noting the system dynamics (6.1), by appropriately choosing the switching gain  , 

the proposed ESMO (6.2) guarantees that the estimation errors, i.e., 1 1 1̂x x x  , 2 2 2ˆx x x  , 

3 3 3ˆx x x  , and ˆe e ex x x  , exponentially converge to an arbitrarily small bounded region 

depending on the selection of the observer bandwidth  . 

Proof of Theorem 6-1: Choose a candidate Lyapunov function: 

 
1

2
10.5 xV x  (6.3) 

Taking the time derivative of it leads to 

  
1 1 1 1̂xV x x x 

   (6.4) 

Combining with (6.1) and (6.2), (6.4) can be transformed into 
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 (6.5) 

From (6.5), it can be observed that if the switching gain   is chosen such that 0 2(0)x     

with 0  as a small positive constant, the estimation error 1x  converges to the origin in finite time and 

it remains at the origin thereafter. 

Hence, in the sliding mode, i.e., 2 eqx  , the reduced-order dynamics of the observer (6.2) can be 

obtained as 
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 (6.6) 

For the sake of concise expression, 1d , 2d , and 2h  are used for upcoming mathematical 

transformations instead of using 1( , )d tx , 2 ( , )d tx , and 2 ( , )h tx . Noting the system dynamics (6.1) and 

the reduced-order dynamics (6.6) the error dynamics are derived as 
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where 

 1 1 2 1 2

2 2 1 2 3 2 1 2 3

ˆ( ) ( )

ˆ ˆ( , , ) ( , , )

f f x f x

f f x x x f x x x

    


  (6.8) 

Letting    1 2 3 2 3, , , / , /
T T

ex x x     ε     as the scaled estimation error vector, (6.7) can be 

rewritten as 

 2 2
1 1 2

( )
f h

f d
 

    ε Aε B C D
  (6.9) 

where the matrices A , B , C , and D  are defined by 

 

3 1 0 1 0 0

3 0 1 ; 0 ; 1 ; 0

1 0 0 0 0 1

              
                  
              

A B C D  (6.10) 

Since matrix A  is Hurwitz, for any positive definite matrix Q , there always exists a positive 

definite matrix P  satisfying the following Lyapunov function: 

 2T  A P PA Q  (6.11) 

Selecting a candidate Lyapunov function 
1

2
T

ESMOV  ε Pε , then taking the time derivative of it 

yields 
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Applying the Young's inequality, one has 
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From Assumption 2-5 and combining with the definition of scaled estimation errors, we have 
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where 1C , 2C , and 3C  are Lipschitz constants. 

Hence, (6.12) is transformed into 
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where 
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where min{ }   and max{ }   denote the maximal and minimal eigenvalues of matrix  , respectively. 

According to (6.15), the estimation errors exponentially converge to the neighborhood of the 
origin defined by /ESMO ESMO   when time goes to infinity. The upper bound of this region decreases 

if the observer bandwidth decreases and vice versa. 

This completes the proof of Theorem 6-1. 

Remark 6-1: To reduce the chattering in the estimated values of both unmeasured states and 
lumped disturbance caused by unmodeled dynamics and modeling errors, a hyperbolic tangent 
function is adopted to replace the discontinuous “sign” function in the design of the observer. In 
addition, the observer bandwidth should be meticulously selected to achieve a trade-off between 
accurate estimation and reducing negative effects of measurement noise. 

6.2.2 Observer-Based Control Design 

We define tracking errors as 

 1 1 1 2 2 1 3 3 2; ˆ;ˆ       d f fe x x e x e x  (6.16) 

where 1dx  is the reference motion trajectory, and 1 f  and 2 f  are filtered signals of virtual control 

laws 1  and 2  to be designed using the traditional backstepping control framework, respectively, 

through the following low-pass filters. 

The command filters are constructed as 
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where 1T  and 2T  are the time constants defining the cut-off frequencies of the designed filters. 

Defining i if i     with 1,2i   as the deviations between the original virtual control laws and 

their filtered signals, the dynamics of the filtering errors are obtained as 

 
1

( )i i i
iT

      (6.18) 

where i i    is assumed to be bounded by an unknown constant, i.e., i iM  . 

Remark 6-2: By applying a series of first-order low-pass filters (6.17), influences of measurement 
noise can be mitigated. In addition, the derivative of the filtered signals can be directly computed; 
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hence, the requirement of computing analytic derivations of virtual control laws at backstepping 
iterations is effectively relaxed. 

The control laws for stabilizing the closed-loop system are designed as 

 

1 1 1 1

2 2 2 1 1 2 1

2
3 3 2 2 1 2 3

2 1

ˆ( ) 3

1
ˆ ˆ ˆ( ( , , ) 3 )

( )

d eq

f eq

e eq

k e x

k e e f x

u k e e f x x x x
g x

 
  

 

  
    

     


  (6.19) 

Noting the system dynamics (2.15), definition of tracking errors (6.16), and synthesized control 
laws (6.19), the tracking error dynamics of the closed-loop system are given by 
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6.2.3 Closed-Loop Stability Analysis 

Theorem 6-2: Considering the system dynamics (2.15) under Assumptions 2-4, 2-5, and 2-6, an 
ultimately uniformly bounded (UUB) tracking performance is guaranteed by using control laws (6.19) 
and observer (6.2), that is, the tracking errors converge to an arbitrarily small vicinity of the origin 
whose upper bounds depend on the selection of control gains 1k , 2k , and 3k ; observer bandwidth  ; 

and time constants 1T  and 2T  as time goes to infinity. 

Proof of Theorem 6-2: For analyzing the stability of the closed-loop system, a candidate 
Lyapunov function is chosen as 
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where 1 2 3[ , , ]Te e ee  and 1 2[ , ]T α   . 

Taking the time derivative of (6.21) then combining with (6.18) and (6.20), we have 
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Applying the Young's inequality, one has 
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Substituting (6.15) into (6.23) leads to 
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where the matrices K  and T  are defined by 
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From (6.24), it can be observed that when time goes to infinity, the Lyapunov function (6.21) 
converges to a region defined by /c c   as time goes to infinity, and consequently a UUB 

performance can be achieved. The upper bound of this region depends on the selection of observer 
bandwidth, controller gains, and time constants of the low-pass filters. 

Hence, the proof of Theorem 6-2 is completed. 

6.3 Experiment Validation 

6.3.1 Experiment Setup 

For the performance evaluation of the recommended control method, a test rig for an electro-
hydrostatic actuator was built, which is illustrated in Fig. 6-2. It includes a compact hydraulic power 
pack, a rotary actuator, and an incremental encoder. The rotary actuator is provided by KNR company. 
To control the motion of the actuator, a bidirectional hydraulic pump was adopted and it is driven by a 
DC motor with the motor driver MD03, whose output voltage can be controlled by various types of 
input signals or communication. An incremental encoder E40H8-5000-3-V-5 with the resolution as 
5000 pulses per revolution was installed so as to precisely observe the position of the actuator. Pilot 
check valves and relief valves are integrated into a center block to manipulate the oil flow into or out 
of the actuator and ensure that the system pressure inside the actuator does not exceed the predefined 
maximum pressure, respectively. In addition, a pulley system fixed to the frame of the test bed was 
directly attached to the actuator shaft and a load stand. Based on this, loads can be easily changed to 
evaluate the tracking performance of comparative controllers under different load conditions. 

 

Fig. 6-2: The experimental platform of the studied electro-hydrostatic actuator. 
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The system parameters which were experimentally identified are given in Table 6-1. These 
parameters were used to design not only the main controller but also the observer. A smooth friction 

model is employed as 2 1 2 2 2( ) tanh( ) tanh( )fS x x x    that is able to capture the Stribeck effect and 

static friction at the very low motion speed of the actuator with 1 100   and 2 5  . 

Table 6-1 The parameters of the studied EHA. 

Parameter Notation Value SI Unit 
Viscous friction coefficient of the actuator 

fB  50  1N m rad s    

Coulomb friction coefficient of the actuator 
fA  45  N m  

Moment of inertia of the actuator 
AJ  0.15  2kg m  

Hydraulic actuator displacement 
AD  65.8442 10  3 1m rad  

Hydraulic pump displacement 
PD  70.1544 10  3 1m rad  

Effective bulk modulus of the hydraulic oil 
e  91.5 10  2N m  or Pa  

Total leakage coefficient 
tC  124.267 10  3 1 1m s Pa    

Initial control volume of the forward chamber 
01V  51.25 10  3m  

Initial control volume of the reverse chamber 
02V  52.27 10  3m  

To verify the effectiveness of the proposed method, the following controllers are adopted for 
comparison: 

1) ESMOBC: The proposed controller, whose control gains are chosen as 1 80k  , 2 505k  , 

3 30k  . The time constants of the low-pass filters are 1 2 0.01T T   and the observer bandwidth is 

120 . 

2) PID: Proportional-derivative-integral controller (PID), whose controller gains are ultimately 

selected as 32.25 10pK   , 21.25 10iK   , and~ 11.5dK  . The larger gains would cause the 

closed-loop system to be unstable due to measurement noise and unmodeled dynamics. 

3) PIDVFF [20]: Velocity feed-forward-based proportional-derivative-integral controller 
(PIDVFF), whose PID gains are chosen as the same as the above PID controller, and the velocity feed-

forward coefficient is selected as 21.15 10vK   . 

4) STW [221]: Super-twisting-based controller, whose structure is designed as 
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1 1 1 1 1
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sign( )

sign( )
d d
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       
 (6.26) 

where 2
1 4.58 10l    and 2 15l  . 

Remark 6-3: For a fair comparison, controller gains of the compared model-free controllers are 
first selected to guarantee that the closed-loop system is stable. As far as we know, the PID controller 
can be considered as the most popular controller in real-life applications because of its simplicity and 
limited tuning parameters. Hence, it can be treated as a reference controller for comparison. In 
addition, to improve the tracking performance by using the traditional PID controller, PIDVFF was 
commonly used for motion tracking problems by virtue of a feed-forward term which is proportional 
to the derivative of the desired trajectory. Furthermore, an STW controller was proven to be an 
effective control algorithm for systems subject to uncertainties and disturbances [222]. 
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Performance indexes, including the maximum, average, and standard deviation of the tracking 
errors, are employed to assess the tracking accuracy of each control algorithm in the steady state. Their 
mathematical formulas are given as follows: 

1) Maximal tracking error is defined as 

   1
1, ,

maxe
i N

M e i
 

  (6.27) 

where N  is the number of samples that are used for evaluation. 

2) Average tracking error is computed as 
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3) The standard deviation of the tracking errors is formulated as 
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6.3.2 Experiment Results 

a) Slow-Motion Reference Trajectory under Light-Load Condition 

To demonstrate the performance of the proposed controller, the four considered controllers were 
first evaluated with the slow-motion reference trajectory that is mathematically formulated as 

   1 30sin 0.1 / 2 35( )dx t t      and a gravitational load as 1m   kg. 

 

Fig. 6-3: Tracking performances of the compared controllers with the slow-motion reference 
trajectory and low-load condition. 

The angular positions of the hydraulic actuator and desired trajectory are illustrated in Fig. 6-3. It 
can be seen from this figure that the proposed controller and high-gain model-free control approaches 
are able to guarantee that the system output tracks the reference trajectory at an acceptable level 
despite the nonlinearities and model uncertainties that naturally exist in the dynamics of the considered 
EHA. The tracking errors caused by the compared controllers are depicted in Fig. 6-4. As shown, the 
tracking errors significantly increase when the actuator changes the motion direction due to the friction 
between the vanes of the actuator and its frame and the load force applied to the actuator shaft. In the 
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transient time, because of the deviations between the actual states and their estimated values, the 
peaking value of the tracking error generated by the ESMOBC is remarkably higher than the others as 
a consequence. However, in the steady-state regime, it is worth noting that due to the highly nonlinear 
behaviors of the EHA and the lack of model compensation mechanisms, the model-free controllers 
generate considerably larger tracking errors compared to the ESMOBC controller. 

 

Fig. 6-4: Tracking errors of the compared controllers with the slow-motion reference trajectory 
and low-load condition. 

To quantitatively indicate the reference-tracking capability of the compared controllers, 
performance indexes, including maximal tracking error, average tracking error, and standard deviation, 
in the steady-state regime of all four controllers are presented in Table 6-2. From this table, the PID 
controller exhibited the worst performance with the three indexes, with the maximal tracking error, 

average tracking error, and standard deviation as 1.6129 , 0.8859 , and 0.2336 , respectively. 
Meanwhile, by using the additional velocity feed-forward term, the tracking performance was 
substantially enhanced by the PIDVFF controller in all performance indexes. Compared to the 
traditional PID controller, the maximal tracking error, average, and standard deviation of the tracking 

errors were reduced to 1.3412 , 0.5819 , and 0.1639  by using the PIDVFF controller. Regarding the 
STW controller, the convergence speed of the tracking error can be improved by the employment of 
the fractional-order component and the discontinuous “sign” function. Hence, compared to PID and 
PIDVFF controllers, although both the maximal tracking error and standard deviation performance 
indexes are higher, the average tracking error obtained by the STW controller is significantly smaller 

(0.2721 ) . Nonetheless, it should be noted that with the help of compensation mechanisms by using 

the ESMO, the proposed method presented the best performance in terms of all performance indexes, 

with the maximal, average, and standard deviation of the tracking errors being 0.4426 , 0.1075 , and 

0.1340 , respectively. 

Table 6-2: Performance indexes in the slow-motion trajectory and low-load condition 

Controller  degeM   dege   dege  

PID Controller 1.6129 0.8859 0.2336 
PIDVFF Controller 1.3412 0.5819 0.1639 

STW Controller 1.6223 0.2721 0.2625 
ESMOBC Controller 0.4426 0.1075 0.1340 
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b) Slow-Motion Reference Trajectory under Heavy-Load Condition 

For evaluating the tracking performance of all considered controllers under the heavy-load 
condition, a gravitational load 21kgm   is applied to the actuator with the same reference trajectory 

as the previous test case. The tracking errors of all controllers are displayed in Fig. 6-5 and the three 
performance indexes during the last cycle are presented in Table 6-3. It can be seen from Fig. 6-5, 
similar to the above test case, according to the inherent model compensation feature of the 
backstepping technique with the support of the proposed ESMO, that the ESMOBC controller still 
performed better, with smaller tracking errors compared to the PID, PIDVFF, and STW controllers. 
From Table 6-3, it is worth noting that the tracking performance indexes slightly increase in 
comparison with these values in the light-load condition, which indicates the robustness of all four 
controllers against heavy-load conditions. In particular, the absolute maximal tracking errors derived 

by the PID, PIDVFF, STW, and ESMOBC controllers increased by 0.1919 , 0.1588 , 0.5037 , and 

0.2473 , respectively. In addition, the smaller values of the remaining performance indexes belong to 
the proposed control algorithm. It indicates the advantages of the proposed method compared to the 
model-free controllers. 

 

Fig. 6-5: Tracking errors of the compared controllers with the slow-motion reference trajectory 
and heavy-load condition. 

Table 6-3: Performance indexes in the slow-motion trajectory under heavy-load condition. 

Controller  degeM   dege   dege  

PID Controller 1.8048 0.9508 0.3183 
PIDVFF Controller 1.5000 0.6471 0.2392 

STW Controller 2.1260 0.3496 0.3381 
ESMOBC Controller 0.6899 0.1254 0.0978 

c) Fast-Motion Reference Trajectory under Light-Load Condition 

In this case study, the four considered controllers were further tested with a fast-motion reference 

trajectory that is analytically represented as    1 20sin / 2 25( )dx t t      under the light-load 

condition 1kgm  . The tracking errors under the compared controllers are illustrated in Fig. 6-6. As 

shown in this figure, the tracking performances obtained by the four controllers were significantly 
degraded compared to the previous case studies under high-speed reference trajectory. The three 
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performance indexes of the controllers are presented in Table 6-4. It can be seen that, similar to the 
above scenarios, compared to the other control approaches, the STW controller exhibited the worst 
tracking performance in all three performance indexes, with the maximal, average, and standard 

deviation of the tracking errors in the steady state as 4.6298 , 2.6314 , and 1.4136 , respectively. For 
the time being, the proposed control approach achieved better performance, with the corresponding 

performance indexes as 1.5766 , 0.4831 , and 0.2977  compared to other controllers. 

 

Fig. 6-6: Tracking errors of the compared controllers with the fast-motion reference trajectory and 
low-load condition. 

Table 6-4: Tracking errors of the compared controllers with the fast-motion reference trajectory 
and low-load condition. 

Controller  degeM   dege   dege  

PID Controller 3.4388 1.7721 0.7923 
PIDVFF Controller 2.4396 1.1953 0.6883 

STW Controller 4.6298 2.6314 0.4136 
ESMOBC Controller 1.5766 0.4831 0.2977 

The estimated values of the angular speed of the actuator’s shaft, load pressure-related term, and 
lumped disturbance in the pressure dynamics are illustrated in Fig. 6-7, Fig. 6-8, and Fig. 6-9, 
respectively. By using the proposed ESMO, the output feedback control based on the backstepping 
control technique can be realized in the absence of speed and pressure sensors. In addition, the ESMO 
plays an important role in reducing the system cost and improving the tracking performance of the 
EHA, since it is able to estimate not only immeasurable system states but also disturbance caused by 
parameter deviations and unmodeled dynamics. 

The control input signal of the recommended control approach is presented in Fig. 6-10. As shown, 
a relatively smooth control input was obtained by using the ESMOBC. Due to the influence of the 
gravitational load, a higher control effort has to be generated when lifting the load, and vice versa. To 
track the sinusoidal-like reference trajectory, a periodical control input signal was constructed with the 
same frequency as the reference trajectory. The fluctuation of the control input in case of motion 
direction change compensates for the effects of complicated friction characteristics inside the actuator 
and guarantees a high-accuracy tracking performance. 
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Fig. 6-7: The angular velocity estimation performance. 

 

Fig. 6-8: The estimation of the load pressure-related term. 

 

Fig. 6-9: Disturbance estimation  in the fast-motion reference trajectory. 
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Based on the obtained experimental results in distinct working conditions, the proposed control 
approach was capable of achieving better tracking performance in comparison with some reference 
controllers. Hence, with the simple control structure, the suggested control approach provided a 
valuable solution to the tracking problem of the EHAs in practical applications for enhancing control 
accuracy. However, when designing an observer, it is essential to pick the switching gain carefully to 
prevent severe chattering that may arise from the selection of an excessive value. Furthermore, the 
observer bandwidth should be designed to make a trade-off between convergence time and the 
occurrence of the peaking phenomenon. Finally, advanced control algorithms will be further studied to 
increase the robustness and tracking performance of electro-hydrostatic actuators in future work. 

 

Fig. 6-10: The control input in the fast-motion reference trajectory and low-load condition. 

6.4 Conclusion 

This chapter presented a novel output feedback control of a pump-controlled EHA subject to 
model uncertainties. An ESMO was developed to estimate not only immeasurable states but also 
lumped-matched disturbance attributed to parametric uncertainties and unmodeled dynamics in the 
pressure dynamics of the actuator. A backstepping controller based on the DSC technique employing 
estimated values of states and lumped disturbance was designed to stabilize the closed-loop system 
and ensure a UUB tracking performance. Furthermore, the stability of the overall closed-loop system 
was rigorously demonstrated through the Lyapunov theory. Finally, experimental results under various 
working conditions in comparison with some reference model-free control approaches are obtained to 
demonstrate the superiority of the proposed method. The dynamics of the pump and electric motor 
system will be carefully considered in future work to improve the tracking capability of the proposed 
method. 
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Chapter 7  
OUTPUT FEEDBACK ROBUST CONTROL FOR HYDROSTATIC 

ACTUATORS WITH MISMATCHED UNCERTAINTIES 
7.1 Introduction 

Due to some excellent characteristics such as high power density, great reliability, excellent 
durability, and high-accuracy control capability [72, 198, 223], electro-hydraulic systems (EHSs) are 
broadly employed in a variety of industrial and engineering applications including construction 
machinery, aerospace, manufacturing, agriculture, and so on [211]. According to the utilization of the 
control element, EHSs are classified into two main groups, which are valve-controlled and pump-
controlled EHSs. With regard to the tracking control aspect, valve-controlled EHSs can be considered 
as a remarkable solution for high-accuracy tracking control applications; however, they are not 
suitable for applications that require high energy efficiency because of throttling loss at the control 
valves [210]. Meanwhile, variable-speed pump-controlled hydraulic systems (VSPHSs) are able to get 
rid of this energy dissipation and, consequently, improve the overall system efficiency [203, 210]. 
Nonetheless, it is challenging to achieve high-precision motion control of the actuator owing to the 
high-order dynamics, highly nonlinear characteristics, uncertain nonlinearities, and external 
disturbances of the system dynamics. 

Although the closed-loop system stability cannot be theoretically confirmed, the proportional–
derivative–integral (PID) control, fuzzy control, and fuzzy PID hybrid control schemes are control 
methods that are favorable and widely adopted for nonlinear EHSs in various applications due to their 
simplicity in implementation without the requirement of a system model and the limited number of 
control parameters that need to be adjusted. For example, a self-tuning grey predictor fuzzy-PID 
controller [224] was developed for force control of a hydraulic load simulator. The obtained results 
showed that enhanced force regulation performance in both the transient and steady-state regimes was 
achieved in comparison with the conventional PID, fuzzy PID, and fixed-step grey predictor fuzzy 
PID. Besides, in [225], a fractional-order PID whose control gains were automatically tuned by fuzzy 
rules was developed to significantly improve the tracking performance of a VSPHS compared to the 
traditional PID controller. Additionally, how to obtain optimal PID gains is also an intriguing problem 
that has attracted great attention from the research community, recently. For instance, an improved 
particle swam optimization (PSO)-PID was introduced in [12] to increase the convergence speed of 
the basic PSO algorithm. Distinct optimization algorithms such as the beetle antennae search (BAS) 
algorithm [226], genetic algorithm (GA) [15], improved differential evolution (IDE) [14], etc., have 
also been utilized to enhance the tracking performance of EHSs. Nonetheless, it is noteworthy that, 
due to the lack of a dynamic model and disturbance compensation mechanisms, it is challenging to 
attain satisfactory control performance using such model-free control approaches. Therefore, model-
based control strategies including sliding mode control [227, 228], the backstepping approach [93, 109, 
122], and feedback linearization control [229] can be considered as powerful tools to enhance the 
control performance of VSPHSs, which have been introduced in various previous studies [211, 230-
232]. Among them, the backstepping control technique is the most appropriate tool to design a control 
strategy for high-order nonlinear systems in general and EHSs specifically based on its recursive 
structure. Nonetheless, this technique suffers from the problem of computational complexity as a 
consequence of the requirement of repetitive analytic derivative calculation of virtual control laws at 
each subsequent step. To overcome this obstacle, the dynamic surface control (DSC) concept [35] was 
developed by D. Swaroop et al. The key idea of this technique is using a set of low-pass filters for the 
virtual control laws to obtain their first-order derivatives. Hence, the ”explosion of complexity” of the 
traditional backstepping is effectively avoided. However, it should be noted that the above model-
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based control algorithms require information on the system states, which may not always be readily 
accessible in practical applications. 

The utilization of state estimators that are based on the system model is the key technique to 
implement state feedback control algorithms for nonlinear systems in the case of lacking system state 
information. The first concept of a state observer was developed by Luenberger [51] to construct the 
missing internal states of a linear time-invariant system. Subsequently, the extended Luenberger 
observer [53] for nonlinear systems was introduced by M. Zeitz, in which the relationships for a state 
transformation into the nonlinear observer canonical form were developed. However, the Luenberger 
observers may not be sufficiently accurate in the presence of model uncertainties. To overcome this 
problem, sliding mode observers can be considered as a robust state estimator based on the equivalent 
theory for reconstructing unmeasurable states in the presence of model perturbation [233], which have 
been applied to various applications including electro-hydraulic systems [165, 234], electric motor 
drivers [235, 236], wind turbine systems [237, 238], and so on. However, because of the employment 
of the discontinuous term, the so-called “sign” function and, consequently, the chattering in the 
estimated values might be unavoidable. It is worth noting that the above state observers are only able 
to reconstruct the system states and their performance mainly depends on the accuracy of the identified 
system model. Then, the concept of the active disturbance rejection control (ADRC) paradigm [73], 
which relaxes the demand of the precise system model and requires the system order only, was 
introduced by J. Han. In this concept, an extended state observer (ESO) is a core component for state 
and disturbance estimation in the case of insufficient information on the system dynamics. Inspired by 
this research, several ESO-based control algorithms have been developed for numerous practical 
systems [76, 231, 239-243]. For instance, in [231], an ESO-based sliding mode control for an 
electrohydraulic actuator was constructed based on the acceleration model. In [210], B. Helian et al. 
proposed an adaptive robust controller for the motion control of a directly driven EHS, which is able 
to cope with dynamic nonlinearities and uncertainties, and improved tracking performance was 
accordingly achieved. Nonetheless, some sensors must be utilized to directly measure internal system 
states including velocity and pressure, and the system cost increases as a result. In [76], an output 
feedback control scheme that employs a single ESO was presented. The mechanism was able to 
effectively estimate and compensate for matched disturbances in a feedforward manner; however, a 
negligible improvement of the control performance was achieved compared to a traditional PI 
controller since the mismatched uncertainties were not considered. However, the implementation of 
the output feedback motion control for VSPHSs using ESOs to handle both mismatched and matched 
uncertainties is an intriguing and unexplored control problem. 

Motivated by the above analysis, in this chapter, a novel output feedback robust tracking control 
for a pump-controlled hydraulic system in the presence of disturbances and uncertainties caused by the 
parameter deviations, unmodeled dynamics, and external load in a mechanical system and pressure 
dynamics was developed. The main contributions of this work are as follows: 

1) For the first time, two ESOs were sophisticatedly coordinated to address the shortage of system 
state measurement mechanisms and the estimation of both matched and mismatched uncertainties in 
the studied pump-controlled hydraulic system. This combination serves as the basis for the 
implementation of the robust control algorithm, which merely requires the system output information. 

2) Based on the nominal system parameters and information provided by the above ESOs, a novel 
output feedback robust control mechanism in which the uncertainties and disturbances estimated by 
the ESOs are feedforward compensated was constructed to guarantee a high-accuracy motion control 
performance in spite of the nonlinearities and uncertainties in the system dynamics. 
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3) The theoretical stability of the ESOs and overall closed-loop system was rigorously confirmed 
using Lyapunov’s theory. Several comparative experiment results are given to verify the effectiveness 
and superiority of the proposed control methodology over the existing popular control algorithms 
under different working conditions. 

The rest of this chapter is structured as follows. Section 7.2 presents the establishment of two 
ESOs and a control algorithm. Subsequently, Section 7.3 presents the experimental verification. 
Finally, a conclusion is given in Section 7.4. 

7.2 Control System Design 

 

Fig. 7-1: The control structure of the proposed method 

The control structure of the proposed method is illustrated in Fig. 7-1. As shown, an ESO is 
established to reconstruct not only the internal states, including the angular velocity and state variable 
relating to load pressure but also the total matched disturbances resulting from modeling errors and 
parametric uncertainties. It plays a crucial role in implementing the output feedback control 
mechanism for accurate motion tracking of the studied VSPHS. In addition, to improve the control 
performance, a mismatched disturbance observer that estimates the lumped mismatched disturbances 
produced by uncertain nonlinearities and unknown external loads, was constructed. Finally, to 
guarantee high-accuracy tracking performance, a DSC-based backstepping controller was designed. 
The DSC technique was adopted to overcome the computational burden of traditional backstepping, 
which requires the repetitive analytical derivative calculation of the virtual control laws. The design of 
the above observers and control strategy will be meticulously presented in the subsequent sections. 

7.2.1 Extended State Observer Design 

Considering the system dynamics (2.15) and defining 1 2 ) (ex d t  as an extended state, the 

augmented system dynamics can be obtained as 
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According to this, the ESO for estimating not only the internal states 2x  and 3x , but also the 

lumped matched disturbance is constructed as follows: 
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where 1x  denotes the error between the measured and estimated values of the system output, i.e., 

1 1 1̂x x x  ; 2x̂ , 3x̂ , and 1ˆex  are the estimates of 2x , 3x , and 1ex , respectively; 1  signifies the 

bandwidth of the observer (7.2). 

Combining (7.1) and (7.2), the error dynamics of the observer are derived as 
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where 2x , 3x , and 1ex  are the estimation errors of 2x , 3x , and 1ex , respectively, i.e., 2 2 2ˆx x x  , 

3 3 3ˆx x x  , and 2 1 1ˆe ex x x  . Error functions 2 2 2ˆ( , )f x x  and 3 2 3 2 3ˆ ˆ( , , , )f x x x x  are given by 
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According to Assumption 7.2, one obtains 
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where 
2f

L , 
31fL , and 

32fL  are known Lipschitz constants. 

Let 2 3
1 2 3 4 1 2 1 2 1 1 1[ , , , ] [ , / , / , / ]T T

ex x x x       ε      denote the scaled estimation error vector, 

then the error dynamics (7.3) can be transformed into 
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where the matrices 1A , 1B , 1C , and 1D  are given by 

 1 1 1 1

4 1 0 0 0 0 0

6 0 1 0 1 0 0
; ; ;

4 0 0 1 0 1 0
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A B C D  (7.7) 

Since the matrix 1A  is negative definite, for an arbitrary symmetric positive definite 1Q , there 

always exists a symmetric positive definite 1P  satisfying the following Lyapunov equation: 

 1 1 1 1 1
T  A P P A Q  (7.8) 

Theorem 7-1: Considering the system dynamics (2.15) and the observer (7.2), the estimation 
errors converge to an arbitrarily small bounded region whose bound depends on the selection of the 
observer bandwidth 1  when time goes to infinity. 

Proof of Theorem 7-1: Consider the following candidate Lyapunov function: 

 1
TV ε Pε  (7.9) 
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Taking the derivative of it and combining with (7.6) yield 
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Applying Young’s inequality leads to 
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where min{ } X  and max{ } X  are the maximal and minimal eigenvalues of the matrix X . 

According to (7.9), one attains 
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Based on this, (7.11) can be rewritten as 
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According to (7.13) and (7.14), it can be seen that the estimation errors are constrained in a region 
whose bound depends on the selection of the observer bandwidth 1 , which is defined by /    

when time goes to infinity. 

This completes the proof of Theorem 7-1. 

7.2.2 Mismatched Disturbance Observer 

It can be seen from the above section that only lumped matched disturbance was estimated. The 
system performance may seriously deteriorate owing to the inherent existence of mismatched 
uncertainties caused by modeling errors and external load in the velocity dynamics. 

Consider the velocity dynamics of the actuator: 

    2 3 2 2 1x x f x d t    (7.15) 
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Let 2 1( )ex d t  denote the extended state, (7.15) can be transformed into 
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According to Theorem 7-1, the immeasurable system state 2x  and 3x  can be exactly estimated 

with arbitrarily small estimation errors; hence, the second derivatives of these estimation errors are 
also bounded by unknown positive constants. Their estimates were employed to the establish 
disturbance observer, whose dynamics are given as 
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where 2z  and 2ˆex  are the estimated values of 2x̂  and 2ex ; 2  is the observer gain to be designed. 

In accordance with (7.16) and (7.17), the error dynamics can be obtained as 
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Defining the scaled estimation error vector 1 2 2 2[ , ] [ , ]T T
ez x  η  , the error dynamics (7.18) can 

be rewritten as 
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where the matrices 2A , 2B , and 2C  are given by 
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A B C  (7.20) 

Since the matrix 2A  is Hurwitz, for a symmetric positive definite 2Q , there exists a symmetric 

positive definite 2P  satisfying the following Lyapunov equation: 

 2 2 2 2 2
T  A P P A Q  (7.21) 

Theorem 7-2: Consider the system dynamics (7.16); the observer (7.17) is capable of exactly 
estimating the lumped mismatched uncertainty 1( )d t  with a small estimation error, whose value 

decreases if the observer bandwidth increases. 

Proof of Theorem 7-2: A candidate Lyapunov function was chosen as 2
TV  η P η . Taking the 

time derivative of it and combining it with (7.19) and (7.21) yield 

 
   3 2 2 2 2 1

2 2 2 2 2 2 2
2 2

ˆ,
2 2 

 
 

  
  T T Tx f x x x h t

V η Q η η P B η P C  (7.22) 

Applying Young's inequality leads to 

 
   2

2 2 2
3 2 22 max 1

2 min 2 2 2 2 2 2 2 2 22 4
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

 

 
 

 
   

 

Q η B P P B C P P C
  

 (7.23) 
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where  

 
 
 

2

2 2 2
3 2 2min 2 max 1

2 2 2 2 2 2 2 22 4
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3
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fT T T T
x L x x h
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 
    

Q
B P P B C P P C

P

  
 (7.24) 

According to Theorem 7-1, Assumption 2-6, and (7.23), the estimation error 2ex  reaches a small 

region whose boundary decreases if the observer gain 2  increases and vice visa. 

Hence, Theorem 7-2 is completely verified. 

7.2.3 Observer-based Control Strategy Design 

Based on the states and disturbances estimation, a backstepping controller was synthesized to 
guarantee the high-accuracy tracking performance of the closed-loop system as follows: 

Reconsider the original system dynamics: 

    
     

1 2

2 3 2 2 1

3 3 1 3 2 3 2,

x x

x x f x d t

x g x u f x x d t




  
  





 (7.25) 

The system output tracking error is defined as 1 1 1de x x  . To ensure that the system output 

tracks the desired trajectory, the virtual control law is synthesized as 

 1 1 1 1dx k e    (7.26) 

The dynamic surface control approach was adopted to avoid repeatedly differentiating 1  by using 

a first-order filter as 

    1 1 1 1 1 1; 0 0f f f         (7.27) 

where 1  is a positive constant and 1 f  denotes the filtered signal of 1 . 

According to this, the dynamic surface function is the error between the filtered signal 1 f  and 

the virtual control law (7.26) in this step, that is 1 1 1f    , and the first-order derivative of the 

filtered control law is given as 

 1
1

1
f




  (7.28) 

Following the structure of the applied first-order filter (7.26) and (7.27), the error dynamics can be 
determined as 

 1
1 1

1




    (7.29) 

where 1 1   is continuous and bounded, and its maximum value is defined as 1M . 

A candidate Lyapunov function was selected as 2
1 1 / 2V e . Taking the derivative of it and 

combining it with (7.25), one obtains 

 2
1 1 1 1 2 1 1  V k e e e e  (7.30) 

where 2 2 1 fe x   . 
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Applying Young's inequality yields 

 

2 2 2
1 1 1 1 2 1 1

2 2
1 1 1 1 2

1 1

2 2
1 1

2 2

V k e e e e

k e e e




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
 (7.31) 

From the definition of 2e , we have 

 
2 2 1

3 2 1 1

f

f

e x

x f d




 
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  


 (7.32) 

Choose a candidate Lyapunov function as 

 2 2
2 1 2 1

1 1

2 2
V V e     (7.33) 

Differentiating (7.33), then combining with (7.29) and (7.32), one obtains 

  
2 1 2 2 1 1

1
1 2 2 2 3 2 1 1 1 1

1
f

V V e e

V e e f d

 
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   

  
 (7.34) 

where 3 3 2 fe x    is the virtual tracking error of the subsequent step; the dynamic surface function 

of this step 2 2 2f     with 2 f  as the filtered signal through a first-order filter of virtual control 

law 2 , which is formulated as 

    2 2 1 2 2 2; 0 0f f f         (7.35) 

where 2  is a small positive constant to be designed. 

The dynamics of the dynamic surface function is given by 

 2
2 2

2




    (7.36) 

where 2 2   is also continuous and upper bounded by 2 0M  . 

Since the angular velocity and lumped mismatched disturbance are immeasurable, the estimates of 
these terms were utilized; according to (7.34), the virtual control law is designed as 

  2 2 2 2 1 2 2 1ˆ ˆe ff x x k e e       (7.37) 

where 2k  is a non-negative constant to be selected. 

Substituting (7.31) and (7.36) into (7.34), then applying Young's inequality, we have 
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M e
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k e k e e e f x

a




 (7.38) 

where a  is a positive constant,    2 2 2ˆf f x f x  , and 3 3 2 fe x   . 

According to the definition of the virtual tracking error 3e , one obtains 
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e x

g x u f x x d




 
  

  


 (7.39) 

A candidate Lyapunov function is selected as 

 2 2
3 2 3 2

1 1

2 2
V V e     (7.40) 

Taking the derivative of it, then combining with (7.36) and (7.39) yield 

   2
3 2 3 3 3 2 2 2 2

2
fV V e g u f d

 

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The actual control law is constructed as 

  3 1 2 3 3 2
3

1 ˆ ˆe fu f x k e e
g

       (7.42) 

where 3 0k   is to be chosen and  3 3 2 3
ˆ ˆ ˆ,f f x x . 

According to (7.41) and (7.42) then applying Young's inequality, one obtains 
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Substituting (7.38) into (7.43) leads to 
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The inequality (7.44) can be rewritten as 

 3 3V V   (7.45) 

where   and   are determined as 
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 (7.46) 

Based on Theorems 7.1 and 7.2, and(7.45), by using the control laws (7.26), (7.37), and (7.42), a 
bounded tracking performance of the closed-loop system is guaranteed. The output tracking error 
reduces as the controller gains 1k , 2k , and 3k  increase and vice versa. 

Remark 7-1. The time constants of the low-pass filters (7.27) and (7.35) should be selected 
sufficiently small to guarantee not only the closed-loop system dynamics, but also the small errors 
between the virtual control laws and their filtered signals, and consequently, the control performance 
can be significantly improved. Although only bounded stability can be achieved, the employment of 
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the DSC technique effectively avoids the analytic derivative calculation of the virtual control laws in 
the conventional backstepping control framework; hence, the computational complexity can be 
substantially reduced. 

7.3 Experiment Verification 

7.3.1 Experiment Setup 

The real apparatus that is used to study the control problem and verify the advantage of the 
suggested control strategy is shown in Fig. 7-2. As shown, it consisted of a compact hydraulic power 
unit, a vane rotary actuator, two pressure transmitters, and an encoder. The hydraulic power pack 
manufactured by Bosch Rexroth includes a bidirectional gear pump that is driven by a DC motor. To 
control the speed of the DC motor, a medium-power motor driver MD-03 was provided by Robot 
Electronics company. Besides, to measure the pressure of the actuator, two pressure sensors of Model 
KOBOLD SEN-8700/2A095 were adopted. In addition, an encoder E40H8-5000-3-V-5 made by 
Autonics company was employed to measure the angular position of the actuator. 

 

Fig. 7-2. The experimental platform of the studied pump-controlled electro-hydraulic system. 

 (1) Hydraulic rotary actuator with an encoder rigidly connected to the actuator shaft; (2) drum; 
(3.A, 3.B) pressure transmitters; (4) DC motor; (5) hydraulic tank with a pump inside; (6) center block; 

(7) gravitational load; (8) electric control box. 

The nominal system parameters of the real VSPHS are listed in Table 7-1, which were used to 
design the observers and control laws of the proposed control method. 

Table 7-1. The nominal parameter of the studied VSPHS 

Parameter Notation Value SI Unit 
Viscous friction coefficient of the actuator 

fB  50  1N m rad s    

Coulomb friction coefficient of the actuator 
fA  45  N m  

Moment of inertia of the actuator 
AJ  0.15  2kg m  

Hydraulic actuator displacement 
AD  65.8442 10  3 1m rad  

Hydraulic pump displacement 
PD  70.1544 10  3 1m rad  

Effective bulk modulus of the hydraulic oil 
e  91.5 10  2N m  or Pa  

Total leakage coefficient 
tC  124.267 10  3 1 1m s Pa    

Initial control volume of the forward chamber 
01V  51.25 10  3m  

Initial control volume of the reverse chamber 
02V  52.27 10  3m  
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To demonstrate the advantage of the recommended control approach, the following controllers 
were compared: 

1) DESO-OFRBC: The proposed controller whose control gains were chosen as 1 80k  , 

2 15k  , 3 30k  . In addition, the bandwidths of the observers (7.2) and (7.17) were 1 50   and 

2 50  , respectively. 

2) SESO-OFRBC: The output feedback control using a single ESO, which has a similar 
structure to the proposed method. The parameters of the controller were also selected the same as 
the above controller with the observer bandwidth 50  . 

3) VF-PID: The proportional-integral-derivative controller with the velocity feedforward 
mechanism is mathematically presented as 

        1

0

t

P I D V d

de t
u K e t K e d K K x t

dt
       (7.47) 

where 1 1( ) ( ) ( )de t x t x t   and 1 ( )dx t  is the first derivative of the desired trajectory.  

As far as we know, the PID is the most-popular control algorithm that is adopted in industrial 
applications due to the simple implementation and limited tuning parameters. In particular, it does not 
require the system model, and only the position of the actuator is required; hence, it can be treated as 
the reference controller for comparison. The parameters of the VF-PID controller were meticulously 
manually tuned to achieve an acceptable tracking performance and guarantee the system stability as 

43.5 10PK   , 33.5 10IK   , 25 10DK   , and 32 10VK   . The selection of bigger parameters 

would cause the closed-loop system to be unstable. 

To measure the effectiveness of each control approach, two performance indexes [76, 97] 
including the maximum and standard deviation of the tracking errors were employed. These indexes 
are defined as follows: 

(i) The maximal absolute value of the tracking errors is given by 

   1
1,...,

maxe
i N

M e i


  (7.48) 

(ii) The standard deviation performance index is defined as 

   2

1
1

1 N

e e
i

e i
N

 


     (7.49) 

where e  denotes the average tracking error, which is calculated as  1
1

1 N

e
i

e i
N




  . 

7.3.2 Experiment Results 

a) Case study 1 

Firstly, a slow-motion desired trajectory was employed to evaluate the reference-following 
capability of the three considered controllers, which is mathematically presented as 

       1 5 30 1 cos 0.1 1 expdx t t t      , with a load of 10  kg. 
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The tracking performance of the proposed control method in comparison with those of other 
controllers is demonstrated in Fig. 7-3 and Fig. 7-4. As shown in Fig. 7-3, all controllers guarantee that 
the system outputs of the hydraulic actuator are able to follow the reference trajectory. Fig. 7-4 
indicates the tracking accuracy of each controller. The peaks of the tracking errors happen when the 
motion direction changes because of the external load and the friction inside the hydraulic actuator. 
From this figure, it can be seen that the maximal tracking errors of the VF-PID controller and SESO-

OFRBC controller were slightly different with the tracking errors as 1.0033  and 0.9717  in the 
steady state, as shown in Table 7-2, respectively. Meanwhile, the DESO-OFRBC control approach 
outperformed the other controllers, and the maximal tracking error was reduced almost down to 

0.8354  since the effect of uncertainties and external load in the velocity dynamics was effectively 
compensated by using the dual ESOs compared to the single ESO employed in the SESO-OFRBC 
control scheme. 

 

Fig. 7-3. The output tracking performances of the three controllers under the slow-motion 
reference trajectory. 

 

Fig. 7-4 The output tracking errors of the three controllers under the slow-motion reference 
trajectory. 
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Table 7-2. Performance indexes in the slow-motion reference trajectory case. 

Controller  degreeeM   degreee  

VF-PID Controller 1.0033  0.1329  
SESO-OFRBC Controller 0.9717  0.1615  
DESO-OFRBC Controller 0.8354  0.0960  

 

Fig. 7-5. The estimates of the angular velocity and load-pressure-related term under the proposed 
controller. 

 

Fig. 7-6. The estimates of lumped mismatched and matched uncertainties under the proposed 
controller. 

The estimations of the angular velocity, load-pressure-related term, and lumped mismatched and 
matched disturbances are depicted in Fig. 7-5 and Fig. 7-6, respectively. According to these estimates, 
state feedback control can be realized. In the DESO-OFRBC control structure, the lumped mismatched 
and matched disturbances caused by parametric uncertainties, unmodeled dynamics, and external 
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disturbances were estimated based on the system output only and then compensated, resulting in better 
tracking performance being achieved compared to the two remaining control methods. 

b) Case study 2 

 

Fig. 7-7. The output tracking performances of the three controllers under the faster motion 
reference trajectory. 

 

For further examination of the tracking performance of the three controllers, a four-times faster 

reference trajectory was adopted as        1 5 20 1 cos 0.4 1 exp     
dx t t t , and the load was 15 

kg. 

 

Fig. 7-8. The output tracking errors of the three controllers under the faster motion reference 
trajectory. 
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The tracking performances of the three controllers are presented in Fig. 7-7. As shown, similar to 
the above case study, all comparative controllers were able to ensure that the system output could 
follow the reference trajectory in the presence of the model uncertainty and external load. 

In addition, the tracking capabilities of the three controllers are explicitly illustrated in Fig. 7-8. 
Under the faster reference trajectory and heavier load, the tracking errors achieved by these controllers 
considerably increased. The two performance indexes in this case are presented in Table 7-3. Due to 
the lack of nonlinear model dynamics and disturbance compensation mechanisms, the absolute 

maximal tracking error in the steady state obtained by the VF-PID controller went up to 1.2260 . 

Meanwhile, this performance index attained by the SESO-OFRBC controller was 1.1438 . It should 

be noted that the smallest tracking error was achieved by the DESO-OFRBC controller (1.0134 ). 

Table 7-3. Performance indexes in the faster motion reference trajectory case. 

Controller  degreeeM   degreee  

VF-PID Controller 1.0033  0.1329  
SESO-OFRBC Controller 0.9717  0.1615  
DESO-OFRBC Controller 0.8354  0.0960  

7.4 Conclusions 
This chapter presented a novel active disturbance rejection control for position tracking of a 

variable-speed pump-controlled hydraulic system. To cope with the shortage of system state 
information and the online estimate of the lumped matched disturbance, a linear ESO was adopted 
with a single tuning parameter. In addition, to alleviate the effect of the lumped mismatched 
disturbance originating from the parametric uncertainties, unmodeled dynamics, and external load on 
the mechanical dynamics, a mismatched disturbance observer was constructed. According to this, an 
observer-based approach was established by using the backstepping control technique. Moreover, to 
avoid the computational burden of the conventional backstepping concept, the dynamic surface control 
was integrated. Furthermore, the stability of not only the observers but also the closed-loop system 
was verified by using the Lyapunov theory. Finally, several experiments were carried out on the real 
VSPHS to demonstrate the effectiveness of the recommended method in comparison with some 
reference methods. Two case studies were considered, and the results showed that smaller maximal 
absolute tracking errors were achieved by the suggested controller ( 0.8534  in the slow-motion case 
and 1.0134  in the faster-motion case) compared to these values obtained by the SESO-OFRBC 
controller ( 0.9717  and 1.1438 , respectively) and VF-PID controller ( 1.0033  and 1.2260 , 
respectively). Some advanced estimation and control techniques for improving the tracking 
performance of VSPHSs will be investigated in future work. 
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Chapter 8  
CONCLUSIONS AND FUTURE WORKS 

8.1 Conclusions 

This thesis introduces several control approaches for improving the motion-tracking performance 
of electro-hydraulic systems suffering from model uncertainties and external disturbances. In these 
control schemes, observers play an important role in dealing with the nonexistence of sufficient 
measurement mechanisms, and uncertainties and disturbances attenuation. Meanwhile, nominal 
controllers are designed based on backstepping and sliding mode control techniques. Finally, the 
unknown terms in control laws are compensated by their estimated values in order to achieve the 
desired performance. The main contributions of the dissertation are summarized as follows: 

 To minimize the influence of both matched and mismatched disturbances on the 
reference-following capability of EHSs, disturbance observers that have a simple structure 
and easy implementation, have been developed. The angular velocity of the actuator has 
been attained by employing a second-order Levant’s differentiator. Based on that, a state 
feedback controller has been designed by using the conventional backstepping control 
technique, in which both matched and mismatched disturbances have been sufficiently 
compensated. 

 The concept of ADRC was first introduced by Han [73]. It was proposed to deal with the 
shortage of exact system models and developed based on ESOs that are able to estimate 
not only immeasurable states but also disturbances. However, peaking phenomena is the 
major disadvantage of ESOs and it may cause system instability when using high observer 
gains. Based on the sliding mode theory and to avoid this demerit of the standard ESO 
design, ESMOs have been successfully investigated and applied to control applications of 
EHSs. The obtained results showed that better estimation performance by ESMOs was 
achieved compared to the ESOs with a similar level of observer gains, and consequently, 
more accurate tracking control was attained.  

 Additionally, tracking control of an EHS subject to completely unknown dynamics has 
been studied in this thesis. As far as we know, system identification is a challenging task 
when designing a controller for a mechanical system. In some sense, the model of 
complex systems cannot be obtained by using fundamental knowledge. To reduce this 
burden, adaptive NN-based control for tracking the problem of EHSs has been explored in 
this thesis. Multiple NNs have been adopted to approximate dynamical functions. The 
imperfections of NN-based approximations and the adverse impacts of external 
disturbances have been treated by DOBs. Finally, the control algorithm has been 
synthesized by employing SMC theory. 

 Finally, an output feedback control for a pump-controlled electro-hydrostatic actuator that 
has been utilized in various practical applications, has been also investigated in this thesis. 
The lack of system states and both mismatched and matched disturbances is solved by 
using dual ESOs. The DSC approach has been employed to avoid the “explosion of 
complexity” of the standard backstepping control due to the repeated differentiation of 
virtual control law at each backstepping iteration. 

8.2 Future works 

It should be noted that although improved performance was achieved by employing the developed 
control algorithms, for further improvements in motion tracking control of EHSs, some practical 
problems should be carefully considered in future works as follows: 
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 The relationship between input saturation and prescribed performance should be pointed 
out clearly. Since the control input is saturated in case of rapidly changing reference 
trajectories that exceed the kinematic and dynamic constraints of real-life EHSs. In this 
scenario, predetermined performance indexes cannot be assured and the tracking 
performance will deteriorate as a result. 

 In EHSs, the dead-zone characteristics of servo valves and motor drives in pumping 
systems naturally exist and they should be meticulously considered to enhance the overall 
control accuracy. In fact, the dead-zone is time-varying depending on system working 
conditions. Effective techniques of compensation for the dead-zone should be investigated  

 In recent decades, finite-time estimation for nonlinear systems has become one of the 
interesting research directions. Nevertheless, strong assumptions that are not always 
satisfied in practical conditions were made to achieve finite-time criterion. Therefore, 
obtaining finite-time estimation when some strong assumptions are relaxed, is also one of 
the research gaps that need to be discovered in future works. 

 Complex systems are constructed from multiple actuators to realize distinct tasks, hence, 
developing control algorithms for such systems is necessary. In heavy-duty applications, 
electro-hydraulic actuators whose dynamics are high-order and highly nonlinear, are 
widely used. Therefore, control of these systems becomes more challenging than electrical 
counterparts and requires further consideration. 

 In practical systems, the working conditions of sensors and actuators cannot always be 
guaranteed. In case of sensor and/or failure, the system performance is not able to remain 
and this problem may even cause unexpected consequences that are harmful to operators 
and overall controlled systems. Assurance of acceptable performance and safety 
conditions for operators in a specific period of time requires the development of 
sophisticated control algorithms that are able to take sensor and actuator faults into 
account simultaneously. 

 The selection of control gains during the design stage of controllers is an ad hoc and 
painstaking process. How to choose optimal gains for constructed controllers is still a big 
research question that demands a great effort from the research community. Hence, 
optimal control methods should also be considered in future research. 
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