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Abstract 
 

This thesis presents hybrid techniques that combine signal processing with machine 

learning for the fault diagnosis and prognosis of concrete structures and industrial 

equipment. Based on the information collected during the monitoring process, abnormalities 

in the working conditions can be detected at an early stage. This ensures maintenance can 

be planned and performed accordingly, thus avoiding irreversible damage to the asset and 

the surrounding environment at minimal cost. In the third chapter, a scheme for leak 

localization on a cylinder tank bottom using acoustic emission (AE) is proposed, which 

utilizes similarity scores to group acoustic emission hits by their sources and analyzes the 

source locations through a Voronoi Diagram. The results under a one-failed-sensor scenario 

show a high level of accuracy across multiple test locations. Furthermore, in Chapter 4, an 

approach to perform leak state detection and size identification for industrial fluid pipelines 

with an acoustic emission activity intensity index curve (AIIC) using b-value and a random 

forest (RF) is proposed. This chapter shows that the AIIC outperforms traditional AE features 

in portraying the pipeline’s working states, and along with the classification power of RF, the 

proposed method also consistently surpasses two state-of-the-art reference methods in the 

size identification task. Afterwards, Chapter 5 proposes a new technique for the construction 

of a health indicator for remaining useful life (RUL) prediction of concrete structures based 

on the Kullback–Leibler Divergence (KLD) and deep learning. The KLD-based indicator is 

capable of descriptively portraying the concrete structure’s fracturing process, and its 

adaptation to the RUL task shows a high level of accuracy.
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Chapter 1 Introduction 
 

Chapter 1 

 

Introduction 

 

The motivations, contributions, and organization of the thesis are presented in this chapter. 

The following sections of this chapter are arranged as follows: Section 1.1 discusses the 

motivation behind this work, Section 1.2 summarizes the contributions, and Section 1.3 

demonstrates the outline of the rest of the thesis. It should be noted that the materials 

presented afterward in this thesis have been submitted and published in peer-reviewed 

journals. 

 

1.1 Motivation 

With easy access and high durability, concrete structures have become a ubiquitous sight in 

recent decades. Along with their everywhere presence, there comes the inevitable need for 

a maintenance plan to ensure in-service safety and to prolong the lifetime of concrete 

structures. Numerous studies have been conducted by laboratories, companies, and 

individuals racing to identify solutions regarding the performance amelioration of structural 

health monitoring (SHM). By employing an effective monitoring scheme, it is possible to 

provide the user with more insight into the in-service system/structure, avoid near-future 

failures, and lessen downtime by a significant amount.   

Pipelines play a vital role in civil and industrial settings as one of the major fluid 

transportation methods. While they can generally provide safe and efficient passage even in 

long-distance systems, pipelines are not immune to leaking and breaking due to the influence 

of natural disasters, component corrosion, installation errors, etc. An unattended leak can 

evolve into a major pipeline burst, which can not only sever the entire transportation system, 

but potentially lead to human injuries/fatalities, environmental hazards, and huge economic 
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costs for recovery. Due to the dire consequences of pipeline leaks, the faults must be detected 

and diagnosed in earlier stages so that maintenance can be performed accordingly. 

A cylinder tank is a pressure vessel that is used for liquid, vapor, or gas containment in both 

industrial and civil settings. In general, pressure vessels are known to provide a long, useful 

lifetime, even with dangerous substances (e.g., acids), if failures are detected and treated 

early. However, untreated failures can unleash the contained substance, which does not just 

cause financial damage, but more importantly, precipitate injuries or even fatalities, and turn 

the surrounding environment hazardous. An example of how appropriate diagnosis and 

maintenance can greatly extend service life is shown in a hydrofluoric acid sphere tank test, 

which was monitored and fixed properly. In the end, it offered a safe service life of 20 years 

under a continuous corrosive attack. Afterward, the same pressure vessel was 

decommissioned but could still serve in its new role as a water container for years to come. 

Leaking on the flat bottom surface is one of the most common problems in a vertical cylinder 

tank. While in service, it is often not visible or accessible for manual inspection. Diagnostic 

methods that require tank drainage for inspection are obsolete and can cause unnecessary 

financial costs while rendering the vessel out of service during the test. Due to this reason, 

in-service testing has become more favorable in recent years not just for cylinder tanks, but 

other structures and systems as well. Through this procedure, leak location(s) can be 

detected early, and maintenance can be performed to prevent further failures and avoid 

possible environmental contamination. 

Currently, non-destructive testing (NDT) has emerged as one of the most popular research 

topics within the prognosis and health management framework for civil and industrial 

assets. In addition to its obvious contribution to safety and incident prevention, the other 

reason behind NDT’s relevance is that it allows inspection and evaluation without affecting 

specimen serviceability, as its name suggests. Multiple techniques have been proposed such 

as ultrasonic testing (UT), radiography testing (RT), ground-penetrating radar (GPR), 

infrared thermography testing (IFT), distributed acoustic sensing, active distributed 

temperature sensing, acoustic emission (AE), etc. Each of these techniques presents various 

advantages and disadvantages which can best serve different applications. In terms of AE, it 

studies the elastic waves released upon a discontinuity occurrence. AE offers many upsides, 

such as non-directionality, no downtime for in-service testing, new damage detection, and 

outstanding progression monitoring, in which the deterioration process can be captured 

with only one test. During the monitoring process, AE is sensitive to new damage sustained 

by the specimen, and to the irregularities of the specimen’s working activity due to these 

damages. Since the foremost purpose of this study is pipeline monitoring, it can benefit from 

the aforementioned advantages. Thus, AE testing is the NDT method chosen for application 

in this work. 
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When a discontinuity happens in the specimen, it releases acoustic waves which can be 

captured by the AE sensors. In the case of concrete structures, the discontinuities are mainly 

cracks from both the internal and external of the specimens. Regarding the cylinder tank and 

fluid pipeline system, the main source of AE activity is not the crack, but rather the 

disturbances in the fluid flow happening around the leaking region due to the crack. There 

are, of course, other sources of AE activity interfering with the monitoring process. This can 

influence the accuracy of the deterioration process portrayal and the estimation of the fault’s 

properties. Chapters 3 to 5 discuss in detail how to harness useful information in different 

problem sets of cylinder tanks, fluid pipelines, and concrete structures.  

Source localization has been one of the most important topics regarding structural and 

machinery health management frameworks. AE testing can allow localization of an active 

source, given that an ample amount of data is available through collection from the 

transducer(s). The most notable approaches concerning an AE source location are zone the 

location technique, the signal amplitude difference technique, and the timing technique. The 

zonal approach is one of the more basic techniques for AE localization, which harnesses the 

idea that the AE source is most likely in the zone of the transducer that returns the highest 

amplitude, given the assumption of equal transducers’ sensitivity. This technique can offer a 

simple solution when pinpointing the exact source location is not of utmost importance. 

However, it is found lacking for the more demanding problems. In the case where structural 

characteristics are known, the signal amplitude difference of the closest transducers (to the 

source, determined by the highest amplitude with the same assumption of zonal localization) 

can be measured and then compared with the known attenuation characteristics. Although 

this method can give a more detailed and accurate answer than zonal localization, obtaining 

the information for characteristics can be a huge challenge, especially when a structure or 

machinery is made of more than one material. The timing technique is one of the more 

favored approaches in recent years, which uses the difference between the time delays of the 

same event across separate transducers to derive the source location. Methods that follow 

this approach can obtain results with high accuracy. However, it is necessary to have precise 

time difference calculations. The time difference can be estimated through different means, 

including cross-correlation (a time difference measurement based on the cross-correlation 

of one discrete or continuous wave in accordance with another), grid search (a time 

difference measurement achieved by searching the grid zone with the least residual between 

the calculated and the real distance, either spatially or in time), hit detection and event 

grouping, etc. In the case of hit detection and event grouping, it can be troublesome because 

AE events usually happen in bursts with multiple hits happening in a short interval. Since 

this thesis pursues this approach with a time difference of arrival (TDOA) scheme, a constant 

false alarm rate (CFAR)-based hit detection and an event grouping method are proposed to 

solve this problem. Moreover, in a real-life leaking situation, AE events are expected to 

happen not just at the location of the leak, but also in nearby regions due to the turbulent 
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flow of the stored substance. Therefore, the event location alone does not pinpoint the 

location at which the leak is located, but it can be found through a density analysis of these 

points. Assuming that the probability density is identical at every event location due to the 

lack of statistical information regarding the leak, it can be determined that the leak is most 

likely to be in the spot where the events are densely located. Thus, a Voronoi diagram is 

employed here to search for the leak region on the cylinder tank bottom. 

Many studies have been conducted that have used AE for pipeline system diagnosis. When a 

leak occurs in a pipeline system, variations are expected in the AE data. The leak detection 

process using AE is centered around the differences between the variations that happen in 

the leak state and the normal state, which have been mostly approached from the view of 

feature extraction and pattern recognition in recent studies. The studies in this area can be 

roughly categorized as follows: time domain, frequency domain, and time-frequency domain. 

Time domain approaches are often the most straightforward out of the three domains; 

however, they usually require an additional pre-processing step to minimize their 

susceptibility to interferences. Frequency-domain approaches can be more robust than time-

domain ones; however, they are more complicated and often require more expertise 

regarding system- or fault-specific frequencies. Out of the three domains, time-frequency 

approaches can provide the most powerful solutions, at the cost of huge computational 

complexity. As briefly explained in the previous subsection, AE is based on the release of 

elastic waves upon the occurrence of discontinuity. Such an occurrence, which releases 

elastic waves, is called an AE event (AEE) and, when an AEE is detected by a sensor, these 

data can be referred to as an AE hit (AEH). Generally, AEHs can be categorized into two types: 

burst-type and continuous-type. While the continuous-type is considered noise and contains 

minimal useful information, the burst-type AEH possesses valuable data that can be used for 

the determination of the specimen’s state. Because of the nature of fluid transportation in 

pipeline systems, AE events can be recorded from various sources, even under normal 

working conditions that can involve unstable flow, pressure on joints, pipeline vibration, 

leaks, and interferences from the environment, etc. The diversity of sources in pipeline 

systems and their occurrences in a short period introduces a more complex problem 

(referred to as the multi-source problem of AEEs), in comparison to rigid specimens such as 

concrete structures and machinery, etc. in which the signal is significantly more transient 

and there are fewer sources of AEEs (primarily due to discontinuity-related reasons, such as 

cracks, loose fittings, etc.). Even though AEH features can offer a great description of the AE 

activity, it is difficult to correctly obtain the data related to these features due to the high AE 

noise level and the sophisticated AEH detection process. As an alternative, this paper 

presents AE activity intensity construction, using the b-value for pipeline systems. The b-

value was first introduced in the Gutenberg–Richter law (GRL). In brief, it expresses the 

relationship between the number of earthquakes and their magnitude in a given period and 

location. Since an AEE can be considered a low-energy seismic event, the b-value was also 
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adopted for AE applications on concrete structures. As the adopted b-value describes the 

correlation between the number of AE peaks and the AE amplitude, and there is a proven 

relationship between the amplitude and the discontinuity size, it is anticipated to provide an 

accurate description of the AE activity intensity. Based on this intensity index, the pipeline’s 

working condition can be detected and, if a leak is present, the size can be identified. 

Health indicator (HI) construction is an essential part of the prognosis to portray the timeline 

of concrete structure deterioration. HI shows the condition in which the specimen under 

investigation is. By analyzing the current HI, it is possible to predict future values and their 

timing, thus allowing the RUL to be estimated. Over the years, numerous studies have 

proposed different approaches to building a HI, especially in more recent studies, and in 

summary, this process can be generally divided into two steps: (1) calculation of the HI-

constructing factor(s) and (2) HI construction from the calculated factor(s). The calculation 

of the HI-constructing factor(s) (also known as features) is often performed either in the 

time, frequency, or time-frequency domain. The time domain approaches generally offer a 

fast and simple solution that can be widely applicable to systems and fault types. They often 

include statistical computation and impulse analysis. These methods, however, are 

susceptible to interferences, which are typically inevitable in real-life applications. 

Therefore, pre-processing techniques are necessary to minimize performance degradation. 

Frequency domain solutions explore anomalies in the system with prior information on the 

fault characteristic frequencies already known. They are often adapted in model-based 

methods and can offer high efficiency; however, they are not widely applicable. The 

approaches following the time-frequency domain solution are the most powerful among 

these three and can be highly robust. Their downside is that such powerful methods often 

require high computational capability and experience concerning information extraction. 

Afterward, the second step is to build the HI constructor. As briefed previously, the 

construction of a HI can be roughly divided into two categories: model-based and data-based. 

Model-based methods focus on generating a mathematical representation that mimics a real-

life process. The development of an HI in these studies requires expertise, and knowledge 

about the system’s behavior, the nature of the faults, and the HI-constructing factors. The 

aforementioned research and many others have been carried out with expertise in signal 

processing, and system and fault behavior, which can be troublesome to obtain in more 

sophisticated scenarios. Moreover, they cannot be adapted to a variation in systems, due to 

their construction imitating certain real-life processes. Unlike model-based approaches, 

data-based solutions focus on the nature of the data itself, with less concern for the system 

or fault nature. Due to their lower complexity and wider application toward different 

systems and faults, data-based methods have been more favorable in recent years, especially 

with the rise of artificial intelligence. Notable mentions in this category are statistical 

projection, deep learning models, evolutionary computation, etc. Different studies following 

these methods have achieved promising results in HI construction for the RUL prognosis 
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task. For all the reasons stated above, this thesis discusses a new technique for the 

construction of a health indicator for concrete structures based on the Kullback–Leibler 

divergence and deep learning. 

1.2 Thesis Objective and Contribution 

The objective of this thesis is to build intelligent techniques, using both advanced signal 

processing and AI, for the fault diagnosis/prognosis of concrete structures and industrial 

equipment. The abstract of this study is illustrated in Figure 1.1. The contributions of this 

thesis are as follows: 

1. A similarity score is introduced to group AE hits into the same events, whose locations 

are then used for density analysis using the Voronoi Diagram to find the leak region on 

the cylinder tank bottom.  

2. An AE activity intensity curve (AIIC) based on b-value is introduced as an accurate 

description of the working state of the industrial fluid pipeline despite the influence of 

multiple AE sources rather than just the leak. Leak detection and size identification are 

performed on the AIICs using a Bayesian ensemble estimator and random forest, 

respectively. 

3. This thesis presents the construction of the HI for concrete structures using Kullback-

Leibler Divergence, on which the RUL prognosis is performed using LSTM. 
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Figure 1.1. Thesis graphical abstract 

1.3 Thesis Organization 

The following chapters of this thesis are organized as follows: 

▪ Chapter 2 explains the experimental setups and the data description for concrete 

structures and industrial equipment. 

▪ Chapter 3 presents leak localization on the cylinder tank bottom using AE. 
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▪ Chapter 4 presents leak detection and size identification for fluid pipelines with a 

novel AE intensity index and random forest.  

▪ Chapter 5 presents a deep-learning-based HI constructor using KLD for predicting 

the RUL of concrete structures. 

▪ Chapter 6 concludes the thesis and discusses possible future work. 
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Chapter 2 

 

Overview of the Experimental Setup 

 

In this chapter, the experimental setup and data description are presented. The data 

collected from those setups are used to verify the proposed methods for concrete structures 

and industrial equipment. This chapter includes three different setups: the first one is a 

cylinder tank with data collected using the Hsu-Nielsen test; the second setup is an industrial 

standard pipeline system in a normal working condition and a leaking condition; finally, the 

last setup is a four-point bending, run-to-fail test on multiple reinforced concrete beams 

(RCB). They provide the data for the studies discussed in chapters III, IV, and V, respectively. 

2.1 Cylinder Tank Setup for Bottom Leakage 

To verify the proposed method, a Hsu-Nielsen test was employed on a cylinder tank under a 

one-failed-sensor scenario to imitate a leaking situation. The Hsu-Nielsen test is a test in 

which a pencil lead of 0.5 mm diameter is broken at a 30° angle against a surface for an AE 

event generation. The discontinuity upon a lead-breaking occurrence generates an elastic 

wave that travels along the bottom surface and can be captured by the sensors. For this 

reason, it is a popular method for an AE event source imitation in multiple experimental 

setups for different types of machinery or structural failures. In addition, the one-failed-

sensor scenario provides a more challenging problem than a conventional setup, in which 

one of the evenly positioned sensors is considered to be malfunctioning. By doing this, any 

event that happens in this impaired sensor’s neighborhood, which is supposed to be in the 

coverage of the failed one, would have to be processed from further channels, thus 

introducing more attenuation and distortion to the available data. A total of six R6I-AST 
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sensors were attached to the surface of the vertical cylinder tank at a height of 300 mm, and 

the recordings were taken at a sampling rate of 1 MHz. These sensors from MINTRAS offer 

high sensitivity, and long-driving cable capability with a built-in 40 dB preamplifier and a 

filter. Moreover, being enclosed in a metal stainless steel housing can provide resistance to 

electromagnetic/radio frequency interferences and heat stabilization from −35 to 75 Celsius 

degrees. The “AST” part in the name shows that this genre also supports the integrated Auto 

Sensor Test, which allows sensor coupling and performance verification even in service. The 

detailed specifications and illustrations of the setup are presented later in Chapter 3.  

2.2 Pipeline Setup for Leakage Detection and Size Identification 

To validate the approach presented in this thesis, data acquisition was conducted using an 

industrial fluid pipeline system. Three R15I-AST sensors were deployed during this process. 

The R15I-AST sensor is a highly sensitive product from MITRAS, specifically designed to 

provide low-noise input, with a built-in auto sensor test and long-cable driving capability 

without an additional preamplifier requirement. Due to its metal housing, it is less 

susceptible to radio frequency and electromagnetic interferences. The three sensors were 

attached to the surface of the pipeline following the application of a coupling medium gel on 

the contact spots. To ensure that the sensors would not be displaced or fall from the 

specimen, the tape was utilized. Sensor channels one, two, and three were located at 2500, 

1600, and 0 mm (reference position), respectively, along with the leak location at 800 mm. 

The flow direction was from channel one to channel two, then through the leak position, and 

finally through channel three. The multiple sensor setup allowed different points of view: 

channel one offered the view of an upstream flow before the leak; channel two was used for 

near-leak monitoring, which was expected to have the highest AE activity intensity of all of 

the channels; channel three offered a view of a downstream flow located after the leak. 

Though they were recorded from the same test, each of them could be treated as a 

standalone, which provides more variety to the dataset. The detailed specifications and 

illustrations of the setup are presented later in Chapter 4.  

2.3 Concrete Setup for RUL Prognosis 

To evaluate the reliability of the proposed method, data were collected from reinforced 

concrete beams, which were constructed and installed for the four-point bending test 

scenario. Each specimen was identically produced with concrete material having a 

compressive strength of 24 MPa, D16 (SD400) steel rebar, and gridded in 50 × 50 mm2 

squares for better visualization of deterioration monitoring. The AE data were acquired at 5 

MHz from eight R3I-AST sensors placed around both ends of a specimen. Each specimen was 

subject to two-point concentrated loading. The loading points were placed 400 mm from the 

left and right of the specimen’s median, and the stress was applied at a speed of 1 mm/s. In 

addition, a linear variable differential transformer (LDVT) was set underneath the specimen 
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at its center for vertical displacement measurement. This is an alternate way to track the 

damage sustained other than the visual monitoring of the specimen’s surface fractures. 

During the test, the specimens were loaded until the damage was high enough that 

maintenance was not efficient anymore; however, a total collapse was prohibited from 

happening for the safety of the observers including our team members and construction field 

specialists. 
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Chapter 3 

 

Leak Localization on Cylinder Tank Bottom Using  

Acoustic Emission 

 

In this chapter, a scheme for leak localization on a cylinder tank bottom using acoustic 

emission (AE) is proposed. This approach provides a means of early failure detection, thus 

reducing financial damage and hazards to the environment and users. The scheme starts 

with the hit detection process using a constant false alarm rate (CFAR) and a fixed 

thresholding method for a time of arrival (TOA) and an end-time determination. The 

detected hits are then investigated to group those originating from the same AE source 

together by enforcing an event definition and a similarity score. Afterward, these newly 

grouped hits are processed by a time difference of arrival (TDOA) to find the locations of the 

events. Since the locations of the events alone do not pinpoint the leak location, a data density 

analysis using a Voronoi diagram is employed to find the area with the highest possibility of 

a leak’s existence. The proposed method was validated using the Hsu-Nielsen test on a 

cylinder tank bottom under a one-failed-sensor scenario, which returned a highly accurate 

result across multiple test locations.  

3.1 Introduction 

A cylinder tank is a pressure vessel that is used for liquid, vapor, or gas containment in both 

industrial and civil settings. In general, pressure vessels are known to provide a long, useful 

lifetime, even with dangerous substances (e.g., acids), if failures are detected and treated 

early. However, untreated failures can unleash the contained substance, which does not just 

cause financial damage, but more importantly, precipitate injuries or even fatalities, and turn 

the surrounding environment hazardous. An example of how appropriate diagnosis and 

maintenance can greatly extend service life is shown in a hydrofluoric acid sphere tank test 
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[1], which was monitored and fixed properly. In the end, it offered a safe service life of 20 

years under a continuous corrosive attack. Afterward, the same pressure vessel was 

decommissioned but could still serve in its new role as a water container for years to come. 

Leaking on the flat bottom surface is one of the most common problems in a vertical cylinder 

tank. While in service, it is often not visible or accessible for manual inspection. Diagnostic 

methods that require tank drainage for inspection are obsolete and can cause unnecessary 

financial costs while rendering the vessel out of service during the test. Due to this reason, 

in-service testing has become more favorable in recent years not just for cylinder tanks, but 

other structures and systems [1], [2], [3], [4] as well. Through this procedure, leak location(s) 

can be detected early, and maintenance can be performed to prevent further failures and 

avoid possible environmental contamination. 

AE testing offers a non-destructive and in-service means for diagnosis in general structural 

and machinery health management frameworks [1], [2]. When a discontinuity occurs within 

an object, it emits elastic waves, which are most often in the frequency range of 20 kHz to 1 

MHz. This phenomenon is known as AE or a low-energy seismic event that can often be 

observed in nature when a rock fracture occurs.  An AE test has several notable attributes, 

including non-directionality, in-service testing with little to no downtime, progression 

tracking, and the ability to capture the whole deterioration process with no more than one 

test. Therefore, it has been widely harnessed for various studies and applications [2], [5], [6], 

[7], [8], [9], [10], [11], [12], [13], [14] across different structures and systems for both 

industrial and civil use. However, it should be noted that an inspection must be performed 

before performing an AE test to obtain a priori knowledge of the specimen condition. AE 

testing does not show existing failures, but rather the occurrence of new ones with a now-

or-never attribute. Otherwise, the specimen is assumed to be in normal working condition 

at the start of an AE test. In the AE context, the occurrence of a discontinuity that releases 

elastic waves is referred to as an AE event. When an AE event is recorded by a transducer, it 

is called an AE hit. Due to the AE being the sole focus of this study, these two terms are 

henceforth referred to as an event and a hit for convenience. 

Source localization has been one of the most important topics regarding structural and 

machinery health management frameworks. AE testing can allow localization of an active 

source, given that an ample amount of data is available through collection from the 

transducer(s). The most notable approaches concerning an AE source location are zone the 

location technique [1], the signal amplitude difference technique [1], and the timing 

technique [13], [15], [16], [17], [18], [19], [20]. The zonal approach is one of the more basic 

techniques for AE localization, which harnesses the idea that the AE source is most likely in 

the zone of the transducer that returns the highest amplitude, given the assumption of equal 

transducers’ sensitivity. This technique can offer a simple solution when pinpointing the 
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exact source location is not of utmost importance. However, it is found lacking for the more 

demanding problems. In the case where structural characteristics are known, the signal 

amplitude difference of the closest transducers (to the source, determined by the highest 

amplitude with the same assumption of zonal localization) can be measured and then 

compared with the known attenuation characteristics. Although this method can give a more 

detailed and accurate answer than zonal localization, obtaining the information for 

characteristics can be a huge challenge, especially when a structure or machinery is made of 

more than one material. The timing technique is one of the more favored approaches in 

recent years, which uses the difference between the time delays of the same event across 

separate transducers to derive the source location. Methods that follow this approach can 

obtain results with high accuracy. However, it is necessary to have precise time difference 

calculations. The time difference can be estimated through different means, including cross-

correlation (a time difference measurement based on the cross-correlation of one discrete 

or continuous wave in accordance with another) [21], [22], grid search (a time difference 

measurement achieved by searching the grid zone with the least residual between the 

calculated and the real distance, either spatially or in time) [23], [24], [25], hit detection and 

event grouping [13], etc. In the case of hit detection and event grouping, it can be 

troublesome because AE events usually happen in bursts with multiple hits happening in a 

short interval. Cross-correlation-related studies such as [21] adopted a wavelet analysis to 

extract the useful AE data from noise, then applied a cross-correlation method regarding the 

geometric positioning principle or investigated multiple weighting function options for the 

generalized cross-correlation algorithm to estimate the delay time, as in [22]. Other studies 

following grid search, such as [23], performed a deep analysis of the AE source localization 

for concrete structures or found the location by leveraging the AE waveform’s reflection, 

reverberation patterns, and their dispersive, multimodal characteristics using only one 

sensor [24]. In addition, the research in [25] investigated the continuous wavelet transform 

and the fundamental Lamb wave’s dispersion curves for localization. For the studies 

regarding the hit detection and the event grouping approach, the burst phenomenon in the 

AE signal can be analyzed along with the physical wave-propagation model to achieve a 

promising result [13]. Since our study pursues this approach with a time difference of arrival 

(TDOA) scheme, a constant false alarm rate (CFAR)-based hit detection and an event 

grouping method are proposed to solve this problem. 

In a real-life leaking situation, AE events are expected to happen not just at the location of 

the leak, but also in nearby regions due to the turbulent flow of the stored substance. 

Therefore, the event location alone does not pinpoint the location at which the leak is located, 

but it can be found through a density analysis of these points. Assuming that the probability 

density is identical at every event location due to the lack of statistical information regarding 

the leak, it can be determined that the leak is most likely to be in the spot where the events 
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are densely located [26]. Thus, the Voronoi Diagram [27] is employed in this study to search 

for this region. 

In summary, this study proposes the following contributions: 

1. A leak localization scheme using AE data, which has not been under investigation, is 

proposed with a novel event grouping approach, which gathers hits originating from 

the same event through similarity measurement. 

2. The locations of events are further analyzed using a Voronoi diagram to find the area 

in which the leak is most likely happening. 

3. The study is validated through a case study of a one-failed-sensor scenario. 

The following parts of this paper are organized as follows: The methodology is presented in 

Section 3.2, whereas Section 3.3 displays the case study to which the proposed method was 

applied, and Section 3.4 provides the conclusion along with future research possibilities. 

 

3.2 Methodology 

Prior to a detailed discussion of the methodology, an overview of the proposed process is 

given in Figure 3.1. Initially, raw AE data is processed with a CFAR for hit detection, whose 

results are further investigated with fixed thresholding to determine the TOA and end time. 

Afterward, hits from the same origin are grouped using the event definition and similarity 

score. Using the newly grouped hits, the locations of events can be calculated using TDOA, 

which are eventually analyzed with a Voronoi diagram to return the final estimated leak 

location. 
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Figure 3.1. Overview of the proposed localization scheme 

3.2.1 AE Hit Detection 

The CFAR was originally developed in radar systems for target detection [28]. The principle 

of a CFAR is to set a power threshold, which distinguishes possible real target hits from the 

rest (i.e., those considered to originate from spurious sources). The calculation of this 

threshold is governed by a constant false alarm rate (hence the name) as the trade-off metric 

between true targets and false ones. In real-life problems, due to many factors, the noise can 

affect the data both temporally and spatially. Therefore, such difficulties render fixed-

threshold-based methods ineffective. A CFAR approaches this problem by adaptively 

adjusting the threshold level regarding the probability of false alarms, thus lowering the 

susceptibility to real-life noise. Since its first introduction to radar systems, the CFAR has 

also been harnessed in other fields due to its advantage in the presence of colored noise with 

unknown variance. For this research, the average CFAR is employed to detect AE hits from 

the recorded AE sequences. To manage one-dimensional time series such as those 

investigated in this study, the model displayed in Figure 3.2 can be used.  
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Figure 3.2. Simplified average CFAR scheme. 

The algorithm investigates a cell under test (CUT) through its neighboring cells, which are 

grouped into guarding and training cells on both sides. The CUT is considered to contain a 

hit upon exceeding the threshold, which can be derived from the noise power as follows: 

𝑃𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 = ∝ 𝑃𝑛𝑜𝑖𝑠𝑒 (3.1) 

Given 𝑁 training cells with 𝑥𝑖  being the sample in the ith training cell and the constant false 

alarm rate 𝑃𝑓𝑎, the threshold factor ∝ and the estimated noise power are obtained as follows: 

𝑃𝑛𝑜𝑖𝑠𝑒 =  ∑
𝑥𝑖

𝑁

𝑁

𝑖=1

 (3.2) 

∝ =  
𝑁

√𝑃𝑓𝑎
𝑁

− 𝑁 (3.3) 

As previously discussed, 𝑃𝑓𝑎 governs the trade-off between the real and false targets. A lower 

𝑃𝑓𝑎 value allows more real targets to be detected at the expense of increased false targets. A 

higher 𝑃𝑓𝑎 eliminates a large number of false targets, but real targets might also be ignored. 

To ensure that the detected targets are not contaminated by false choices, a value of 1 × 10−4 

was found to provide the best performance. The data is processed in one-second segments 

without overlapping, and each is divided into a collection of 2000 cells. Each CUT is 
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investigated with 10 guarding cells, and 20 training cells and it is considered to contain a hit 

if the threshold is surpassed. 

Since the localization of events is achieved through TDOA, CFAR can only show whether or 

not a hit is present in the CUT. The next step is to detect the time of arrival (TOA) of hits. In 

this study, the duration of a hit, which is marked by the TOA and the end time, is determined 

with a fixed threshold method [23], [28], [29], which is popular among existing acquisition 

systems. An appropriate threshold selection is necessary because a low threshold can trigger 

a premature detection due to noise and a high one can miss the actual TOA by a considerable 

margin, as can be seen in Figure 3.3. The first and last threshold crossings are registered as 

the TOA and end time, respectively. The visualization of this process can be found in Figure 

3.4. 

 

Figure 3.3. The significance of choosing the appropriate threshold for the TOA determination. 
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Figure 3.4. Simplified fix-thresholding TOA and end-time determination. 

3.2.2 Similarity Score and Event Grouping 

Event grouping is often regarded as of lesser importance in comparison to hit detection and 

event localization in a TDOA-based scheme, even though it is an essential part that directly 

influences the outcome of localization. In this stage, hits from the same source are grouped 

so that later their TOAs can be evaluated against each other to pinpoint the event source. The 

check for event grouping happens between two hits at a time and consists of two stages: the 

event definition value (EDV) check and the similarity score evaluation. 

An EDV is a popular fixed-threshold method for event grouping. It sets the maximum time 

difference between hits that are from the same event. The formula for the EDV can be found 

as follows: 

𝐸𝐷𝑉 =  
max (𝐷𝑠𝑒𝑛𝑠𝑜𝑟𝑠)

𝑣
 (3.4) 

with 𝐷𝑠𝑒𝑛𝑠𝑜𝑟  consisting of the distances between each pair of sensors and 𝑣 being the velocity 

of the elastic wave. Given that in real-life situations events often occur in bursts with multiple 

discontinuities happening in quick succession, there could be more than one hit existing 

within the EDV range of another. Therefore, it would not be sufficient to employ just the EDV 

for event grouping. Given a reference hit to which others are compared, a list of hits recorded 

from the next channel and within its EDV range are registered for further evaluation. 

Afterward, a similarity score is calculated between the reference hit and each of the hits 

registered in the list. The authors propose a new similarity score calculation as follows: 
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𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 𝑆𝑐𝑜𝑟𝑒 =  
max (𝑐𝑟𝑜𝑠𝑠 − 𝑐𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛(ℎ𝑖𝑡𝑟𝑒𝑓 , ℎ𝑖𝑡))

max (𝑎𝑢𝑡𝑜 − 𝑐𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛(ℎ𝑖𝑡𝑟𝑒𝑓))
 (3.5) 

The hit that returns the highest similarity score with the reference one is then considered to 

be sharing the same source. Subsequently, the search continues across other channels. Any 

hit registered to one event cannot be registered for another and will be removed from the 

list indefinitely. 

3.2.3 Event Localization Using Time Difference of Arrival 

Event localization can be computed for each of the event groups found in the previous 

subsection. The maximum number of hits that can be registered in one group is equal to the 

number of sensors deployed in the test. However, the required number of hits for localization 

on a 2-D plane is three. Therefore, only the three earliest hits from the group are used in this 

study because the later hits come from the far sensors, which could have been distorted and 

influenced by an AE noise and other hits. 

Given the TOAs 𝑡𝑖 of the three hits 1–3 and the (𝑥𝑖, 𝑦𝑖) coordinates from the sensors which 

recorded them respectively, the source location (𝑥𝑆, 𝑦𝑆)  can be found by solving the 

following set of equations: 

𝑣 ∗ ∆𝑡2,1 =  √(𝑥2  − 𝑥𝑠)2 + (𝑦2  − 𝑦𝑠)2 − √(𝑥1  − 𝑥𝑠)2 + (𝑦1  − 𝑦𝑠)2 

𝑣 ∗ ∆𝑡3,1 =  √(𝑥3  − 𝑥𝑠)2 + (𝑦2  − 𝑦𝑠)2 − √(𝑥3  − 𝑥𝑠)2 + (𝑦1  − 𝑦𝑠)2 
(3.6) 

The event location results can be further analyzed to find the possible leak source, as 

presented in the next subsection. 

3.2.4 Voronoi Diagram for Data Density Analysis 

The Voronoi diagram’s history can be traced back to the 17th century. Throughout the years, 

it has been known by a few other names, such as Dirichlet tessellation or Thiessen polygons. 

The core idea of a Voronoi diagram is rather straightforward: given N points in a plane, it 

tessellates that plane into N convex polygons (also known as regions), each of which is 

generated from one point (also known as a site), and every point within that region is closer 

to the generating site than the other ones. The visualization of a Voronoi diagram can be seen 

in Figure 3.5. 
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Figure 3.5. Example of a Voronoi diagram. 

Each event location is considered a site in a Voronoi diagram, and the tessellation is 

calculated accordingly. Since in real-life testing, the preceding information concerning the 

AE sources’ probability density function is unavailable, a uniform distribution is assumed to 

be present. Therefore, the possible leak position can be indicated by the area with the most 

densely positioned event locations. Since the density of sites is inversely proportional to the 

regions’ area [27], the density around a detected event location is calculated as follows:  

𝐷(𝑥) = 𝐴𝑥
−1 (3.7) 

here 𝐴𝑥  is the area of the region around the event location 𝑥 that is being considered. By 

grouping regions that belong to the event locations with the highest density, the possible 

leak location can be estimated. 

 

3.3 Case Study 

3.3.1 Experimental Setup 

To verify the proposed method, a Hsu-Nielsen test [31] was employed on a cylinder tank 

under a one-failed-sensor scenario to imitate a leaking situation. The Hsu-Nielsen test is a 

test in which a pencil lead of 0.5 mm diameter is broken at a 30°  angle against a surface for 

an AE event generation. The discontinuity upon a lead-breaking occurrence generates an 

elastic wave that travels along the bottom surface and can be captured by the sensors. For 

this reason, it is a popular method for an AE event source imitation in multiple experimental 
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setups for different types of machinery or structural failures. In addition, the one-failed-

sensor scenario provides a more challenging problem than a conventional setup, in which 

one of the evenly positioned sensors is considered to be malfunctioning. By doing this, any 

event that happens in this impaired sensor’s neighborhood, which is supposed to be in the 

coverage of the failed one, would have to be processed from further channels, thus 

introducing more attenuation and distortion to the available data. A total of six R6I-AST 

sensors were attached to the surface of the vertical cylinder tank at a height of 300 mm, and 

the recordings were taken at a sampling rate of 1 MHz. These sensors from MINTRAS offer 

high sensitivity, and long-driving cable capability with a built-in 40 dB preamplifier and a 

filter. Moreover, being enclosed in a metal stainless steel housing can provide resistance to 

electromagnetic/radio frequency interferences and heat stabilization from −35 to 75 Celsius 

degrees. The “AST” part in the name shows that this genre also supports the integrated Auto 

Sensor Test, which allows sensor coupling and performance verification even in service. 

In this test, the Hsu-Nielsen test was taken multiple times in quick succession at pre-

determined locations (1–8 and center). Due to the test specimen being in an outdoor setup, 

other intentional and unintentional AE activities were also randomly introduced during the 

test. Detailed information concerning the testbed, sensors, and location of the Hsu-Nielsen 

test is illustrated in Figure 3.6.  
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Figure 3.6.The cylinder tank under test: (a) vertical dissection schematic and vertical sensor 
displacement (b) horizontal dissection schematic, sensors, and Hsu-Nielsen test location (c) pictorial 

depiction of the test setup (d) Hsu-Nielsen test visualization. 

Table 3.1. Specifications of the cylinder tank. 

Parameters/Parts Details 

Dimension (without roof) 2.2 × 2.6 m (diameter × height) 

Tank capacity 9.85 M3 

Tank empty weight 2.1 tons 

Tank operating weight 11.95 tons 

Shell/roof/bottom material SA516-70N carbon steel 

Flange material SA105N carbon steel 

Nozzle neck material SA106-B carbon steel 

Earthquake design Yes 
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3.3.2 Result and Discussion 

An example of the hit detection process and result are shown in Figure 3.7. As previously 

discussed, a hit is detected when the CUT exceeds the threshold calculated from the 

neighboring cells. However, this only implies that the CUT contains a hit; it does not show 

the arrival and end times. A fixed threshold of 10% of the peak value, which is calculated in 

the current CUT, is chosen to mark these important timestamps of the hit. Since there are a 

large number of hits, Figure 3.8 shows only the example of a CUT region along with the TOA 

and end time determination from the respective CUT region. It can be seen that the threshold 

is capable of detecting the hit’s TOA quite similar to how it would be picked manually. 

After the hit detection and TOA determination, the results were then processed for event 

grouping based on event definition and hit similarity. Subsequently, a TDOA is applied to find 

the location of the events. As discussed above, the locations of events alone do not sufficiently 

pinpoint the leak’s location. Therefore, data density analysis with a Voronoi diagram is 

employed in the final stage to localize the area with the highest possibility of leak existence. 

Figure 3.9 shows the real Hsu-Nielsen test’s positions previously depicted in Figure 6b: the 

detected locations of events, and the filtered contours indicating the possible leak region, 

which are obtained by using the proposed method. 

In Figure 3.9, the likeliness of a leak existence in a region is shown by the color of the contour, 

with the warmer ones indicating a higher probability and the cooler ones indicating a lower 

possibility. As can be seen, the proposed method provides a very close estimation of the Hsu-

Nielsen tests’ location across multiple points, even for the ones in the neighborhood of the 

failed sensor (1, 6, 7, 8). It can also be witnessed that two out of the three real test locations 

residing outside of the outermost contour are locations 7 and 8 (close to the failed sensor), 

and even in such cases, the displacement values are insignificant. Some of the abrupt rises in 

error and large area of possible leak region are due to the introduction of interfering AE 

activities from the environment and performing Hsu-Nielsen tests. 
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Figure 3.7.Hit detection process for a random one-second window: (a) raw AE data (b) cell power 
versus threshold (c) detected hits. 

 

Figure 3.8. TOA and end time determination: (a) CUT containing a hit (b) Detected hit. 
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Figure 3.9. Source localization results in different Hsu-Nielsen test locations: (a) 1 (b) 2 (c) 3 (d) 4 (e) 
5 (f) 6 (g) 7 (h) 8 (i) Center. 

For deeper performance analysis, a comparison was executed between the proposed method 

and a conventional grid search scheme, which is also a popular approach for industrial 

applications. The localization scheme using a grid search calculates each grid’s residual 

between the estimated and measured distances to the sensors, then returns the location 

where this value is minimal. To verify the localization accuracy of the proposed method, the 

displacement is calculated between the test location and: (1) the innermost region (the one 

covered by the innermost contour with the warmest color, which has the highest probability 
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of leak existence); (2) the outermost region (the entire one covered by the outermost 

contour with the coolest color, which has a smaller probability of leak existence; if the test 

location is within this region, then displacement is equal to zero). The results presented in 

Table 3.2 show that the proposed method outperforms the conventional grid search 

localization scheme by a noticeable margin. 

Table 3.2. Displacement between the test locations and the results. 

Test 

Location 

Conventional Grid 

Search Localization 

The Proposed Method 

Estimated Displacement to 

Innermost Region (m) 

Estimated Displacement to the 

Outermost Region (m) 

1 0.31 0.24 0 

2 0.18 0.11 0 

3 0.27 0.17 0.03 

4 0.21 0.15 0 

5 0.26 0.22 0 

6 0.13 0.09 0 

7 0.19 0.19 0.12 

8 0.22 0.14 0.07 

Center 0 0.12 0 

 Mean ≈ 0.20/Std ≈ 0.09 Mean ≈ 0.16/Std ≈ 0.05 Mean ≈ 0.02/Std ≈ 0.04 

 

3.4 Conclusion 

In this paper, the authors presented a leak localization scheme for a cylinder tank bottom 

with acoustic emission (AE) data. By performing this scheme, leak location can be estimated 

early, thus allowing the appropriate response to be taken to prevent possible injuries, 

fatalities, and environmental hazards, and minimize the financial damage. The AE data is 

initially processed with a constant false alarm rate (CFAR) for hit detection, which is then 

used to find the hits’ time of arrival (TOA) and end time using the fixed thresholding method. 

Following this step hits originating from the same AE source are grouped by applying the 

event definition and the proposed similarity score. From the obtained results, the sources of 

AE events were estimated using the time difference of arrival (TDOA). Since AE events can 

happen in other locations than just the leaking position (due to turbulent flow, etc.), they 

should be investigated more to derive the estimated leak position. This was analyzed 

through data density analysis using a Voronoi diagram to obtain the final result. 

The proposed scheme was validated in a one-failed-sensor scenario on the cylinder tank 

bottom with Hsu-Nielsen testing. A total of six sensors were mounted on the tank’s surface, 

one of which was considered to be malfunctioning. Multiple AE sources were generated on 

the tank bottom in quick succession at nine different locations, along with random 

interferences. The obtained result using the proposed method showed a highly precise 

localization. The localization accuracy is evaluated through the displacement between the 
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real source position and: (1) the innermost region (covered by the innermost contour); and 

(2) the outermost region (the entire one covered by the outermost contour). The first type 

of displacement returns an average of 0.16 m along with a standard deviation of 0.05 m, and 

the second returns an average of 0.02 m along with a standard deviation of 0.04 m, which 

significantly outperforms the conventional grid search localization scheme in a comparison. 

For future work, the accuracy can be further enhanced by introducing more complicated TOA 

estimation methods and event localization approaches.
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Chapter 4 Leak State Detection and Size Identification 
for Fluid Pipelines with a Novel Acoustic Emission 
Intensity Index and  Random Forest 
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Leak State Detection and Size Identification for Fluid 

Pipelines with a Novel Acoustic Emission Intensity Index 

and  Random Forest 

 

In this chapter, an approach to perform leak state detection and size identification for 

industrial fluid pipelines with an acoustic emission (AE) activity intensity index curve (AIIC), 

using b-value and a random forest (RF), is proposed. Initially, the b-value was calculated 

from pre-processed AE data, which was then utilized to construct AIICs. The AIIC presents a 

robust description of AE intensity, especially for detecting the leaking state, even with the 

complication of the multi-source problem of AE events (AEEs), in which there are other 

sources, rather than just leaking, contributing to the AE activity. In addition, it shows the 

capability to not just discriminate between normal and leaking states, but also to distinguish 

different leak sizes. To calculate the probability of a state change from normal condition to 

leakage, a changepoint detection method, using a Bayesian ensemble, was utilized. After the 

leak is detected, size identification is performed by feeding the AIIC to the RF. The 

experimental results were compared with two cutting-edge methods under different 

scenarios with various pressure levels and leak sizes, and the proposed method 

outperformed both the earlier algorithms in terms of accuracy.   

4.1 Introduction 

Pipelines play a vital role in industrial settings as one of the major fluid transportation 

methods. While they can generally provide safe and efficient passage even in long-distance 



 

( 38 ) 

 

systems, pipelines are not immune to leaking and breaking due to the influence of natural 

disasters, component corrosion, installation errors, etc. An unattended leak can evolve into 

a major pipeline burst, which can not only sever the entire transportation system, but 

potentially lead to human injuries/fatalities, environmental hazards, and huge economic 

costs for recovery. Due to the dire consequences of pipeline leaks, the faults must be detected 

and diagnosed in earlier stages, so that maintenance can be performed accordingly. 

Currently, non-destructive testing (NDT) has emerged as one of the most popular research 

topics within the prognosis and health management framework for civil and industrial assets 

[30], [31], [32]. In addition to its obvious contribution to safety and incident prevention, the 

other reason behind NDT’s relevance is that it allows inspection and evaluation without 

affecting specimen serviceability, as its name suggests. Regarding NDT in pipeline systems, 

multiple techniques have been proposed such as ultrasonic testing (UT) [33], [34], [35], 

radiography testing (RT) [36], [37], ground-penetrating radar (GPR) [38], infrared 

thermography testing (IFT) [39], distributed acoustic sensing [40], active distributed 

temperature sensing [41], acoustic emission (AE) [1], [2], [9], [42], [43], [44], etc. Each of 

these techniques presents various advantages and disadvantages which can best serve 

different applications. In terms of AE, it studies the elastic waves released upon a 

discontinuity occurrence. AE offers many upsides, such as non-directionality, no downtime 

for in-service testing, new damage detection, and outstanding progression monitoring, in 

which the deterioration process can be captured with only one test. During the monitoring 

process, AE is sensitive to new damage sustained by the specimen, and to the irregularities 

of the specimen’s working activity due to these damages. Since the foremost purpose of this 

study is pipeline monitoring, it can benefit from the aforementioned advantages. Thus, AE 

was the NDT method chosen for application in this work.  

4.1.1 Related Works 

Many studies have been conducted that have used AE for pipeline system diagnosis [45], 

[46], [47], [48], [49], [50], [51], [52], [53], [54], [55], [56], [57], [58], [59]. When a leak occurs 

in a pipeline system, variations are expected in the AE data. The leak detection process using 

AE is centered around the differences between the variations that happen in the leak state 

and the normal state, which have been mostly approached from the view of feature 

extraction and pattern recognition in recent studies [46], [47], [51], [52], [53], [54], [55], 

[56], [57], [58], [59], [60], [61], [62], [63], [64], [65]. The studies in this area can be roughly 

categorized as follows: time domain [51], [52], [60], [61], frequency domain [62], [66] and 

time-frequency domain [53], [58], [63], [64], [65]. 

Time domain approaches are often the most straightforward out of the three domains; 

however, they usually require an additional pre-processing step to minimize their 

susceptibility to interferences. Noseda et al. [51] proposed an approach to transition time 
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estimation, in combination with the power of a neural network, to devise a propagation 

classification. AE features, such as AE counts, cumulative AE energy, etc. were investigated 

and utilized, along with support vector machine (SVM) and relevance vector machine (RVM) 

in [52], for the identification and localization of a pipeline leak. The authors in [60] presented 

a solution, using artificial neural networks (ANN) with amplitude data from time domain 

AEs. As for the study in [61], the authors investigated the leak detection problem by using 

statistical time domain features, which were selected by principal component analysis and 

then fed to a support vector data description model for working state classification. 

Frequency-domain approaches can be more robust than time-domain ones, however, they 

are more complicated and often require more expertise regarding system- or fault-specific 

frequencies. Through the analysis of leak-related frequencies’ amplitude, the authors in [66] 

proposed a solution to leak detection and leak size identification. In addition, the study in 

[62] presented an approach to leak detection by harnessing AE spectral portraits to obtain 

encoded spectral envelope features. Because frequency domain analysis is more favorable 

towards stationary signals, difficulties might arise due to gas/fluid pipeline AE signals being 

non-stationary [57], [67]. 

Out of the three domains, time-frequency approaches can provide the most powerful 

solutions, at the cost of huge computational complexity. The most notable methods in this 

domain are wavelet transform [58], [63], empirical mode decomposition [53], and 

variational mode decomposition [65], etc. The features, once extracted by using the 

previously mentioned methods, are then harnessed by different artificial intelligence 

techniques for state diagnosis, such as neural network [68], SVM [52], [63], [64], or 

adversarial network [54], etc. 

As briefly explained in the previous subsection, AE is based on the release of elastic waves 

upon the occurrence of discontinuity. Such an occurrence that releases elastic waves is called 

an AE event (AEE) and when an AEE is detected by a sensor, these data can be referred to as 

an AE hit (AEH). Generally, AEHs can be categorized into two types: burst-type and 

continuous-type [1]. While the continuous-type is considered noise and contains minimal 

useful information, the burst-type AEH possesses valuable data that can be used for the 

determination of the specimen state. Because of the nature of fluid transportation in pipeline 

systems, AE events can be recorded from various sources even under normal working 

conditions that can involve unstable flow, pressure on joints, pipeline vibration, leaks, and 

interferences from the environment, etc. The diversity of sources in pipeline systems and 

their occurrences in a short period introduces a more complex problem (referred to as the 

multi-source problem of AEEs) in comparison to rigid specimens such as concrete structures, 

machinery, etc. in which, the signal is significantly more transient and there are fewer 

sources of AEEs (primarily due to discontinuity-related reasons, such as crack, loose fittings, 
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etc.). Even though AEH features can offer a great description of the AE activity, it is difficult 

to correctly obtain the data related to these features due to the high AE noise level and the 

sophisticated AEH detection process. As an alternative, this paper presents AE activity 

intensity construction using b-value for pipeline systems. b-value was first introduced in the 

Gutenberg–Richter law (GRL) [69]. In brief, it expresses the relationship between the 

number of earthquakes and their magnitude in a given period and location. Since an AEE can 

be considered a low-energy seismic event [70], the b-value was also adopted for AE 

applications on concrete structures [71], [72], [73]. As the adopted b-value describes the 

number of AE peaks - AE amplitude correlation, along with the amplitude being related to 

discontinuity size [74], [75], it is anticipated to provide an accurate description of the AE 

activity intensity. Based on this intensity index, the pipeline’s working condition can be 

detected and if a leak is present, the size can be identified. A more detailed walkthrough of 

the proposed method is presented in the next subsection. 

4.1.2 Overview of the Proposed Method and Contributions 

The proposed method’s simplified flowchart is presented in Figure 4.1. The raw AE data 

were recorded from the testbed using three AE sensors. Following the collection of raw AE 

data, a pre-processing step was conducted with a bandpass filter to keep only the desired 

frequency range. Then, the filtered data were utilized to extract the b-value and construct 

the AE activity intensity index curves (AIICs). Afterward, the AIICs were harnessed for leak 

state identification (normal working condition or leakage) using a Bayesian ensemble 

estimator for changepoint detection, which calculated the probability of the occurrence of a 

changing event. Once the leakage was confirmed, the AIIC parts that corresponded to the 

leaking state with multiple leak sizes and pressure levels were separated and fed to a random 

forest (RF) model for leak size classification training/testing. The proposed method 

demonstrated high accuracy under various conditions, even in comparison to cutting-edge 

references. 

The summary of this work’s contributions is as follows: 

1. The AIIC was constructed using the b-value, which provides a robust and descriptive 

representation of the industrial pipeline’s working conditions, addressing the multi-

source problem of AEE in pipeline systems. 

2. Pipeline leak state detection was implemented using the proposed AIIC, along with 

changepoint detection using a Bayesian ensemble estimator, and size identification 

using RF. 

3. The validation was performed using AE for industrial fluid pipelines under various 

leak sizes and pressure levels. 

The organization of this paper is as follows: 
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1. Section 4.1 (Introduction) presents the motivation for and background of this study, 

along with related works, an overview of the proposed method, and the contributions. 

2. Section 4.2 (Basic Concepts) presents the background for the algorithms utilized in 

this study, including the b-value, changepoint detection using a Bayesian ensemble 

estimator, and RF. 

3. Section 4.3 (Case Study) provides a detailed explanation of the proposed method and 

its validation, along with a description of the experimental setup and dataset. 

4. Section 4.4 (Conclusion) concludes the research and discusses future work. 

 

Figure 4.1. Flowchart of the proposed method. 

4.2 Basic Concepts 

4.2.1 The b-value 

The GRL b-value is one of the most important parameters for the probabilistic investigation 

of seismic hazards. It is the slope of a log-normal distribution of the size of seismic events or 
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the relationship between the event magnitude and the frequency of occurrence. In a 

particular region within a specific period, the GRL can be defined as follows: 

log10 𝑁 = 𝑎 − 𝑏𝑀, (4.1) 

in which 𝑎 is an empirical constant, 𝑏 is the b-value, and 𝑁 is the number of seismic events 

with a magnitude higher than 𝑀. Due to AE  being a high-frequency but low-energy seismic 

activity, the GRL is adaptable to AE analysis with a few modifications, as follows: 

log10 𝑁(𝐴) = 𝑎 − 𝑏
𝐴

20
 (4.2) 

with 𝑎 being an empirical constant (which is set at zero in this study), 𝑏 being the b-value, 

and 𝑁(𝐴)  being the number of AE hits with an amplitude equal to or larger than the 

amplitude threshold 𝐴 (dB). A higher b-value indicates that the number of AE peaks with a 

low amplitude is large, along with the low level of AE activity. These AE activities mostly 

come from pipeline vibration, unstable flow, or AE noise, etc., from which little useful 

information can be presumably obtained. In contrast, a lower b-value indicates the presence 

of multiple AE peaks with high amplitude and a more intense level of AE activity, which can 

be witnessed in the visualization of the relationship between event magnitude and frequency 

of occurrence provided in Figure 4.2. In theory, this can be associated with a discontinuity in 

the fluid pipeline, given that the AE peak amplitude is related to the size of the discontinuity 

and that the AEEs occurring due to a leak are releasing more energy than those under normal 

condition [75]. Thus, it is expected that, upon initialization of a leak, a significant decrease in 

b-value will be recorded and b-value can help discern the difference between leak sizes. 
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Figure 4.2.Visualization of magnitude versus occurrence of different b-values based on GRL. 

The amplitude threshold governs the amount of information the b-value can convey. Given a 

high threshold with only a minimal number of higher AE peaks or a threshold lower than the 

majority of AE peaks, the b-value would not be able to capture the change in AE peak 

amplitude distribution over time. Therefore, it is of paramount importance to obtain a 

suitable value for the threshold. Variations in the AIICs, which are constructed from the b-

value, can be expected in normal conditions due to multiple sources of AEEs and the hard 

threshold nature of the b-value. 

4.2.2 Changepoint Detection. 

Trend analysis and changepoint detection can be considered complementary approaches 

that both target changes in data. Trend analysis detects abrupt changes and nonlinear 

dynamics in time-series data [76], [77], [78] and has been a dominant research topic, 

particularly in for geoengineering. One of the most formidable challenges for time-series 

analysis is the inconsistency in different model findings regarding the same problem during 

the decomposition of time series. This encouraged the idea of combining multiple models in 

statistical literature, which can be traced back to Roberts’s proposal of a distribution of two 

models combined (1965). Later, a scheme was designed to evaluate the likelihood of each 

model in a collection being the best and then use that to average them into a single model, 

which was later known as Bayesian model averaging (BMA) [79]. In this study, the Bayesian 

Estimator of Abrupt change, Seasonal change, and Trend (BEAST) by Zhao et al. [77], which 

was originally developed to handle environmental time-series data, was implemented for 

leak detection. The idea of this method is to exploit the relative value of decomposition 

models as individuals by averaging them using BMA. Given a time series {𝑡𝑖, 𝑦𝑖}𝑖=1,…,𝑁, BEAST 

decomposes it into different components containing seasonality, trend, and changepoints, 

along with noise, as follows: 



 

( 44 ) 

 

𝑦 = 𝑆(𝑡𝑖; 𝛩𝑆) + 𝑇(𝑡𝑖; 𝛩𝑇) +  𝜀𝑖, (4.3) 

in which 𝑆(∙) and 𝑇(∙) are seasonal and trend signals, respectively; 𝜀 is noise with a Gaussian 

distribution; and 𝛩𝑠 and 𝛩𝑇 have changepoints (a major changepoint is also referred to as a 

true abrupt change) implicitly encoded within them. General linear models were applied for 

𝑆(∙) and 𝑇(∙) parameterization, with 𝑆(∙) being a piecewise harmonic model and 𝑇(∙) being a 

piecewise linear function. 

As the pipeline working state changes from normal to leaking, not only will AEEs arise from 

the discontinuity occurrence on the pipeline surface itself, but flow turbulences are also 

expected. This further increases the number of high-amplitude AE activities and as such, 

changes the distribution of the frequency and the amplitude. With the shift of AE activity 

towards the region with a higher amplitude, a decrease in the b-value should be seen. Since 

the AIIC can show fluctuations in the pipeline’s normal working state as previously 

mentioned, any sudden drop in value might be misdiagnosed as a changepoint, which would 

mean a leak initialization transitioning the pipeline from normal conditions into the leaking 

state. In addition, the underlying processes that change the distribution in fluid pipeline AE 

signals are nonlinear, rather than being purely linear or piecewise linear. For these reasons, 

BEAST can perform better than those constructed from either of the previously mentioned 

views. 

4.2.3 Random Forest. 

Despite providing good interpretability at a small depth, decision trees (DTs) are susceptible 

to the overfitting problem and high variance as they get deeper. This hinders DTs from giving 

good performance with real-world problems, which often go along with huge datasets. 

Eventually, this shortcoming led to the birth of RF, which was first proposed by Breiman in 

2001 [80] inspired by the work of Amit and Geman [81]. The idea of RF is simple: it exploits 

a DT efficiency with a smaller dataset by training each separately with a bootstrapped 

dataset and then aggregates these DTs together for a conclusion [82], [83]. The simplified 

classification process using RF is displayed in Figure 4.3. 

Given a real-valued input vector 𝑋 = (𝑋1, … , 𝑋𝑝)𝑇 and a real-valued response 𝑌 = 𝑓(𝑋), the 

goal is to find the prediction function 𝑓(𝑋) , which is determined by a loss function 

𝐿(𝑌, 𝑓(𝑋)). For classification problems, zero-one loss is often used for 𝐿: 

𝐿(𝑌, 𝑓(𝑋)) = {
 1 𝑖𝑓 𝑌 ≠ 𝑓(𝑋)
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

, (4.4) 
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Then, the problem becomes finding the expected value of the loss 𝐸𝑋𝑌(𝐿(𝑌, 𝑓(𝑋))) 

minimization. Given 𝑌̅ as the set contains possible 𝑌 values, the minimization problem gives: 

𝑓(𝑥) = arg max 𝑃(𝑌 = 𝑦 | 𝑋 = 𝑥), (4.5) 

with 𝑦 ∈ 𝑌̅. This is also known as the Bayes rule. Each of the DTs returns a base learner 

(ℎ1(𝑥), … ℎ𝑁(𝑥)) and by majority vote, the ensemble predictor 𝑓(𝑥) can be predicted as: 

𝑓(𝑥) = arg max ∑ 𝐼(𝑦 = ℎ𝑖(𝑥))𝑁
𝑖=1 , (4.6) 

 

Figure 4.3. A simplified visualization of the classification process in RF. 

 



 

( 46 ) 

 

4.3 Case Study 

4.3.1 The Proposed Method 

For the overview of the proposed method, the summary can be revisited in Section 4.1.2 and 

Figure 4.1. The process starts with the preprocessing of raw AE data, collected from the 

pipeline system. A bandpass filter from 105 to 3.5 × 105 Hz was designated for this purpose. 

This process is necessary to minimize the unwanted frequency bands and to keep only the 

frequencies in which beneficial leak-related information can be extracted. 

Once the filtered data were obtained, b-values were calculated next, using Equation 4.2. For 

monitoring, this computation cyclically occurs over one second, to construct the AIIC. As 

previously discussed, choosing the amplitude threshold for b-value calculation is very 

important. Analysis of the frequency–amplitude distribution (FAD) was conducted to find a 

suitable value. A visualization of the FAD is demonstrated in Figures 4.4-4.6, for the normal 

state transitioning into the leaking state under the different pressure levels of 7 bar, 13 bar, 

and 18 bar, respectively. In each of these scenarios, the pipeline worked under normal 

condition at the beginning until the 120th cycle, the point at which the leak started, and the 

pipeline then started working under the leaking condition. More details about the 

experimental setup with different scenarios are listed in Section 4.3.2. As can be seen across 

the pressure levels, the FADs were similar under normal working condition, with the 

majority of AE activity happening in a low-amplitude regime, and only a rather small portion 

coming from AEEs with a higher amplitude (whose presence is understandable, given that 

there are sources of AEEs other than leaks). However, when a leak happened, the FAD shifted 

towards a higher amplitude region, which can be easily spotted as the pressure levels and 

leak sizes increased. During this period, a noteworthy rise in the number of high-amplitude 

AE activities was witnessed, which was no mere coincidence as leak-related AE activities 

were the largest source of these. The differences in FAD for various leak sizes can also be 

noticed. For the case of low pressure and a micro leak size such as in Figure 4.4a, the rise is 

still noticeable from 10−2  and above, despite it being not as significant as the rest. The FAD 

analysis showed that the amplitude threshold value at 10−2 can best describe the AE activity 

under different scenarios. 
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Figure 4.4. Visualization of FAD at pressure level 7 bar with different leak sizes: (a) 0.3 mm, (b) 0.5 
mm, and (c) 1 mm. 

 

Figure 4.5.Visualization of FAD at pressure level 13 bar with different leak sizes: (a) 0.3 mm, (b) 0.5 
mm, and (c) 1 mm. 
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Figure 4.6.Visualization of FAD at pressure level 18 bar with different leak sizes: (a) 0.3 mm, (b) 0.5 
mm, and (c) 1 mm. 

Following AIIC construction, leakage detection was the next target, for which BEAST was 

implemented. By analyzing the trend, abrupt changes, and the nonlinear dynamics of the 

AIIC, it detected the changepoint of the working state (from normal working condition to 

leakage) by predicting the occurrence probability of a change in the AIIC. The prior 

probability was obtained following the formulas provided in [77]. A visualization of the 

detection of leak initialization using BEAST can be found in Figure 4.7. 

 

Figure 4.7. Leak detection using BEAST: (a) changepoint occurrence probability; (b) leak detected. 

If the pipeline is detected as being in the leaking stage, then the leak size identification 

process, using RF, begins. The optimal hyperparameters for RF were achieved by using grid 

search, along with cross-validation, and are displayed in Table 4.1. Finally, a majority voting 

strategy was utilized to obtain the final size identification result. This can provide a better 

generalization than a single DT and therefore minimizes the risk of overfitting [84]. A dataset 

description for training/testing is presented in Section 4.3.2. 
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Table 4.1. RF hyperparameters. 

Hyperparameters n_estimator max_depth min_sample_leaf min_sample_split criterion 

Value 100 none 1 2 entropy 

4.3.2 Experimental Setup and Data Description. 

To validate the approach presented in this paper, data acquisition was conducted using an 

industrial fluid pipeline system. Three R15I-AST sensors were deployed during this process. 

The R15I-AST sensor is a highly sensitive product from MITRAS, specifically designed to 

provide low-noise input, with a built-in auto sensor test and long-cable driving capability 

without an additional preamplifier requirement. Due to its metal housing, it is less 

susceptible to radio frequency and electromagnetic interferences. The three sensors were 

attached to the surface of the pipeline following the application of a coupling medium gel on 

the contact spots. To ensure that the sensors would not be displaced or fall from the 

specimen, tape was utilized. Sensor channels one, two, and three were located at 2500, 1600, 

and 0 mm (reference position), respectively, along with the leak location at 800 mm. The 

flow direction was from channel one to channel two, then through the leak position, and 

finally through channel three. The multiple sensor setup allowed different points of view: 

channel one offered the view of an upstream flow before the leak; channel two was used for 

near-leak monitoring, which was expected to have the highest AE activity intensity of all of 

the channels; channel three offered a view of a downstream flow located after the leak. 

Though they were recorded from the same test, each of them could be treated as a 

standalone, which provides more variety to the dataset. An image and schematic of this 

experimental setup is displayed in Figure 4.8.  

Before the main acquisition, each sensor underwent a sensitivity test and calibration with 

the Hsu-Nielsen test [85], whose simplified illustration is displayed in Figure 4.9. The Hsu-

Nielsen test, also known as the pencil break test, utilizes the breaking of pencil lead, which 

is positioned on the specimen surface at 30 degrees, to reproduce an AEE. Before AE data 

acquisition, it is necessary to calculate the attenuation characteristics following the ISO 

standard 18211:2016, whose computation is as follows: 

𝐴𝑡𝑡𝑒𝑛𝑢𝑎𝑡𝑖𝑜𝑛𝑑𝐵 = 20 log10
𝑉

𝑉𝑟𝑒𝑓
, (4.7) 

in which, the attenuation is in decibels (dB); 𝑉 and 𝑉𝑟𝑒𝑓 refer to the respective measured and 

reference potentials. It is advised to have an AE sensor surveillance zone within a distance 

corresponding to 25 dB [1] to avoid severe signal strength loss, which amounts up to 10.9 m 

for this experimental setup, with R15I-AST sensors and a pipeline system with an outer 

diameter of 114.3 mm. 
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Figure 4.8. Experimental setup: (a) an image of the testbed and (b) an illustration of the sensor 
placements and leak position. 

 

Figure 4.9. A simplified visualization of the Hsu-Nielsen test. 

The data collected by AE sensors were first processed by a 16-bit analog-to-digital converter 

integrated with the National Instruments’ NI-9223 module. In combination with software 

developed specifically for data acquisition by the Ulsan Artificial Intelligence Laboratory, the 



 

( 51 ) 

 

whole process was monitored and controlled. A detailed description of the setup can be 

found in Table 4.2. 

Table 4.2. Experimental setup description. 

No. Parameter Description 

1 Pipeline material 304 stainless steels 

2 Pipeline thickness 6.02 mm 

3 Pipeline outer diameter 114.3 mm 

4 Sensor type R15I-AST 

5 Locations of sensors 1, 2, 3 0/1600/2500 mm 

6 Leak location 800 mm 

7 Total acquisition time 360 s 

8 Normal state time/Leaking state time 120 s/240 s 

9 Pipeline material 304 stainless steels 

A total of nine tests were conducted for this study, including three levels of pressure and 

three sizes of leak. Each test was initialized under the normal working condition for a period 

and then switched to the leaking state for the rest of the test with the activation of a 

simulated leak, whose size and operation status were controlled by a fluid control valve 

welded on a hole in the pipeline surface. For detailed information, Table 4.3 displays the data 

descriptions regarding the nine tests conducted for this study. In combination with the three 

sensors deployed in each test, 27 data streams of the fluid pipeline working under the normal 

state and then transiting to the leaking state were collected and used for leak detection. After 

the activation of a leak in the pipeline system, the unstable flow was witnessed for a short 

time. For this reason, only the parts of data streams from the 126th cycle until the end were 

utilized for leak size identification. A window size of 10 cycles with a nine-cycle overlap was 

used to divide the leak-identification dataset into segments, which were then harnessed to 

train and test RF. For training and testing, the dataset was split with a ratio of 70%/30%. 

During the training period, the training set was further divided for fivefold cross-validation. 

Table 4.3. Data description. 

Test Number Pressure Level Working Conditions Acquisition Time (s) 
Number of Data 

Streams 

1 7 bar Normal/0.3 mm leak 120/240 3 

2 7 bar Normal/0.5 mm leak 120/240 3 

3 7 bar Normal/1 mm leak 120/240 3 

4 13 bar Normal/0.3 mm leak 120/240 3 

5 13 bar Normal/0.5 mm leak 120/240 3 

6 13 bar Normal/1 mm leak 120/240 3 

7 18 bar Normal/0.3 mm leak 120/240 3 

8 18 bar Normal/0.5 mm leak 120/240 3 

9 18 bar Normal/1 mm leak 120/240 3 
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4.3.3 Validation of the Proposed Method. 

In this subsection, validation of the proposed method is divided into three different 

validations: the AIIC constructed from b-value, leak detection using BEAST, and leak size 

identification using RF. 

Firstly, the results of AIIC constructed from the b-value are displayed in Figures 4.10-4.12. 

The AIIC does not just show a significant gap between normal and leaking conditions, but 

also the potential to discriminate between different leak sizes. As shown in Figures 4.4-4.6, 

the FAD for various leak sizes differs, which then translates into the AIIC that was built based 

on the b-value. In the pipeline’s normal working state, fluctuations are witnessed due to the 

multiple sources with random contributions. However, these variations are witnessed less 

in the leaking state as the leak becomes the dominant source of all high-amplitude AE 

activities. With the high-amplitude leak-related AE activities greatly outnumbering other 

sources, the AIIC becomes less susceptible to the multi-source problem of the AEE. For 

further validation, a comparison was made between the AIIC and traditional statistical 

indexes, as shown in Figure 4.13. Among the traditional indexes, mean (Figure 4.13b) and 

kurtosis (Figure 4.13d) do not distinguish the difference between the two working states; 

despite root mean Square (RMS, Figure 4.13c), standard deviation (STD, Figure 4.13e), and 

variance (Figure 4.13f) being able to show a certain level of distinction between normal 

condition and leakage, wild fluctuations can be witnessed in the later state, in comparison to 

the AIIC. This type of variation in the indexes, which is minimized using the AIIC, indicates 

that they are significantly affected by the high noise level, and therefore do not provide a 

great description of the pipeline’s working conditions. 
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Figure 4.10. AIICs for different leak sizes at 7 bar for: (a) channel one, (b) channel two, and (c) channel 
three. 
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Figure 4.11. AIICs for different leak sizes at 13 bar for: (a) channel one, (b) channel two, and (c) 
channel three. 

 

Figure 4.12. AIICs for different leak sizes at 18 bar for: (a) channel one, (b) channel two, and (c) 
channel three. 

For every scenario, a steep drop can be witnessed around the time when the leak would start, 

as expected and explained in Section 4.3.2. In this method, the cycle error using BEAST is 

calculated as follows: 

𝑐𝑦𝑐𝑙𝑒 𝑒𝑟𝑟𝑜𝑟 = |𝑡𝑝 − 𝑡𝑟|,  (4.8) 

with 𝑡𝑝 being the highest occurrence probability of the changepoint predicted by BEAST and 

𝑡𝑝 > 50% ; and 𝑡𝑟 = 120  being the real leak activation time. Despite multiple significant 

decreases in AIIC prior to the leak, the changepoint can still be detected with only an average 

of a 2.6 cycle error and a standard deviation of 0.5 in all scenarios. This cycle error is 

impressive because it also consists of the time after leak activation when the fluid flow within 

the pipeline is unstable, which is often neglected, as the leaking stage is frequently 

considered to start upon stabilization of the flow. 

Finally, leak size identification was conducted once the leakage was confirmed. A ratio of 

70%/30% was used for the random train-test split from the dataset. Due to the AIIC’s 
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capability for discrimination and the classification power of RF, it shows a high accuracy of 

approximately 100% for all levels of pressure. The results obtained from the classification 

process are shown in Figure 4.14. 

For further validation, a comparison was conducted with two cutting-edge methods: 1) a 

method for size identification using convolutional neural networks (CNN) with time domain 

AE features (referred to as TD-CNN) and 2) an adaptation of the method proposed by [52] 

using AEH-based features and a 1D-CNN instead of their proposed SVM-RVM (originally 

developed for different pressure rates) to classify the leak sizes (referred to as the Banjara 

et al. adaptation). All three methods, including the proposed one and the two references, 

were evaluated using the leak identification dataset. This leak identification dataset 

contained only the leaking state part from the 27 data streams (from the 126th cycle until the 

end of each stream, as explained in Section 4.3.2). The results for different pressure levels 

are shown in Tables 4.4-4.6. 



 

( 56 ) 

 

 

Figure 4.13. Comparison between AIIC and traditional indexes, with the blue region indicating normal 
working state, while the white one indicating leakage: (a) AIIC, (b) mean, (c) RMS, (d) kurtosis, (e) 

STD, and (f) variance. 

 

Figure 4.14. Result of leak size classification with different pressure levels: (a) 7 bar, (b) 13 bar, and 
(c) 18 bar. 

The leak size identification results in Tables 4.4-4.6 show that the proposed method 

outperforms the two state-of-the-art references in terms of the average classification 

accuracy across different levels of pressure. Concerning the first comparison under a 7 bar 

pressure, TD-CNN shows a better average accuracy than the Banjara et al. adaptation (88.5% 

versus 77%); however, it is significantly lower than the 100% accuracy of the proposed 

method. The second and third comparisons demonstrate a difference because the Banjara et 

al. adaptation excels in both scenarios (92.2% and 87.0%, respectively) against the TD-CNN 

(79.6% and 75.9%, respectively). Similar to the first case, the proposed method has the best 
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result of the three methods. The reference methods show inconsistency with a classification 

accuracy of up to 100.0% but also as low as 45.0% (Banjara et al.) or 64.4% (TD-CNN). This 

problem does not exist in the proposed method, which is anticipated because AIIC is more 

robust against the multi-source problem of AEEs than the other two, and efficiently 

discriminates leak sizes (Figures 4.10-4.12). The time domain features in the TD-CNN and 

AEH features in the method of Banjara et al. (despite being capable of providing a great 

description of AE activity in more transient data) are more likely to be affected by the high 

level of background noise. 

Table 4.4. A comparison of leak size identification using the three methods under the pressure of 7 
bar. 

Method 
Accuracy (%) 

Average Accuracy (%) 
0.3 mm 0.5 mm 1 mm 

TD-CNN 86.9 67.0 96.6 88.5 

Banjara et al. adaptation 78.8 74.7 77.5 77.0 

The proposed method 100.0 100.0 100.0 100.0 

 

Table 4.5. A comparison of leak size identification using the three methods under the pressure of 13 
bar. 

Method 
Accuracy (%) 

Average Accuracy (%) 
0.3 mm 0.5 mm 1 mm 

TD-CNN 68.5 75 100.0 79.6 

Banjara et al. adaptation 81.6 95.9 100.0 92.2 

The proposed method 100.0 100.0 100.0 100.0 

 

Table 4.6. A comparison of leak size identification using the three methods under the pressure of 18 
bar. 

Method 
Accuracy (%) 

Average Accuracy (%) 
0.3 mm 0.5 mm 1 mm 

TD-CNN 64.4 67.6 100.0 75.9 

Banjara et al. adaptation 97.0 45.0 100.0 87.0 

The proposed method 98.6 99.5 99.5 99.2 

 

4.4 Conclusion 

Pipelines play an essential role in fluid transportation, and pipeline leakage events can cause 

great damage to humans, the environment, and assets. Therefore, detection and diagnosis 

must be continually performed to ensure that maintenance can be planned and performed 

accordingly to prevent further loss. This study presents a leak state detection and leak size 



 

( 58 ) 

 

identification method for an industrial fluid pipeline, using the acoustic emission (AE) 

activity intensity index curve (AIIC) based on the b-value and random forest (RF). Due to AE 

being a high-frequency but low-energy seismic activity, the b-value, which is one of the most 

important parameters for the probabilistic investigation of seismic hazards in seismology, 

can be adapted to AE applications. Because the adapted b-value characterizes the 

relationship between the amplitudes and their frequencies of occurrence, along with there 

being a direct AE activities’ amplitude–intensity connection, an AIIC based on the b-value can 

parameterize the AE activity intensity in any period. A frequency–amplitude distribution 

(FAD) analysis showed that the majority of high-amplitude AE activities in the leaking state 

were leak-related, which greatly outnumbered other sources that contributed to the 

background noise and multi-source problem of AE activities in a fluid pipeline system. The 

AIIC calculated from the b-value also discriminated between not only normal and leaking 

operation conditions, but also different leak sizes. In the next step, leak detection was 

performed using the AIIC through changepoint detection using a Bayesian ensemble, which 

showed an outstanding average error of only 2.6 s from the moment of leak occurrence. Once 

a leak was confirmed, the AIICs used for leak detection were again utilized for size 

identification using RF. The fluid pipeline data, with three pressures and three leak sizes, 

were used to validate the proposed method. The size identification results were compared 

with two cutting-edge methods, which showed that the proposed method can outperform 

the earlier algorithms with significantly higher accuracy. For future work, leak localization 

can be integrated into this study, along with different scenarios, such as pipelines buried 

under soil or submerged in water. In addition, the limitation of a hard-threshold b-value can 

also be further researched to achieve a better description of AE activity.
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Chapter 5 A Deep-Learning-Based Health Indicator 
Constructor Using Kullback–Leibler Divergence for 
Predicting the Remaining Useful Life of Concrete 
Structures 

Chapter 5 

 

A Deep-Learning-Based Health Indicator Constructor 

Using Kullback–Leibler Divergence for Predicting the 

Remaining Useful Life of Concrete Structures 

 

This paper proposes a new technique for the construction of a concrete-beam health 

indicator based on the Kullback–Leibler divergence and deep learning. Health indicator (HI) 

construction is a vital part of remaining useful lifetime (RUL) approaches for monitoring the 

health of concrete structures. Through the construction of a HI, the deterioration process can 

be processed and portrayed so that it can be forwarded to a prediction module for RUL 

prognosis. The degradation progression and failure can be identified by predicting the RUL 

based on the situation of the current specimen; as a result, maintenance can be planned to 

reduce safety risks, reduce financial costs, and prolong the specimen’s useful lifetime. The 

portrayal of deterioration through HI construction from raw acoustic emission (AE) data is 

performed using a deep neural network (DNN), whose parameters are obtained by 

pretraining and fine-tuning using a stacked autoencoder (SAE). Kullback–Leibler Divergence 

(KLD), which is calculated between a reference normal-conditioned signal and a current 

unknown signal, was used to represent the deterioration process of concrete structures, 

which has not been investigated for the concrete beams so far. The DNN-based constructor 

then learns to generate HI from raw data with KLD values as the training label. The HI 

construction result was evaluated with run-to-fail test data of concrete specimens with two 

measurements: fitness analysis of the construction result and RUL prognosis. The results 

confirm the reliability of KLD in portraying the deterioration process, showing a large 

improvement in comparison to other methods. In addition, this method requires no adept 

knowledge of the nature of the AE or the system fault, which is more favorable than model-
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based approaches where this level of expertise is compulsory. Furthermore, AE offers in-

service monitoring, allowing the RUL prognosis task to be performed without disrupting the 

specimen’s work. 

 

5.1  Introduction 

With ease of access and high durability, concrete structures have become a ubiquitous sight 

in recent decades. Along with their everywhere presence, comes the inevitable need for a 

maintenance plan to ensure in-service safety and to prolong the lifetime of concrete 

structures. Numerous studies [5], [73], [86], [87], [88], [89], [90], [91], [92], [93] have been 

conducted by laboratories, companies, and individuals race to identify solutions regarding 

performance amelioration of structural health monitoring (SHM). By employing an effective 

monitoring scheme, it is possible to provide the user with more insight into the in-service 

system/structure, avoid near-future failures, and lessen downtime by a significant amount.  

Among SHM topics, the remaining useful lifetime (RUL) prognosis is one of the most popular 

problems, in which a solution is provided to predict how long a structure can be used until it 

is permanently out-of-service because of a failure(s). By predicting the future state of the 

structure, a user can approximate the time when a failure might occur, thus adjusting the 

usage and preparing a maintenance plan accordingly in advance. The most recent studies 

[7], [94], [95], [96], [97], [98] regarding this topic focus on the development of an 

autonomous system that is capable of extracting feature(s) from data and constructing 

indicators based on these extracted features. A common scheme for this approach is as 

follows: initially, sensors are deployed, which are then utilized to collect and send real-time 

data to the central brain where data processing and health indicator construction occur. 

As non-destructive methods for SHM have become dominant in recent years, different 

methods have been investigated for concrete SHM such as ultrasonic [90], [99], [100], 

vibration [101], [102], image processing [88], [103], [104], and AE [6], [11], [12], [89], [95], 

[105], [106], [107], [108], [109], [110], etc. Due to its outstanding properties. Even though 

ultrasonic testing can detect internal defects and their sizes, it is susceptible to complicated 

part geometry and certain materials, such as austenitic steel, which can mask defects by 

causing attenuation. Concerning vibration techniques, they are restricted by their limited 

band of frequency. In addition, although image processing techniques offer the most facile 

setup among all the mentioned methods, they are only capable of detecting failures on the 

surface.  In comparison to these non-destructive methods, AE techniques, which study and 

exploit the release of internal elastic energy by a discontinuity appearance, offer a non-

directional mean of monitoring capable of achieving in-service testing without downtime 

[111]. A single test of AE can allow users to track the specimen’s deterioration process 

dynamically while highlighting the severity of the damage. The drawback of this method is 
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that AE can only be utilized to detect the occurrence of new discontinuities, not existing ones. 

However, since the purpose of the AE test is to detect novelties to the current state of the 

specimen, this drawback can be considered insignificant in comparison to the benefits that 

it provides. In this study, we focus on employing a technique using AE sensors. 

The data collected by AE sensors are then analyzed for health indicator (HI) construction. 

The approaches of HI construction for RUL prediction, similar to the prognosis and health 

management framework in general, can be roughly classified as model-based or data-based. 

The methods following the first category focus on real-life process imitation, which is 

established via mathematical means. Given the drawback of being increasingly problematic 

as the model becomes more complex, it is less favorable than the data-based approach, in 

which the interested patterns are derived from available data even in the absence of 

knowledge about the nature of the system or the fault. Therefore, the data-based approach 

is the main priority of this study. Further discussion on HI construction can be found in 

Section 5.2. 

To ensure the reliability of the constructed HI, an evaluation is needed. According to a 

previous survey [112], the evaluation of HI can be performed by two approaches: one 

concerning the fitness analysis of the construction result and the other considering the RUL 

prognosis performance. Further discussion on the HI construction framework for RUL 

prognosis is continued in Section 5.2. 

The HI construction and evaluation is presented in Figure 5.1: 
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Figure 5.1. Flowchart of the HI construction framework and evaluation process. 

Initially, the raw data is collected from the specimen throughout its deterioration process. It 

is then utilized for the calculation of Kullback–Leibler Divergence (KLD) at each time step of 

each run-to-fail signal. Afterward, the raw signal is fed to the HI constructor, where its 

spectrum is computed and used to reduce computation complexity. The stacked auto-

encoder (SAE) takes the spectrum as input for the pretraining process, which is subsequently 

fine-tuned into the deep neural network (DNN) to construct the HI lines with the calculated 

KLD as the training label. Finally, the evaluation of HI is performed using both intrinsic 

measures and RUL prediction to test the proposed method’s reliability. 

In summary, this study proposes a data-based approach for HI construction based on KLD, 

for which expertise concerning concrete material and the nature of the fracturing process is 

not required. The constructed HI, through its ability to accurately describe the deterioration 

state of concrete structures, can be utilized for RUL prognosis and can allow users to plan 

maintenance before possible structural failures in the near future. The following 

contributions are proposed: 
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1. A novel HI construction process is proposed using KLD to describe the state of the 

concrete specimen during its lifetime directly from raw AE data, which has not been 

previously investigated to the extent of the authors’ knowledge. 

2. Adaption of the proposed indicator for the task of RUL prognosis. 

The arrangement of the following sections is as follows: Section 5.2 discusses the general HI 

construction framework and evaluation; the process of HI construction is provided in detail 

in Section 5.3; Section 5.4 describes the experimental setup and HI evaluation using the two 

discussed methods; finally, Section 5.5 provides a conclusion, along with a discussion of 

future research possibilities. 

 

5.2 The General Health Indicator Construction Framework and 
Evaluation 

HI construction is an essential part of the prognosis to portray the timeline of deterioration. 

HI shows the condition in which the specimen under investigation is. By analyzing the 

current HI, it is possible to predict future values and their timing, thus allowing RUL to be 

estimated. Over the years, numerous studies have proposed different approaches to building 

HI, especially in more recent studies [113], [114], [115] and in summary, this process can be 

generally divided into two steps: 1) calculation of the HI-constructing factor(s) and 2) HI 

construction from the calculated factor(s). 

The calculation of the HI-constructing factor(s) (also known as features) is often performed 

either in time, frequency, or time-frequency domain. The time domain approaches [6], [107], 

[116], [117] generally offer a fast and simple solution that can be widely applicable to 

systems and fault types. They often include statistical computation and impulse analysis. 

These methods, however, are susceptible to interferences, which are typically inevitable in 

real-life applications. Therefore, pre-processing techniques are necessary to minimize 

performance degradation. Frequency domain solutions [118], [119] explore anomalies in the 

system with prior information on the fault characteristic frequencies already known. They 

are often adapted in model-based methods and can offer high efficiency; however, they are 

not widely applicable. The approaches following a time-frequency domain solution [120] are 

the most powerful among these three and can be highly robust. Their downside is that such 

powerful methods often require high computational capability and experience concerning 

information extraction.   

Afterward, the second step is to build the HI constructor. As previously briefed in the 

previous section, the construction of HI can be roughly divided into two categories: model-

based and data-based. Model-based methods focus on generating a mathematical 
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representation that mimics a real-life process. The development of HI in these studies 

requires expertise and knowledge about the system’s behavior, the nature of the faults, and 

the HI-constructing factors. Following this approach, the studies in [94], [106], [119], [120] 

investigated the faults concerning fault-related frequencies, which indicates that the 

comprehension of the system and fault nature is necessary. Another study in [121] proposed 

an effective HI construction method with features manually chosen based on relevance. The 

aforementioned researches and many others are done with expertise in signal processing, 

and system and fault behavior, which can be troublesome to obtain in more sophisticated 

scenarios. Moreover, they cannot be adapted to a variation of systems due to their 

construction imitating certain real-life processes. Unlike model-based approaches, data-

based solutions focus on the nature of the data itself, with less concern for the system or fault 

nature. Due to their lower complexity and wider application towards different systems and 

faults, data-based methods have become more favorable in recent years, especially with the 

rise of artificial intelligence [122]. Notable mentions in this category are statistical projection 

[118], [123], [124], deep learning models [95], [125], [126], [127], and evolutionary 

computation [112], [128], etc. Different studies following these methods have achieved 

promising results in HI construction for the RUL prognosis task.  

To verify the constructed HI, the evaluation process must be performed with suitable 

metrics. Concerning the HI construction for RUL prognosis, the evaluation can be generally 

divided into two categories: the investigation of the HI’s intrinsic nature from the 

construction result (fitness analysis) and the performance of HI in the RUL prognosis tasks. 

Fitness analysis is often performed with the following metrics: monotonicity [95], [120] 

(measurement of the monotonic trend in HI), trendability [95], [120] (the correlation of HI 

and time), and scale similarity [95], [120], [127] (similarity of HI ranges), etc. The purpose 

of this type of evaluation is to self-reflect the HI properties via low computational complexity 

without concern for the prognosis task. Furthermore, the second category evaluates HI by 

its performance in RUL prognosis. This indirect assessment can be done through mean 

absolute error, mean square error, mean absolute deviation, etc. In comparison to the first 

category, it provides more information about the prognosis task as a whole; however, it 

requires more computational complexity because the whole prognosis block is added. The 

proposed method is verified in both categories, with monotonicity and trendability in the 

first and mean absolute error in the second evaluation. 

 

5.3 The Proposed Health Indicator Construction. 

KLD is used to construct the HI to investigate how different an unknown signal is from a 

known normal condition. As the deterioration progresses during the loading test, it can be 

expected that the difference between the unknown signal to the reference one grows with 
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the intensity of the AE activity. For that reason, this difference is suitable for the portrayal of 

the deterioration process from the run-to-failure signals. Figure 5.2 shows a loading test’s 

stages of deterioration and highlights the difference between a reference signal to a signal in 

which significant AE activities are recorded. The detailed experimental setup and data 

description are discussed in Section 5.4. As shown in Figure 5.2, the vertical displacement of 

the specimen grows steadily during the deterioration stage, which indicates continuous 

damage being sustained; therefore, it is also evident that significant AE activities occur 

during this period. 

 

Figure 5.2. Vertical displacement of the specimen and signal difference in two loading stages. 

In this study, the signal is segmented into one-second blocks (time steps) for the 

computations. The HI construction process initiates the calculation of each run-to-fail 

signal’s probability distribution. A signal’s values are divided into segments of 10-3 width 

ranging from its minimum value to its maximum, at each of which the probability density 

function (PDF) of the signal is computed. The result of this computation is later utilized for 

the KLD calculation. 

The divergence of two probability measures was originally defined by Harold Jeffreys [129] 

in a symmetrized form (directed divergences, also known as the relative entropies in each 

direction), which is now referred to as the Jeffrey Divergence. Later in the 1950s, Solomon 

Kullback and Richard Leibler [130] proposed exploring the mean information discrimination 

between two hypotheses by their according probability measures using relative entropy in 

an asymmetric manner. This concept later came to be known as the Kullback–Leibler 

Divergence. Its first context was developed for information theory and later widely adapted 
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to optimization tasks of machine learning. The value of KLD falls within the range of 0 to 1, 

which indicates no difference and maximum divergence, respectively. Assuming two 

probability distributions 𝑃(𝑥𝑖) and 𝑄(𝑥𝑖) from the reference normal condition and unknown 

signal, their KLD calculation is as follows: 

KLD(𝑃, 𝑄) = ∑ 𝑃(𝑥𝑖)𝑙𝑜𝑔
𝑃(𝑥𝑖)

𝑄(𝑥𝑖)

𝑁
𝑖=1 , (5.1) 

It is assumed that all of the run-to-fail signals start at a normal state with little to no 

significant AE activity recorded during this period. Therefore, a reference normal-

conditioned signal can be arbitrarily selected from the very start of the recording. 

With the KLD values, the process continues with the establishment of the DNN-based 

constructor, which outputs HI lines from the input signal spectrum. Initially, the signal 

spectrum is calculated using the fast Fourier transform and then equally separated into 2e3 

size bands, whose energy can be approximated using the root mean square. By doing such 

an action, the computation capacity can be reduced for the following operations. Afterward, 

the pre-training of DNN commences as SAE is fed with the obtained vector of size 2e3. The 

SAE consists of an encoder and a decoder, both comprising three dense layers. The encoder 

processes the data through layers of diminishing sizes (1000-200-10) in the encoder and 

then layers of increasing size (200-1000-2000) in the decoder. Xavier initialization and an 

exponential linear unit activation are harnessed for the encoder. In addition, dropout layers 

of rate 0.1 are appended before the dense layers for the amelioration of the SAE’s 

regularization. The training of SAE is executed with the gradient-descent parameter update, 

Adam optimization, and a 0.1 fraction of masked zeros, along with an unlabeled signal 

spectrum as both the input and output. Noise is added to the training data, which forces the 

reconstruction of the noisy input, thus improving the learned features’ robustness. 

Once the SAE’s training concludes, fine-tuning of the DNN follows as the encoder’s layers are 

utilized as the DNN’s hidden layers, on top of which a logistic regression layer is placed. The 

calculated KLD value, which falls in the range of [0,1], is utilized as the output for the DNN 

training, along with the input of the signal spectrum. In addition to freezing the reused layers 

for learning ability preservation, early stopping and checkpoint are also used to achieve 

better parameters. Similar to the KLD, the constructed HI is also within [0, 1], which indicates 

the damage the specimen has sustained from the least to the most on the severity scale. 
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5.4 Experimental Setup and Evaluation 

5.4.1 Experimental Setup 

To evaluate the reliability of the proposed method, data were collected from reinforced 

concrete beams, which were constructed and installed for the four-point bending test 

scenario. Each specimen was identically produced with concrete material having a 

compressive strength of 24 MPa, D16 (SD400) steel rebar, and gridded in 50 × 50 mm2 

squares for better visualization of deterioration monitoring. The AE data were acquired at 5 

MHz from eight R3I-AST sensors placed around both ends of a specimen. The detailed four-

point bending test setup and sensor placement are shown in Figure 5.3. 

 

Figure 5.3. Experimental setup of the four-point bending test on reinforced concrete beam: (a) 
pictorial of the specimen under test, (b) schematic of the four-point bending arrangement, and (c) 

placement of sensors on the specimen. 

Each specimen was subject to two-point concentrated loading. The loading points were 

placed 400 mm from the left and right of the specimen’s median, and the stress was applied 

at a speed of 1 mm/s. In addition, a linear variable differential transformer (LDVT) was set 

underneath the specimen at its center for vertical displacement measurement. This is an 

alternate way to track the damage sustained other than the visual monitoring of the 

specimen’s surface fractures. During the test, the specimens were loaded until the damage 

was high enough that maintenance was not efficient anymore; however, a total collapse was 

prohibited from happening for the safety of the observers including our team members and 

construction field specialists. Figure 5.4 shows the damage sustained by a specimen during 

the test: 
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Figure 5.4. Damage sustained by a specimen during the test. 

Data from three tests, α, β, and γ, were harnessed for this study. Each test was recorded with 

eight AE sensors with a total of 24 run-to-fail signals. For each test, signals from one side 

(recorded from four out of eight sensors) were used for the training processes, and the rest 

for testing. 

5.4.2 Evaluation and Discussion 

As aforementioned, the reliability of our proposed method was verified by two evaluations: 

fitness analysis of the construction result and RUL prognosis performance. In this section, 

these evaluations are demonstrated in comparison with other methods. The proposed and 

other HI-constructing factors are visualized in Figure 5.5. 
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Figure 5.5. Visualization of the proposed and other HI-constructing factors (RMS, Kurtosis, Crest 
Factor, and Skewness) using reinforced concrete beam: (a) α, (b) β, and (c) γ. 

To analyze the HI construction result, trendability and monotonicity were utilized as the 
evaluation metrics. In the prognosis tasks, trendability can be perceived as the indicator of a 
feature’s variation with regard to time. High trendability can be witnessed in linear functions, 
whereas a constant function represents the minimum trendability. The resulting line of reliable 
HI construction is expected to be trendable, especially as the specimen progresses closer to its 
failure. In our study, this metric is computed as: 

Trendability =
𝑁 ∑ 𝑥𝑡− ∑ 𝑥𝑡

√[𝑁 ∑ 𝑥2−(∑ 𝑥)2][𝑁 ∑ 𝑡2−(∑ 𝑡)2]
, (5.2) 

where N is the observation number, and 𝑥 and 𝑡 are the feature and time index, respectively. 

In addition, monotonicity characterizes the underlying decreasing or increasing trend. Its 

value is in the range of [0, 1], which indicates a higher level of monotonicity as it rises. A good 

HI result is expected to not possess a low level of monotonicity. The computation of this 

metric can be performed as follows: 

Monotonicity = absolute(
𝑛𝑑

𝑑𝑥⁄ >0
 −  𝑛𝑑

𝑑𝑥⁄ <0

𝑁−1
), (5.3) 
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where N is the observation number. 

To verify the fitness of the KLD-based HI, a comparison was made with various HI-

constructing factors. The results based on the two metrics are shown in Table 5.1. 

Table 5.1. Fitness analysis of the proposed HI-constructing factor and other factors. 

HI-Constructing 

Factor 

Trendability Monotonicity 

Mean Std Mean  Std 

RMS 0.3404 0.1412 0.5052 0.0112 

Kurtosis 0.3547 0.0509 0.4978 0.0091 

Crest Factor 0.5755 0.0540 0.4973 0.0090 

Skewness 0.0313 0.1209 0.5012 0.0116 

Entropy 0.1292 0.1437 0.5080 0.0105 

KLD 0.6110 0.1565 0.5073 0.0123 

From what can be witnessed in the table, even though the indicators share a comparable 

level of monotonicity, KLD outperforms the traditional features in trendability by a large 

margin. While Crest Factor can reach as high as 0.5755, other features such as Skewness is 

as low as 0.0313. It is known that the traditional AE features are susceptible to high 

background noise level. In addition, this shows that KLD has a strong correlation with time 

and it is an implication that the use of KLD is suitable for the portrayal of a concrete 

structure’s deterioration state. 

In addition to the fitness analysis of the construction result, the HI was also evaluated by its 

performance concerning RUL prognosis. Since the HI only shows the instantaneous damage 

sustained by the specimen during a specific time step, it needs to be transformed into 

another indicator which can shows the accumulated damage. A damage accumulation 

indicator (DA) can be calculated from the HI as follows: 

𝐷𝐴(𝑛) = ∑ 𝐻𝐼(𝑘)𝑛
𝑘=1 , (5.4) 

To predict the RUL, a long short-term memory recurrent neural network (LSTM-RNN) [6] 

was used on the DAs. Because each run-to-fail signal is a sequence of values at the time steps, 

it can be deemed as a univariate time series. The LSTM-RNN takes in the signals in the form 

of a 50-sample sliding window, which moves one sample at a time, and predicts the 51st 

sample. By performing such an action, the model is forced to predict not just the final value, 

but at each window of the signal. In addition, it also enhances the training speed and 

stabilization by enabling more error gradients. This model contains an input layer, two 

hidden size-of-50 LSTM layers, and a dense output layer using a linear activation function. 

Similar to DNN training, early stopping, and checkpoint techniques are also used here. 
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The importance of RUL prognosis increases with time. During the normal working stage with 

no damage sustained yet, it is inessential to make a prediction. From the moment the 

specimen enters its deterioration stage, the importance of RUL prognosis grows significantly 

due to the need for maintenance planning. As a result, we chose three major time steps at 

300, 400, and 500 time steps before the failure to perform the prediction. Figures 5.6, 5.7, 

and 5.8 display the RUL prediction from the three tests at these time steps. 

To quantify the performance, the useful lifetime expiration is marked at the first occurrence 

of 0.90 along the DA line; therefore, the RUL can be calculated as follows: 

RUL = 𝑇0.90 −  𝑇, (5.5) 

where 𝑇0.90 is the time step when the HI reaches 0.90 and 𝑇 is the time step at which the RUL 

prognosis is being performed. Afterward, an error computation is needed to determine how 

much the RUL prediction differs from the actual RUL: 

RUL error = absolute(𝑅𝑈𝐿𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 − 𝑅𝑈𝐿𝑎𝑐𝑡𝑢𝑎𝑙), (5.6) 

where 𝑅𝑈𝐿𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑  is the predicted RUL and 𝑅𝑈𝐿𝑎𝑐𝑡𝑢𝑎𝑙  is the actual RUL. While this 

measurement is capable of demonstrating the distance between the predicted and actual 

RUL, it cannot show which of the predicted and the actual useful life expiration comes first. 

In addition, root mean square error (RMSE) and mean absolute percentage error (MAPE) are 

also used: 

RMSE = √
∑ (𝑎𝑐𝑡𝑢𝑎𝑙𝑖 − 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑖)

𝑁
𝑖=1

𝑁
, (5.7) 

MAPE =  
1

𝑁
∑|𝑎𝑐𝑡𝑢𝑎𝑙𝑖 − 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑖|

𝑁

𝑖=1

, (5.8) 

The summarized prediction results at the three time steps are shown in Tables 5.2, 5.3 and 

5.4. In addition to the plots shown in Figures 5.6, 5.7 and 5.7, it can be seen that the LSTM 

and GRU predictions can closely follow the underlying trend of the actual HI. This is because 

LSTM and GRU are capable of capturing the long-time dependencies in the time series, 

whereas RNN can not. As the result, the RNN’s predictions veer off right from the start in 

every scenario. During the 300- and 400-time-step-before-the-failure predictions, the LSTM 

and GRU show comparable results in all metrics. However, during the final one, LSTM shows 

a notable better result in comparison to GRU. The reason is that even though GRU’s simpler 
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architecture offers lower computational load and faster training time, it might limit their 

ability to model complex relationships within the time-series data. In contrast, LSTM’s 

architecture is more complex with three gates, which allows it to capture sophisticated 

patterns and temporal dynamics at the cost of higher computational load and slower 

training. 
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Figure 5.6. RUL prognosis from the three tests 300 time steps before the failure. (a) Reinforced 
concrete beam α. (b) Reinforced concrete beam β. (c) Reinforced concrete beam γ. 
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Figure 5.7. RUL prognosis from the three tests 400 time steps before the failure. (a) Reinforced 

concrete beam α. (b) Reinforced concrete beam β. (c) Reinforced concrete beam γ. 
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Figure 5.8. RUL prognosis from the three tests 500 time steps before the failure. (a) Reinforced 
concrete beam α. (b) Reinforced concrete beam β. (c) Reinforced concrete beam γ. 

Table 5.2. RUL prognosis performance assessment 300 time steps before the failure. 

RCB Model RUL error RMSE MAPE 

1 

RNN 74.75 0.26 25.57 

GRU 42.63 0.07 6.50 

LSTM 40.38 0.07 6.49 

2 
RNN 101.63 0.28 33.99 

GRU 18.00 0.07 6.12 
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LSTM 10.00 0.05 4.44 

3 

RNN 110.88 0.29 32.19 

GRU 48.88 0.08 7.56 

LSTM 39.25 0.06 6.14 

Table 5.3. RUL prognosis performance assessment 400 time steps before the failure. 

RCB Model RUL error RMSE MAPE 

1 

RNN 133.50 0.29 33.32 

GRU 44.00 0.07 5.69 

LSTM 34.75 0.06 5.82 

2 

RNN - 0.32 37.49 

GRU 34.50 0.08 9.32 

LSTM 30.50 0.07 8.29 

3 

RNN 187 0.36 45.53 

GRU 61.75 0.08 8.67 

LSTM 49 0.06 6.56 

Table 5.4. RUL prognosis performance assessment 500 time steps before the failure. 

RCB Model RUL error RMSE MAPE 

1 

RNN - 0.34 39.05 

GRU 50 0.06 6.00 

LSTM 27.63 0.06 5.97 

2 

RNN - 0.35 39.13 

GRU 49.13 0.09 11.42 

LSTM 33.75 0.07 8.32 

3 

RNN - 0.45 50.93 

GRU 49.50 0.06 6.36 

LSTM 22.38 0.05 6.67 
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5.5 Conclusions 

This chapter presented an autonomous health indicator (HI) constructor for remaining 

useful lifetime (RUL) prognosis on concrete structures using Kullback–Leibler Divergence 

(KLD) with in-service acoustic emission (AE) monitoring. By using a reliable HI for the 

prognosis task, the user can be warned of future failure and, thus, maintenance can be 

performed accordingly to minimize safety risks and financial concerns. The process of HI 

construction was initialized from raw data, which was processed by the Fast Fourier 

Transform and fed to a constructor to generate the HI. The constructor was a deep neural 

network (DNN) structure, whose parameters were obtained through pretraining and fine-

tuning with a stacked autoencoder (SAE). KLD values of the data were calculated between a 

reference normal condition and an unknown condition in a one-second window, which was 

then utilized as the training label for the DNN. The KLD was chosen to portray the 

deterioration of concrete specimens because of its ability to describe how much a signal is 

different from another. As the deterioration of the concrete specimens worsens, more 

significant activities can be expected in the AE signal. 

Afterward, an evaluation of the constructed HI was presented to verify its reliability in the 

prognosis task for concrete specimens. The evaluation was divided into two categories: 

fitness analysis of the construction result and RUL prognosis using the constructed HI. 

Trendability and monotonicity were utilized as the metrics for fitness analysis, which 

showed a significant outperformance by the KLD HI in terms of trendability. This shows that 

the proposed HI has a strong correlation with time, and it is a promising candidate to capture 

the run-to-fail process of concrete structures. A comparison was also performed in the RUL 

prognosis on the proposed HI using LSTM and two state-of-the-art models 300, 400 and 500 

time steps before the failure. The result of this comparison shows that even though GRU and 

LSTM shares comparable level of accuracy in shorter predictions, LSTM is capable of 

significantly outperforming other models in the longest one.  

In future research, the proposed HI construction can be expanded to not just reinforced 

concrete beams, but also possibly bridges, walls, buildings, etc. It can also be greatly 

benefitted from covering the concrete crack localization, which provides more information 

for a preventive maintenance. Other optimization techniques and structures will also be 

investigated in future work to create a better construction model. We will also aim to 

approach the HI construction from the system- and fault-specific aspect, to which the finite 

element method (FEM) simulation shall be implemented along with Failure Mode, Effects, 

and Criticality Analysis (FMECA). 
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Chapter 6 Conclusion 

 

 

Chapter 6 

 

Conclusion 

 

This thesis presented condition-based monitoring techniques for concrete structures and 

industrial equipment. The demonstrated techniques harnessed advanced signal processing 

and artificial intelligence for early fault detection and prognosis tasks. The following 

subsections discuss the thesis summarization and future work.  

6.1 Summary 

Multiple experimental setups were conducted to verify the condition-based monitoring 

techniques presented in this thesis. This includes a cylinder tank under the Hsu-Nielsen test, 

an industrial standard pipeline system in a normal working condition and a leaking 

condition, and a four-point bending, run-to-fail test on multiple reinforced concrete beams. 

From these setups, acoustic emission (AE) data were collected for verification. 

Chapter 3 presented a leak localization scheme for a cylinder tank bottom AE data. By 

performing this scheme, leak location can be estimated early, thus allowing the appropriate 

response to be taken to prevent possible injuries, fatalities, and environmental hazards, and 

minimize the financial damage. The AE data is initially processed with a constant false alarm 

rate (CFAR) for hit detection, which is then used to find the hits’ time of arrival (TOA) and 

end time using the fixed thresholding method. Following this step hits originating from the 

same AE source are grouped by applying the event definition and the proposed similarity 

score. From the obtained results, the sources of AE events were estimated using the time 

difference of arrival (TDOA). Since AE events can happen in other locations than just the 

leaking position (due to turbulent flow, etc.), they should be investigated more to derive the 
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estimated leak position. This was analyzed through data density analysis using a Voronoi 

diagram to obtain the final result. 

Chapter 4 proposed a leak state detection and leak size identification method for an 

industrial fluid pipeline, using the acoustic emission (AE) activity intensity index curve 

(AIIC) based on the b-value and random forest (RF). Due to AE being a high-frequency but 

low-energy seismic activity, the b-value, which is one of the most important parameters for 

the probabilistic investigation of seismic hazards in seismology, can be adapted to AE 

applications. Because the adapted b-value characterizes the relationship between the 

amplitudes and their frequencies of occurrence, along with there being a direct AE activities’ 

amplitude–intensity connection, an AIIC based on the b-value can parameterize the AE 

activity intensity in any period. A frequency–amplitude distribution (FAD) analysis showed 

that the majority of high-amplitude AE activities in the leaking state were leak-related, which 

greatly outnumbered other sources that contributed to the background noise and multi-

source problem of AE activities in a fluid pipeline system. The AIIC calculated from the b-

value also discriminated between not only normal and leaking operation conditions, but also 

different leak sizes. In the next step, leak detection was performed using the AIIC through 

changepoint detection using a Bayesian ensemble, which showed an outstanding average 

error of only 2.6 s from the moment of leak occurrence. Once a leak was confirmed, the AIICs 

used for leak detection were again utilized for size identification using RF. The fluid pipeline 

data, with three pressures and three leak sizes, were used to validate the proposed method. 

The size identification results were compared with two cutting-edge methods, which showed 

that the proposed method can outperform the earlier algorithms with significantly higher 

accuracy.  

Chapter 5 proposed an autonomous health indicator (HI) constructor for remaining useful 

lifetime (RUL) prognosis on concrete structures using Kullback–Leibler Divergence (KLD) 

with in-service acoustic emission (AE) monitoring. By using a reliable HI for the prognosis 

task, the user can be warned of future failure and, thus, maintenance can be performed 

accordingly to minimize safety risks and financial concerns. The process of HI construction 

was initialized from raw data, which was processed by the Fast Fourier Transform and fed 

to a constructor to generate the HI. The constructor was a deep neural network (DNN) 

structure, whose parameters were obtained through pretraining and fine-tuning with a 

stacked autoencoder (SAE). KLD values of the data were calculated between a reference 

normal condition and an unknown condition in a one-second window, which was then 

utilized as the training label for the DNN. The KLD was chosen to portray the deterioration 

of concrete specimens because of its ability to describe how much a signal is different from 

another. As the deterioration of the concrete specimens worsens, more significant activities 

can be expected in the AE signal. Afterward, an evaluation of the constructed HI was 

presented to verify its reliability in the prognosis task for concrete specimens. The 

evaluation was divided into two categories: fitness analysis of the construction result and 
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RUL prognosis using the constructed HI. Trendability and monotonicity were utilized as the 

metrics for fitness analysis, which showed a significant outperformance by the KLD HI in 

terms of trendability. This shows that the proposed HI has a strong correlation with time, 

and it is a promising candidate to capture the run-to-fail process of concrete structures. A 

comparison was also performed in the RUL prognosis on the proposed HI using LSTM and 

two state-of-the-art models 300, 400 and 500 time steps before the failure. The result of this 

comparison shows that even though GRU and LSTM shares comparable level of accuracy in 

shorter predictions, LSTM is capable of significantly outperforming other models in the 

longest one. 

6.2 Future Work 

In the future, the presented study can be further extended as follows: 

• Leak localization can be integrated into this study, along with different scenarios, such as 

pipelines buried under soil or submerged in water. In addition, the limitation of a hard-

threshold b-value can also be further researched to achieve a better description of AE 

activity. 

• Multiple faults occurring simultaneously can be investigated for the fluid pipeline 

system. 

• In future research, the proposed HI construction can be expanded to not just reinforced 

concrete beams, but also possibly bridges, walls, buildings, etc. It can also be greatly 

benefitted from covering the concrete crack localization, which provides more 

information for a preventive maintenance. Other optimization techniques and 

structures will also be investigated in future work to create a better construction model. 

We will also aim to approach the HI construction from the system- and fault-specific 

aspect, to which the finite element method (FEM) simulation shall be implemented 

along with Failure Mode, Effects, and Criticality Analysis (FMECA).
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