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Abstract 

Image-guided surgery (IGS), which modernizes surgery and makes it safer and less 

invasive, has been receiving a lot of interest in recent years. In the preoperative context, 

diagnostic imaging, such as computer tomography (CT) and magnetic resonance imaging (MRI) 

provides a foundation for surgical planning including the delineation of surgery target, the 

surrounding anatomies, and the surgical strategy or trajectory to the target. Additionally, using 

a statistical atlas in the preoperative stage provides a comprehensive anatomical reference that 

helps surgeons to better understand complex anatomical variations in a large dataset and spatial 

relationships between involving individuals, therefore allowing for automatic personalized 

surgical planning. Such preoperative images and surgical planning information are registered 

to intraoperative coordinates using a navigation system such as Optical Tracking System (OTS) 

to visualize tracked instruments in relation to preoperative images. 

This dissertation seeks to solve three interesting research questions in the preoperative 

and intraoperative process. The dissertation includes work encompassing: (1) proposing a 

framework for multimodal image registration between CT and MRI; (2) proposing a computer-

assisted surgical planning method using statistical atlas and applying to the humerus surgery 

scenario; and (3) proposing a dynamic touchable region model applied to a framework for 

markerless registration in the intraoperative stage. 

 

  



ii 

 

Acknowledgement  

First and foremost, it is with great sincerity that I wish to extend my profound 

appreciation and thankfulness to my advisor, Professor Sungmin Kim, who has provided 

support and encouragement for my research in the Image Guided Surgery and Robotic 

Laboratory (IGSR). The mentorship, motivation, and dedication to science by him have 

profoundly impacted my wonderful Ph.D journey. He has taught me much about scientific 

communication, which is shown in this dissertation in every aspect. His warmth and patience 

have helped me keep going and make improvements myself during this journey. I am deeply 

grateful as a student under his guidance. 

I would like to express my gratitude to all IGSR lab members, I could not have 

completed my dissertation without your support and encouragement. I would especially like to 

thank Taeho Kim, who and I are one of first our Professor’s students, for his generous advice 

and assistance with everything in work and life. 

I feel extremely lucky to have loving family and friends who have helped me through 

everything. I would especially like to thank my friends Thanh Hai Phan, Quy Lam Hoang and 

his family Hong Van Bach and an adorable baby Min, Huu Lam Phan and his family Thi Quy 

Nguyen and a cute boy Binh, Thi Huong Le, Thi Trang Le, Chanh Trung Nguyen. Through the 

challenges, many tears, joy, and a lot of laughing, you have been incredibly encouraging and 

supportive of me with much love. 

Finally, to my parents, my sister, and my brother, who love me in every way possible. 

This journey would not complete without your endless love and support. 

  



iii 

 

Table of Contents 

CHAPTER 1. INTRODUCTION ............................................................................ 1 

1.1. Overview ........................................................................................................... 1 
1.1.1. Historical review about Image-guided Surgery ............................................ 1 
1.1.2. Clinical-application areas of Image-guided Surgery .................................... 2 
1.1.3. Framework of Image-guided surgery ............................................................ 5 

1.2. Dissertation outline .......................................................................................... 6 

CHAPTER 2. FEATURE-BASED MULTIMODAL IMAGE CT-MRI 

REGISTRATION ASSISTED BY SEGMENTATION ......................................................... 7 

2.1. Introduction ...................................................................................................... 7 
2.1.1. Related work ................................................................................................. 7 
2.1.2. Contribution ................................................................................................ 11 

2.2. Materials and Methods .................................................................................. 11 

2.3. Results ............................................................................................................. 15 
2.3.1. Segmentation results ................................................................................... 15 
2.3.2. Registration results...................................................................................... 17 

2.4. Discussion and Conclusion ............................................................................ 18 

CHAPTER 3. FEASIBILITY STUDY FOR THE AUTOMATIC SURGICAL 

PLANNING METHOD BASED ON STATISTICAL MODEL ........................................ 20 

3.1. Introduction .................................................................................................... 20 
3.1.1. Related work ............................................................................................... 20 
3.1.2. Contribution and acknowledgement ........................................................... 21 

3.2. Materials and Methods .................................................................................. 22 
3.2.1. Preprocessing and data splitting.................................................................. 22 
3.2.2. Building average population model ............................................................ 23 
3.2.3. Evaluation before surgical planning ........................................................... 24 
3.2.4. Validation for surgical planning .................................................................. 24 

3.3. Results ............................................................................................................. 25 

3.4. Discussion and Conclusion ............................................................................ 28 

CHAPTER 4. MARKERLESS REGISTRATION APPROACH USING 

DYNAMIC TOUCHABLE REGION MODEL .................................................................. 30 

4.1. Introduction .................................................................................................... 30 
4.1.1. Related work ............................................................................................... 30 
4.1.2. Contribution and acknowledgment ............................................................. 31 



iv 

 

4.2. Materials and Methods .................................................................................. 32 
4.2.1. Definition of the Dynamic Touchable Region ............................................ 32 
4.2.2. Registration using Dynamic Touchable Region .......................................... 34 
4.2.3. Data analysis ............................................................................................... 35 

4.3. Experiment ..................................................................................................... 35 

4.4. Results ............................................................................................................. 39 
4.4.1. Evaluation of DTR ...................................................................................... 39 
4.4.2. ICDTP registration ...................................................................................... 41 

4.5. Discussion........................................................................................................ 45 

4.6. Conclusion ...................................................................................................... 47 

CHAPTER 5. CONCLUSION ............................................................................... 49 

REFERENCES ........................................................................................................... 51 

 

  



v 

 

List of Tables 

Table 2-1: Detailed information of CT and MRI images used for multimodal registration

.................................................................................................................................................. 12 

Table 2-2: Statistics about the CT and MRI datasets ................................................... 13 

 

 

  



vi 

 

List of Figures 

Figure  1-1: Common applications of IGS [4], [5], [6], [7]. .......................................... 2 

Figure  1-2: Image-guided surgery framework. ............................................................. 5 

Figure  2-1: The proposed framework of MRI-CT multimodal image registration. .... 12 

Figure  2-2: Comparison between manually segmentation and nnU-Net-based 

segmentation at different liver latitudes for different patients. Red mask: liver segmentation 

predicted by nnU-Net; Blue mask: liver segmentation ground truth. ...................................... 15 

Figure  2-3: Dice similarity coefficients between liver segmentation ground truth and 

nnU-Net liver segmentation prediction of 13 CT and 15 MRI images. ................................... 16 

Figure  2-4: Overlaid registration results with CT (target) and MRI (source). Source: 

Red color presents liver segmentation prediction using nnU-Net for MRI; Target: Blue color 

presents CT liver ground truth, Violet color presents overlap between the registered MRI liver 

mask and the CT ground truth. ................................................................................................ 17 

Figure  2-5: Registration evaluations presented by Dice coefficient and Average 

Symmetric Surface Distance. ................................................................................................... 18 

Figure  3-1: Surgical planning framework using the average population model. ........ 22 

Figure  3-2: Eleven clinical landmarks were used for evaluation and validation. ....... 24 

Figure  3-3: Distance models and correspondence histograms of distance values for 

each sub-dataset: A) Female-Left, B) Female-Right, C) Male-Left, D) Male-Right. ............. 25 

Figure  3-4: The explained variation of the SSM I each sub-dataset: a) Female-Left, b) 

Female-Right, c) Male-Left, d) Male-Right. ........................................................................... 26 

Figure  3-5: Humerus landmarks differences between the ground truth and prediction 

using SSMs in case of Female subjects: A) Left humerus (p-value < 0.05), B) Right humerus 

(p-value < 0.05). ....................................................................................................................... 27 

Figure  3-6: Humerus landmarks differences between the ground truth and prediction 

in case of Male subjects: A) Left humerus (p-value < 0.05), B) Right humerus (p-value < 0.05).

.................................................................................................................................................. 28 

Figure  4-1: Markerless registration framework based on the ICDTP. ........................ 32 

Figure  4-2: Procedure for the DTR definition. ISS is noted for Intrinsic Shape 

Signatures. ................................................................................................................................ 33 

Figure  4-3: Change of shape from the original sphere (a) to the DTR (b-d), 𝟎 < 𝝀𝒊 ≤
𝟏. .............................................................................................................................................. 34 

Figure  4-4: Geometrical model: a) Designed by 3D CAD software, b) Synthetic CT 

data simulation, c) Real phantom............................................................................................. 36 



vii 

 

Figure  4-5: Skull phantom: a) 3D model built by laser scan data and a group of fiducials 

and targets, b) Real phantom and two notches serving as targets. ........................................... 36 

Figure  4-6:  Spine phantom: a) 3D model built by simulated computer tomography data 

and a group of fiducials and targets, b) Real phantom built by a 3D printer and its holder, c and 

d) Three notches serving as targets. ......................................................................................... 37 

Figure  4-7: Separable skull phantom: a) 3D model built by real CT data and a group of 

fiducials, b) Real phantom, c) A group of three deep targets inside the separable skull model, 

d) Three deep targets inside the real phantom. ........................................................................ 38 

Figure  4-8: Setup for experiment. ............................................................................... 39 

Figure  4-9: Three examples of principal component variation changing the DTR. The 

blue region presented the original sphere while the red region showed the dynamic touchable 

region. ...................................................................................................................................... 40 

Figure  4-10: Dynamic touchable region used for markerless registration applied to a) 

skull model, b) spine model, and c) separable skull model. .................................................... 41 

Figure  4-11: FRE and RRE for the skull phantom in a) single-user study and b) multi-

user study. ................................................................................................................................ 42 

Figure  4-12: FRE and RRE for the spine phantom in a) single-user study and b) multi-

user study. ................................................................................................................................ 42 

Figure  4-13: TREs with skull phantom for: a) single-user study (p-value < 0.05) and b) 

multi-user study (p-value < 0.05). ........................................................................................... 43 

Figure  4-14: TREs with the spine phantom when tested with three targets in a) Single-

user experiment (p-value < 0.001), b) Multi-user experiment (p-value < 0.05). ..................... 44 

Figure  4-15: TREs of the separable skull phantom with three deep targets: a) Single-

user experiment (p-value < 0.05), b) Multi-user experiment (p-value < 0.05). ....................... 45 

Figure  4-16: Comparison of TREs between sphere-only method and DTR-based 

method applying to the spine model in the single-user experiment (p-value = 0.01). ............. 46 

Figure  4-17: TREs at different radiuses of DTR applying for the spine model in the 

single-user experiment. ............................................................................................................ 47 

 

 



1 

 

 

Chapter 1. Introduction  

1.1. Overview 

Image-guided surgery (IGS) is a medical procedure in which real-time images of the 

inside of the patient are provided by computer-based systems to assist surgeons in precisely 

interpreting and targeting surgical regions [1]. Significant developments in computer-based 

processing and medical imaging modalities over the last few decades have facilitated the IGS 

dramatically. This paragraph provides a brief overview of the historical review, discusses some 

clinical applications in which IGS plays an important role in enabling procedures and 

improving accuracy, and describes functional components in a framework of image-guided 

surgery.  

1.1.1. Historical review about Image-guided Surgery  

Image-guided surgery (IGS) has emerged as a significant advancement in modern 

surgery due to its ability to improve surgical precision, efficiency, and safety, particularly in 

less invasive procedures. The evolution and development of IGS could be divided into five 

progresses including early development, emergence of stereotactic system, integration of 

imaging modalities, advancements in navigation technology, and robotics and minimally 

invasive surgery. 

• Early development (1970s – 1980s): First, the invention of medical imaging 

technologies like Computer Tomography (CT) and Magnetic Resonance Imaging 

(MRI) in the 1970s set the groundwork for the early identification of IGS. These 

technological advancements made it possible to see inside anatomical regions with 

great delineation. In order to provide surgeons with intraoperative guidance, 

researchers have been investigating the integration of different imaging modalities 

into surgical operations since the 1980s. 

• Emergence of Stereotactic systems (1980s – 1990s): A major factor in the early 

development of IGS was stereotactic systems, which pinpoint body structures using 

three-dimensional coordinates. These devices made it possible to precisely target 

lesions within the brain or structures during neurosurgical treatments. During 

surgery, preoperative images were registered with the patient’s anatomy using 

stereotactic frames and fiducial markers [2], [3]. 

• Integration of Imaging Modalities (1990s – 2000s): The 1990s and 2000s noticed 

the integration of several imaging modalities into IGS systems made easier by 

developments in computer technology and imaging modalities. Surgeons could 

combine many medical imaging modalities such as CT, MRI, ultrasound, and other 

imaging modalities for improved visualization during surgeries. This integration 

presented more precise navigation and better surgical results in difficult and 

precision-required procedures such as neurosurgery, orthopedic surgery, and 

oncology surgery. 

• Advancement in Navigation technology (200s to present): Significant 

developments in navigation technology occurred in the 2000s, including the 

establishment of optical and electromagnetic tracking systems. Comparing these 

systems to more conventional stereotactic systems, the accuracy and flexibility were 
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increased. Furthermore, real-time imaging during surgery was made possible with 

the introduction of intraoperative imaging technologies involving intraoperative CT 

and MRI. 

• Robotics and minimally invasive surgery (2000s to present): The possibilities of 

minimally invasive surgery have been further enhanced by the integration of IGS 

with robotics. Surgeons can conduct complex procedures with better control and 

precision using robotic devices that integrate with imaging guidance. These systems 

provide accurate and dexterous motions within the body. Robotics and image 

guidance together have revolutionized several fields, including laparoscopic and 

robot-assisted surgery. 

Ongoing research expects that the IGS will likely continue to integrate artificial 

intelligence and machine learning technologies in the future. The efficiency and accuracy of 

surgical procedures can be improved by using these technologies to support image registration, 

surgical planning, and real-time navigation. Furthermore, developments in augmented reality 

could allow surgeons access to virtual navigation and visualization capabilities directly within 

the surgical regions. 

Finally, from an idea born in the early days of medical imaging, IGS has developed into 

a highly advanced suite of technologies that are essential to modern surgical procedures and 

allow for less invasive, safer, and more accurate treatments in a variety of surgical fields. 

1.1.2. Clinical-application areas of Image-guided Surgery  

Thoracoabdominal interventions, orthopedics, cardiology, and neurosurgery are 

common main applications of IGS because IGS not only provides real-time visualization of 

internal organs and surgical instruments, but also allows surgeons to navigate through complex 

structures of the treatment regions with high precision and reducing the risk of damage to 

critical areas and improving patient outcomes [1]. Figure  1-1 presents some common 

applications in the IGS field. 

 

Figure  1-1: Common applications of IGS [4], [5], [6], [7]. 

Neurosurgery is a specialized field of medicine focused on the diagnosis and treatment 

of disorder affecting the nervous system, including the brain, spinal cord, and peripheral nerves 



3 

 

[8]. Some clinical examples of neurosurgical procedures where IGS is commonly used are brain 

tumor resection, deep brain stimulation surgery, epilepsy surgery, intracranial aneurysm 

clipping, spinal fusion surgery, and functional neurosurgery.  

The main objective of brain tumor surgery is to achieve gross total tumor removal 

without postoperative complications or permanent new disabilities [9]. In brain tumor resection 

procedures, before treating the brain tumors, neurosurgeons use preoperative MRI or CT 

images to build accurately 3D models of the tumor and surrounding brain tissues. During the 

surgery, the surgeons use navigation system to ensure that the tumor is precisely targeted and 

removed with minimal risk of damage to healthy surrounding brain tissues. Some different 

approaches commonly used in IGS-based surgeries for brain tumor resection such as 

craniotomy, endoscopic surgery, and keyhole surgery [9].  

For epilepsy treatment, although open resection surgery is still the main treatment 

approach, it is often considered the last option because of its invasiveness [10]. Therefore, 

minimally invasive surgical approaches under assisting of IGS promise an improved way in 

modern epilepsy surgery. IGS supports neurosurgeons in precisely locating the neurological 

treatment regions by registering preoperative images to intraoperative images. This reduces the 

possibility of postoperative neurological effects and ensures that the resection region is 

accurately targeted. An example of image-guided diagnosis and resection epilepsy surgery by 

co-registration between the T1-weighted images and T2-weighted or the fluid-attenuated 

inversion recovery (FLAIR) images for fifty patients shows promised results for intraoperative 

identification of otherwise poorly visible lesions on standard MRI sequences in good spatial 

resolution [11].  

Orthopedic surgery remains technically demanding due to the complex anatomical 

structures and cumbersome surgical procedures. The development of image-guided orthopedic 

surgery (IGOS) has substantially decreased surgical risk and enhanced the outcome of the 

surgical procedure because the IGOS solved challenges and risky possibilities of orthopedic 

surgery related to the density of muscle tissues, ligaments, blood vessels, and nerves around 

the operation area [12]. The IGOS focused on addressing two main stages of orthopedic surgery 

including preoperative planning and intraoperative execution. For planning in the preoperative 

stage, the IGOS systems provide segmentation and 3D visualization of bones and related 

structures from patient medical images. The IGOS system provides real-time guidance during 

the intraoperative stage by presenting the location and orientation of surgical tools about the 

patient following image registration and surgical tool calibration. Moreover, the integration 

with augmented reality (AR) and robotics improves  the accuracy and automation of the 

navigation system [12]. 

Cardiac Image-guided intervention involves the use of advanced imaging techniques 

and real-time guidance to perform minimally invasive procedures on the heart and its 

associated structures such as replacement or repair of a malfunctioning valve, restoration of 

myocardial perfusion by inserting a stent, or grafting an obstructed vessel, or electrical isolation 

of tissue regions that give rise to arrhythmia [13]. Two cardiac image guidance platforms here 

present different contexts of using medical images and visualization systems to support 

surgeons in cardiac interventions. The first platform is a model-enhanced ultrasound-assisted 

guidance platform developed at the Imaging Research Laboratories (Robarts Research Institute, 

London, ON, Canada), and the second one is a prototype system for advanced visualization for 

image-guided left atrial ablation therapy developed at the Biomedical Imaging Resource (Mayo 

Clinic College of Medicine, Rochester, MN, USA). 
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The first system integrates magnetically tracked trans-esophageal ultrasound (US) 

imaging for real-time visualization to allow the interpretation of 2D intra-operative US data 

within the 3D context that is provided by the preoperative electro-anatomical models within a 

virtual reality environment. In the context of ablation therapy, virtual reality-enhanced US 

guidance reduces the risks associated with fluoroscopic imaging and enables the mapping of 

dynamic EP data onto the preoperative cardiac models. The clinicians can investigate the 

intracardiac environment and use surgical instruments that is intrinsic to the heart’s structure 

by using registered pre-operative models as a reference [13], [14]. 

The second platform is built on an architecture that integrates data from left atrial 

electrophysiology, intraoperative imaging, preoperative imaging, and real-time ablation 

catheter positioning into a user interface. This interface shows a surface-rendered, patient-

specific model of the left atrium and related pulmonary veins segmented from a preoperative 

contrast-enhanced CT scan along with points sampled on the endocardial surface with the 

magnetically tracked catheter. These parts are integrated into a surface-based registration, and 

the model-to-patient registration is updated continuously [13], [15], [16]. 

Thoracoabdominal interventions under image guidance have emerged slowly 

because of the difficulty in dealing with the deformable nature of the organs in the abdominal 

region. Improvements in tracking technologies that its ability is designed to follow instruments 

inside the body using electromagnetically monitored sensors, have made it possible to do 

clinical research on organs such as the kidney, liver, and lung [1]. Tumor ablation in the soft 

tissues of the abdomen and thorax as well as minimally invasive biopsy procedures are 

frequently performed with the use of image guidance to direct the needle’s insertion through 

the skin and into the target tissues [17]. Over the years, numerous technologies have been 

developed to improve the process of CT- and/or MRI-guide needle. These systems range from 

basic passive aids to completely automate robots such as the needle navigation systems 

ActiViews CT-Guided  and CAScination CAS-ONE, the laser reference systems Neorad 

SimpliCT and Amedo LNS, the patient-mounted AprioMed Seestar, the Light Puncture Robot 

and Robopsy, the table-mounted AcuBot, the foor-mounted Perfint ROBIO and MAXIO, and 

various articulated robotic arms [17].  

Natural Orifice Transluminal Endoscopic Surgery (NOTES) is the next revolution in 

minimally invasive surgery because it can reduce the number of incision-related problems, 

including wound infections, incisional hernias, postoperative pain, and adhesions. Moreover, 

NOTES is the most suitable approach for patients who are morbidly obese or have obstructive 

carcinomas, and the conventional surgical approach makes it difficult to access the 

intraabdominal organs through the abdominal. NOTES employs real-time tracking of the 

endoscopic camera to represent some intraabdominal structures and to remove inverted images 

due to these structures might be behind the instruments and only be visible to the scope when 

it is retroflexed. By registering preoperative (CT, MRI) and intraoperative (US) images with 

the view through the NOTES endoscope, image-guided developments assist the NOTES to 

precisely delineate and locate treated regions. Additionally, while the AR techniques guides 

surgeons to see through structures to identify anatomy and pathology, up-to-date registration 

algorithms have presented improved interpretation of endoscopic US images in robot-assisted 

laparoscopic surgeries [1]. 
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1.1.3. Framework of Image-guided surgery 

Figure  1-2 depicts a typical framework of image-guided surgery that includes the 

following steps: 

- Preoperative images acquiring  

- Patient-specific model generating 

- Making surgical planning 

- Tracking patient anatomy using tracking system (such as Optical Tracking System, 

Electromagnetic Tracking System) 

- Registering patient’s actual anatomy to patient-specific model  

- Surgical execution under image guidance. 

 

Figure  1-2: Image-guided surgery framework. 

The process will begin with preoperative planning where medical images (such as CT, 

MRI, US) are obtained from the patient. The need-to-be-treated region or the disease region is 

segmented from the preoperative images and then generated into 3D models using specialized 

software (such as 3D Slicer [18]). This model is called patient-specific model. The preoperative 

medical images and the patient-specific model provide substantially anatomical information 

about the patient’s body and disease region to be treated, allowing surgeons to visualize detailly 

and make a surgical plan for the surgery. 

The tracking system is used to track the position of instruments relative to patient 

anatomy. Early tracking devices were essentially mechanical digitizers, and the optical or 

magnetic spatial localization systems, depending on the application, are employed to identify 

the position and orientation of the surgical instruments [13]. Next, the intraoperative 

coordinates defined by the tracking system need to be registered to the patient-specific model. 

This process ensures that the patient-specific model and the real-time coordinates are in the 

same coordinate system, enabling accurate surgical navigation and interventions. The 

registration starts with an initial alignment determined by landmark identification. Anatomical 
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landmarks in both the preoperative model and the intraoperative coordinates are identified 

correspondingly around the region of interest (disease region or the need-to-be-treated region), 

then using these landmarks to establish an initial alignment between the patient-specific model 

and the intraoperative coordinates. The initial alignment could be utilized by using point-based 

registration (applying to pairs of corresponding points), or surface-based registration (applying 

to the surfaces of anatomical structures) [19]. An iterative closest point (ICP) algorithm is then 

used for fine-tuning the alignment by minimizing the distance between corresponding points 

on the patient-specific model and the intraoperative coordinates iteratively [19]. 

1.2. Dissertation outline 

The work provided in this dissertation that acknowledges the potential of image 

registration and automatic surgical planning to improve the effectiveness of preoperative 

planning and intraoperative process leading of image-guided surgery, discusses the following 

thesis statement “Research on automatic surgical planning and registration for Image-guided 

surgery”. 

Three major themes are advanced throughout the dissertation and constructed as 

following: 

(i) Chapter 2 presents a framework for multimodal image registration in the 

preoperative process using a feature-based approach and image segmentation 

assistance is proposed to achieve complementary information from CT and MRI 

images. The surgical context is applied to the region of interest of the liver with 

24 pairs of CT-MRI images. 

(ii) Chapter 3 reports a computer-assisted surgical planning method using novel 

forms of statistical shape models generated by Shapeworks and ANTs 

(Advanced Normalization Tools) and applied in a clinical scenario of humerus 

datasets to establish a framework for automatic surgical planning in the 

preoperative stage. 

(iii) Chapter 4 provides a proposed markerless registration framework using a 

dynamic touchable region model for intraoperative registration. The results are 

quantitatively evaluated in three different phantoms toward the clinical context. 

The registration results of the proposed method are also compared to the 

conventional paired-point registration. 
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Chapter 2. Feature-based multimodal image CT-MRI registration assisted 

by segmentation 

2.1. Introduction  

2.1.1. Related work  

Multimodal image registration is a process of mapping spatially anatomical structures 

from different image modalities to the same coordinates [20], [21], [22]. Since a few decades 

ago, the multimodal image registration process has been utilized for preoperative surgical 

planning, intraoperative surgical decision-making, and postoperative. This process could 

provide precise visualization and delineation of regions of interest (ROI) to differentiate 

between abnormal and normal tissues, estimate tumor location or being treated regions for 

clinical procedures with minimal damage [23], [24]. Therefore, this process is a necessary 

preprocessing step for non-invasive image-guided surgeries such as head and neck tumor 

treatment planning [25], [26], radioembolization (as known as selective internal radiation 

therapy SIRT) [27], [28], external beam radiation therapy EBRT for treating prostate cancer 

[29], [30]. 

For example, during pre-treatment and post-treatment of the SIRT, certain branches of 

the hepatic artery are treated with microsphere radiopharmaceuticals, such as [68Ga] 

DOTATATE-avid or [18F]FDG (fluorodeoxyglucose), both before and after the SIRT to mimic 

the activity distribution of microsphere in the liver. PET/CT or SPECT/CT can be used to 

measure the concentration of [68Ga] DOTATATE-avid or [18F]FDG, which is a higher 

concentration in the tumor cells than in the normal tissues. Then, MRIs are acquired for regions 

that are not treated by [68Ga] DOTATATE-avid or [18F]FDG. Finally, the distribution of 

treatment irradiation is then evaluated by registering the CT and MRI images [27], [28]. 

For instance, during prostate cancer treatment using EBRT, to reduce side effects, the 

prostate volume should be the focus of the planning stage of EBRT treatment, while the organs 

at risk such as the bladder and rectum should be spared. After acquiring CT images of the area 

to be treated, radiation experts would define the gross tumor volume, clinical target volume, 

and planning target volume on each CT slice for making treatment planning. To evaluate the 

treatment plan, the surrounding tissues and organs at risk should be annotated. However, 

because of the low contrast for soft tissues, it is difficult to interpret and clearly identify the 

prostate, bladder, and rectum on the CT images. Therefore, MRIs are acquired due to the 

advantages of high contrast on soft tissues. Finally, the MRI is registered to the CT for accurate 

contour propagation [29], [31]. 

Therefore, this chapter focuses on tackling the registration of MRI and CT images since 

it is the most common multimodal medical image registration task. This task could not only 

combine the superior soft tissue contrast of the MRI with the high spatial resolution and dense 

tissue contrast of CT for surgical planning [26], [32], but also the CT images could provide the 

accurate distribution of electrons in tumor regions while the MRIs are utilized for delineating 

surrounding soft normal tissues in the context of radiation therapy planning [33], [34]. 

MRI and CT registration is a necessary procedure in the field of medical imaging, where 

data from both modalities are integrated to improve the accuracy of diagnosis and planning of 

treatments. However, the challenge of this procedure is the need to tackle the geometric 

distortion and the intensity distortion. MRI modality is particularly suffered to geometric 
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distortion due to magnetic field inhomogeneities, gradient nonlinearities, and patient-induced 

susceptibility effects [35]. In the context of CT, the geometric distortion is caused by patient 

motion, including variation in positioning, breathing level, and pathological changes [32]. 

Moreover, the intensity distortion dues to the distinct physical principles that underlie MRI and 

CT imaging modalities [22], [32].  

To solve the geometric distortion problem, some algorithms for geometric distortion 

correction were applied to MRI such as field map-based correction [36], non-linear gradient 

correction [37], and image-based retrospective correction [38], whereas geometric distortion in 

CT images could be resolved by using deformable registration for more localized distortions. 

Field map-based correction algorithms rely on accurately mapping the magnetic field 

inhomogeneities. However, field maps are affected by noise and errors, especially in areas 

where susceptibility differences are considerable, such as at the interface between air and tissue. 

These errors may lead to inaccurate field map-based corrections [36]. Geometric distortion in 

MRI also could be caused by non-linear gradient distortions. Although, there exists some 

methods to model the gradient fields and correct these distortion, the accuracy of these methods 

is limited by the complexity of the magnetic field fluctuations and the quality of the gradient 

coil characterization [39]. Consequently, the inaccuracy of geometric distortion correction 

methods applied to MRIs needs to be considered in the process of MRI and CT registration. 

According to the study in [25], the inaccuracy of the geometric correction could be resolved 

and the necessity for geometric distortion correction could be eliminated by using deformable 

registration for MRI and CT registration. 

To deal with the challenges of intensity distortion, numerous strategies have been 

proposed and categorized into three groups: (1) techniques based on information theory, (2) 

techniques based on features, and (3) techniques relying on image synthesis. The idea for the 

information-theory-based registration method is to establish an efficient similarity measure that 

can be used to find correspondences between images with different modalities. Mutual 

information (MI) and its variants [40], [41], which optimize the quantity of shared information 

between two images by striving to identify a statistical intensity relationship between them [32],  

are the most common information theoretic measure in the first category. Despite being 

successfully and extensively used for the rigid multimodal alignment [41], MI and its variants 

need to deal with many difficulties for deformable multimodal image registration. The primary 

disadvantage is that this approach is affected by local intensity variations which can lead to 

inaccurate local optima in non-rigid registration because the MI is intrinsically a global 

measure and it is difficult to estimate the intensity histogram with tiny image patches [31], [32], 

[42]. Furthermore, the spatial information and anatomical information are completely ignored 

because the conventional similarity measure only considers the intensity histogram information 

[31], [42]. 

The idea of the third category, on the other hand, comes from that the challenge of 

multimodal image registration could be simplified to monomodal image registration by using 

the image synthesis technique. The fundamental concept is that by synthesizing one modality 

from another, a significant appearance gap between two different modalities could be narrowed. 

Consequently, this allows for the direct registration of two visually similar images using the 

conventional deformable registration method [31]. Several image synthesis methods have been 

proposed and divided into two categories to reach the goal of generating one image modality 

from other image modalities. The first category is exemplar-based image synthesis, and the 

second category is learning-based image synthesis [29], [43]. For the exemplar-based image 

synthesis approach, the new source image can be sparsely represented by patches from an atlas 
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dataset of the same modality, the target image patches of a different modality can be predicted 

using the computed sparse coefficients. However, due to expensive optimization, the prediction 

process can become completely computationally costly, and incorrect predictions could occur 

in noisy synthesized images [29], [43]. Additionally, the target modality’s image can be 

synthesized using the learned model, which was developed by the Gaussian mixture regression 

model [44], [45], random forest regression model [29], [31], [43], and deep learning model 

[26], [46]. While these studies have shown positive results in the synthesizing MRI to CT or 

vice versa, the learning-based method has limitations such as prolonged training duration, 

extensive training data requirements, and its performance heavily relies on the proper tuning 

of many parameters [31], [43]. Conclusion, the quality of the synthesized image will affect the 

registration accuracy, which must be guided by precise anatomical alignment. Furthermore, 

integrating complementary data from different modalities for precise and reliable multimodal 

image registration remains a difficult task in image-synthesis-based multimodal registration 

[29], [31].  

Several multimodal registration methods based on features have been proposed to 

establish correspondence by exploiting high-order appearance information, such as geometric 

moments [47], histogram of oriented gradient (HOG) [48], Gabor attributes [49], scale 

invariant feature transform (SIFT) [50], and gradient location and orientation histograms [51]. 

These methods showed promising results for feature-based multimodal image registration but 

it is challenging to determine helpful features that both indicate common anatomical details 

and are invariant to appearance differences [29]. Another neighborhood descriptor that is 

independent of modality (MIND) [32] was proposed based on the self-similarities in the 

neighborhood to provide distinct correspondences across different modalities. Although the 

effectiveness of MIND is improved in cases where there is consistency between the local 

anatomical feature and structural patterns in small neighborhood, the robustness of MIND 

needs to be considered when the local anatomical variance increases notably [31].  

Although it is difficult to extract an effective and modality-independent feature 

applying for multimodal image registration, feature-based approaches have been widely used 

for both general monomodal and multimodal image registration in the field of medical imaging 

research [20]. In comparison to intensity-based approaches and image-synthesis-based 

approaches, feature-based approaches are simpler and need less computing work. For many 

clinical scenarios, the feature-based approaches provide an appropriate alternative when 

features such as organ boundaries can be determined with minimal or no participation from the 

user [20]. In recent years, with the development of automatic, well-validated, and learning-

based techniques for medical image segmentation, feature extraction method has improved 

rapidly [52], [53]. Additionally, some segmentation-based methods combine the segmentation 

and registration procedures [54], [55], whereas others utilize segmentation results to improve 

multimodal registration by adding an auxiliary loss function that leveraging anatomical 

segmentation at training time [56], or to identify correspondences between different imaging 

modalities in a weakly-supervised framework [22], or to learn image features on a 

supplementary segmentation task and drive the optimization of a registration model [57]. 

Therefore, using medical image segmentation is a promising research direction to assist an 

accurate feature-based multimodal image registration. 

The significance of feature-based multimodal image registration assisted by 

segmentation is in the requirement of (1) a precise segmentation method and (2) a feature 

extraction method with effectiveness, modality-independence, and spatial information 

presentation to achieve accurate non-rigid registration. Due to manual medical image 
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segmentation is a laborious task that is time-consuming and relies heavily on the expertise of 

radiologists or experts, leading to a lack of reproducibility and variability among different 

experts [58], [59], an automatic method for medical image segmentation is required. There are 

numerous effective methods for medical image segmentation with a diversity of anatomical 

regions such as neuroanatomy [60], liver and its vessels [61], a group of brain ventricles, retina 

nerve, and liver [62], a group of abdominal organs including liver, kidney, and pancreas [63], 

and so on, but this chapter mainly focuses on methods that deal with liver segmentation 

applications. It is because the purpose of this chapter is establishing a framework for CT-MRI 

registration applied to liver region. Additionally, to alleviate the complexity of the 

segmentation procedure, this chapter also expects the segmentation methodologies suitable for 

usage with CT and MRI. 

An automatic segmentation method that is independent of modality and has the 

capability to automatically track the longitudinal liver volume from various scans has the 

potential to provide valuable prognostic information [64]. The idea of the modern independent-

modality segmentation methods is the learning-based approaches, such as an anatomy-

preserving domain adaptation to segmentation network (APA2Seg-Net) [59], KiU-Net [62] as 

a combination of an overcomplete architectures Kite-Net (Ki-Net) and an undercomplete U-

Net, a cascaded fully convolutional neural networks (CFCNNs) [65], a generalized 

convolutional neural network [64], and nnU-Net [66].  

The APA2Seg-Net consisted of (1) the anatomy-preserving domain adaptation network 

(APA-Net) to adapt images from the conventional CT domain to the CBCT/MRI domain and 

the inverse way, and (2) a segmentation network to predict the liver region without target 

modality ground truth [59]. Although the APA2Seg-Net showed some positive segmentation 

results for CT and MRI datasets, some potential limitations need to be considered. The 

APA2Seg-Net was only implemented with the 2D networks because the amount of training 

data was not large enough to train with a robust 3D network. While the use of 2D flexibility 

elements, for example, generator, discriminator, or segmenter, could not claim optimality of 

the combination for segmentation, the imperfect segmentation results could lead to inaccurate 

registration results [59]. The KiU-Net proposed an architecture for capturing fine details and 

accurate edges and learning high level features on the input applied to different modalities such 

as MRI, CT, US, but its application focused on precisely small masks and finer details of 

surfaces and edges [62]. Although the liver segmentation method using CFCNNs or the 

generalized convolutional neural network, which was proposed to solve the disadvantage of 

CNN in the requirement of a large amount of manually label data for the training process, 

presented impressive liver segmentation results with Dice scores higher than 0.9, these 

approaches always need to apply image preprocessing methods suitable for each different 

modality imaging, such as [65] applied HU windowing for CT and N4 bias correction for MRI, 

or contrast-enhanced images in the study of [64]. The most impressive neural architecture is 

the nn-UNet with extremely effective implementation to (1) adapting to any new dataset, (2) 

handling a wide variety of target structures and image properties, (3) outperforming specialized 

pipelines in a range of diverse tasks, and (4) displaying strong generalization characteristics 

requiring neither expert knowledge nor computing resources beyond standard network training 

[66]. Based on the discussion of the advantages and disadvantages of the aforementioned 

methodologies, the nnU-Net and its trained models were selected for the purpose of liver 

segmentation in this chapter. 

For the requirement of expecting a feature extraction method to fulfill the conditions of 

effectiveness, independent on modality, and providing spatial information of the region of 
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interest, the textural features and their variants are considered in this chapter. The first 

definition of textural features is that contain information about the spatial distribution of tonal 

variations within a band, published in [67], 1973. The study of [67] provided an understanding 

of the relation between the structure of surfaces and their interactions with their surroundings 

by presenting textures as a spatial distribution of gray tones (in a gray image). The 13-

dimensional texture features that were defined in [67] could be briefly called Haralick features. 

Haralick features identify patterns of gray-level co-occurrence, which are then utilized to build 

a matrix of co-occurring gray-level pairings within the image. It is possible to calculate second-

order statistical texture features with this matrix. Haralick texture analysis is rather popular in 

the field of medical image analysis especially for classification-related applications since it 

uses second-order intensity statistics (such as angular second moment, contrast, and differential 

entropy) to capture variations in gray-level image features. However, Haralick features may be 

resisted by small variations in sub-structures that have the same co-occurring gray-level 

intensities but differ morphologically [68]. To solve this problem, the study in [68] proposed a 

new descriptor of Co-occurrence of Local Anisotropic Gradient Orientations (CoLlAGe) to 

determine the entropy of co-occurrences of pixel/voxel-level gradient orientations established 

inside a local neighborhood in order to quantify the local anisotropic variations in micro-

structures. The results of [68] demonstrated that CoLlAGe had a much greater classification 

accuracy than the Haralick and the expert readers for both CT and MRI in three cases of brain 

tumors, breast cancer, and adenocarcinomas from granulomas. However, the application of the 

CoLlAGe was limited to classification and had not yet been utilized for registration. 

2.1.2. Contribution  

The purpose of this chapter is to merge region-of-interest segmentation results with 

spatial features obtained from the ROI to achieve enhanced results in multimodal image 

registration applied in CT and MRI. The CT and MRI datasets displayed the anatomical 

structures of the abdomen with particular emphasis on the liver region.  

In the domain of liver registration, several studies have been conducted focusing on 

registering CT and MRI images using segmentation results as a guiding framework. Examples 

of such studies include the research by Xikai Tang et al [27] and the study by Bo Zhou et al 

[59]. The research by Xikai Tang et al employed segmentation results as a segmentation 

similarity loss function within the final loss function to evaluate the non-rigid registration 

procedure [27], whereas the study by Bo Zhou et al extracted surface points from the CBCT 

and MRI segmentations and input these points into the Robust Point Matching to estimate the 

multimodal registration transformation [59]. Although these studies presented some positive 

registration results, the approaches of these studies did not involve image features or 

deformable registration algorithm. As per the comprehension, this chapter marks the initial 

exploration that uses segmentation results and CoLlAGe features for multimodal image 

registration. The procedure begins by utilizing nnU-Net to segment the liver regions in CT and 

MRI images, and extracts CoLlAGe features in CT and MRI images as the descriptor images 

from the liver regions, consequently. As a result, the descriptor images are registered by 

applying a Symmetric Normalization (SyN) deformable algorithm [69]. 

2.2. Materials and Methods 

A three-stage multimodal image registration framework for mapping the MRI image to 

CT is presented in Figure  2-1. 
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Figure  2-1: The proposed framework of MRI-CT multimodal image registration. 

In the first stage, the liver regions in the CT and MRI images were segmented by using 

the nnU-Net. The datasets of CT and MRI consisted of a collection from Kyungpook National 

University Hospital and two parts from two open datasets CPTAC-CCRCC and CPTAC-PDA, 

and were detailed in Table 2-1 and Table 2-2. The 3D full-resolution nnU-Net model, which 

was applied to CT segmentation in this chapter, was available in the study [66] by training the 

dataset of The Liver and Liver Tumor Segmentation Challenge (LiTS) with131 training CT 

images with ground truth annotations for the liver [70]. In contrast, for MRI segmentation task 

in this chapter, the 3D full resolution nnU-Net was made accessible in the study of [66] by 

training 60 MRIs from Task 5 multiorgan segmentation of the Combined Healthy Abdominal 

Organ Segmentation (CHAOS) Challenge [71].  

Table 2-1: Detailed information of CT and MRI images used for multimodal registration 

 

Dataset 

 

Patient ID 

 

CT image ID 

MRI image 

ID Modality 

 

 

 

Patient 1 CT1 MR1 T1 

Patient 2 CT2 MR2 T1 

Patient 3 CT3136140 MRI3136140 T1 
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Kyungpook National University 

hospital 

Patient 4 CT3368799 MRI3368799 T1 

Patient 5 CT3635608 MRI3635608 T1 

Patient 6 CT3636884 MRI3636884 T1 

Patient 7 CT3650147 MRI3650147 T1 

Patient 8 CT3661039 MRI3661039 T1 

 

CPTAC-CCRCC 

https://wiki.cancerimagingarchive.net/pa

ges/viewpage.action?pageId=33948213 

 

 

C3L-00610 

 

 

C3L00610_10032_5 

C3L00610_5 T2 

C3L00610_6 T2 

C3L00610_9 T2 

C3L00610_14 T2 

 

 

 

 

CPTAC-PDA 

https://wiki.cancerimagingarchive.net/pa

ges/viewpage.action?pageId=33948258 

 

 

 

 

 

 

 

C3N-02010 

 

C3N02010_2  

C3N02010_3 

 

T2 

 

C3N02010_3 

 

C3N02010_17 

 

 

T1 
 

C3N02010_4 

 

C3N02010_22 

 

 

T1 
C3N02010_5 

Table 2-2: Statistics about the CT and MRI datasets 

Specification  CT MRI 

Number of sets  13 15 

In-plane spatial resolution [number of sets] 512 x 512 [11] 

766 x 512 [1] 

588 x 512 [1] 

512 x 512 [9] 

256 x 216 [1] 

512 x 432 [2] 

640 x 520 [3] 

Number of axial slices in each examination [min – max] [45 – 399] [33 – 124] 

Total axial slice number 2610 1476 

Left-right spacing (mm/voxel) [min – max] [0.54 – 0.81] [0.59 – 1.41] 

Anterior-posterior spacing (mm/voxel) [min – max] [0.54 – 0.81] [0.59 – 1.41] 

Slice thickness (mm) [min – max] [1 – 5]  [1 – 7.2] 

https://wiki.cancerimagingarchive.net/pages/viewpage.action?pageId=33948213
https://wiki.cancerimagingarchive.net/pages/viewpage.action?pageId=33948213
https://wiki.cancerimagingarchive.net/pages/viewpage.action?pageId=33948258
https://wiki.cancerimagingarchive.net/pages/viewpage.action?pageId=33948258
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Because the 3D full-resolution nnU-Net for MRI segmentation task in this chapter was 

trained from multiorgan segmentation task including the liver, the spleen, and the left and right 

kidneys segmentation, a postprocessing step was conducted to extract the liver region as the 

largest region among five outcome labels. As a result, the output of the first stage was the liver 

label images corresponding to the CT and MRI. Note that the 3D full resolution nnU-Net for 

CT segmentation and MRI segmentation are available at [66]. 

The registration stage comprises of two parts: the initial step involves extracting texture 

features, followed by the step of deformable registration using ANTs. After obtaining the liver 

labels from the first stage, pairs of CT image and corresponding liver label image, MRI and 

corresponding liver label image were fed into the step of extracting the CoLlAGe features as 

descripted in the study of Prateek Prasanna et al [68]. It should be considered that the full 

CoLiAGe features are 13-dimensional vectors, therefore there are 13 kinds of descriptor image 

including angular second moment, contrast, correlation, entropy, and so on. However, the 

entropy descriptor was extracted for registration in this chapter based on the empirical 

comparison of the registration accuracy using 13 kinds of descriptors. Inputs for registration 

step are CoLiAGe entropies of the liver regions from the CT and MRI, and the registration 

method was the SyN algorithm in ANTs because this algorithm demonstrated the most 

consistently high accuracy registration across subjects in a comparison of 14 nonlinear 

deformation algorithms [72]. After the registration process was completed, the transformation 

matrixes were preserved for the subsequent stage of evaluation. 

The evaluation stage is illustrated in the bottom part of Figure  2-1. The manual liver 

labels were corrected by an expert from the Kyungpook National University Hospital and 

served as the ground truth for the evaluation. This chapter evaluates the segmentation stage and 

registration accuracy using evaluation measures as explained in a study by Tobias Heiman et 

al [73]. The measures consist of the Dice similarity coefficient, Jaccard coefficient, Volumetric 

overlap error, Relative volume difference, Average symmetric surface distance, and Maximum 

symmetric surface distance. However, this chapter focused on the Dice similarity coefficient 

and the Average symmetric surface distance. 
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2.3. Results  

2.3.1. Segmentation results 

 

Figure  2-2: Comparison between manually segmentation and nnU-Net-based segmentation at different liver 

latitudes for different patients. Red mask: liver segmentation predicted by nnU-Net; Blue mask: liver 

segmentation ground truth. 

The segmentation results serve as the guiding framework for feature extraction and 

registration, therefore the qualitative analysis for segmentation needs to be considered. A 

comparison between the qualitative results of CT segmentation and MRI segmentation at 

different levels of liver scans for different patients is illustrated in Figure  2-2. Segmentation 

results could be readily observed to closely approximate the ground truth, particularly results 

in the CT segmentation (Figure  2-2a) across all liver latitudes. Conversely, the MRI 

segmentation results in Figure  2-2b showed ideal segmentation at middle latitudes but slightly 

differed from the ground truth in the upper liver latitudes. Despite the liver slices being obtained 
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in an atypical orientation in certain cases (second column of Figure  2-2) in both CT and MRI, 

the segmentation results exhibited satisfactory performance. 

Figure  2-3 displays the Dice similarity coefficient between the nnU-Net liver 

segmentation of CT and MRI images and the liver ground truth. The average Dice coefficients 

for CT and MRI images are approximately 0.958 and 0.759, respectively with a note that the 

Dice coefficient will be 1 for a perfect volume overlap [73]. The highest and lowest Dice 

coefficients for MRI segmentation are 0.934 and 0.398, respectively, while the corresponding 

values for CT segmentation are 0.974 and 0.934.  

 

Figure  2-3: Dice similarity coefficients between liver segmentation ground truth and nnU-Net liver 

segmentation prediction of 13 CT and 15 MRI images. 
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2.3.2. Registration results 

 

Figure  2-4: Overlaid registration results with CT (target) and MRI (source). Source: Red color presents liver 

segmentation prediction using nnU-Net for MRI; Target: Blue color presents CT liver ground truth, Violet 

color presents overlap between the registered MRI liver mask and the CT ground truth. 

Figure  2-4 presents the overlaid registration results to qualitatively evaluate the 

registration performance with CT served as target and MRI served as source image. The red 

color regions of the source images represent the liver segmentation prediction generated by the 

nnU-Net. In contrast, the target images show the blue regions representing the CT liver ground 

truth, and the violet regions denoting the region of overlap between the registered MRI liver 

mask and the CT ground truth. The overlaid results demonstrate that the utilization of the 

proposed framework for registering MRI to CT provided transformed masks that closely 

resembled the ground truths for all patient scenarios. 
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The Dice similarity coefficient and the Average symmetric surface distance (ASSD) 

between the human annotated CT liver segmentation and the transformed MRI liver 

segmentation using the proposed framework were computed and shown in the Figure  2-5. 

Most ASSR representing red rhombus points are nearly 0, while all Dice coefficients 

representing blue circle points are higher than 0.8 across all 24 pairs of CT-MRI registration. 

It needs to be noted that the ASSD is given in millimeters and a volume overlap is perfect if 

the value of ASSD is 0 [73]. 

 

 

Figure  2-5: Registration evaluations presented by Dice coefficient and Average Symmetric Surface Distance. 

2.4. Discussion and Conclusion 

To execute the main idea presented in this chapter, the liver region was first 

automatically segmented for both CT and MRI using the nnU-Net. Subsequently, the CoLlAGe 

method was used to extract the significant spatial features of the liver regions for both CT and 

MRI and represent CoLlAGe features as descriptor images. These descriptor images were then 

registered using ANTs SyN deformable method. 

Figure  2-3 illustrated the segmentation performance using the nnU-Net trained models 

for CT and MRI datasets. It is recognized that the performance of CT segmentation is notably 

superior to that of MRI, as indicated by a higher Dice coefficient of 0.958 ± 0.0130 for CT 

and 0.759 ± 0.177 for MRI, respectively. These results could be explained by two reasons. 

The main reason is segmentation from MRI can be considered a more challenging task in 

comparison to segmenting CT image because CT images have a typical histogram and dynamic 
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range defined by Hounsfied Units (HU), whereas MRIs do not have such a standardization [71]. 

Additionally, the difference in CT and MRI segmentation could be correlated to the lower 

resolution and higher spacing of the MRI dataset than the CT dataset as detail presented in 

Table 2-2, and this could lead a higher spatial error for each misclassified voxel [71]. Another 

reason could relate to the training process of liver segmentation for CT and abdominal organs 

segmentation for MRI in the nnU-Net. The liver segmentation model for CT was trained on the 

LITS dataset with 131 training cases, while the amount of training data for abdominal organs 

MRI was limited with 60 training cases of the CHAOS dataset including modalities of T1 in 

phase, T1 out phase, and T2. 

In summary, a new approach for feature-based multimodal image registration for CT 

and MRI images was presented in Chapter 2. This approach used nnU-Net, an effective 

segmentation technique, to determine the region of interest (ROI) from both CT and MRI data. 

The significant spatial features of the ROI from both CT and MRI were then extracted by using 

CoLlAGes as independent descriptor images, and next descriptor images were registered by 

the deformable SyN algorithm of ANTs. The incorporation of segmentation into the registration 

pipeline ensured that the resulting transformation accurately reflected the anatomical 

correspondence, leading to better spatial alignment. This approach demonstrated significant 

improvements in registration accuracy and computing efficiency, establishing the path for more 

effective integration of multimodal imaging data in clinical diagnosis and treatment planning.  
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Chapter 3. Feasibility study for the automatic surgical planning method 

based on statistical model  

3.1. Introduction 

3.1.1. Related work  

Preoperative procedures such as surgical target identification, surgical access planning, 

and surgical instruments and implant positioning are surgical-supported fields of computer 

assisted surgical planning [74]. It effectively assists surgeons in making clinical decisions and 

improving surgery outcomes in a variety of surgical specialties including orthopedic [75], 

cranio-maxillofacial [76], [77], neurosurgery [78], [79], [80], and so on.  

Studying interpatient variability is crucial for surgical planning because individual 

variations in the shape analysis of anatomical structure can affect significantly the outcome of 

typical surgeries, such as head and neck cancer resection [81], orthopedic implants [82], [83], 

[84], and craniosynostosis surgery [85]. Therefore, research on anatomical shape analysis has 

become an essential component of surgical planning.  

More than a century has passed since the beginning of studies on anatomical shape 

analysis. Using statistical power, statistical shape modeling (SSM) has emerged as a significant 

advancement in morphometric techniques for precise visualization of complex anatomical 

structure and their variability in the population [86], [87], [88]. SSM provides two distinct kinds 

of population data. The first one is the mean shape which is the average of all shapes in the 

population, and the second one is the variation parameter, which represents how much the 

shape can differ between subjects in the population [89]. The SSM results set a high probability 

on a normal anatomical structure and a low probability on a pathological shape. Consequently, 

SSM has gained extensive applications in computer-assisted surgical planning, for example, 

radiotherapy planning [90], orthopedic surgery [91], spring-assisted cranioplasty [92], and 

cervical adaptive radiotherapy [93].  

Building SSM requires a well-defined correspondence technique, and automatically 

correspondences computing is based on registration between individual involved shapes [89]. 

We can divide methods for defining correspondence into two groups: groupwise method and 

pairwise method. These are based on reviews of correspondence techniques by Oguz et al. [94] 

and evaluation and validation of statistical shape modeling tools by Goparaju et al. [87], [95]. 

The groupwise approach mostly developed from the original Point Distribution Model 

(PDM), which took into account expressing images or objects as a set of points and generating 

a SSM using Principle Component Analysis (PCA) [96]. Many research projects have been 

conducted based on the concept of PDM, using open-source or SSM tools for general anatomy 

analysis. These include Shapeworks, Minimum Description Length (MDL), and Statismo 

framework.  

The Statismo employs probabilistic PCA to interpret the modeled objects and displays 

the statistical model as a probability distribution [97], whereas the research of Davies et al. 

uses the MDL principle to automatically determine the optimal correspondence between sets 

of shapes [98]. Shapeworks introduced Particle-based Modelling (PBM), in which point-to-

point corespondence between the involved shapes are represnted as dynamic particles on the 

surface of the modeled shapes, and it is possible to directly optimize the positions of these 
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particles [86]. The Shapeworks ‘s algorithm of entropy minimization in shape space is a highly 

significant contribution to correspondence optimization. Its effectiveness has been shown in a 

variety of clinical applications, such as astrial fibrillation, hip joint FAI pathology, dysplastic 

hip joint, orthopedics, cardiology, and scapular morphology in Hill-Sachs patients [86], [95]. 

Eventhough Shapeworks demonstrated the effectiveness and potential for use in clinical 

applications, the Shapeworks’s principle is still based on the idea that point correspondences 

between involved structures exist clearly. Futhermore, most of modeled objects using 

Shapeworks are bones with a largely consistent shape across the population. Establishing point 

correspondences and generating a SSM using point-based technique can be challenging when 

dealing with complex structures such as heart and vascular systems, or highly variable soft 

tissue like liver, spleen, kidney [89], [99], [100]. 

The pairwise approach maps each subject in the population to a predetermined atlas 

or template using volume-based or surface-based pairwise correspondence [94]. Surface-based 

pairwise needs the computation of correspondences between the individual samples and a 

standard parameter space, to which each individual is mapped. The majority of surface-based 

pairwise studies used a sphere as the standard space, for instance, Kelemen et al. proposed a 

spherical harmonics (SPHARM) [101] and Styner et al. expanded a SPHARM-PDM 

framework to build statistical shape analysis for brain structure [102] or hipplocampus in 

schizophrenia [103]. However, SPHARM-PDM underperformed Shapeworks in evaluation 

and validation studies for clinical applications [95]. Utilizing a non-parametric representation 

of shape as a mathematical object – current – to characterize geometrical data using a vector 

field is another aspect of the surface-based pairwise approach. Correspondences are calculaed 

in the space of currents using rigid registration. However, the current-based technique primally 

relies on the spatial of the currents or the scale of deformation [99], [100]. 

Studies on SSM using volume-based pairwise method have recently shown positive 

results for human brain [104], [105], cardiac [100], heart [106], and even brain template of non-

human macaque [107]. This method is based on the principle that there are no explicit 

correspondences between the individuals. Instead of stable structures like bones, these 

structures concentrated on analyzing shape models of soft tissuses, which have dynamic shapes. 

In contrast to other studies in the field of volume-based pairwise such as FNIRT [108] or 

DRAMMS [109], the Advanced Normalization toolkit (ANTs) demonstrated precision results 

in building template with high accuracy in registration [72], [110]. An ANTs template 

represents the population average of the involved shapes without bias toward any particular 

individual [104]. 

3.1.2. Contribution and acknowledgement  

The goal of this chapter is to develop a computer-assisted surgical planning method 

using a humerus dataset consisting of both male and female subjects with completely 

corresponding left and right bones. The average population models were generated from the 

humerus dataset, and next the automated computer-assisted surgical planning method was 

developed based on the average population models. Surgical planning data could be established 

to each new individual dataset, even though this dataset was not part of the dataset that was 

used to generate the average population models. To conduct the main idea of this chapter, the 

ANTs toolkit was applied to build templates and mean shapes generated from Shapeworks 

were served as references to evaluate and validate the ANTs templates in a clinical context. 
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The method and results which present in this chapter were reported as parts of a journal 

article as follow: 

• Hang Phuong Nguyen, Hyun-Joo Lee, Sungmin Kim, “Feasibility study for 

the automatic surgical planning method based on statistical model”, Journal of 

Orthopaedic Surgery and Research, 18, 398 (2023). 

https://doi.org/10.1186/s13018-023-03870-x  (SCIE). 

The work in this chapter was supported by the Korea Medical Device Development Fund, grant 

number  1711174276, RS-2020-KD000016. 

3.2. Materials and Methods 

Figure  3-1 presents a framework for building an average population model and using 

it in surgical planning. The framework consists of the following steps: (1) preprocessing; (2) 

splitting data; (3) building the average population model; (4) evaluating the average population 

model before applying it to surgical planning; and (5) validating for the surgical planning. 

 

Figure  3-1: Surgical planning framework using the average population model. 

3.2.1. Preprocessing and data splitting  

The humerus dataset was provided by the Korea Institute of Science and Technology 

Information (KISTI). The dataset consists of left and right humerus bones collected from 50 

female subjects and 43 male subjects. Each file in the dataset was written in STL format. Four 

sub-datasets were categorized according to gender and side of body. They are male-left, male-

right, female-left, and female-right.  

The first humerus subject in each sub-dataset was chosen as an initial reference during 

the data alignment step, and then the Iterative Closest Point (ICP) registration was applied 

https://doi.org/10.1186/s13018-023-03870-x
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between the reference and each of the remaining subjects in the sub-dataset. The alignment 

process was implemented on a 3D Slicer extension developed by our research team. 

The training and testing set in each sub-dataset were selected randomly without bias 

following a ratio of 82% for training and 18% for testing. The training sets were used to build 

the average population model using Shapeworks and ANTs, while the testing sets were applied 

for validation. 

3.2.2. Building average population model  

Shapeworks and ANTs were used to generate the SSM. While SSMs built using ANTs 

were called templates, those made with Shapeworks were called mean shapes. The process 

shown in Figure  3-1 applies for each sub-dataset. 

To build the SSM, Shapeworks provides an easy-to-use, comprehensive GUI-based 

interface called Shapeworks Studio. This interface has three modules: groom, optimize, and 

analyze, as illustrated in Figure  3-1. Because the humerus dataset had already been 

preprocessed and registered by the ICP algorithm following section 3.2.1, the skipping 

grooming option was chosen. The optimize module presents options for modeling 

correspondence dynamic particles between individual subjects using entropy minimization 

algorithm [86]. After the optimization process was completed, the analyze module extracted 

the mean shape under polydata format. 

A template of ANTs is an unbiased population-average image which respects to shape 

and appearance from involved individuals [104]. The process for building an ANTs template 

was shown in Figure  3-1. First, each individual subject was transformed from the original 

polydata to image using Visualization Toolkit (VTK) [111] to fit the data format required by 

ANTs. The largest volume image was used as a reference coordinate to establish an initial 

template’s space, and then each subject image was resampled with respect to the initial template. 

The initial template’s intensity was determined by computing the voxel-wise average of the 

training set. To generate the population average template, an iterative procedure was employed 

as follows [69], [104]: 

• Each individual image was registered to the temporary template using affine and 

deformable Symmetric Normalization (SyN) transformation. For the first 

iteration, the temporary template is the initial template. After registration 

process, the temporary results consisted of (1) registered individual image, and 

(2) inverse transformation from the temporary template to individual image. 

• The average of inverse transformations from the temporary template to each 

individual image was calculated. It was called new average transformation. 

• The temporary template was updated by averaging the registered individual 

images. 

• New average transformation was applied to the updated template. 

• The process was iterated until the difference between the updated templates was 

minimized. Based on empirical study, four iterations are sufficient to generate 

an optimal ANTs template. 
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3.2.3. Evaluation before surgical planning 

To determine how much of the variance in an individual’s shape can be explained by 

the average population model, explained variations are calculated before applying the SSM for 

surgical planning. The analyze module in Shapeworks Studio provides the explained variations 

of the mean shapes, while PCA algorithm was applied to calculate the explained variations for 

the ANTs templates.  

 

Figure  3-2: Eleven clinical landmarks were used for evaluation and validation. 

First, as can be shown in Figure  3-2, an orthopedic surgeon determined sets of 11 

anatomical landmarks on the ANTs templates. These anatomical landmarks are frequently 

utilized for clinical communication and as humerus surgery. To generate the correspondence 

landmark point clouds in each sub-dataset, these anatomical landmarks from the ANTs template 

(fixed image) were transformed to each subject image (moving image) in the training dataset 

by applying deformable registration. After the PCA process, the eigenvalue of each mode 

(principal model) was divided by the sum of all eigenvalues to determine the percentage of 

explained variation of each principal model [106]. Notice that the number of individuals minus 

one equals the number of models [97]. 

Distance models and distance histograms between the mean shapes and the ANTs 

templates were computed in 3D Slicer to evaluate the difference between two average 

population models. The segmentation module in 3D Slicer was used to reconstruct the ANTs 

template into a polydata, which then was registered to the mean shape using ICP registration. 

Next, the distance model was computed using the VTK Hausdorff. 

3.2.4. Validation for surgical planning 

The following steps were used to validate the context of surgical planning: 
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• Eleven anatomical landmarks at those clinical positions as shown in Figure  3-2 

are manually determined by an expert on the SSM and each subject in the testing 

dataset. The annotations of each subject in the testing dataset worked as subject-

specific ground truth. 

• Eleven anatomical landmarks on the SSM were transferred to each subject in 

the testing dataset by applying the affine and deformable B-spline SyN. These 

transferred landmarks served as subject-predict landmarks. 

• Determine the root mean square error (RMSE) between the subject-specific 

ground truth and the subject-predict landmarks. 

• Apply paired t-test. 

3.3. Results  

 

Figure  3-3: Distance models and correspondence histograms of distance values for each sub-dataset: A) 

Female-Left, B) Female-Right, C) Male-Left, D) Male-Right. 

Figure  3-3 compares the shape and distance difference between the ANTs template and 

the Shapeworks mean shape. The distance range from minus 6 to 6 mm was encoded on an 

RGB color map, and a signed distance denoted that one model is inside the other.  

First, the distance models and the corresponding histograms for female subjects were 

illustrated in Figure  3-3A and Figure  3-3B. The highest frequency bins of two histograms 

were mainly displayed in range from -0.5 mm to 1 mm, and the distance models were primary 

shown in green color. These results demonstrated that, in two cases of Female-Left and Female-

Right, there are no significant differences in shape between the ANTs template and the 

Shapeworks mean shape. 

Second, the distance values in the range from -2.5 mm to -1 mm and from -2 mm to 0.5 

mm correspond to the maximum frequency bins of the histogram from Male-Left and Male-

Right, respectively. A few red areas could be seen on the head on the Male-Left and Male-Right 

distance models, however not sufficient to effect on the global shape of the ANTs templates the 

Shapeworks mean shape. 
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Figure  3-4: The explained variation of the SSM I each sub-dataset: a) Female-Left, b) Female-Right, c) 

Male-Left, d) Male-Right. 

Figure  3-4 shows the explained variation for each sub-dataset when using Shapeworks 

and ANTs to model the SSM. Results presented that the first seven models of the average 

population model can represent 99% of the individual shape variance in all cases of the sub-

dataset. However, compared to the mean shape generated by Shapeworks, the template built by 

ANTs can represent the variance of shape across individuals with a higher explained variation 

in four sub-datasets. 
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Figure  3-5: Humerus landmarks differences between the ground truth and prediction using SSMs in case of 

Female subjects: A) Left humerus (p-value < 0.05), B) Right humerus (p-value < 0.05). 
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Figure  3-6: Humerus landmarks differences between the ground truth and prediction in case of Male 

subjects: A) Left humerus (p-value < 0.05), B) Right humerus (p-value < 0.05). 

The differences in the position of the clinical landmarks between the ground truth and 

the predicted ones by the SSM were illustrated in Figure  3-5 and Figure  3-6, respectively. The 

minimum and maximum RMSE values are 2.83 mm and 3.13 mm in case of using ANTs, 

respectively, while the corresponding values in case of using Shapeworks are 3.66 mm and 

4.05 mm, respectively. 

3.4. Discussion and Conclusion   

Surgical landmarking is essential for surgical planning in the context of clinical 

applications. For example, accurate implant insertion in surgical planning requires precise 

landmarking and accurate landmark specification is necessary for the development of bone 
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implanting in bone plates or total joint arthroplasty. This chapter developed an automatic 

surgical planning approach by using the average population model (or the SSM). The research 

entailed evaluating the shape and the explained variation of the average population model and 

verifying its ability to predict surgical landmark positions for new dataset that was not involved 

in process of building the average population model. ANTs and Shapeworks were applied to 

build the average population model, and the evaluation and validation results between ANTs 

template and Shapeworks mean shape were compared to report the improvement of using ANTs 

for surgical planning. 

 When determining surgical planning approach using the SSM, one of the fundamental 

factors that need to be considered is the shape. The results from Figure  3-3 and Figure  3-4 

demonstrated that the shape of the ANTs template is better than the mean shape of Shapeworks 

with higher explained variation. The explained variation of an average population model is 

directly correlated with how well it can explain the variation in the involved individual shapes 

within the data. 

Figure  3-5 and Figure  3-6 illustrate how the SSM generated by Shapeworks or ANTs 

could be utilized to estimate clinical landmark positions for new humerus dataset that was not 

included in the building of the SSM. Comparing the ANTs template to the Shapeworks mean 

shape, it was found that the ANTs template improved landmark position prediction with about 

23%, 21%, 22%, and 20% in the cases of Female-Left, Female-Right, Male-Left, and Male-

Right, respectively. Using ANTs templates demonstrated highly efficient results in 

automatically transferring surgical landmarks to ground truth points closely even though the 

templates were built from small-size datasets. These improvement results could be explained 

by the usage of the SyN algorithm in ANTs because this algorithm demonstrated the most 

consistently high accuracy registration across subjects in a comparison of 14 nonlinear 

deformation algorithms [72]. 

This chapter pointed out the ability of using an average population model for making 

automatically surgical planning for new patients who are not in the dataset used to generate the 

average population model. These abovementioned results could be considered in the 

development of an automated ANTs-based computer assisted surgical planning method.  

To generate more reliable average population models, it should be expected that the 

proposed method would be expanded to broader surgical anatomy with larger datasets. 
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Chapter 4. Markerless registration approach using Dynamic Touchable 

Region model  

4.1. Introduction  

4.1.1. Related work  

Registration is a crucial step in Image-guided Surgery (IGS) because it provides the 

corresponding transformation that aligns a physical object in the operating room (OR) with its 

view in the image coordinates [112], [113], [114], [115]. Medical imaging modalities such as 

MRI, CT, US, or the three-dimensional model generated from the object and displayed in an 

imaging tool such as 3D Slicer, could be used to describe the “view” definition. The 

conventional task in creating the transformation is to register between two pointsets from the 

image coordinates and the patient coordinates. Fiducial marker-based registration approach is 

commonly used for surgical assisting and navigation because this approach facilitates for the 

surgeons to determine corresponding paired points on the patient and imaging data. 

Fiducial markers have been attached to the area surrounding the surgical lesion to aid 

in standard surgical guide techniques. The adhesive marker is one type of fiducial marker that 

is frequently used for surgical guiding. To ensure their stability while acquiring preoperative 

imaging data for registration process, they should be positioned on smooth surfaces rather than 

one with sharp protrusions, corners, or rough surfaces. Fiducial markers may move from their 

initial positions if they are not placed on a smooth surface because of the weak contact between 

the markers and the patient’s surface. The situation in a misalignment correspondence between 

the fiducial markers on the patient and those in the image data can lead to inaccuracies in 

registration. Inaccurate registration can result in registration errors, especially in neurosurgery 

where precision is crucial. Furthermore, the use of fiducial markers is prohibited for some 

operation procedures, such as orthopedic pedicle screw insertions and arthroplasty. Therefore, 

building and maintaining the corresponding paired points on the patient and the image 

coordinates using fiducial markers is challenging for such operations. A markerless registration 

approach is required in these cases, even though high accuracy may not be guaranteed.  

The markerless registration process was used in several earlier research for IGS. The 

majority of methods have been suggested for orthopedic[115], [116], [117], cranial [118], and 

oral and maxillofacial surgery [119]. Using only the patient’s natural facial features, Lee et al. 

used an ICP method for cranial surgery, registering a 3D rebuilt facial surface measured by 

stereo vision with a facial surface generated from preoperative CT images [118]. They first 

recognized Harris corners in the left image before identifying corresponding feature points in 

the right image. After determining the correspondences, they reconstructed those feature points 

in three dimensions using the concepts of stereo vision. The study of Lee et al. showed the 

average target registration error (TRE) for five targets was 3.29 mm, which did not meet the 

requirement in the case of stereotactic frames, fiducial screws, or skin markers being replaced 

by the natural facial features. Due to the limitations of the stereo vision-based 3D 

reconstruction accuracy, the worst TRE was 5.13 mm. Furthermore, real-time IGS technique 

does not support the use of the Harris corner detector [120]. 

Using a similar method to Lee et al., Suenaga et al. proposed real-time markerless 

registration for oral and maxillofacial surgery using a stereo camera [119]. From the CT data 

of participants, an integrative videography image and a 3D prototype model of the jaw were 
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generated. Subsequently, the 3D model’s coordinates were registered with the contour obtained 

from the 3D scanner image in real space [119]. Although the results showed an improved 

average TRE than that of Lee et al., the approach required a 3D surface reconstruction of the 

teeth as a prerequisite for registration. Furthermore, because of employing the stereo camera in 

both experiments of Lee et al. and Suenaga et al., the registration error is dependent on the 

measurement precision of the stereo camera. 

For orthopedic surgery, Liu and Baena and Gao et al. showed acceptable results by 

using a deep learning approach for markerless registration. Gao et al. designed an automatic 

fiducial-free 2D/3D registration pipeline based on a convolutional neural network (CNN) for 

intraoperative pose estimation for the femur, whereas Liu and Baena concentrated on building 

a region of interest (ROI) localization network with five convolutional layers to segment deep 

images in the knee surgical scenario [115], [116]. However, the complex Gao et al. pipeline 

requires landmark detection and consists of three stages: pelvis registration, femur registration, 

and device registration, whereas Liu and Baena captured a lot of the surrounding points with a 

deep camera so that the depth images contain noise and outliers because of the depth camera’s 

low resolution. Moreover, another disadvantage of applying deep learning in the markerless 

registration field is that the complicated architecture of the depth image segmentation network 

requires strong computing power to speed up computation time. 

Even though the earlier research, which benefited from developments in computer 

vision and medical image processing, presented encouraging results, they are not appropriate 

for use in IGS. The procedures for clinical applications registration are less precise and put 

patient safety at risk although these procedures could be conducted without interacting with 

users. Moreover, additional devices are required for registration and navigation. To facilitate 

navigation, at least two surgical tools should be tracked by using electromagnetic tracking 

system, depth camera, or optical tracking system (OTS) [121]. One of the most essential parts 

of the IGS system is the tracking system, which precisely determines the locations of the 

surgical tools and the anatomical areas they touch [122]. Therefore, the previously suggested 

approaches have been burdened with the operating room environment by requiring a second 

camera system to obtain the registration between the patient and image data. The limited space 

in the OR makes these approaches difficult to position the second camera close to the patient. 

4.1.2. Contribution and acknowledgment  

This chapter presents a markerless registration framework that improves registration 

accuracy without additional devices or procedures by using a dynamic touchable region model. 

The main goal is to identify the dynamic touchable region (DTR) which the surgeons can freely 

touch during a registration intraoperative procedure. The shape and size of the DTR might 

change based on how it is distributed. Next, a registration framework proposing the iterative 

closest dynamic touchable point (ICDTP) is described in this chapter. The ICDTP was 

developed based on the iterative closest touchable point (ICTP) approach, which was 

previously reported in a study of Kim S and Kazanzides P [123]. 

The method and results which present in this chapter were reported as parts of a journal 

article as follow: 

• Hang Phuong Nguyen, Taeho Kim, Sungmin Kim, “Markerless registration 

approach using dynamic touchable region model”, The International Journal of 
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Medical Robotics and Computer Assisted Surgery, Volume 18, Issue 3, 2022, 

https://doi.org/10.1002/rcs.2376  (SCIE). 

This work in this chapter was supported by the 2019 Research Fund of the University of Ulsan. 

4.2. Materials and Methods 

As illustrated in Figure  4-1, the proposed ICDTP method consists of three stages: (1) 

dynamic touchable region definition, (2) initial registration, and (3) fine registration. The 

dynamic touchable region was defined by Intrinsic Shape Signatures (ISS) keypoints, initial 

registration used paired-point registration (PPR), and the Iterative Closest Point (ICP) 

algorithm was applied for fine registration. Open 3D, an open-source toolkit for 3D data 

processing with Python [124], was used to establish the DTR, and both the initial registration 

and fine registration were implemented in Python.  

 

Figure  4-1: Markerless registration framework based on the ICDTP. 

4.2.1. Definition of the Dynamic Touchable Region 

Figure  4-2 presents the processes that were used to define the DTR. After importing 

the 3D mesh model generated from segmentation region, ISS keypoints were extracted to 

describe salient points or interesting points from the 3D model [125]. Even though there are 

some studies for detecting 3D keypoints, such as MeshDoG, Local Surface patches (LSP), 

Intrinsic Shape Signatures (ISS), KeyPoint Quality (KPQ), Heat Kernel Signature (HKS), and 

Laplace–Beltrami Scale-Space (LBSS), ISS was applied in the proposed framework due to its 

good performance and repeatability with a small and local 3D mesh model [126]. 

https://doi.org/10.1002/rcs.2376
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Figure  4-2: Procedure for the DTR definition. ISS is noted for Intrinsic Shape Signatures. 

The DTR center point was then manually determined at the salient point on the surface 

of the 3D model. The position of the determined point was not always coinciding with one of 

the vertices on the 3D mesh model, therefore the nearest vertex with the determined point was 

then updated as the DTR center point. The k-d tree algorithm of the Open3D was used to find 

this nearest vertex. 

The purpose of the DTR is representing the geometrical salient features of the surface 

while minimizing the searching space for the touchable region. The original searching space 

was a sphere which included all vertices within a given radius from the DTR center point (in 

this case, the radius was 10 mm). All ISS keypoints within 10 mm from the DTR center point 

were collected to describe the geometrical characteristics of the original sphere. Principal 

Component Analysis (PCA) was applied to identify the most significant direction of the 

dominant geometrical feature as determined by the ISS keypoints. Below equation 1, 2, and 3 

were used to determine the shape and size of the DTR based on three eigenvalues of the PCA, 

where PCi denoted the ith principal component.  

Equation 4 was used to calculate the length of each principal axis of the DTR. As shown 

in Figure  4-3, there are three cases to decide the shape and size of the DTR. The shape of the 

DTR was typically an ellipse with different lengths in the principal axes (as presented in Case 

1, Figure  4-3b), or equal lengths in the median axis and the minor axis (as illustrated in Case 

2, Figure  4-3c). The DTR shape was a sphere if each eigenvalue is equal, and the size of the 

DTR was reduced by halving the radius, as shown in case 3, Figure  4-3d. The final step in 

defining the DTR was to update the vertices belonging to the DTR following equation 5, where 

(𝑥0, 𝑦0, 𝑧0) is the coordinate of the center of the DTR, and a, b, and c are the principal semi-

axes of the DTR. 
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Variation for 𝑃𝐶𝑖 =
Eigenvalue for 𝑃𝐶𝑖

(Number sample − 1) 
          

(1) 

Variation percentage𝑖 =
Variation for 𝑃𝐶𝑖

Total variation 
 × 100%         

(2) 

𝜆𝑖 =  (
 Variation percentagei

Maximum variation percentage 
)       

(3) 

Length of principal axisi = 2λiR (4) 

(𝑥 − 𝑥0)2

(𝑎)2
+

(𝑦 − 𝑦0)2

(𝑏)2
+

(𝑧 − 𝑧0)2

(𝑐)2
≤ 1 

(5) 

 

 

Figure  4-3: Change of shape from the original sphere (a) to the DTR (b-d), 𝟎 < 𝝀𝒊 ≤ 𝟏.  

4.2.2. Registration using Dynamic Touchable Region 

The approach of the ICDTP registration method is to apply the DTR for markerless 

registration. First, the digitized source fiducials (pS) collected from an optical tracking system 

were registered to target fiducials (pLT) localized on the 3D mesh model. The paired-point 
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algorithm was applied to the initial registration step. The initial transformation matrix was 

computed using equation 6. The transformed source fiducials then were computed by 𝒑𝑻𝑺 =
𝑇𝐼𝒑𝑺, and applied to the fine registration. 

T𝐼 = arg min
𝑇𝐼

∑‖𝑝𝐿𝑇𝑖
− 𝑇𝐼𝑝𝑆𝑖

‖
2

𝑀

𝑖=1

 

(6) 

T𝐼𝐶𝐷𝑇𝑃 = arg min
𝑇𝐼𝐶𝐷𝑇𝑃

∑‖𝑝𝐶𝑖
− 𝑇𝐼𝐶𝐷𝑇𝑃𝑝𝑇𝑆𝑖

‖
2

𝑀

𝑖=1

 

(7) 

Fine registration was inspired by the ICP registration method. The closest target point 

on each DTR pCi was found by applying minimum Euclidean distance between the transformed 

source fiducial and the corresponding DTR. Equation 7 presented the calculation of ICDTP’s 

transformation matrix, and the closest target points were updated after each iterative step. When 

the registration residual error converged, the fine registration stage would be finished. 

4.2.3. Data analysis  

To evaluate the accuracy of the proposed ICTP method, the registration residual error 

(RRE) and the TRE were calculated, and then those results were compared between the PPR 

method and the ICDTP method. The fiducial registration error (FRE) was the representation of 

the RRE in the PPR method. These errors were calculated by equation 8 and equation 9, 

respectively [127]. 

𝐹𝑅𝐸 = √
1

M
∑‖𝑝𝐿𝑇𝑖

− 𝑇𝐼𝑝𝑆𝑖
‖

2
M

i=1

 ;  𝑅𝑅𝐸 = √
1

M
∑‖𝑝𝐶𝑖

− 𝑇𝐼𝐶𝐷𝑇𝑃𝑝𝑇𝑆𝑖
‖

2
M

i=1

 

 

(8) 

𝑇𝑅𝐸𝑃𝑃𝑅 = √
1

𝑁
∑ ‖𝑝𝐿𝑜𝑐𝑎𝑙𝑖𝑧𝑒𝑑 𝑇𝑎𝑟𝑔𝑒𝑡𝑗

− T𝐼𝑝𝐷𝑖𝑔𝑖𝑡𝑖𝑧𝑒𝑑 𝑇𝑎𝑟𝑔𝑒𝑡𝑗
‖
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𝑁
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 ;  

𝑇𝑅𝐸𝐼𝐶𝐷𝑇𝑃 = √1

𝑁
∑ ‖𝑝𝐿𝑜𝑐𝑎𝑙𝑖𝑧𝑒𝑑 𝑇𝑎𝑟𝑔𝑒𝑡𝑗

− T𝐼𝐶𝐷𝑇𝑃𝑝𝐷𝑖𝑔𝑖𝑡𝑖𝑧𝑒𝑑 𝑇𝑎𝑟𝑔𝑒𝑡𝑗
‖

2
𝑁
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(9) 

 

4.3. Experiment 

The experiment’s main aims were to evaluate the DTR and to validate the accuracy of 

the ICDTP-based markerless registration framework. A geometrical phantom was used to 

evaluate the DTR. It was designed by 3D CAD software SolidWorks (Dassault Systems, 

Vélizy-Villacoublay, France) and manufactured with Evolve 128 material using a 3D printer 

(RSPro 800, UnionTech GmbH, Darmstadt, Germany). A 3D mesh model of this geometrical 
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phantom was built from the 3D CAD model using synthetic CT method. Three illustrations for 

the geometrical phantom were presented in Figure  4-4. 

 

Figure  4-4: Geometrical model: a) Designed by 3D CAD software, b) Synthetic CT data simulation, c) Real 

phantom. 

 

Figure  4-5: Skull phantom: a) 3D model built by laser scan data and a group of fiducials and targets, b) 

Real phantom and two notches serving as targets. 

The ICDTP registration framework was validated using three different phantoms that 

mimicked human anatomies. They are skull phantom, spine phantom, and separable skull 

phantom, and were produced by Sawbones, a division of Pacific Research Laboratories, Inc., 

Vashon, Washington. To verify the proposed registration framework under different scenarios 

of 3D mesh model, three different approaches for building 3D mesh model were applied to the 

abovementioned phantom, each phantom corresponded to each approach. The skull mesh 

model presented in Figure  4-5a was built by laser scan data from the Sawbones digital product 

without any changes, the 3D spine mesh model was created by the synthetic CT method as 

represented in Figure  4-6a, whereas the real CT data of the separable skull model was used to 

construct the corresponding 3D mesh model as shown in Figure  4-7a. 
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Figure  4-6:  Spine phantom: a) 3D model built by simulated computer tomography data and a group of 

fiducials and targets, b) Real phantom built by a 3D printer and its holder, c and d) Three notches serving as 

targets. 

For the DTR evaluation, each DTR on the geometrical phantom was determined 

following the process described in section 4.2.1 once the DTR’s center point was identified on 

the edge of the geometrical phantom. Furthermore, the DTR evaluation was conducted on the 

skull, spine, and the separable skull mesh model. 

No fiducial markers were placed on the phantoms because the purpose of this study was 

to improve registration accuracy in surgical scenarios that it was not suitable to apply the 

fiducial markers. Instead, target positions were established by localizing notches on the 

phantoms. There are two notches on the skull model as shown in Figure  4-5b, while there are 

three notches on the spine phantom as presented in Figure  4-6c,d. 

Furthermore, to verify the proposed registration framework using DTR in the condition 

with deeper surgical lesions, three notches were embedded using non-metallic artificial free 

opaque CT marker (CT-23, Suremark company, AZ, USA) to serve as depth targets in the 

separable skull model, as presented in Figure  4-7c,d. 



38 

 

 

Figure  4-7: Separable skull phantom: a) 3D model built by real CT data and a group of fiducials, b) Real 

phantom, c) A group of three deep targets inside the separable skull model, d) Three deep targets inside the 

real phantom. 

Two groups were set up for the registration experiments: the first group was single-user 

study, and the second group was multi-user study. Each participant in the multi-user study 

digitized the source fiducials once only, whereas every subject in the single-user study collected 

the source fiducials ten times. The participants were all non-surgeons or experts in surgical 

navigation field. The optical tracking system and the trackable digitizers were involved in the 

experiment as shown in Figure  4-8. The OTS provided the localization of the DTR center 

points and target notches in the physical space. The OTS used for the experiments is an optical 

tracking system SAKDI 1 (DigiTrack, Daegu, Korea) that can measure objects with distance 

from 500 mm to 1500 mm at 45 frames per second and has an accuracy of 0.2 mm RMS. 



39 

 

 

Figure  4-8: Setup for experiment. 

Figure  4-8 showed the experimental configuration used in this chapter. The participant 

in the experiment used a digitizing tool to choose the source position on the real phantom while 

observing the corresponding fiducial displayed on the 3D mesh model via 3D Slicer. This 

procedure was then repeated nine times for nine different fiducials as well as two or three target 

notches depending on the phantom, as depicted in Figure  4-5, Figure  4-6, and Figure  4-7. 

The digitized location from the OTS was obtained by consecutively gathering one hundred 

position data points, and then averaged to reduce the OTS position data jittering. 

4.4. Results  

4.4.1. Evaluation of DTR 

Three examples of principal component variation that made changing the shape and the 

size of the DTR were presented in Figure  4-9. Three DTRs were determined from three 

different center points that were placed on the sharp edges of the geometrical model. The 

percentages of principal components were computed and presented in the center of Figure  4-9 

to provide clearly about the variation in each axis.  
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Figure  4-9: Three examples of principal component variation changing the DTR. The blue region presented 

the original sphere while the red region showed the dynamic touchable region. 

Case 1 showed an example of 100% variation in direction Y, while two variations on 

the direction of X axis and Z axis were presented in Case 2 with 13.6% and 86.4% respectively, 

and the percentages of variation were 5.3, 28.7, and 66.0% respectively in Case 3. Although 

the principal component variation was different in each case, the DTRs kept expressing the 

dominant feature of region when compared to the original sphere, as shown as red regions in  

Figure  4-9. 

Moreover, Figure  4-10 showed nine different DTRs for each 3D model of skull, spine, 

separable skull as results of validating the dynamic properties of the DTR. The positions of the 

DTRs were decided to determine the salient features of the regions of the DTRs. 
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Figure  4-10: Dynamic touchable region used for markerless registration applied to a) skull model, b) spine 

model, and c) separable skull model. 

4.4.2. ICDTP registration  

The proposed registration method was compared with the conventional paired-point 

registration to evaluate the accuracy of the proposed framework as shown in Figure  4-1. The 

FRE of the PPR method and the RRE of the ICDTP registration method were measured, and 

the TRE for each registration method was computed. 

Residual errors of the ICDTP registration method 

The FRE and the RRE were depicted in Figure  4-11 and Figure  4-12 for the two 

experimental scenarios: the single-user study and the multi-user study utilizing the spine and 

the skull phantom, respectively. 

Figure  4-11 illustrated that the mean of FRE was 1.98 mm and the mean of RRE was 

0.36 mm in the experiment of single-user study applied to the skull model. Throughout all ten 

trials in the multi-user study, the accuracy of the RRE had improved over those of the FRE. 

Detailly, in the multi-user study, the mean of FRE was 3.25 mm while the mean of RRE was 

0.57 mm. the RRE showed less variation across the participants (the worst case was 1.28 mm, 

the best case was 0.19 mm), whereas the FRE presents significant variation between 

participants (the worst case was 4.91 mm, the best case was 2.11 mm). 
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Figure  4-11: FRE and RRE for the skull phantom in a) single-user study and b) multi-user study. 

 

Figure  4-12: FRE and RRE for the spine phantom in a) single-user study and b) multi-user study. 

Figure  4-12 showed that the trends of single-user study and the multi-user study in 

improving the residual error between applying the PPR and the ICDTP were consistent. For 
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every trial in the single-user study and every attendee in the multi-user study, the RRE value 

was less than the FRE value. Furthermore, the highest improvement was noted in the third trial 

of the single-user study (the RRE reduced 2.21 mm in comparison to the FRE) and the ninth 

participant in the multi-user study (the RRE value was 2.44 mm lower than the FRE). 

Target registration errors of the ICDTP registration 

The TREs from skull phantom experiments which were displayed in Figure  4-13 

indicated the ICDTP method’s higher precision than the PPR method. The proposed method 

improved the accuracy of the single-user study (Figure  4-13a) and the multi-user study (Figure  

4-13b) by around 23% based on the average of the TREs. Detailly, ninety percent of ten trials 

conducted by the single user demonstrated the TRE results better than the PPR’s. Only in the 

second trial of the single-user study where the TRE from the ICDTP was slightly higher than 

the PPR’s (2.53 mm from ICDTP’s compared to 2.27 mm from the PPR’s). A similar conclusion 

occurred in the multi-user study. The results of the multi-user study indicated that the ICDTP 

method was more accurate than the PPR method in almost all trials. The only exception for the 

case of multiple participants was the sixth trial, where the TRE from ICDTP method (2.17 mm) 

slightly increased when compared to the PPR’s (1.99 mm). 

 

Figure  4-13: TREs with skull phantom for: a) single-user study (p-value < 0.05) and b) multi-user study (p-

value < 0.05). 
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Figure  4-14: TREs with the spine phantom when tested with three targets in a) Single-user experiment (p-

value < 0.001), b) Multi-user experiment (p-value < 0.05). 

Three target points were used in the experiment on the spine phantom as illustrated in 

Figure  4-6c, d, and the TRE results were shown in Figure  4-14. The means of TREs using the 

PPR were 3.82 mm and 3.56 mm, whereas the means of TREs applying the ICDTP method 

were 3.21 mm and 3.03 mm, for the single-user study and the multi-user study, respectively. 

These results concluded that the accuracy of using the ICDTP method was higher than that of 

using the PPR. 

The TREs from the experiment that used the ICDTP registration method to the 

separable skull model with three depth targets were shown in Figure  4-15. When compared to 

the PPR, all the TRE values from the ICDTP method in the single-user study and the multi-

user study provided better accuracy. The TREs from the single-user and multi-user trial 

demonstrated improvements of 11.6% and 22.8%, respectively, when compared to the PPR. 
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Figure  4-15: TREs of the separable skull phantom with three deep targets: a) Single-user experiment (p-

value < 0.05), b) Multi-user experiment (p-value < 0.05). 

4.5. Discussion  

This chapter analyzed the proposed DTR and markerless registration based on ICDTP 

with phantom experiments. The discussion section first discussed the DTR and then the 

performance of the ICDTP method. 

The process of defining the DTR was utilized using 3D mesh models. The original CAD 

model was used to generate the synthetic CT data for the geometrical phantom, as shown in 

Figure  4-4 a, b. The synthesized CT model had three times more vertex data than the CAD 

model, therefore it was sufficient for achieving good results for determining the DTR. 

Figure  4-9 and Figure  4-10 demonstrated the robustness and adaptability of the 

proposed approach. Because of the effective ISS, any kind of 3D mesh model that was 

displayed as a 3D point cloud could be utilized to define the DTR. As mentioned in the section 

of Method, identifying ISS is one of the most crucial steps in the process of determining the 

DTR. This process worked directly on 3D point clouds and did not require surface meshing or 

triangulating the data points [125]. Furthermore, whereas the marker approach can not be used 

to the sharp edges, corners, and rough surfaces, the ISS can generate separate and highly 

discriminative representations for local/semi-local form patches, therefore allowing the DTR 

to be determined from a strong and rugged surface on the 3D mesh. 

The ISS keypoints and PCA were used to define the DTR. PCA determined the direction 

and the size of the DTR by utilizing the distribution of the ISS keypoints, which characterized 
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the geometrical features and identified distinctive points at a certain surface around the fiducial 

area. According to the original ISS study [125], the intrinsic frame and the shape feature factor 

generated an independent representation of the local/semi-local 3D shape. Therefore, this 

contributed to the robustness and flexibility of the DTR. 

Since the DTR’s shape and size could affect how successfully the ICDTP registration 

worked, a simple single-user experiment was also conducted by comparing the TREs between 

the DTR-based method and a simple sphere-only approach (the original sphere). The spine 

phantom as presented in Figure  4-6 was used for the experiment, and the comparison results 

were displayed in Figure  4-16. The results from DTR-based method showed a considerable 

improvement in accuracy (p < 0.05) in contrast to the sphere-only approach, indicating that the 

DTR could provide meaningful improvement for markerless registration.  

 

Figure  4-16: Comparison of TREs between sphere-only method and DTR-based method applying to the 

spine model in the single-user experiment (p-value = 0.01). 

An experiment of applying a range of the DTR sizes (8, 10, 12, 14, and 15 mm in radius) 

to ICDTP registration in the spine phantom with single-user study was conducted, and the 

results were showed in Figure  4-17. The results presented that using DTR with 10mm radius 

provided the smallest value in the TRE when compared to other TREs computed from other 

DTR size. Therefore, it could be considered as the shape and size of the potential touchable 

region for surgeries of the spine and skull. 
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Figure  4-17: TREs at different radiuses of DTR applying for the spine model in the single-user experiment. 

To evaluate the effectiveness of the proposed registration framework, the residual error 

and target registration error were calculated and reported in the section of results. The results 

demonstrated that when the DTR was employed in the markerless registration framework, the 

ICDTP performed more accurately than the conventional PPR. 

Figure  4-11 and Figure  4-12 demonstrated the notable distinction between the residual 

errors of the ICDTP and PRR method. Since the intraoperative points could be paired to any 

position in the DTR rather than specific points following the PPR on the 3D mesh model, it is 

easy to explain why the RRE values were smaller than the corresponding FRE. It was necessary 

to make comparisons of TRE as presented in Figure  4-13, Figure  4-14, and Figure  4-15 

because only improvements in RRE could not guarantee a better accuracy registration. These 

results showed that the ICDTP registration method significantly increased accuracy when 

compared to the conventional PPR registration. When utilizing a variety of anatomy-

mimicking phantoms such as a skull phantom, a spine phantom, and a separable skull phantom, 

the ICDTP registration method consistently improved the TREs compared to the PPR method. 

This suggested that the ICDTP registration could be applied to a variety of surgical applications, 

Furthermore, the multi-user studies showed that the accuracy of the ICDTP approach was better 

than that of the PPR, indicating that the ICDTP approach is independent of users. 

4.6. Conclusion 

This chapter proposed a markerless registration approach ICDTP based on defining a 

dynamic touchable region DTR. The DTR allowed all feasible matches between the source 

fiducials collected using a digitizing tool and the targeted fiducials in the 3D coordinated of the 

3D mesh model. There was no marker used during the point-collection process. To evaluate the 

accuracy of the proposed method, the results from ICDTP were compared to the results from 

the conventional PPR. 

This chapter achieved two goals, the first one is that it established a comprehensive 

method for determining the DTR robustly, independently; second, it proposed and evaluated a 
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markerless registration framework using DTR. The registration results showed that the 

proposed ICDTP provided improved accuracy as compared to the conventional PPR. 

Further research employing a more realistic phantom or cadaver would be conducted 

in the future to validate the proposed ICDTP method. Additionally, an ICDTP software module 

would be intended building on 3D Slicer and distributing it to other researchers and surgeons 

in the community of image-guided surgery. 
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Chapter 5. Conclusion  

The work presented in this dissertation consisted of registration methods and automatic 

surgical planning method that were motivated by the thesis statement of “Research on 

automatic surgical planning and registration for Image-guided surgery”. 

The dissertation developed throughout three major themes for image-guided surgery 

consisting of (1) proposing a framework for multimodal image registration between CT and 

MRI; (2) proposing a computer-assisted surgical planning method using statistical atlas and 

applying to the humerus surgery scenario; and (3) proposing a dynamic touchable region model 

applied to a framework for markerless registration in the intraoperative stage. These themes 

were described in chapter 2, chapter 3, and chapter 4, respectively. 

Chapter 2 presented a framework for multimodal image registration in the preoperative 

process using a feature-based approach and image segmentation assistance was proposed to 

achieve complementary information from CT and MRI images. The surgical context was 

applied to the region of interest of the liver with 24 pairs of CT-MRI images. The framework 

proposed to use nnU-Net, an effective segmentation technique, to determine the region of 

interest (ROI) from both CT and MRI data. The significant spatial features of the ROI from 

both CT and MRI were then extracted by using CoLlAGes as independent descriptor images, 

and next descriptor images were registered by the deformable SyN algorithm of ANTs. The 

incorporation of segmentation into the registration pipeline ensured that the resulting 

transformation accurately reflected the anatomical correspondence, leading to better spatial 

alignment. This approach demonstrated significant improvements in registration accuracy and 

computing efficiency, establishing the path for more effective integration of multimodal 

imaging data in clinical diagnosis and treatment planning.  

Chapter 3 reported a computer-assisted surgical planning method using novel forms of 

statistical shape models generated by Shapeworks and ANTs (Advanced Normalization Tools) 

and applied in a clinical scenario of humerus datasets to establish a framework for automatic 

surgical planning in the preoperative stage. This chapter developed an automatic surgical 

planning approach by using the statistical shape model (or average population model). The 

research entailed evaluating the shape and the explained variation of the average population 

model and verifying its ability to predict surgical landmark positions for new dataset that was 

not involved in process of building the average population model. ANTs and Shapeworks were 

applied to build the average population model, and the evaluation and validation results 

between ANTs template and Shapeworks mean shape were compared to report the 

improvement of using ANTs for surgical planning. 

Chapter 4 provided a markerless registration framework using a dynamic touchable 

region model for intraoperative registration. The results were quantitatively evaluated in three 

different phantoms toward the clinical context. The registration results of the proposed method 

were also compared to the conventional paired-point registration. The dynamic touchable 

region model allowed all feasible matches between the source fiducials collected using a 

digitizing tool and the targeted fiducials in the 3D coordinated of the 3D mesh model. There 

was no marker used during the point-collection process. To evaluate the accuracy of the 

proposed method, the results from ICDTP were compared to the results from the conventional 

PPR. This chapter achieved two goals, the first one was that it established a comprehensive 

method for determining the DTR robustly, independently; second, it proposed and evaluated a 
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markerless registration framework using DTR. The registration results showed that the 

proposed ICDTP provided improved accuracy as compared to the conventional PPR. 
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