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Synchronization errors represent a significant challenge in various communication

and storage systems, undermining the reliability and efficiency of data transmission

and retrieval processes. These errors occur when the timing or alignment of data

becomes distorted during transmission or storage, leading to misinterpretation or

loss of information. Addressing synchronization errors is crucial for ensuring data

integrity, minimizing data loss, and maximizing system performance. To mitigate

the effects of synchronization errors and fortify the resilience of information systems,

error correction codes are known as a highly effective approach. Hence, designing

synchronization error correction codes is necessary and critical in data transmission

and retrieval processes.

In information theory, synchronization errors can be manifested in various forms,

including deletions, insertions, substitutions, and transpositions of symbols. Conse-

quently, designing synchronization error correction codes means constructing codes

v



Abstract vi

that can address deletion, insertion, substitution, and transposition errors. A large

body of this thesis is the development of such codes using the number theoretic

approach. Specifically, this research delves into the exploration of two novel code

designs, each tailored with specific constraints aimed at safeguarding sequences from

synchronization errors.

The first class of codes involves a binary code aimed at simultaneously rectifying

two types of errors while employing techniques such as syndrome and accumulation

values. Historically, prior research concentrated on rectifying singular type of errors,

such as either a deletion or insertion error. The first proposed code is engineered to

counteract the presence of both a deletion and an insertion error within a codeword.

To broaden the spectrum of error correction, the second class of codes introduces

a nonbinary code designed to rectify different errors, including a single deletion,

insertion, substitution, or adjacent transposition errors. This thesis provides insights

into the construction of code designs tailored to accommodate various error scenarios

based on the specified errors, thereby showcasing the error correction capabilities of

these proposed code designs through mathematical analysis. Alongside code designs,

this thesis also presents decoding procedures to recover codewords from errors.
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Chapter 1

Introduction

1.1 Introduction

The digital age has ushered in a myriad of technological advancements, from ar-

tificial intelligence and blockchain to 5G networks and cloud computing. One of the

significant advantages of this era is the globalization it facilitates, with the world

more interconnected than ever before. With over 8000 data centers distributed

globally, tasks like sending, storing, and retrieving data have become remarkably

streamlined [1]. However, despite these advancements, communication channels and

data storage systems are susceptible to errors. These errors can occur during data

transmission or retrieval when the timing or alignment of data becomes distorted

and are known as synchronization errors. The consequences of synchronization er-

rors in communication and storage systems can be far-reaching, impacting both

data integrity and system performance. In communication networks, synchroniza-

1



1.1 Introduction 2

tion errors can cause disruptions in real-time applications such as voice calls, video

streaming, and online gaming, leading to degraded user experiences and loss of rev-

enue for service providers. In storage systems, synchronization errors can result in

data corruption, loss of critical information, and reduced storage efficiency, posing

significant risks to data integrity and security. Hence, addressing synchronization

errors is crucial for ensuring the seamless operation of communication and storage

systems, as well as safeguarding the integrity of critical data.

To mitigate synchronization errors, error correction codes (ECC) play an ef-

fective role in ensuring the precise functioning of communication and data storage

systems. ECC for synchronization errors are studied from many aspects, however,

within the scope of this thesis we focus on the error correction ability of codes.

Based on the design of the communication and storage system, several code sets

have been introduced as follows. For communication systems, [2] introduced a com-

prehensive channel model covering all three types of synchronization errors, leading

to the development of various synchronization error correction codes. For instance,

[3] presented a code class capable of rectifying deletions and substitutions within

a byte range, while [4] introduced a moment balance scheme utilizing linear error

correction codes to address deletion or insertion errors. Additionally, [5] addressed

the challenge of improving bit error rates through distance-preserving mapping in

permutation trellis codes. Furthermore, [6] focused on designing a code set ensur-

ing error detection, complementing other communication techniques to guarantee

accurate information reception. Moreover, [7] proposed probabilistic methods for

correcting multiple deletion or insertion errors in a sequence, and approaches like
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[8] or [9] employed marker codes or guess-and-check methods to effectively mitigate

synchronization errors.

For flash memories, the permutation-coded rank modulation scheme aims to pre-

vent inadvertent block deletion during overshoot events [10]. Recent developments,

such as those outlined in [11, 12], introduce rank-encoded modulation schemes to

combat a variety of errors, while Gabrys et al. [13] have devised asymptotically op-

timal permutation codes capable of one deletion correction. Meanwhile, the growing

interest in DNA-based (Deoxyribonucleic acid-based) storage systems underscores

their potential, although they are susceptible to synchronization errors during syn-

thesizing and sequencing DNA strands. To ensure accurate information retrieval,

error correction codes are indispensable, often leveraging linear block codes like Bose-

Chaudhuri-Hocquenghem (BCH) code, Reed-Solomon (RS) code, and Low-density

parity-check (LDPC) [14–17]. Notably, a class of synchronization error correction

codes based on the number theoretic method, pioneered by Varshamov’s Varshamov-

Tenengolts (VT) code, emerges as a promising solution for addressing one or more

synchronization errors within a sequence.

The main goal of this thesis is to explore good error correction codes to shield

systems against synchronization errors by using the number theoretic method. In

other words, how can we recover precisely the original sequences when a single or

multiple synchronization errors? In this thesis, we delve into the code designs to

overcome synchronization errors, which are manifested through deletion, insertion,

substitution, and transposition errors. More specifically, how to recover the original

sent or stored sequences when one deletion and one insertion errors occur simulta-
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neously; when there is an edit error or an adjacent transposition error. Besides, we

also suggest the encoding procedures for the proposed codes to overcome all possible

error scenarios with specified errors.

1.2 Organization

The dissertation consists of five chapters structured as follows:

In Chapter 1, we sum up all the motivations relevant to synchronization er-

rors and synchronization error correction codes. Then, we show the outline of the

dissertation.

In Chapter 2, we provide mathematical preliminaries including some general

notations, definitions in coding theory, and related number theory codes that are

used in this thesis.

In Chapter 3, a new binary code design to deal with one deletion and insertion

errors is presented. We also provide mathematical analysis to prove the error cor-

rection ability of the proposed code. In addition, our results include the decoding

algorithms for codes to correct one deletion and one insertion in any position within

a codeword.

In Chapter 4, we propose a novel nonbinary code design for correcting one edit

error or an adjacent transposition error. The proposed code is constructed based on

the weights of all elements, even index elements in the codeword, and the high-order

syndromes of the codeword. We also provide proof of error correction ability and

decoding algorithms for the proposed code.
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Finally, in Chapter 5, we give some conclusions on the dissertation and some

discussions on the future research directions.



Chapter 2

Preliminaries

2.1 General notation

The set of integers and real numbers are denoted as Z and R, respectively.

The notations, Z+ and R+, present the set of positive integers and real numbers,

respectively. For a real number m ∈ R, ⌊m⌋ defines the largest integer that is not

greater than m. Similarly, ⌈m⌉ denotes the smallest integer which is not smaller

than m.

For m1,m2 ∈ Z+ and m1 < m2, let [m1,m2] be the consecutive indexes from m1

to m2, as m1,m1 + 1, · · · ,m2 − 1,m2.

Let F be an alphabet. For a positive integer n, we define Fn
q is the set comprising

all q-ary sequences (q ≥ 2) of length n, with |Fn
q | representing its size. A sequence

x ∈ Fn
q is given as x = (x1, x2, · · · , xn). Particularly, if q = 2, x is called a binary

sequence and xk ∈ {0, 1} for 1 ≤ k ≤ n, and if q = 4, x can be known as a

6



2.2 Coding theory 7

quaternary sequence with xk ∈ {0, 1, 2, 3} for 1 ≤ k ≤ n.

2.2 Coding theory

The different types of synchronization errors are delineated as follows.

• Deletion error(s) refer to one or multiple symbols being removed from the

original sequence. For example, the original sequence is 011001, and a bit (the

bold bit) is removed from the original sequence as

011001
deletion−−−−→ 01101

• Insertion error(s) involve the addition of one or more symbols to the original

sequence. For example, a scenario with an insertion error (shown in bold) in

the original sequence can be illustrated as

011001
insertion−−−−−→ 0101001

• Substitution error(s) occur when one or multiple symbols are replaced by one

or multiple symbols with values different from the original ones. Continuing

the previous example, a substitution error (depicted in bold) in the original

sequence is demonstrated as follows:

011001
substitution−−−−−−−→ 111001

• Transposition error(s) are known as swapping the positions of two or more

symbols with distinct values. Continuing the previous example, if there is a
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transposition error (highlighted by the bold bits) in the original sequence, it

can be depicted as

011001
transposition−−−−−−−→ 101001

The deletion or insertion error can be called the ‘indel’ error, and the ‘edit’ error

stands for the deletion, insertion, or substitution error for convenience.

Throughout the thesis, a weight wt(.) of a sequence is defined as a sum of all

nonzero elements in the sequence. In other words, for any sequence x ∈ Fn
q , the

weight of x can be expressed as

wt(x) =
n∑

k=1

xk, (2.1)

where the addition is over an integer. For example, a sequence x ∈ F10
2 as x =

(0, 1, 0, 1, 1, 0, 0, 1, 1, 1), the weight of x can be determined as

wt(x) =
10∑
k=1

xk = 0 + 1 + 0 + 1 + 1 + 0 + 0 + 1 + 1 + 1 = 6.

A run of length h in a sequence x ∈ Fn
q is defined as a maximal substring of h

identical symbols in x for 1 ≤ h ≤ n. The run vector rx of x is defined as rx =

(r1, r2, · · · , rn), where the elements rk for 1 ≤ k ≤ n denotes the run to which the

k-th bit belongs. For example, a sequence x ∈ F10
2 as x = (0, 1, 0, 1, 1, 0, 0, 1, 1, 1),

the run vector rx is determined as rx = (1, 2, 3, 4, 4, 5, 5, 6, 6, 6).

Moreover, we define r̄x = (r̄1, r̄2, · · · , r̄n) as the run-length vector of x, where the

elements r̄k stands for the length of the run to which the k-th bit belongs. For the

sequence x = (0, 1, 0, 1, 1, 0, 0, 1, 1, 1) ∈ F10
2 , the run-length vector r̄x is determined

as r̄x = (1, 1, 1, 2, 2, 2, 2, 3, 3, 3).
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2.3 Number theoretic codes

By using the number theoretic approach, deletion/insertion error correction code

designs are considered a timely topic. These codes can correct a limited number

of deletion/ insertion errors in a sequence. In this subsection, we summarize the

previous studies about deletion/insertion error correction code designs as a literature

overview.

Varshamov. et.al. [18] first introduced a number theoretic code to correct a

single deletion/insertion error. This code is known as the Varshamov-Tenengolts

(VT) code, which was the first proposed to generate asymmetric error correction

codes with syndrome calculation as shown in Definition 2.1.

Definition 2.1 ([18]). For 0 ≤ m ≤ n and n ≥ 3, the Varshamov-Tenengolts code

consists of all binary sequences x = (x1, x2, · · · , xn) of length n satisfying

V Tm(n)
∆
=

{
x ∈ Fn

2 |
n∑

k=1

k · xk ≡ m mod (n+ 1)

}
. (2.2)

Levenshtein adapted the binary VT code into an extended VT (e-VT) code

[19], whose capable of rectifying a single insertion, deletion, or substitution error by

modifying the modulo value as follows

Definition 2.2 ([19]). Given an integer 0 ≤ m ≤ 2n− 1, for n ≥ 3 and the binary

sequence x = (x1, x2, · · · , xn) of length n, the e-VT codes eV Tm(n) are defined as

eV Tm(n)
∆
=

{
x ∈ Fn

2 |
n∑

k=1

k · xk ≡ m mod 2n

}
. (2.3)

Furthermore, by employing the binary VT code, Tenengolts [20] presented a
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nonbinary single deletion or insertion correcting code, known as q-VT code for q > 2.

The q-VT code was defined as

Definition 2.3 ([20]). Let α = (α1, α2, · · · , αn) be the q-ary codeword, where

αi ∈ {0, 1, · · · , q − 1}. Let x = (x1, x2, · · · , xn) denote a binary sequence mapped

to α, where x1 can be any binary bit, as follows

xi =


1 if αi ≥ αi−1,

0 if αi < αi−1.

(2.4)

For some fixed integers m1 and m2, the q-VT codes that can correct a single deletion

or insertion error are defined as

qV T (n)
∆
=

{
α ∈ Fn

q ,x ∈ Fn
2 |

n∑
k=1

αk ≡ m1 mod q, (2.5)

n∑
k=1

(k − 1) · xk ≡ m2 mod n.

}
. (2.6)



Chapter 3

Binary code design for one

deletion and one insertion errors

3.1 Introduction

Introduced in 1965, the VT code paved the way for numerous subsequent studies

in code design. By utilizing syndrome calculation, this code could rectify single dele-

tion or insertion errors within the binary regime [18] as well as within the nonbinary

regime [20]. Shortly thereafter, based on VT codes, Levenshtein presented a code

to correct either a single deletion, insertion, or substitution error in [19] and also

constructed a code that can handle at most two adjacent deletion or insertion errors

[21]. Moreover, in [19], Levenshtein explained that any code of length n, which can

correct m deletion errors (or m insertion errors), can also correct totally m deletion

and insertion errors. Nevertheless, no specific code construction was provided to

11



3.1 Introduction 12

support this statement. Thanks to the efficiency of the VT code construction, many

attempts have been inspired to extend the VT codes to correct multiple deletion

or insertion errors. For example, array-type codewords were proposed in [22, 23]

for correcting two or more deletion/ insertion errors. By other approaches, the code

constructions in [24,25] were provided to address two deletion errors, where the codes

in [24] employed some specific substrings in a sequence and a series of constraints.

Further, based on a number of constraints or list decoding, the redundancies of the

codes in [25] were significantly improved than those in [24]. In addition, [26–28],

the authors constructed a concatenated code to correct constant m deletion errors

by using VT codes. Moreover, the authors of [29–31] proposed a number-theoretic

construction to correct multiple deletion or insertion errors by employing a gener-

alization of the Levenshtein codes. All of these studies [21–24, 26–30] focused on

binary codes to correct only one-type errors. However, our goal in this work was to

construct codes capable of correcting deletion and insertion errors that occur simul-

taneously in a codeword. Such codes have many applications in the synchronization

of information in communication and storage [14,32,33].

The channel which we consider produces received sequences whose length is the

same as the original code length. When the length of the received sequence is

not changed, it is regarded that there were no deletion or insertion errors and this

could result in missing the errors during communication or the retrieval of storage

systems. Therefore, we prioritize this issue in our code construction. Moreover,

although proof of correcting multiple deletions using the binary code was previously

given [30], reconstructing codewords is a hard problem and an efficient decoding
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algorithm has not been developed.

Motivated by the above reasons, we focus on solving the cases in which one

deletion and one insertion error simultaneously occur in a codeword, thus a novel

binary code construction that can correct one deletion and one insertion error at

any position in a codeword is proposed. The proposed code design includes three

constraints, where two first constraints are employed to isolate the possible error

values and positions. The second constraint also provides the distances between the

deletion and insertion errors. Then, the third constraint uses syndrome to verify

the positions of errors and correct the sequence. Furthermore, we also specifically

describe how our proposed code design can address one deletion and one insertion

errors at any position. Finally, the thorough decoding procedure of the proposed

code is designed for all error scenarios.

3.2 Channel Model

3.2.1 Channel model

Since the proposed code is designed to correct one deletion and one insertion

errors that occur at any position, we first find the distances between the positions

of the deletion and insertion errors. It is assumed that for any binary sequence x

of length n, the i-th bit in x is deleted; and one bit is inserted at the j-th position

in the received sequence y. We first note that the error positions, i and j, are

mutually irrelevant, which implies that the values of i and j do not affect each

other. Thus, there exist two scenarios for the relation of the position indexes i and
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Codeword

Received  sequence

(a) DaIb scenario.

Codeword

Received  sequence

(b) IaDb scenario.

Figure 3.1: Received sequence y for DaIb and IaDb scenarios.

j as 1 ≤ i < j ≤ n and 1 ≤ j < i ≤ n. In scenarios with 1 ≤ i < j ≤ n,

a deletion error occurs before an insertion error (Deletion-Insertion). Similarly, a

deletion error occurs after an insertion error (Insertion-Deletion) for 1 ≤ j < i ≤ n.

Moreover, when the position of the inserted bit in y is the same as the position of

the deleted bit in x, it means that a substitution error occurs at the j-th position in

y. By considering the substitution error as a special error scenario of the Insertion-

Deletion case, corresponding to 1 ≤ j ≤ i ≤ n, the proposed code also corrects this

substitution.

In this chapter, the error positions of a codeword x are mapped to the positions

of a received sequence. For Deletion-Insertion, when one deletion error occurs at the

i-th position of x, and one bit is inserted at the j-th position of y for 1 ≤ i < j ≤ n,

the proposed decoder will try to find the bits which were deleted at between the
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(i − 1)-th and the i-th positions and inserted at the j-th positions in the received

sequence. Similarly, for Insertion-Deletion with 1 ≤ j < i ≤ n, the insertion error

position is in the j-th index of y; and the deletion error occurs between the i-th and

the (i+ 1)-th positions in the received sequence y.

In this paper, the values of the first error and the second error are denoted as

a and b, respectively. Based on the error positions, the error scenarios are divided

into two categories as Deletion-Insertion and Insertion-Deletion, where the notations

DaIb and IaDb are used for Deletion-Insertion and Insertion-Deletion scenarios,

respectively. The received sequences y are shown in Fig. 3.1 for DaIb and IaDb

scenarios.

From Fig. 3.1, for DaIb scenarios, the i-th bit xi of x is a and deleted, and a

bit b is inserted in the j-th index in the received sequence y with i < j. Thus, the

elements yk of y is expressed via x as

yk =



xk for 1 ≤ k ≤ i− 1 and j + 1 ≤ k ≤ n,

xk+1 for i ≤ k ≤ j − 1,

b for k = j.

(3.1)

For IaDb scenarios in Fig. 3.1, a bit a is inserted in the j-th index in the received

sequence y and the i-th bit xi of x is b and deleted with j < i. The elements yk of
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Table 3.1: The eight possible scenarios when one deletion and one insertion errors

occur.

Case
Bit error values Error positions

First error a Second error b DaIb IaDb

1 0 0 D0I0 I0D0

2 0 1 D0I1 I0D1

3 1 0 D1I0 I1D0

4 1 1 D1I1 I1D1

the received sequence y are given as

yk =



xk for 1 ≤ k ≤ j − 1 and i+ 1 ≤ k ≤ n,

a for k = j,

xk−1 for j + 1 ≤ k ≤ i.

(3.2)

According to the combinations of values and orders of the two errors, eight

possible error scenarios are listed in Table 3.1. Firstly, based on the values of the

errors, Table 3.1 presents the four combinations of the values of a and b. Secondly,

based on the error positions, our method divides the error scenarios into DaIb and

IaDb.

While designing a binary code, our strategy is first to reduce the possible error

scenarios among the eight scenarios listed in Table 3.1. It is a significant step to

give information about the error values and the distance between the error positions.

Next, the values and positions of errors are determined to correct the sequence
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based on three constraints. As a result, the proposed code construction can correct

one deletion and one insertion error at any position, which will be explained in

Section 3.3.1. Detailed proof of each constraint will be given in the next sections

with Lemmas 3.1– 3.3. The decoding procedures of our code construction will be

provided in Fig. 3.2 in Section 11.

3.2.2 Preliminaries

It is assumed that a binary sequence of length n is denoted as g = (g1, g2, · · · , gn) ∈

Fn
2 . A integer sequence ug of length n is the accumulation sequence of g as ug=

(u1, u2, · · · , un), whose each element uk for 1 ≤ k ≤ n is determined as

uk =
k∑

l=1

gl, (3.3)

where the addition is also over the integer. For example, a binary sequence g with

length 10 is given as g = (0, 1, 0, 1, 1, 0, 0, 1, 1, 0) ∈ F10
2 . From the definition of ug,

u1 = g1 = 0, and u2 = g1+g2 = 0+1 = 1. According to (3.3), the element un in ug is

the same as w(g). Thus, the sequence ug is obtained as ug = (0, 1, 1, 2, 3, 3, 3, 4, 5, 5).

3.3 Code construction

In this section, we present our code construction to correct one deletion and

one insertion error and provide the functions of constraints in our code design.

Firstly, subsection 3.3.1 shows our code construction with three constraints. Then,

we present specific functions of constraints to correct one deletion and one insertion

error in the next sections.
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3.3.1 Code construction

First, we consider a positive, monotonically increasing integer sequence v of

length n, whose element vk is defined as

vk =


1 for k = 1 and k = 2,

2k − 3 for 3 ≤ k ≤ n.

(3.4)

The sequence v is used for syndrome calculation in the code construction.

Definition 3.1. Let C(n, c, d, e) ∈ Fn
2 denote the code of length n with parameters

0 ≤ c ≤ 2, 0 ≤ d ≤ 2n + 1, and 0 ≤ e < 4n− 6, which is capable of correcting one

deletion and one insertion errors. Let a sequence x ∈ C(n, c, d, e) be a codeword,

and a sequence ux = (u1, u2, · · · , un) is determined by (3.3). Then, three constraints

of the proposed code are presented as

C(n, c, d, e)
∆
=

{
x ∈ Fn

2 :wt(x) ≡ c mod 3, (3.5)

n∑
k=1

uk ≡ d mod (2n+ 2), (3.6)

n∑
k=1

vkxk ≡ e mod (4n− 5)

}
. (3.7)

For example, for n = 20, c = 0, d = 0, and e = 0, x =(0,0,0,0,0,0,1,0,1,0,0,1,0,0,0,0,

1,0,1,1) is a codeword of C(20, 0, 0, 0), since w(x) mod 3 = 0 and from (3.3), the

accumulation sequence ux of x as ux= (0,0,0,0,0,0,1,1,2,2,2,3,3,3,3,3,4,4,5,6), and∑20
k=1 uk mod 42 = 0. In addition, with the coefficients vk determined in (3.4), the

syndrome of x as
∑20

k=1 vkxk mod 75 = 0.
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The two constraints in (3.5) and (3.6) are employed to categorize the error sce-

narios with different positions and values of error pairs as DaIb or IaDb, as listed

in Table 3.1. Furthermore, from constraint (3.6), the distance between the deletion

and insertion error positions can be obtained. Based on this distance and the esti-

mated values of the errors, we can compute feasible combinations of the positions of

the errors. The constraint (3.7) is designed to determine the positions of the deleted

and inserted bits filtered by constraints (3.5) and (3.6) and to recover codewords.

Specific explanations of the three constraints of the proposed code construction are

described in the next subsections.

3.3.2 Roles of constraint (3.5)

As mentioned in Section 3.3.1, we first reduce the possible scenarios among the

eight scenarios in Table 3.1 according to constraints (3.5) and (3.6). In addition,

constraints (3.5) and (3.6) give some potential combinations of the values and posi-

tions of the errors. However, if we know that Deletion-Insertion DaIb or Insertion-

Deletion IaDb occurs, the constraints (3.5) and (3.6) can distinguish four scenarios

of the error values in each case. In this subsection, we provide detailed descriptions

of constraint (3.5) in our code construction.

Let a sequence y ∈ Fn
2 be generated by deleting one bit and inserting one bit

from a codeword x ∈ C(n, c, d, e). Thus, from y, a sequence uy = (u′
1, u

′
2, · · · , u′

n)

is obtained by (3.3). The first step to decode the original codeword is to calculate
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three parameters c′, d′, and e′ as

c′ ≡ wt(y) mod 3, (3.8)

d′ ≡
n∑

k=1

u′
k mod (2n+ 2), (3.9)

e′ ≡
n∑

k=1

vkyk mod (4n− 5), (3.10)

where the coefficients vk in (3.10) are the same as those in (3.4). Since a decoder

knows exact parameters, c, d, and e, the second step is to calculate the difference

between parameters as

∆c ≡ c− c′ mod 3, (3.11)

∆d ≡ d− d′ mod (2n+ 2), (3.12)

∆e ≡ e− e′ mod (4n− 5). (3.13)

Regardless of the error positions, deletion and insertion errors can affect the

weight of a sequence, as shown in Table 3.2. Since the weight difference belongs to

{−1, 0, 1} in Table 3.2, the modulo value in the constraint (3.5) was chosen to be 3.

The values of ∆c in (3.11) for four cases are calculated as ∆c ∈ {0, 1, 2} in Table 3.2.

If ∆c is calculated as ∆c = 2, which corresponds to Case 2 then the decoder knows

that the deleted and inserted bits are 0 and 1, respectively. Similarly, if ∆c = 1,

the deleted and inserted bits are 1 and 0, respectively. However, if ∆c = 0, Case 1

(D0I0, I0D0) or Case 4 (D1I1, I1D1) can be an answer, and more constraints are

needed to distinguish between Case 1 and Case 4.
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Table 3.2: Weight difference ∆c for error scenarios.

Cases Deleted bit Inserted bit Scenario c− c′ ∆c

1 0 0 D0I0, I0D0 0 0

2 0 1 D0I1, I1D0 -1 2

3 1 0 D1I0, I0D1 1 1

4 1 1 D1I1, I1D1 0 0

3.3.3 Roles of constraint (3.6)

In this subsection, we first explain the necessary parameters of constraint (3.6).

Because of similarity, we present only a specific decoding process for DaIb; and then

shortly explain the other part for IaDb.

It is assumed that the error scenarios DaIb occur. According to (3.1) and error

positions, ux can be represented via uy = (u′
1, u

′
2, · · · , u′

n) for DaIb as

uk =



u′
k for 1 ≤ k ≤ i− 1,

u′
k−1 + a for i ≤ k ≤ j,

u′
k + a− b for j + 1 ≤ k ≤ n.

(3.14)

For example, when n is 10 and the sequence x = (1, 0, 0, 0, 1, 1, 0, 0, 0, 0) ∈ F10
2

is transmitted, then the sequence ux of length 10 is obtained from x as ux =

(1, 1, 1, 1, 2, 3, 3, 3, 3, 3). It is assumed that a received sequence y = (1, 0, 0, 1, 0, 1, 0,

0, 0, 0) ∈ F10
2 , where ‘ ’ and ‘0’ represent the deletion and insertion error, respectively.

This means that the sequence y is obtained by deleting bit 0 in the third position

and inserting bit 0 in the fifth position in y, which corresponds to Deletion-Insertion
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DaIb with (a, b) = (0, 0). Based on the sequence y = (1, 0, 0, 1, 0, 1, 0, 0, 0, 0) ∈ F10
2 ,

uy is determined as uy = (1, 1, 1, 2, 2, 3, 3, 3, 3, 3). From (3.14), the elements in ux

can be rewritten as

uk =



u′
k for 1 ≤ k ≤ 2,

u′
k−1 for 3 ≤ k ≤ 5,

u′
k for 6 ≤ k ≤ 10.

(3.15)

To present the role of constraint (3.6), Lemmas 3.1 and 3.2 prove that the differ-

ence between the accumulation sequences ux and uy is always smaller than 2n+ 2,

then 2n+ 2 is used as the modulo value of constraint (3.6). From the definitions of

d, d′, and ∆d,∆d can be represented as ∆d ≡
∑n

k=1 (uk − u′
k) mod (2n+ 2).

Lemma 3.1. Let y be a sequence of length n by deleting the i-th bit xi of x is a

and deleted and a bit b is inserted in the j-th index in y for 1 ≤ i < j ≤ n, which

stands for Deletion-Insertion DaIb. Then, the difference between the accumulation

sequences ux and uy is bounded as∣∣∣∣ n∑
k=1

(uk − u′
k)

∣∣∣∣ < 2n+ 2. (3.16)

Proof. Based on (3.14) and the sum of element difference between ux and uy for
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1 ≤ i < j ≤ n,
∑n

k=1 (uk − u′
k) in (3.16) can be represented as∑n

k=1
(uk − u′

k) =
∑i−1

k=1
(uk − u′

k) +
∑j

k=i
(uk − u′

k) +
∑n

k=j+1
(uk − u′

k)

=
∑i−1

k=1
0 +

∑j

k=i
(uk−1 + a− u′

k) +
∑n

k=j+1
(a− b)

=
∑j

k=i
(u′

k−1 − u′
k) +

∑j

k=i
a+ (n− j)(a− b)

=u′
i−1 − u′

j + (n− i+ 1)a− (n− j)b

=u′
i−1 − u′

j +R, (3.17)

where R = (n− i+ 1) a− (n− j) b. According to binary values, a and b, R can be

given as

R =



0 for a = 0, b = 0,

n− i+ 1 for a = 1, b = 0,

−n+ j for a = 0, b = 1,

j − i+ 1 for a = 1, b = 1.

(3.18)

Since 1 ≤ i < j ≤ n, R is bounded as

−n+ j ≤ R ≤ n− i+ 1. (3.19)

Since u′
i−1 and u′

j are bounded by 0 ≤ u′
i−1 ≤ i− 1 and 0 ≤ u′

j ≤ j, respectively, the

term u′
i−1 − u′

j in (3.17) is asymptotically expressed as

−j ≤ u′
i−1 − u′

j ≤ i− 1. (3.20)

Based on (3.19) and (3.20), (3.17) is bounded by the following

−j − n+ j ≤ u′
i−1 − u′

j +R ≤ i− 1 + n− i+ 1. (3.21)

−n ≤ u′
i−1 − u′

j +R ≤ n. (3.22)
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Since −n ≤
∑n

k=1 (uk − u′
k) ≤ n and |

∑n
k=1 (uk − u′

k)| < 2n + 2, (3.16) is satisfied.

Similarly, Lemma 3.2 shows a short explanation of the constraint (3.6) in Insertion-

Deletion IaDb.

Lemma 3.2. Let y be a sequence of length n inserting a bit a at the j-th index in

y and deleting the i-th bit as b of x for 1 ≤ j < i ≤ n, which stands for Insertion-

Deletion IaDb. Then, the difference between the accumulation sequences ux and uy

has a bound as below ∣∣∣∣∑n

k=1
(uk − u′

k)

∣∣∣∣ < 2n+ 2. (3.23)

Proof. For Insertion-Deletion IaDb, the elements of ux can be expressed via uy as

uk =



u′
k for 1 ≤ k ≤ j − 1,

u′
k+1 − a for j ≤ k ≤ i− 1,

u′
k − a+ b for i ≤ k ≤ n.

(3.24)

From (3.24),
∑n

k=1(uk − u′
k) can be represented by

n∑
k=1

(uk − u′
k) =

j−1∑
k=1

(uk − u′
k) +

i−1∑
k=j

(uk − u′
k) +

n∑
k=i

(uk − u′
k)

=u′
i − u′

j − (n− j + 1)a+ (n− i+ 1)b. (3.25)

Based on (3.25), the proof steps are similar to Lemma 3.1 with 1 ≤ j ≤ i ≤ n, and

the result is −n ≤
∑n

k=1(uk − u′
k) ≤ n. Therefore, |

∑n
k=1(uk − u′

k)| < 2n + 2 and

(3.23) is satisfied.
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3.3.4 Determining error scenarios based on constraints (3.5)

and (3.6)

In this subsection, we present how to determine the error scenarios by using

constraints (3.5) and (3.6). Cases 1 and 4 in Table 3.2 are distinguished by constraint

(3.6), and Cases 2 and 3 are also distinguished by combining constraints (3.5) and

(3.6).

To distinguish Cases 1 and 4, we use a threshold value of ∆d as n + 1 = n + 1.

For DaIb, Case 1 (D0I0) and Case 4 (D1I1) can be distinguished by ∆d and n+ 1

as shown below

1. D0I0 with (a, b) = (0, 0):

From (3.17) and (3.18), the term
∑n

k=1(uk − u′
k) in ∆d for D0I0 is expressed

as

n∑
k=1

(uk − u′
k) = u′

i−1 − u′
j. (3.26)

From 1 ≤ i < j ≤ n, u′
i−1 − u′

j in (3.26) is bounded by

−j ≤ u′
i−1 − u′

j ≤ 0. (3.27)

However, u′
i−1 − u′

j can be zero when the bits in the (i − 1)-th and the j-th

positions are zeros and belong to the same run. Then, the received sequence

y is the same as x. Thus, it can be regarded that no error occurs. Therefore,

for y ̸= x, since u′
j is always larger than u′

i−1, the bound (3.27) is modified as

−j ≤ u′
i−1 − u′

j < 0. (3.28)
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Table 3.3: Values of ∆c and ∆d for eight error scenarios.

Error scenario ∆c ∆d

D0I0 0 ∆d = u′
i−1 − u′

j + 2n+ 2 ≥ n+ 1

D0I1 2 ∆d = u′
i−1 − u′

j + n+ j + 2 ≥ n+ 1

D1I0 1 ∆d = u′
i−1 − u′

j + n− i+ 1 < n+ 1

D1I1 0 ∆d = u′
i−1 − u′

j + j − i+ 1 < n+ 1

I0D0 0 ∆d = u′
i − u′

j < n+ 1

I0D1 1 ∆d = u′
i − u′

j + n− i+ 1 < n+ 1

I1D0 2 ∆d = u′
i − u′

j + j + n+ 1 ≥ n+ 1

I1D1 0 ∆d = u′
i − u′

j + j − i+ 2n+ 2 ≥ n+ 1

From the definition of ∆d in (3.12) and (3.28), ∆d of D0I0 can be determined

as

∆d ≡
(
u′
i−1 − u′

j

)
mod (2n+ 2) = u′

i−1 − u′
j + 2n+ 2. (3.29)

Therefore, ∆d in (3.29) is lower bounded as

∆d ≥ −j + 2n+ 2 ≥ −n+ 2n+ 2 = n+ 2 > n+ 1. (3.30)

2. D1I1 with (a, b) = (1, 1):

From (3.17) and (3.18), the term
∑n

k=1(uk − u′
k) in ∆d for D1I1 is expressed

as

n∑
k=1

(uk − u′
k) = u′

i−1 − u′
j + j − i+ 1. (3.31)
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Table 3.4: Error scenarios according to ∆c and ∆d.

∆c ∆d Error scenario

1 ∆d < ⌈2n+2/2⌉ D1I0, I0D1

2 ∆d ≥ ⌈2n+2/2⌉ D0I1, I1D0

0
∆d < ⌈2n+2/2⌉ I0D0, D1I1

∆d ≥ ⌈2n+2/2⌉ I1D1, D0I0

Based on (3.20), (3.31) can be asymptotically expressed by

−j + j − i+ 1 ≤ u′
i−1 − u′

j + j − i+ 1 ≤ i− 1 + j − i+ 1,

1− i ≤ u′
i−1 − u′

j + j − i+ 1 ≤ j. (3.32)

Since u′
i−1 − u′

j is not larger than j − i + 1 and j ≤ n, the bound (3.32) is

expressed as

0 ≤ u′
i−1 − u′

j + j − i+ 1 ≤ n. (3.33)

From (3.33), ∆d of D1I1 is ∆d = u′
i−1 − u′

j + j − i+ 1 and is bounded by

0 ≤ ∆d < n+ 1. (3.34)

From (3.30) and (3.34), in DaIb, if ∆c = 0 and ∆d ≥ n + 1, the decoder knows

that the deleted and inserted bits are zeros, corresponding to Case 1 (D0I0). When

∆c = 0 and ∆d < n+1, the deleted and inserted bits are ones, corresponding to Case

4 (D1I1). Therefore, if we know DaIb occurs, four scenarios, D0I0, D0I1, D1I0,

and D1I1, can be distinguished by the constraints (3.5) and (3.6).



3.3 Code construction 28

The values of ∆c and ∆d for the eight error scenarios are listed in Table 3.3. The

values of ∆d for DaIb and for IaDb are given by (3.17) and (3.25), respectively. The

relationship between ∆d and the threshold value n+1 is considered to be similar to

the cases of D0I0 and D1I1.

For decoding, according to ∆c and ∆d, the error scenarios are determined and

summarized in Table 3.4. From Table 3.4, the decoder knows that D1I0 or I0D1

errors occur if ∆c = 1, but it cannot be distinguished by these two constraints of ∆c

and ∆d. Similarly, the scenario D0I1 or I1D0 can be also acknowledged if ∆c = 2

but it cannot distinguish each error scenario exactly. When ∆c = 0 and ∆d ≥ n+1,

two scenarios, D0I0 and I1D1, are found but cannot be distinguished by these two

constraints. Similarly, when ∆c = 0 and ∆d < n+1, two scenarios, D1I1 and I0D0,

are also isolated but cannot be determined exactly by using these two constraints.

Therefore, we provide constraint (3.7) not only to distinguish ∆c = 0 cases but also

to find the positions of the errors.

3.3.5 Roles of constraint (3.7)

As mentioned in Section 3.3.1, the last constraint (3.7) in the proposed code

construction, whose coefficients vk given by (3.4), is employed to validate the exact

values and positions of the errors. From the definition (3.4) of v, the coefficients vk

are non-negative and increasing for all k ≥ 1. Due to these characteristics of v and

distances for DaIb and IaDb, the possible indexes for the error values and positions

result in different syndromes e are determined by the constraint (3.7). Therefore,

the constraint (3.7) can confirm only one recovered sequence. The detailed proof
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will be explained in Section 11. The following lemma gives a necessary parameter

for the constraint (3.7).

Lemma 3.3. Let x and y be a transmitted codeword in C(n, c, d, e) and a received

sequence of length n by deleting a bit and inserting a bit in x, respectively. Then,

according to vector v in (3.4), the difference of syndromes in (3.7) of x and y can

be bounded as ∣∣∣∣ n∑
k=1

vk(xk − yk)

∣∣∣∣ < 4n− 5. (3.35)

Proof. For DaIb case, from (1), the syndrome difference of x and y is presented as

n∑
k=1

vk(xk − yk) =
i−1∑
k=1

vk(xk − yk) +

j−1∑
k=i

vk(xk − yk) +
n∑

k=j

vk(xk − yk)

=0 +

j−1∑
k=i

vk(xk − xk+1) + vj(xj − b) + 0

=vixi − vjb+

j∑
k=i+1

xk(vk − vk−1). (3.36)

The term vixi − vjb in (3.36) has bounds as

−vj ≤ vixi − vjb ≤ vi. (3.37)

From (3.4), the term
∑j

k=i+1 xk(vk − vk−1) in (3.36) has bounds as

0 ≤
j∑

k=i+1

xk(vk − vk−1) ≤
j∑

k=i+1

(vk − vk−1). (3.38)

Since
∑j

k=i+1(vk − vk−1) in (3.38) is vj − vi, from (3.37) and 1 ≤ i < j ≤ n, the

bounds of (3.36) is derived as

−vn ≤
n∑

k=1

vk(xk − yk) ≤ vn.
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Figure 3.2: The overall decoding procedure of the proposed code.

Thus,

∣∣∣∣∑n
k=1 vk(xk − yk)

∣∣∣∣ < 2vn + 1.

For IaDb case, based on (3.2), the syndrome difference of x and y is presented

as

n∑
k=1

vk(xk − yk) =

j−1∑
k=1

vk(xk − yk) +
i∑

k=j

vk(xk − yk) +
n∑

k=i+1

vk(xk − yk)

= vixi − vja−
i−1∑
k=j

xk(vk+1 − vk).

By using a similar method as (3.37) and (3.38), for IaDb case

∣∣∣∣∑n
k=1 vk (xk − yk)

∣∣∣∣ <
2vn+1. Moreover, from the definition (3.4) of v, when k = n, the value of vn = 2n−3,

leading to 2vn + 1 = 4n− 5. Therefore, (3.35) is always satisfied.

It is presented to validate the exact values and positions of deletion and insertion

errors using the constraint (3.7) in Section 11.
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3.4 Overall decoding procedure

In this subsection, we present the decoding procedure of the proposed code based

on our strategy described in Section 3.3.1. As mentioned in Section 3, the first step

in our strategy is to use ∆c and ∆d values to determine the error scenarios based on

Table 3.4. Then, based on the error values and ∆d in the third column of Table 3.3,

the possible pairs of the error positions can be obtained. Finally, the constraint

(3.7) verifies the error positions to correct the sequence.

The overall decoding procedure of the proposed code is shown in Fig. 3.2. From

the received sequence y and the code parameters, the decoder first determines uy,

∆c, ∆d, and ∆e in (3.11)–(3.13). Then, if the ∆c, ∆d, and ∆e values are zero, y is

regarded as x. If not, the decoder traces the error values a and b based on ∆c and ∆d,

then finds the error positions, and the corrected sequence z is produced. Based on

Table 3.4, if ∆c = 1 the decoder knows thatD1I0 or I0D1 scenarios occur. Similarly,

if ∆c = 2, we can infer that D0I1 or I1D0 scenarios occur. Thus, when ∆c = 1

or ∆c = 2, the decoder uses the ∆c value to isolate two error scenarios among four

error scenarios, I1D0, D1I0, I0D1, and D0I1. The next step DEC.A is described

in Fig. 3.2, where two decoding algorithms, Algorithm 1 and Algorithm 2, are

used simultaneously for DaIb and IaDb, respectively. Moreover, when ∆c = 0, the

∆d value is considered to isolate four scenarios, D0I0, D1I1, I0D0, and I1D1. If

∆c = 0 and ∆d ≥ n + 1, we know that two scenarios, D0I0 and I1D1, can occur,

but cannot determine one of them exactly. Similarly, if ∆c = 0 and ∆d < n+1, two

scenarios, D1I1 and I0D0 can occur, but also cannot be distinguished yet. Then,
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in DEC.A, Algorithm 1 for D0I0 and Algorithm 2 for I1D1 or Algorithm 1

for D1I1 and Algorithm 2 for I0D0 are employed.

3.4.1 Reducing candidates of error positions in Algorithms 1

and 2

After determining the error scenarios, the constraint (3.6) provides the distances

between the error positions for decoding. According to the accumulated character-

istic of u in (3.3), the error positions can be inferred via uk. Thus, u′
i−1 − u′

j and

u′
i−u′

j present the distances between the deletion and insertion errors in uy and are

expressed via n, ∆d, and the error positions i and j in the third column of Table 3.3.

For decoding, the value u′
j is first considered to find candidates of the insertion error

position in the received sequence y. Then, from the distances in Table 3.3, the u′
i−1

or u′
i values are obtained to estimate the deletion error position. Thus, based on

these distances and error values, we can isolate possible candidates for the error

positions in the sequence.

When errors occur in runs of length one, the candidates for the error positions

should be always considered. However, if errors occur in runs with lengths larger

than one, the candidates of the error positions can be reduced to design effective

decoding, and the received sequence is still corrected successfully. Before explaining

how to get the candidates for the error positions, we provide necessary lemmas to

reduce the candidates for the error positions.

Lemma 3.4. For DaIb, it is supposed that the distance between the previous bit of
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the deleted bit a as the (l− 1)-th bit and the inserted bit b at the m-th position in a

received sequence y satisfies the condition for ∆d in (3.12). It is also assumed that

the run length of the m-th bit in y is larger than one. When mk stands for indexes

belonging to the run of the m-th bit in y, the candidates at the run of the m-th bit

in y can be reduced as one candidate.

Proof. It is assumed that the run-length of the m-th bit in y is rm and the indexes

belonging to the run of the m-th bit are expressed as m = (m1,m1 + 1, · · · ,m1 +

rm − 1). This means that the index m1 is the first index of the run of the m-th bit.

Let mk be any element in m.

For D0I0, from Table 3.3, the distances u′
l−1 − u′

mk
for m1 ≤ mk ≤ m1 + rm − 1

are given as

u′
l−1 − u′

mk
= ∆d − 2n− 2. (3.39)

Since b = 0, the run m in y is all zeros, and from (3.3), u′
mk

for all mk in m are the

same. Thus, the values u′
l−1 − u′

mk
in (3.39) are same for all mk in m. This means

that the multiple candidates in m, which are the same distance, can be reduced to

one candidate.

For D0I1, from Table 3.3, the distances u′
l−1 − u′

mk
are expressed as

u′
l−1 − u′

mk
= ∆d − n−mk − 2. (3.40)

Since b = 1, the run at m in y consists of all ones, and from (3.3), the values u′
mk

increase by one for all mk in m. Then, the values of u′
l−1−u′

mk
in (3.40) decrease by

one for all mk in m. However, the u′
l−1 values to estimate the deletion error position
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l are the same for all mk in m, and the insertion bit belongs to the run at m. Then,

the insertion error can be removed by deleting a bit in any position in the run. This

means that the multiple candidates in m can be reduced to one candidate.

For D1I0, from Table 3.3, u′
l−1−u′

mk
for m1 ≤ mk ≤ m1+rm−1 are determined

as

u′
l−1 − u′

mk
= ∆d − n+ l − 1. (3.41)

Similar to D0I0 scenario, the u′
mk

values for all mk in m are same. Then, the values

of u′
l−1 − u′

mk
in (3.41) are the same for all mk in m. Thus, the multiple candidates

in m, which have the same distance, can be reduced to one candidate.

For D1I1, from Table 3.3, the distances u′
l−1 − u′

mk
are formulated as

u′
l−1 − u′

mk
= ∆d + l −mk − 1. (3.42)

Similar to scenario D0I1, the values u′
mk

increase by one for all mk in m. Then, the

terms u′
l−1 − u′

mk
in (3.42) decrease by one for all mk in m. Therefore, the multiple

candidates in m can be reduced to one candidate.

From Lemma 3.4, for the DaIb scenarios, the multiple candidates in the run of

the m-th bit can be reduced to one candidate. Thus, among the multiple candidates,

the first element at the run of the m-th bit is only considered. In this case, the

first element sometimes cannot reveal the actual insertion error position when the

insertion error occurs at the second or later bits in the run. Even though the

insertion error occurs at the second or later bits, the insertion error can be recovered

by deleting the first bit of the run. Therefore, considering the first bit of the run of

the m-th bit is enough to correct the insertion bit.
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Lemma 3.5. For DaIb, assuming that the distance between the previous bit of the

deleted bit a as the (l − 1)-th bit and the inserted bit b at the m-th position in a

received sequence y satisfies the condition on ∆d in (3.12). It is assumed that the

(l− 1)-th bit or the l-th bit in y is a. Then, when lk stands for indexes belonging to

the run of the (l− 1)-th bit of value a or the l-th bit of value a in y, the candidates

at the run of the (l − 1)-th bit or the l-th bit can be reduced as one candidate.

Proof. See Appendix A.1.

From Lemma 3.5, for the DaIb scenarios, the multiple candidates in the run of

the (l− 1)-th bit a or the l-th bit a can be reduced as one candidate. Thus, among

the multiple candidates, the first element at the run of the (l−1)-th bit a or the l-th

bit a is only considered. Similar to the insertion error case in Lemma 3.4, though the

deletion error occurs at the second or later bits, the deletion error can be recovered

by adding the first bit of the run. Therefore, considering the first bit of the run of

the (l − 1)-th bit a or the l-th bit a is enough to correct the deletion bit.

Lemma 3.6. For DaIb, let a sequence y of length n be a received sequence by

deleting the l-th bit a in a codeword x and inserting the m-th bit b in y. It is

assumed that the (l−1)-th bit or the l-th bit in y is a and the run length of the m-th

bit in y is larger than one. Then, when the lk and mh stand for indexes belonging to

runs of the (l−1)-th bit a or the l-th bit a and runs of the m-th bit in y, respectively,

the candidates at the run of the m-th bit b and at the run of the (l − 1)-th bit a or

the l-th bit a in y can be reduced as one candidate.

Proof. From Lemmas 3.4 and 3.5, it is clear that when lk and mh represent the
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indexes belonging to runs of the (l − 1)-th bit a or the l-th bit a and runs of the

m-th bit in y, respectively, the candidates of error positions can be reduced as one

candidate.

Therefore, when decoding scenarios DaIb, the candidates of error positions can

be reduced by choosing the first indexes of the runs whose run-length is more than

one.

Lemma 3.7. For IaDb, let a sequence y of length n be a received sequence by

inserting the m-th bit a and deleting the l-th bit b in a codeword x. It is assumed

that the run length of the m-th bit in y is larger than one and the l-th bit or the

(l + 1)-th bit in y is b. Then, when mh and lk stand for indexes belonging to the

runs of the m-th bit and the runs of the l-th bit of value b or the (l + 1)-th bit of

value b in y, respectively, the candidates at the run of the m-th bit a and at the run

of the l-th bit b or the (l + 1)-th bit b in y can be reduced as one candidate.

Proof. Due to the similarity to Lemmas 3.4–3.6, the specific steps for this proof

are omitted. Thus, when mh and lk stand for indexes belonging to the runs of

the m-th bit and the runs of the l-th bit of value b or the (l + 1)-th bit of value

b in y, respectively, the candidates of the error positions can be reduced as one

candidate.

Therefore, when decoding IaDb scenarios, the candidates of the error positions

can be reduced by choosing the first indexes of the runs whose run-length is larger

than one.



3.4 Overall decoding procedure 37

3.4.2 Finding candidates of error positions and correcting

the sequence in Algorithms 1 and 2

In this subsection, the steps to find the candidates for the error positions are

provided as follows

For DaIb, from Lemmas 3.4–3.6, the candidates for the insertion position j are

determined as

Sb = {m | ym = b, ym−1 ̸= b, for 2 ≤ m ≤ n}. (3.43)

For the elements m in Sb, the u
′
m values are elements in uy corresponding to candi-

datesm of the insertion position j. Then, the decoder finds a set Tm, whose elements

l are the candidates for i. The set Tm is determined by the values of u′
i−1 and u′

j in

Table 3.3 and Lemmas 3.5 and 3.6, where u′
m and u′

l−1 in Lemmas 3.5 and 3.6 stand

for u′
j and u′

i−1 in Table 3.3, respectively. The set Tm is shown to be

Tm = {l | u′
l−1 = ∆d + (n+ l + 1)a+ (n−m)b− 2n− 2 + u′

m,

yl−1 ̸= a, and l < m}. (3.44)

Then, a whole candidate set S is defined as

S = {(l,m) | m ∈ Sb, l ∈ Tm}. (3.45)

Among all of the elements in S, Algorithm 1 can find the solutions to satisfy the

constraint (3.7).

Similarly, from Lemma 3.7 for IaDb, an index set Sa in y, which are candidates
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for the insertion position j is expressed as

Sa = {m | ym = a, ym−1 ̸= a, for 1 ≤ m ≤ n− 1}. (3.46)

For all elements m in Sa, the decoder finds a set Tm, whose elements are candidates

for the deletion position i and these candidates are determined via u′
l. The set Tm

including candidates l of the deletion position is given based on Lemma 3.7 as

Tm = {l | u′
l = ∆d − (n+m+ 1)a− (n− l + 1)b+ u′

m, yl ̸= b, and l ≥ m}. (3.47)

Then, a whole candidate set S can be defined by

S = {(l,m) | m ∈ Sa, l ∈ Tm}. (3.48)

Among all of the elements in S, Algorithm 2 can find the solutions to satisfy the

constraint (3.7).

After finding the candidates of error positions, Algorithm 1 and Algorithm 2

for DaIb and for IaDb are provided, respectively. After determining candidates of

the error positions, two decoding algorithms correct a sequence by using constraint

(3.7). If a sequence z which is recovered from a candidate pair of error positions has

syndrome e′′ equals to e, (∆e = e′′− e mod (4n− 5) = 0), the decoding is successful

and the reconstructed sequence is z.

When z is a generated sequence from the exact error positions (i, j) in the

received sequence y, the sequence z should be the same with the codeword x, and

satisfy ∆e = 0. However, the candidate sets S in (3.45) and (3.48) are chosen as the

first indexes of the runs according to Lemmas 3.4–3.7. Therefore, we have to check
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if the codeword z generated from the first bits of the runs of the i-th bit and the

j-th bit still satisfies ∆e = 0 in the following lemmas.

Lemma 3.8. For DaIb, when the i-th bit is deleted and a bit b is inserted at the

j-th bit in the received sequence y, then the sequence z that is reconstructed from

(l,m), where l and m are the first indexes at the runs of the i-th bit and the j-th bit

in (3.43) and (3.44), respectively, satisfies ∆e = 0.

Proof. From Lemmas 3.4–3.6 and the definition of the candidate set S in (3.45),

since the first indexes at the run of the inserted bit b are included in S, the first

index m at the run of the exact insertion position j is included in S. And since the

first indexes at the run of the deleted bit a are elements in S, the first index l at

the run of the exact deletion position i is included in S.

It is supposed that a reconstructed z is generated from the first indexes (l,m)

and the run-length of the i-th bit and the j-th bit in z are ri and rj, respectively to

find the original codeword x = (x1, x2, · · · , xn). This means that l ≤ i ≤ l + ri − 1

and m ≤ j ≤ m+ rj − 1. The syndrome e′′z of z can be calculated as

e′′z ≡
n∑

k=1

vkzk mod (4n− 5)

=

( l−1∑
k=1

vkzk +

l+ri−1∑
k=l

vkzk +
m−1∑

k=l+ri

vkzk +

m+rj−1∑
k=m

vkzk +
n∑

k=m+rj

vkzk

)
mod (4n− 5).

(3.49)

Since all elements zk for 1 ≤ k ≤ l − 1, l + ri ≤ k ≤ m, and m + ri ≤ k ≤ n are

the same as with the codeword bit xk, the three terms
∑l−1

k=1 vkzk,
∑m−1

k=l+ri
vkzk, and∑n

k=m+rj
vkzk in (3.49) are the same as

∑l−1
k=1 vkxk,

∑m−1
k=l+ri

vkxk, and
∑n

k=m+rj
vkxk,
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respectively. Since the deletion position i is between l and l + ri − 1 and in the

same run, the subsequence (z′l, z
′
l+1, · · · , z′l+ri−1) is recovered by inserting a bit a

at the index i of the run of length ri as (a, a, · · · , a) and this run is the same

as (xl, xl+1, · · · , xl+ri−1). By inserting a bit a at the index l, we can obtain the

subsequence (zl, zl+1, · · · , zl+ri−1) as (a, a, · · · , a) of length ri. This means that

the subsequence (zl, zl+1, · · · , zl+ri−1) is the same with (xl, xl+1, · · · , xl+ri−1) and∑l+ri−1
k=l vkzk =

∑l+ri−1
k=l vkxk. Similarly, for the insertion part,

∑m+rj−1
k=m vkzk =∑m+rj−1

k=m vkxk. Therefore, since
∑n

k=1 vkzk =
∑n

k=1 vkxk, the syndrome e′′z in (3.49)

is the same as e of x and ∆e = 0.

Lemma 3.9. For IaDb, when a bit a is inserted in the j-th index of y, and deletion

error occurs between the i-th and the (i + 1)-th positions in the received sequence

y, a sequence z that is reconstructed from (l,m). The elements l and m are the

first indexes at the runs of the deleted bit and the inserted bit in (3.46) and (3.47),

respectively, satisfying ∆e = 0.

Proof. See Appendix A.2

The inputs of Algorithm 1 are the error values a and b, parameters ∆c,∆d,∆e,

y ∈ Fn
2 , and uy. In Algorithm 1, the decoder finds an index set Sb according to

(3.43), where each element of Sb is a candidate to estimate the insertion position j.

For each element m in Sb, depending on the deletion value a, the decoder finds a set

Tm by (3.44), whose elements l are candidates for i. Then, a set S comprises pairs

of candidates m for j and candidates l for i. For each pair (p, q) of S, a sequence

of length n as Temp y is obtained by removing the q-th bit and adding a bit with
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Algorithm 1: Correcting sequence for DaIb

Input: y,uy, n, a, b, d, c, e,∆c,∆d,∆e, i < j.

Output: Correct sequence z,∆e.

1 Find a set Sb according to (3.43).

2 for all m ∈ Sb do

3 Find a set Tm ̸= ∅ according to (3.44).

4 Create a set S according to (3.45).

5 for all (p, q) ∈ S do

6 Temp y = (y1, · · · , yp−1, a, yp, · · · , yq−1, yq+1, · · · , yn).

7 e′′ =
∑n

k=1 vky
′
k mod (4n− 5) with y′k ∈ Temp y.

8 if e′′ ̸= e then

9 goto line 5.

10 else

11 z = Temp y,∆e = 0; stop.

the a value in the p-th position in y. To correct the sequence with error positions

(p, q), the syndrome e′′ of Temp y is calculated as in line 7 in Algorithm 1, and

compared to e in (3.7). If e′′ and e are not equal, the next pair of (p, q) in S needs

to be checked. If e′′ equals e, a sequence z is recovered from y as z = Temp y,

∆e is updated as zero, and the algorithm is finished. Therefore, the final output of

Algorithm 1 is the reconstructed sequence z.

Due to the similarity of the approaches to Algorithm 1, the descriptions for

the procedure of Algorithm 2 are omitted.
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We note that Algorithms 1 and 2 are designed to produce a unique sequence

z from the received sequence y, which corresponds to the codeword x. Since from

Lemmas 3.8 and 3.9, there is always an element in S to satisfy ∆e = 0, we need

to check whether two algorithms produce only one solution or not. However, the

‘stop’ at line 11 in the two algorithms seems to stop the algorithms and to find

the first solution even though there are multiple solutions to satisfy ∆e = 0. In

this case, the two algorithms cannot recover the codeword x. Therefore, we need to

investigate that two algorithms without ‘stop’ produce a unique solution and the

proof of unique decoding will be explained in the next subsection. The ‘stop’ in the

two algorithms infers that the first solution is always the same as x and it is not

necessary to search the other candidates in S.

3.4.3 Unique correct sequence of Algorithms 1 and 2

In this subsection, we discuss that the overall decoding is uniquely decodable,

which means that the proposed decoder produces only one correct codeword from

the received sequence. It also means that other error positions that are not in the

runs and generate a sequence satisfying ∆e = 0 from y do not exist. Therefore, the

term ‘stop’ in the two algorithms is temporally removed and the whole solutions

for the error positions are searched to check the number of correct sequences.

The following theorems show that Algorithms 1 and 2 without ‘stop’ provide

a unique correct sequence. To explain Theorems 3.1 and 3.2, we first present the

following two lemmas.
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Algorithm 2: Correcting sequence for IaDb

Input: y,uy, n, a, b, d, c, e,∆c,∆d,∆e, j ≤ i.

Output: Correct sequence z,∆e.

1 Find a set Sa according to (3.46).

2 for all m ∈ Sa do

3 Find a set Tm ̸= ∅ according to (3.47).

4 Create a set S according to (3.48).

5 for all (p, q) ∈ S do

6 Temp y = (y1, · · · , yq−1, yq+1, · · · , yp, b, yp+1, · · · , yn).

7 e′′ =
∑n

k=1 vky
′
k mod (4n− 5) with y′k ∈ Temp y.

8 if e′′ ̸= e then

9 goto line 5.

10 else

11 z = Temp y,∆e = 0; stop.

Lemma 3.10. For a sequence y of length n, a partial sum
∑q

k=p+1 vk(yk − yk−1)

with 1 < p < q ≤ n is conditioned as

q∑
k=p+1

vk(yk − yk−1) mod (4n− 5) ̸= 0. (3.50)

Proof. See Appendix A.3.

Lemma 3.11. For a sequence y of length n, a partial sum
∑q

k=p+1 vk(yk−1 − yk+1)
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with 1 < p < q ≤ n satisfies

q∑
k=p+1

vk(yk−1 − yk+1) mod (4n− 5) ̸= 0. (3.51)

Proof. Using a similar approach to Lemma 3.10, the specific steps to prove (3.51)

are omitted. Then, (3.51) is always satisfied.

Theorem 3.1. For the decoding of DaIb, with a received sequence y, uy, parameters

n, c, d, e and (4n− 5), Algorithm 1 without ‘stop’ gives a unique correct sequence

by using the constraint (3.7).

Proof. From Lemma 3.8, let (i1, j1) be one correct solution of Algorithm 1 without

‘stop’. It is assumed that z is a codeword that is recovered by removing the j1-th

bit b and inserting the i1-th bit a in y when i1 < j1. This means that according to

Algorithm 1, syndrome e′′ of z as e′′z equals e.

It is assumed that a pair (i2, j2) is also another solution of Algorithm 1 without

‘stop’ and two solutions satisfy u′
i1−1 ̸= u′

i2−1 or u′
j1

̸= u′
j2
. Then, w is recovered

from the error positions (i2, j2) with i2 < j2, and w ̸= z. This means that syndrome

e′′ of w as e′′w equals to e. Since two values e′′z and e′′w should be the same and equal

to e,∆e is expressed as

∆e = e′′z − e′′w mod (4n− 5) = 0. (3.52)

From (3.10), ∆e in (3.52) can be rewritten as

∆e =
n∑

k=1

vk(zk − wk) mod (4n− 5) = 0. (3.53)
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Since (i1, j1) is a correct solution of error positions, to prove that Algorithm 1

without ‘stop’ produces a unique correct sequence, (i2, j2) cannot be a solution for

Algorithm 1 without ‘stop’. This means that (3.53) should be not satisfied.

First, the condition u′
i1−1 ̸= u′

i2−1 or u′
j1

̸= u′
j2

is classified into nine cases as

i1 = i2 < j1 < j2, i1 = i2 < j2 < j1, i1 < i2 < j1 = j2, i2 < i1 < j1 = j2, i1 < i2 <

j1 < j2, i1 < j1 < i2 < j2, i2 < i1 < j1 < j2, i1 < i2 < j2 < j1, and i2 < i1 < j2 < j1.

Then, for the different locations of i1, j1, i2, and j2, (3.53) can be rewritten as below

1. For i1 = i2 < j1 < j2, the term
∑n

k=1 vk(zk − wk) in (3.53) is presented as

n∑
k=1

vk(zk − wk) =

i1−1∑
k=1

vk(zk − wk) +

j1∑
k=i1

vk(zk − wk) +

j2∑
k=j1+1

vk(zk − wk)

+
n∑

k=j2+1

vk(zk − wk)

=0 + 0 +

j2∑
k=j1+1

vk(zk − wk) + 0

=

j2∑
k=j1+1

vk(yk − yk−1). (3.54)

Since w ̸= z, there is always at least one position k for j1 + 1 ≤ k ≤ j2 to

zk ̸= wk. From Lemma 3.10, the term
∑j2

j1+1 vk(yk − yk−1) mod (4n − 5) in

(3.54) is always not zero. Thus, (3.53) is not satisfied.

2. Since the proof steps for i1 = i2 < j2 < j1, i1 < i2 < j1 = j2, and i2 < i1 <

j1 = j2 are similar to those for i1 = i2 < j1 < j2 and are omitted. For these

cases, (3.54) is also not satisfied.
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3. For i1 < i2 < j1 < j2, the term
∑n

k=1 vk(zk − wk) in (3.53) is expressed as

n∑
k=1

vk(zk − wk) =

i1−1∑
k=1

vk(zk − wk) +

i2∑
k=i1

vk(zk − wk) +

j2∑
k=i2+1

vk(zk − wk)

+
n∑

k=j2+1

vk(zk − wk)

=0 +

i2∑
k=i1

vk(zk − wk) + 0 +

j2∑
k=j1+1

vk(zk − wk) + 0

=vi1(a− yi1) + vi2(yi2−1 − a) +

i2−1∑
k=j1+1

vk(yk−1 − yk)

+

j2∑
k=j1+1

vk(yk − yk−1). (3.55)

Due to w ̸= z, there is always at least one position k for i1 ≤ k ≤ i2 or

j1 + 1 ≤ k ≤ j2 to zk ̸= wk. Thus, (3.55) needs to be not equal to zero.

Since i2 is the first index of the run of deleted bit inw and yi2−1 ̸= a, vi2(yi2−1−

a) ̸= 0. Moreover, since vi1(a−yi1) can have values {−vi1 , 0, vi1} and vi1 < vi2 ,

vi1(a − yi1) + vi2(yi2−1 − a) ̸= 0. Since the values vk are nonnegative and

increasing for i1 ≤ k ≤ i2, vi1(a− yi1) + vi2(yi2−1 − a) +
∑i2−1

k=i1+1 vk(yk−1 − yk)

in (3.55) is not always zeros. From Lemma 3.10 and owing to the fact that vk

for j1 + 1 ≤ k ≤ j2 is always larger than vk for i1 ≤ k ≤ i2, the right side of

(3.55) cannot be zero. Thus, (3.55) is always not equal to zero, and (3.53) is

not satisfied.

4. Similarly, for the four cases i1 < j1 < i2 < j2, i2 < i1 < j1 < j2, i1 < i2 <

j2 < j1, and i2 < i1 < j2 < j1, the steps in the proof are almost the same to

those for i1 < i2 < j1 < j2. Therefore, the specific proof steps are omitted.
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For these cases, (3.53) is also not satisfied.

From steps 1) to 4), any pair (i2, j2) with u′
i1−1 ̸= u′

i2−1 or u′
j1

̸= u′
j2

cannot be

a solution of error positions to satisfy ∆e = 0 for Algorithm 1 without ‘stop’.

Therefore, Algorithm 1 without ‘stop’ produces a unique correct sequence as z

and z is reconstructed by removing the j1-th bit b and inserting the i1-th bit a and

in y with i1 < j1.

Theorem 3.2. For the decoding of IaDb, from a received sequence y, uy, param-

eters n, c, d, e and (4n − 5), Algorithm 2 without ‘stop’ gives a unique correct

sequence by using the constraint (3.7).

Proof. From Lemma 3.9, the exact position (i1, j1) is one solution of Algorithm 2

without ‘stop’. It is assumed that z is a sequence that is recovered by removing the

j1-th bit a and inserting a bit b between the i1-th and the (i1 +1)-th bits in y when

j1 ≤ i1. This means that from Algorithm 2, syndrome e′′ of z as e′′z equals e.

It is assumed that a pair (i2, j2) is also another solution of Algorithm 2 without

‘stop’, and two solutions satisfy u′
i1+1 ̸= u′

i2+1 or u′
j1

̸= u′
j2
. Then, w is recovered

with error positions (i2, j2) with j2 ≤ i2, and w ̸= z. This means that syndrome e′′

of w as e′′w equals e.

Since the proof approach is similar to Theorem 3.1, the specific proof steps

are omitted. Therefore, Algorithm 2 without ‘stop’ produces a unique correct

sequence z, and z is retrieved by removing the j1-th bit a and inserting a bit b

between the i1-th and the (i1 + 1)-th bits in y with j1 ≤ i1.
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3.4.4 The decoding steps in DEC.A

As mentioned in Section 11, when ∆c = 1, based on Table 3.4, the two scenarios,

D1I0 and I0D1, need to be investigated. Similarly, when ∆c = 2, the two scenarios,

D0I1 and I1D0, are determined. For ∆c = 0 and ∆d < n+1, based on Table 3.4, we

need to isolate two cases as Deletion-Insertion DaIb with the error values (a, b) =

(1, 1) and Insertion-Deletion IaDb with (a, b) = (0, 0). Similarly, when ∆c = 0

and ∆d ≥ n + 1, there exists two possible cases as Deletion-Insertion DaIb with

(a, b) = (0, 0) and Insertion-deletion IaDb with (a, b) = (1, 1). When decoding

these cases, we suggest decoding steps of DEC.A with two decoding algorithms,

Algorithm 1 for DaIb and Algorithm 2 for IaDb. For example, when ∆c = 0

and ∆d < n+ 1 in Fig. 3.2, there are two possible error scenarios, D1I1 and I0D0.

Then, Algorithm 1 is used for D1I1 and Algorithm 2 is for I0D0 simultaneously.

The following theorem shows that when the value ∆c produces one unique correct

sequence.

Theorem 3.3. Let y be a received sequence of length n with parameters n, c, d, e

and (4n − 5). It is assumed that ∆c and ∆d are shown in Fig. 3.2. By using the

constraint (3.7), the decoding of DEC.A gives a unique correct sequence.

Proof. In Fig. 3.2, when ∆c and ∆d are given, the decoding steps of DEC.A with

two decoding algorithms are used simultaneously as Algorithm 1 for DaIb and

Algorithm 2 for IaDb. From Lemma 3.8, the (i1, j1) is one solution of Algo-

rithm 1. It is assumed that z is a recovered sequence by removing the j1-th bit b

and inserting bit a between the (i1 − 1)-th and i1-th bits in y when i1 < j1. This
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means that according to Algorithm 1, syndrome e′′ of z denoted by e′′z equals e.

It is assumed that a pair (i2, j2) is a solution of Algorithm 2 and two solutions

satisfy i1 ̸= i2 or j1 ̸= j2. Then, w is recovered with error positions (i2, j2) with

j2 ≤ i2, and w ̸= z. This means that syndrome e′′ of w denoted by e′′w equals e.

Similar to Theorem 3.1, since two values e′′z and e′′w should be the same and

equal to e,∆e is expressed as in (3.53). Since (i1, j1) is a solution, to prove that

the two parallel decoding algorithms in each algorithm produce a unique solution,

(i2, j2) cannot be a solution for the two parallel decoding algorithms. This means

that (3.53) should not be satisfied.

First, the condition i1 ̸= i2 or j1 ̸= j2 is classified as i1 = j2 < j1 = i2, i1 = j2 <

j1 < i2, i1 = j2 < i2 < j1, i1 < j2 < j1 = i2, j2 < i1 < i2 = j1, i1 < j2 < j1 < i2, i1 <

j2 < i2 < j1, j2 < i1 < j1 < i2, and j2 < i1 < i2 < j1. Then, (3.53) can be expressed

for the different locations of i1, j1, i2, and j2 as following

1. For i1 = j2 < j1 = i2, the term
∑n

k=1 vk(zk − wk) in (3.53) is written as

n∑
k=1

vk(zk − wk) =

i1−1∑
k=1

vk(zk − wk) +

j1∑
k=i1

vk(zk − wk) +
n∑

k=j1+1

vk(zk − wk)

=0 +

j1∑
k=i1

vk(zk − wk) + 0

=vi1(a− yi1+1)+vj1(yj1−1 − b)+

j1−1∑
k=i1+1

vk(yk−1 − yk+1).

(3.56)

Since w ̸= z, there is always at least one position k for i1 ≤ k ≤ j1 to

be zk ̸= wk. Due to −vi1 ≤ vi1(a − yi1+1) ≤ vi1 and vj1(yj1−1 − b) ̸= 0,

−vi1 − vj1 ≤ vi1(a − yi1+1) + vj1(yj1−1 − b) ≤ vi1 + vj1 . Since the value vk
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is nonnegative and increasing for i1 ≤ k ≤ j1, the right side of (3.56) is not

always zero. Thus, (3.56) is not always zero. Therefore, (3.53) is not satisfied.

2. For i1 = j2 < j1 < i2, the term
∑n

k=1 vk(zk − wk) is written as

n∑
k=1

vk(zk − wk) =

i1−1∑
k=1

vk(zk − wk) +

j1∑
k=i1

vk(zk − wk) +

i2∑
k=j1+1

vk(zk − wk)

+
n∑

k=i2+1

vk(zk − wk)

=0 +

j1∑
k=i1

vk(zk − wk) +

i2∑
k=j1+1

vk(zk − wk) + 0

=vi1(a− yi1+1) + vi2(yi2 − b) +

j1∑
k=i1+1

vk(yk−1 − yk+1)

+

i2−1∑
k=j1+1

vk(yk − yk+1). (3.57)

Since w ̸= z, there is always at least one position k for i1 ≤ k ≤ i2 to be

zk ̸= wk. Since yi2 ̸= b, vi2(yi2 − b) ̸= 0. Based on Lemma 3.11, the right side

of (3.57) is not always zero since vk for j1 + 1 ≤ k ≤ i2 is always larger than

vk for i1 ≤ k ≤ j1. Thus, (3.53) is not satisfied.

3. Similarly, for the remaining cases as i1 = j2 < i2 < j1, i1 < j2 < j1 = i2, j2 <

i1 < i2 = j1, i1 < j2 < j1 < i2, i1 < j2 < i2 < j1, j2 < i1 < j1 < i2, and

j2 < i1 < i2 < j1, the proof steps are similar to the ones for i1 = j2 < j1 < i2.

Therefore, specific proof steps are omitted. For these cases, (3.53) is not also

satisfied.

From 1) to 3), any pair (i2, j2) with i2 ̸= i1 or j2 ̸= j1 cannot give a solution of the

two parallel decoding algorithms in each algorithm. Therefore, two parallel decoding
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Table 3.5: Lower bound of cardinality, the redundancy, and the code rate of the

proposed code for some given values n.

Length n Lower bound of cardinality Redundancy (bits) Code rate

100 5.296e+24 19 0.810

150 2.648e+39 20 0.867

200 1.676e+54 21 0.895

250 1.207e+69 21 0.916

300 9.439e+83 22 0.927

1000 4.466e+293 25 0.975

algorithms produce a unique correct sequence as z from the received sequence y.

3.4.5 Cardinality analysis, redundancy, and results compar-

isons of the proposed code

Let M(n, 2) be the cardinality of the proposed code of length n, with a maximum

possible number of codewords, which can correct one deletion and one insertion

error. The lower bound of the cardinality is determined by the potential values of

the weight, accumulation value, and syndrome in the code construction. Hence, by

applying 0 ≤ c ≤ 2, 0 ≤ d ≤ 2n + 1, and 0 ≤ e ≤ 4n − 6, we can obtain the lower

bound for the cardinality M(n, 2) of the proposed code as

M(n, 2) ≥ 2n

3(2n+ 2)(4n− 5)
.
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Table 3.6: Comparisons of the referenced codes and our proposed code.

Number m of errors
Length of the received

Redundancy
sequence

1 indel n− 1 or n+ 1 log2(n+ 1)
Levenshtein [19]

1 edit n+ 1, n+ 1, or n log2 n+ 1

Gabrys et al.[24] 2 deletions n− 2 8 log2 n+O(log2 log2 n)

4 log2 n+O(log2 log2 n)
Guruswami et al. [25] 2 deletions n− 2

3 log2 n+O(log2 log2 n)

Brakensiek et al. [28] m ≥ 2 deletions n−m or n+m O(m2 log2m) log2 n

Helberg et al. [29] m ≥ 2 indel n−m or n+m –

A.-Ghaffar et al. [30] m ≥ 2 indel n−m or n+m –

Proposed code 1 deletion + 1 insertion n 2 log2 n+ 5

The redundancy of the proposed code can be estimated as

n− log2 |C(n, c, d, e)| ≤n− log2
2n

3(2n+ 2)(4n− 5)
≈ 2 log2 n+ 5.

Accordingly, Table 3.5 presents the lower bound of cardinality, the redundancy,

and the code rate of the proposed code C(n, c, d, e) for some finite values of length

n.

Table 3.6 compares the referenced codes and proposed code. The referenced

codes [19, 24, 25, 28–30] focused solely on specific error types such as indel or edit

errors, possibly overlooking certain error combinations. For instance, if the length

of the received sequence matches that of the codeword, errors might go undetected

as the decoder assumes no error. Moreover, in codes using the generated VT code,

such as those mentioned in [29, 30], determining redundancies becomes challenging
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due to exponential increases in coefficient sequences. In contrast, the proposed

code can directly ascertain redundancy through three constraints, offering enhanced

redundancy compared to the referenced codes.



Chapter 4

Nonbinary code design for one edit

or one adjacent transposition error

4.1 Introduction

In spite of many challenges of involved correction code designs [34, 35], a lot of

efforts have focused on designing efficient and robust approaches to cope with a single

deletion, or insertion error (known as an indel error), a single deletion, insertion,

or substitution error (called an edit error), or adjacent transposition error. For

instance, in 1965, a binary VT code [18] was first presented to correct a single indel

error by using syndrome calculation. Shortly, based on the VT code, Levenshtein

proposed a binary code (known e-VT code) that can correct a single edit error in

[19]. Later, a q-ary code (q > 2) that can handle one indel error was presented

in [20] by employing the VT code and a mapping function from q-ary sequence

54
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to binary sequence. From the inspiration of the Levenshtein code, the authors of

[36, 37] designed a quaternary code to cope with a single edit error by using array-

type codewords with several Levenshetein codes [19]. Nonetheless, these codes were

limited to addressing a single indel or edit error. Moreover, the codes had an inherent

issue of being unable to correct errors that maintain the received sequence length

such as substitution or transposition errors.

A transposition error is defined as two or more symbols being swapped leading

to a significant effect on communication and storage systems. Especially, a single

adjacent transposition error can be seen as a distinct scenario where two adjacent

substitution errors occur, and these adjacent values must be different. For instance,

the adjacent transposition errors can cause distortion, noise, or interference in the

received signals, and reduce the quality of service and performance of the wireless,

optical, or molecular systems [38,39]. In storage systems, the adjacent transposition

errors can depress the integrity and security of data stored in flash memories [40],

or cause strand breakage, data corruption, and loss, leading to reduce the storage

density and efficiency of DNA-based data storage [41, 42]. To cope with the adja-

cent transposition errors, the binary code constructions in [41, 42] were studied to

deal with a single deletion or adjacent transposition error by various approaches,

whereas the codes in [41] used a generalization of the Levenshtein codes. Besides

that, by employing the hash functions, VT sketches, and markers, the redundan-

cies of the codes in [42] were improved than those in [41]. Nonetheless, the codes

presented in [41, 42] could not rectify substitution errors in cases where the length

of the received sequence is unchanged. This limitation arises due to several follow-
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ing reasons. Scenarios involving substitution errors and transposition errors in [41]

could not be reliably differentiated based on the syndromes. In [42], substitution

errors might alter the markers, consequently causing an inaccurate determination of

error positions.

In this chapter, our purpose is to design codes capable of correcting a single

deletion, insertion, substitution, or adjacent transposition error that might arise

within a codeword. In other words, we propose a novel code design to correct

a single edit or adjacent transposition error. When a deletion or insertion error

occurs over the channel, the decoder finds whether a deletion or insertion error

occurs based on the length of the received sequence, then the decoder can correct

the error. In scenarios where the received sequences have the same length as the

original codewords, the proposed code can detect either a substitution or adjacent

transposition error. This has the potential to significantly enhance the efficiency of

information synchronization in communication systems or the retrieval process in

storage systems. Such codes can give rise to numerous applications in synchronizing

information across communication and storage contexts [14,33,35].

Motivated by the above reasons, we investigate the q-ary (q ≥ 2) scheme and

correcting one edit or adjacent transposition error in a codeword. The proposed q-ary

code design is constructed by three constraints. The proposed code can address the

inability of codes to correct an edit error in [18,20,41,42]; an adjacent transposition

error in [18–20, 36, 37]. To the authors’ knowledge, our work is the first try for

q-ary code design to tackle one edit or adjacent transposition error. According to

the code design, the strategy to deal with errors includes two main steps: i) to
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isolate the error scenarios based on the length of the received sequence and the first

constraint, and ii) to find the error values or the error value difference based on the

first two constraints and error positions by the last constraint. Furthermore, to verify

the error-correcting capacity of the proposed code, a comprehensive mathematical

methodology is specifically provided. Furthermore, a specific decoding procedure

for the proposed code that can deal with all error scenarios is also suggested.

4.2 Preliminaries

A codeword x ∈ Fn
q is given as x = (x1, x2, · · · , xn) and p = q − 1. A q-ary

sequence y = (y1, y2, · · · , yn′) ∈ Fn′
q is denoted as the received sequence of x after

a single deletion, insertion, substitution, or adjacent transposition error occurring

in x. To outline the channel model, we provide the error scenarios via Fig. 4.1 and

mathematical presentations as follows.

When a deletion error of value 0 ≤ a ≤ p occurs in the i-th position of x for

1 ≤ i ≤ n, this error scenario is denoted as Da. Thus, the relation between y ∈ Fn−1
q

and x for Da can be expressed by mathematical presentation as

yk =


yk for 1 ≤ k ≤ i− 1,

yk+1 for i ≤ k ≤ n− 1.

(4.1)

Conversely, Ib denotes the insertion error scenario, where a value 0 ≤ b ≤ p is

inserted in the i-th position of x for 1 ≤ i ≤ n+1. Then, the element x′
k of y ∈ Fn+1

q



4.2 Preliminaries 58

Codeword

Received sequence

(a) Da scenario.

Codeword

Received sequence

(b) Ib scenario.

Codeword

Received sequence

(c) Sĉ scenario.

Codeword

Received sequence

(d) Td2d1 scenario.

Figure 4.1: Received sequence y for Da, Ib, Sĉ, and Td2d1 scenarios.
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is presented via x as

x′
k =



xk for 1 ≤ k ≤ i− 1,

b for k = i,

xk−1 for i+ 1 ≤ k ≤ n+ 1.

(4.2)

When one symbol of value 0 ≤ c ≤ p in the i-th position in x is replaced by a

symbol of value 0 ≤ ĉ ≤ p and c ̸= ĉ, and is defined as Sĉ. Similarly, the codeword

x and received sequence y ∈ Fn
q for Sĉ are presented as

x′
k =


xk for 1 ≤ k ≤ i− 1 and i+ 1 ≤ k ≤ n,

ĉ for k = i.

(4.3)

When two adjacent symbols of the respective values d1 and d2 at the i-th and

(i + 1)-th positions in x are transposed, where 0 ≤ d1, d2 ≤ p and d1 ̸= d2 for

1 ≤ i ≤ n − 1, a adjacent transposition error occurs and is denoted as Td2d1.

For convenience, the transposition error stands for the adjacent transposition error

during the remaining parts of this work. The relation between the received sequence

y ∈ Fn
q and x for Td2d1 can be expressed as

x′
k =



xk for 1 ≤ k ≤ i− 1 and i+ 2 ≤ k ≤ n,

d2 for k = i,

d1 for k = i+ 1.

(4.4)
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4.3 Proposed nonbinary code design

4.3.1 Code design

Definition 4.1. Let C(q, n) be the proposed q-ary code of length n, with parameters

e, f, and s, where 0 ≤ e, f ≤ p, 0 ≤ s ≤ 2pn2, and p = q − 1. The proposed code

C(q, n) is designed to address one deletion, insertion, substitution, or transposition

error as

C(q, n)
∆
=

{
x ∈ Fn

q :
n∑

k=1

xk ≡ e mod q, (4.5)

⌊n/2⌋∑
k=1

x2k ≡ f mod q, (4.6)

n∑
k=1

k2xk ≡ s mod (2pn2 + 1)

}
. (4.7)

For example, a sequence x =(2,2,1,2,0,1,2,0,3,3) can be one of the codewords in

a quaternary code C(4, 10) with q = 4, n = 10, e = 0, f = 0, and s = 127, since x

satisfies three constraints (4.5)–(4.7). Particularly,
∑10

k=1 xk mod 3 = 16 mod 4 = 0

and
∑⌊10/2⌋

k=1 x2k mod 4 = 8 mod 4 = 0 satisfy (4.5) and (4.6), respectively. Moreover,

x has the syndrome
∑n

k=1 k
2xk mod 601 = 127.

The values e and f in (4.5) and (4.6) present the weight of x and the weight of

the even indexes in x, respectively. Since the proposed code C(q, n) focuses on the

q-ary code, the modulo values in (4.5) and (4.6) are set as q. The constraint (4.7)

presents the syndrome of x with high-order coefficients. Thus, our strategy is first

to identify the error scenarios according to the length of the received sequence and

(4.5). Then, the error values for Da and Ib scenarios are identified by (4.5). The
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difference between c and ĉ in Sĉ is given by (4.5), and the difference between d2 and

d1 in Td2d1 is determined by (4.6). Finally, based on the information about the error

values, the constraint (4.7) produces the error positions and corrects the codewords.

Detailed descriptions of the three constraints in the proposed code C(q, n) and our

decoding method will be provided in the next subsections.

4.3.2 Rules of constraints

As mentioned in subsection 4.3.1, we first reduce the error scenarios among the

four scenarios according to the length of the received sequence and the constraint

(4.5). In addition, the constraints (4.5) and (4.6) give information about the error

value or the difference of error values. Based on this information, the constraint

(4.7) identifies the error positions and corrects the errors. In this subsection, we also

thoroughly explain how the proposed code can distinguish and correct a substitution

error and a transposition error when the length of the received sequence is the same

as the codeword length.

Let y ∈ Fn′
q be the received sequence after one edit or transposition error occurs

in a codeword x ∈ C(q, n). Three parameters e′, f ′, and s′ for y are calculated as

e′ ≡
n∑

k=1

yk mod q,

f ′ ≡
⌊n/2⌋∑
k=1

y2k mod q,

s′ ≡
n∑

k=1

k2yk mod 2pn2 + 1.

Since the values e, f , and s are known in the decoder, the differences between the
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Table 4.1: Determining error scenarios by n′ and ∆e.

Length n′ ∆e Error scenario

n+ 1 – Da

n− 1 – Ib

n
̸= 0 Sĉ

0 Td2d1

parameters of x and y are given as

∆e ≡ e− e′ mod q, (4.8)

∆f ≡ f − f ′ mod q, (4.9)

∆s ≡ s− s′ mod 2pn2 + 1. (4.10)

When decoding, if n′ = n − 1 or n′ = n + 1, inferring to Da or Ib scenario,

respectively, the error values are determined by (4.8) as a = ∆e or b = −∆e mod q,

respectively. Then, from ∆s in (4.10), the error position can be determined, and the

received sequence will be corrected.

If n′ = n, Sĉ or Td2d1 scenario can be a solution. Since the weight of the sequence

is not affected by the transposition error, ∆e for Td2d1 scenario is given as ∆e = 0.

Since c ̸= ĉ, ∆e for Sĉ cannot be zero as ∆e ̸= 0. Therefore, if n′ = n and ∆e ̸= 0,

the decoder knows that Sĉ scenario occurs. If n′ = n and ∆e = 0, Td2d1 scenario is

determined. Table 4.1 summarizes that four error scenarios, Da, Ib, Sĉ, and Td2d1,

can be distinguished by the length n′ of the received sequence and ∆e.

As mentioned in Section 4.3.1, the constraint (4.7) is designed to produce the
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error position and correct the sequence. We provide Lemma 4.1, which calculates

the differences in syndromes between the codeword and the received sequence for

each scenario. From these differences, the reason for choosing 2pn2+1 as the modulo

value in (4.7) can be clarified. Furthermore, Lemma 4.1 also offers valuable insights

for identifying error positions for each error scenario.

Lemma 4.1. Let x and y be a codeword in C(q, n) and a received sequence of length

n′ by deleting a symbol, inserting a symbol, replacing a symbol, or transposing two

adjacent symbols in x, respectively. Then, the syndrome difference in (4.7) between

x and y is bounded as ∣∣∣∣ n∑
k=1

k2xk −
n′∑
k=1

k2yk

∣∣∣∣ ≤ 2pn2 + 1. (4.11)

Proof. Let R be R =
∑n

k=1 k
2xk −

∑n′

k=1 k
2yk in (4.11). To prove (4.11), we need to

investigate the syndrome difference for Da, Ib, Sĉ, and Td2d1 scenarios as follows.

For Da scenario, since n′ = n − 1, R =
∑n

k=1 k
2xk −

∑n−1
k=1 k

2yk. From (4.1), R

can be expressed as

R =
i−1∑
k=1

k2yk + i2a+
n∑

k=i+1

k2yk−1 −
i−1∑
k=1

k2yk −
n−1∑
k=i

k2yk

= i2a+
n∑

k=i+1

k2yk−1 −
n−1∑
k=i

k2yk

= i2a+
n−1∑
k=i

yk((k + 1)2 − k2)

= i2a+
n−1∑
k=i

yk(2k + 1). (4.12)

Since 1 ≤ a ≤ p and 1 ≤ yk ≤ p are q-ary symbols for i ≤ k ≤ n− 1, R in (4.12) is
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bounded as

0 ≤ R ≤ pi2 + p
n−1∑
k=i

(2k + 1),

0 ≤ R ≤ pi2 + p(n− i) + p(n2 − n− i2 + i),

0 ≤ R ≤ pn2. (4.13)

From (4.13),

∣∣∣∣∑n
k=1 k

2xk −
∑n−1

k=1 k
2yk

∣∣∣∣ < 2pn2 + 1 and (4.11) is satisfied.

For Ib scenario with n′ = n+1, R =
∑n

k=1 k
2xk −

∑n+1
k=1 k

2yk. From (4.2), R can

be written as

R =
i−1∑
k=1

k2yk +
n∑

k=i

k2yk+1 −
i−1∑
k=1

k2yk − i2b−
n+1∑

k=i+1

k2yk

=
n∑

k=i

k2yk+1 − i2b−
n+1∑

k=i+1

k2yk

= −i2b+
n∑

k=i

yk+1(k
2 − (k + 1)2)

= −i2b−
n∑

k=i

yk+1(2k + 1). (4.14)

Since 1 ≤ b ≤ p and 1 ≤ yk+1 ≤ p for i ≤ k ≤ n, the boundaries of (4.14) are given

by

−pi2 − p

n∑
k=i

(2k + 1) ≤ R ≤ 0,

−p(n+ 1)2 ≤ R ≤ 0. (4.15)

From (4.15),

∣∣∣∣∑n
k=1 k

2yk −
∑n+1

k=1 k
2yk

∣∣∣∣ < 2pn2 + 1 and (4.11) is satisfied.

For Sĉ scenario with n′ = n, R is expressed as R =
∑n

k=1 k
2xk −

∑n
k=1 k

2yk.
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Based on (4.3), R is represented as

R =
i−1∑
k=1

k2yk + i2c+
n∑

k=i

k2yk −
i−1∑
k=1

k2yk − i2ĉ−
n∑

k=i+1

k2yk

= i2c− i2ĉ

= i2(c− ĉ). (4.16)

Since c ̸= ĉ and 1 ≤ i ≤ n, (4.16) has bounds as

−pi2 ≤ R ≤ pi2,

−pn2 ≤ R ≤ pn2. (4.17)

Based on (4.17),

∣∣∣∣∑n
k=1 k

2yk −
∑n

k=1 k
2y′k

∣∣∣∣ ≤ 2pn2 + 1 and (4.11) is satisfied.

For Td2d1 scenario with n′ = n, R is rewritten as R =
∑n

k=1 k
2xk −

∑n
k=1 k

2yk.

Based on (4.4), R is represented as

R =
i−1∑
k=1

k2yk + i2xi + (i+ 1)2xi+1 +
n∑

k=i+2

k2yk −
i+1∑
k=1

k2yk −
n∑

k=i+2

k2yk

= i2xi + (i+ 1)2xi+1 − i2yi − (i+ 1)2yi+1

= (2i+ 1)yi − (2i+ 1)yi+1

= (2i+ 1)d2 − (2i+ 1)d1

= (2i+ 1)(d2 − d1). (4.18)

Since d1 ̸= d2 and 1 ≤ i ≤ n− 1, (4.18) has bounds as

−p(2i+ 1) ≤ R ≤ p(2i+ 1),

−p(2n− 1) ≤ R ≤ p(2n− 1). (4.19)

According to (4.19),

∣∣∣∣∑n
k=1 k

2xk −
∑n

k=1 k
2yk

∣∣∣∣ < 2pn2+1 and (4.11) is satisfied.
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Figure 4.2: Overall decoding procedure of the proposed code C(q, n).

4.4 Decoding of the proposed code design

The overall decoding procedure for the proposed code C(q, n) is provided in

Fig. 4.2. The decoding strategy consists of two main steps: 1) classify the error

scenarios and 2) determine error value and position then correct the sequence. It

is noted that if n′ = n and three parameters, ∆e, ∆f , and ∆s, are all zeros, y is

regarded to be same as the codeword x.

4.4.1 Decoding for a deletion error

If n′ = n− 1, inferring to Da scenario occurs, the deleted value a is determined

as a = ∆e. As mentioned in [43], decoding for deletion-correcting codes can not

be always successful in determining the exact location of the deleted symbol. If a
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codeword with the large runs is sent and one deletion occurs in a large run, multiple

candidates of the deleted position can be detected. However, the candidates of the

error position can be reduced for effective decoding and the received sequence is still

corrected successfully. In this work, we prioritize choosing the first index at the runs

as the candidate for the deleted position. Besides that, based on (4.12) and (4.13),

∆s in (4.10) for Da can be presented as

∆s = i2a+
n−1∑
k=i

yk(2k + 1). (4.20)

Let a set D include the values 1 ≤ l ≤ n satisfying ∆s in (4.20), which are candidates

for the deleted position i. Then, the set D is expressed as

D={l | ∆s = l2a+
n−1∑
k=l

yk(2k + 1), yl−1 ̸= a, for 1 ≤ l ≤ n}. (4.21)

Plugging a symbol a into the l-th position in y, the output sequence w = (y1, y2, · · · ,

yl−1, a, yl, · · · , yn−1) is determined and the decoding is finished.

From (4.22), multiple candidates that belong to the same run are removed and

only the first element in each run is checked. However, there may be multiple candi-

dates in different runs, which can be answered for the constraints. This means that

unique decoding is not guaranteed. To solve this problem, we provide Lemma 4.2

to demonstrate that the proposed code design can produce the unique decoding for

Da scenario.

Lemma 4.2. For decoding of Da, with a received sequence y and the given param-

eters n, e, f, and s, the proposed decoding can output a unique correct sequence by

(4.7).
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Proof. Let i1 be one correct solution for error position from (4.24). Inserting a

symbol of value a into the i1-th position in y, a sequence w is assumed to be

reconstructed. The syndrome of w is sw =
∑n

k=1 k
2wk mod 2pn2 + 1 and sw equals

s.

Suppose that i2 is also another solution for error position from (4.21) and i2 and

i1 should not be in the same run as ri1 ̸= ri2 . Then, let z be recovered from i2 and

z ̸= w. Thus, the syndrome sz of z is sz =
∑n

k=1 k
2zk mod 2pn2+1 = s. Since two

values sw and sz should be the same and equal to s, ∆′′
s is given as

∆′′
s ≡

n∑
k=1

k2(wk − zk) mod 2pn2 + 1 = 0. (4.22)

To prove that the constraint (4.7) produces a unique output sequence, i2 cannot be

a solution for (4.21). As a result, (4.22) should not be satisfied.

The condition ri1 ̸= ri2 is classified into two cases as i1 < i2 and i1 > i2. Let Q

be Q =
∑n

k=1 k
2(wk − zk) in (4.22). For i1 < i2, Q is expressed as

Q=

i1−1∑
k=1

k2(wk−zk)+

i2∑
k=i1

k2(wk−zk)+
n∑

k=i2+1

k2(wk−zk)

=a(i21 − i22)+

i2−1∑
k=i1

yk(2k+1)

=

i2−1∑
k=i1

(2k+1)(yk − a). (4.23)

To satisfy (4.22), (4.23) should be zero. As the term (2k + 1) in (4.23) is positive

and increasing for i1 ≤ k ≤ i2 − 1, (4.23) becomes zero if yk = a for ∀k ∈ [i1, i2 − 1].

Note that as yi2−1 ̸= a due to (4.23), (4.23) cannot be zero and (4.22) is not satisfied.

For i1 > i2, Q is given as Q =
∑i1−1

k=i2
(2k + 1)(yk − a). The proof steps of
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∑i1−1
k=i2

(2k + 1)(yk − a) mod 2pn2 + 1 ̸= 0 are similar to those for case i1 < i2, and

present that (4.22) is also invalid.

Example 4.1. (Continue the example in Section 4.3.1) The given parameters are

n = 10, e = 0, f = 0, and s = 127. It is assumed that the received sequence

y = (2, 2, 1, 0, 1, 2, 0, 3, 3) ∈ F9
4, where notation ‘ ’ indicates the deleted symbol.

The parameters e′, f ′, and s′ of y are e′ = 2, f ′ = 3, and s′ = 551, respectively.

Then, ∆e = 2,∆f = 1, and ∆s = 177.

Step 1: clarifying the error scenario.

Since n′ = n− 1 = 9, Da scenario occurs.

Step 2: determining error value and position, then correcting sequence.

• The deleted value is determined as a = ∆e = 2.

• A set D includes the candidates 1 ≤ l ≤ n for the deleted position and is

determined by (4.21) as D = {4}. Thus, the deleted position is the fourth

position in y.

• The correct sequence w is given by adding a symbol ‘2’ between the third and

the fourth positions in y as w = (2, 2, 1, 2, 0, 1, 2, 0, 3, 3).

4.4.2 Decoding for an insertion error

When n′ = n + 1, inferring to Ib scenario, the inserted symbol is determined

as b = −∆e mod q. Since the decoding steps for Ib scenario are similar to those
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for Da scenario, we only provide the step to determine the candidates for the in-

serted position instead of presenting detailed explanations for each step to correct

Ib scenario.

Moreover, from (4.14) and (4.15), ∆s in (4.10) is expressed as

∆s = −i2b−
n∑

k=i

yk+1(2k + 1) + 2pn2 + 1. (4.24)

Since the inserted value b is known via ∆e, the candidates for the inserted position

i are defined from ∆s in (4.24) as

I = {l | ∆s = −l2b−
n∑

k=l

yk+1(2k + 1) + 2pn2 + 1,yl = b, yl−1 ̸= b,

for 1 ≤ l ≤ n+ 1}. (4.25)

Similar to Da scenario, a unique candidate l in (4.7) satisfying ∆s is identified. The

output sequence w = (y1, y2, · · · , yl−1, yl+1, yl+2, · · · , yn+1) is determined by deleting

the l-th symbol in y.

Example 4.2. (Continue the example in Section 4.3.1) The given parameters are

n = 10, e = 0, f = 0, and s = 127. It is assumed that the received sequence

y = (2,3, 2, 1, 2, 0, 1, 2, 0, 3, 3) ∈ F11
4 , where the bold symbol ‘3’ indicates the inserted

symbol. The parameters e′, f ′, and s′ of y are e′ = 3, f ′ = 1, and s′ = 337,

respectively. Then, ∆e = 1,∆f = 3, and ∆s = 391.

Step 1: clarifying the error scenario.

Since n′ = n+ 1 = 11, Ib scenario occurs.

Step 2: determining error value and position, then correcting sequence.

• The inserted value is determined as b = −∆e mod 4 = 1.
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• A set I consists of the candidates 1 ≤ l ≤ n+ 1 for the inserted position and

is verified by (4.25) as I = {2}. Thus, the inserted position is the second

position in y.

• The correct sequence w is produced by removing a symbol ‘3’ in the second

position in y as w = (2, 2, 1, 2, 0, 1, 2, 0, 3, 3).

4.4.3 Decoding for a substitution error

If n′ = n and ∆e ̸= 0, the decoder infers that Sĉ occurs as shown in Table 4.1.

For Sĉ scenario, the weight difference between x and y corresponds to the difference

between c in x and ĉ in y, inferring to (c− ĉ) mod q = ∆e. Moreover, the condition

c ̸= ĉ can be classified into two cases as c > ĉ and c < ĉ. Thus, based on (4.16) and

(4.17), and (c− ĉ) mod q = ∆e, ∆s in (4.10) is represented as below.

• If c > ĉ, meaning (c− ĉ) > 0, the term (c− ĉ) in (4.16) is given as (c− ĉ) = ∆e.

Then, ∆s can be given as

∆s = i2∆e. (4.26)

Since 0<∆e≤p and 1≤ i≤n, the bounds of ∆s in (4.26) are determined as

0 < ∆s ≤ pn2.

Thus, if Sĉ is determined and ∆s ≤ pn2, the error position i is calculated for

1 ≤ i ≤ n by (4.26) as

i =

√
∆s

∆e

. (4.27)
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From (4.27), the determined value i is the unique value. Moreover, based

on (4.27), c − ĉ = ∆e, then the i-th position of value ĉ in y is replaced

by a symbol of value (ĉ + ∆e). Then, the output sequence w is given as

w = (y1, y2, · · · , yi−1, (ĉ+∆e), yi+1, · · · , yn), and the decoding is finished.

• If c < ĉ, corresponding to c − ĉ < 0, the term (c − ĉ) in (4.16) is given as

c− ĉ = ∆e − q. Then, ∆s can be given as

∆s = i2(∆e − q) + 2pn2 + 1. (4.28)

Since 0 < ∆e ≤ p and 1 ≤ i ≤ n, the value ∆s in (4.28) is bounded as

pn2 + 1 ≤ ∆s ≤ (2p− 1)n2 + 1.

Hence, when Sĉ occurs and ∆s > pn2, the error position i for 1 ≤ i ≤ n is

determined by (4.28) as

i =

√
∆s − 2pn2 − 1

∆e − q
. (4.29)

From (4.29), the determined value i is unique. From (4.27), c − ĉ = ∆e − q,

then the symbol ĉ in the i-th position in y′ is replaced by a symbol of value

(ĉ+∆e−q). Then, the output sequencew is given asw = (y1, y2, · · · , yi−1, (ĉ+

∆e − q), yi+1, · · · , yn), and the decoding is finished.

Therefore, according to the error position i in (4.27) and (4.29), the decoder can

produce the corrected sequence.

Example 4.3. (Continue the example in Section 4.3.1) The given parameters are

n = 10, e = 0, f = 0, and s = 127. It is supposed that the received sequence
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y = (2, 2, 1,1, 0, 1, 2, 0, 3, 3) ∈ F10
4 , where the bold symbols indicates the error sym-

bols. The parameters e′, f ′, and s′ of y are e′ = 3, f ′ = 3, and s′ = 111, then

∆e = 1,∆f = 1, and ∆s = 16.

Step 1: clarifying the error scenario. Since n′ = n = 10,∆e = 1 ̸= 0, Sĉ

scenario occurs.

Step 2: determining error value and position, then correcting the se-

quence.

• Since ∆s = 16 < pn2 = 3.100 = 300, the value difference between c and ĉ is

determined as c− ĉ = ∆e = 1.

• The substituted position is obtained by (4.27) as i =
√

∆s/∆e =
√

16/1 = 4.

Thus, the error position for Sĉ is the fourth position in y.

• Since y4 = ĉ = 1 and c− ĉ = 1, the original symbol c equals as c = ĉ+ 1 = 2.

Thus, the correct sequence w is produced by swapping the fourth and fifth

symbols in y as w = (2, 2, 1, 2, 0, 1, 2, 0, 3, 3).

4.4.4 Decoding for a transposition error

When n′ = n, ∆e = 0, and ∆f∆s ̸= 0, the decoder infers that Td2d1 occurs. For

Td2d1 scenario, since two adjacent symbols in the i-th and (i + 1)-th positions are

transposed, one of two indexes i and (i+1) is even and the other is odd. Hence, the

difference between two transposed symbols can be identified based on the weight

difference of the even elements in the sequence. Thus, the difference between two
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transposed symbols is computed as

|d2 − d1| mod q = ∆f , (4.30)

where if the first transposed position i is the even index, (4.30) becomes d1 −

d2 mod q = ∆f . Conversely, if the second transposed position (i + 1) is the even

index, (4.30) is rewritten as d2 − d1 mod q = ∆f . Due to similarity, the detailed

descriptions for the case d1−d2 mod q = ∆f are presented, and the descriptions for

d2 − d1 mod q = ∆f are briefly given.

It is assumed that d1 − d2 mod q = ∆f , the condition d1 ̸= d2 can be classified

into two cases as d1 < d2 and d1 > d2. Thus, from (4.18)–(4.19), the value of ∆s in

(4.10) can be expressed as follows.

• If d1 < d2, corresponding to (d1 − d2) < 0, the term (d2 − d1) in (4.18) is

identified as d2 − d1 = q −∆f , and ∆s can be presented as

∆s = (2i+ 1)(q −∆f ). (4.31)

Since 0 < ∆f ≤ p, p = q − 1, and 1 ≤ i ≤ n − 1, the value ∆s in (4.31) is

bounded as

0 < ∆s ≤ p(2n− 1).

Since ∆f ̸= 0 and ∆s ≤ p(2n − 1), from (4.31), a unique error position i

satisfying as an even index and 1 ≤ i ≤ n− 1 is determined by

i =
1

2

(
∆s

q −∆f

− 1

)
. (4.32)
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• If d1 > d2, then (d1−d2) > 0, the term (d2−d1) in (4.18) is given as d2−d1 =

−∆f , and ∆s in (4.10) is given as

∆s = (2i+ 1)(−∆f ) + 2pn2 + 1. (4.33)

From the conditions 0 < ∆f ≤ p and 1 ≤ i ≤ n−1, the bounds of ∆s in (4.33)

are determined as

2pn2 + 1− p(2n− 1) ≤ ∆s ≤ 2pn2 − 2n+ 2. (4.34)

Since n2 > 2n − 1 and 0 ≤ p < q, 2pn2 > 2p(2n − 1) and then the term

2pn2+1−p(2n−1) in (4.34) is always satisfied as 2pn2+1−p(2n−1) > p(2n−1).

Thus, (4.34) can be rewritten as

p(2n− 1) < ∆s ≤ 2pn2 − 2n+ 2.

Furthermore, from (4.34), a unique error position i satisfying as an odd index

and 1 ≤ i ≤ n− 1 is determined as

i =
1

2

(
2pn2 + 1−∆s

∆f

− 1

)
. (4.35)

From the unique error positions i are determined by (4.32) and (4.35), a unique

output sequence w is obtained by transposing the i-th and (i + 1)-th symbols of

values d2 and d1 in y, respectively, as w = (y1, y2, · · · , yi−1, d1, d2, yi+2, · · · , yn), and

the decoding is finished.

By using a similar method, if (4.30) is given as d2 − d1 mod q = ∆f , the value

of ∆s in (4.10) can be expressed as follows.
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• If d2 > d1, inferring to (d2 − d1) > 0, the term (d2 − d1) in (4.18) is identified

as d2 − d1 = ∆f , and 0 < ∆s = (2i + 1)∆f ≤ p(2n − 1). Since ∆f ̸= 0

and ∆s ≤ p(2n− 1), a unique error position i satisfying as an even index and

1 ≤ i ≤ n− 1 is determined by

i =
1

2

(
∆s

∆f

− 1

)
. (4.36)

• If d2 < d1, then (d2−d1) < 0, the term (d2−d1) in (4.18) is given as d2−d1 =

∆f − q, and ∆s = (2i+1)(∆f − q)+ 2pn2+1 > p(2n− 1). Furthermore, since

−∆f ̸= 0 and ∆s > p(2n − 1), a unique error position i satisfying as an odd

index and 1 ≤ i ≤ n− 1 is determined as

i =
1

2

(
∆s − 2pn2 − 1

∆f − q
− 1

)
. (4.37)

From the unique error positions i are determined by (4.36) and (4.37), a unique

output sequence w is obtained by transposing the i-th and (i + 1)-th symbols of

values d2 and d1 in y, respectively, as w = (y1, y2, · · · , yi−1, d1, d2, yi+2, · · · , yn), and

the decoding is finished.

Therefore, if ∆s ≤ p(2n−1), there are two cases of value d2−d1 as d2−d1 = q−∆f

(corresponding to the first transposed position i is even index) and d2 − d1 = ∆f

(corresponding to the first transposed position i is odd index). Then, the decoder

employs a parallel decoding step, called Func 1, to correct the sequence. To avoid

confusion, for i as an odd index, we replace d2 − d1 = ∆f with d′2 − d′1 = ∆f .

Similarly, if ∆s > p(2n− 1), the decoder uses a parallel decoding step, named Func

2, with one branch for d2−d1 = −∆f (corresponding to the first transposed position
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from (4.36)from (4.32)

Y

N

(a) Func 1

from (4.37)from (4.35)

Y

N

(b) Func 2

Figure 4.3: Decoding steps Func 1 and Func 2.

i is even index) and the other for d′2−d′1 = ∆f−q (meaning that the first transposed

position i is odd index). The decoding steps of two parallel decoding steps, Func 1

and Func 2, are shown in Fig. 4.3.

In Fig. 4.3a, Func 1 includes two parallel decoding branches as one for d2−d1 =

q −∆f and the other for d′2 − d′1 = ∆f . For d2 − d1 = q −∆f , the first transposed

position i is determined by (4.32), then the recovered sequence ȳ is obtained by

transposing the i-th and (i+1)-th symbols in y. The syndrome sȳ can be calculated

as sȳ =
∑n

k=1 k
2ȳk mod (2pn2 + 1), then ∆1

s = s − sȳ mod (2pn2 + 1). Similarly,

for d′2 − d′1 = ∆f , the first transposed position i is determined by ŷ, the syndrome

sŷ, and ∆2
s are obtained. If ∆1

s = 0, corresponding to sȳ = s, the correct sequence

is w = ȳ and the decoding is finished. If not, meaning that sŷ = s, the correct

sequence is w = ŷ and the decoding is finished.
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It is noted that Func 1 can produce the unique correct sequence and is proved by

Lemma 4.3. It means that a unique sequencew has syndrome sw =
∑n

k=1 k
2wk mod

(2pn2 + 1) and sw = s.

Lemma 4.3. When decoding Td2d1 scenario for a received sequence y, parameters

n, e, f and s, Func 1 gives a unique correct sequence by using constraint (4.7).

Proof. From Fig. 4.3a, it is supposed that 1 ≤ i1 ≤ n − 1 is obtained by (4.32).

It is assumed that w is a codeword that is recovered by transposing the i1-th

and (i1 + 1) symbols in y. Then, the syndrome of w is calculated as sw =∑n
k=1 k

2wk mod (2pn2 + 1) and sw = s.

It is assumed that 1 ≤ i2 ≤ n− 1 and i2 ̸= i1 is obtained by (4.36). Then, z is a

codeword that is generated by transposing the i2-th and (i2 +1) symbols in y. The

syndrome of z is given as sz =
∑n

k=1 k
2zk mod (2pn2 + 1) = s.

Since two values sw and sz should be the same and equal to s, ∆′′
s is expressed

as

∆′′
s =sw − sz mod (2pn2 + 1) = 0. (4.38)

From (4.7), ∆′′
s in (4.38) can be rewritten as

∆′′
s =

( n∑
k=1

k2wk −
n∑

k=1

k2zk

)
mod (2pn2 + 1) = 0. (4.39)

To prove that Func 1 produces a unique correct sequence, (4.39) should be not

satisfied. Additionally, the condition i2 ̸= i1 can be classified into two cases as

i1 < i2 and i1 > i2. Then, for the different locations of i1 and i2, let H be H =∑n
k=1 k

2wk −
∑n

k=1 k
2zk in (4.39) and H can be rewritten as below
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1. For i1 < i2, H is presented as

H =
∑i1−1

k=1
k2wk + i21d1 + (i1 + 1)2d2 +

∑n

k=i1+2
k2wk −

∑i2−1

k=1
k2zk − i22d

′
1

− (i2 + 1)2d′2 −
n∑

k=i2+2

k2zk

=i21d1 + (i1 + 1)2d2 + i22yi2 + (i2 + 1)2yi2+1 − i21yi1 − (i1 + 1)2yi1+1 − i22d
′
1

− (i2 + 1)2d′2

=i21d1 + (i1+1)2d2 + i22d
′
2 + (i2+1)2d′1−i21d2 − (i1+1)2d1−i22d

′
1−(i2+1)2d′2

=i21(d1 − d2) + (i1 + 1)2(d2 − d1) + i22(d
′
2 − d′1) + (i2 + 1)2(d′1 − d′2)

=i21(∆f − q) + (i1 + 1)2(q −∆f ) + i22∆f + (i2 + 1)2(−∆f )

=−∆f (2i1 + 2i2 + 2) + q(2i1 + 1). (4.40)

According to (4.31), i1 and i2 satisfy ∆s = (2i1+1)(d2−d1) = (2i2+1)(d′2−d′1).

Thus, (4.40) can be rewritten as

H =−∆f

(
∆s

q −∆f

+
∆s

∆f

)
+ q

∆s

q −∆f

=−∆f −
∆s(∆f − 1)

q −∆f

=−∆s
q − 1

q −∆f

. (4.41)

Since 0 < ∆s ≤ p(2n − 1), q − 1 > 0, and q −∆f > 0, the term −∆f
q−1
q−∆f

in

(4.41) is always negative, then (4.39) is not satisfied.

2. For i1 > i2, the proof method is similar to case i1 < i2, then the specific steps

are omitted. The result is that (4.39) is also not satisfied.

Therefore, one of i from (4.32) or i from (4.36) can satisfy constraint (4.7). This

means that Func 1 can produce a unique correct sequence.
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Similarly, the decoding steps in Func 2 are shown in Fig. 4.3b and the detailed

descriptions are omitted for short. Additionally, Func 2 can also provide a unique

sequence and is proved by Lemma 4.4.

Lemma 4.4. When decoding Td2d1 scenario for a received sequence y, parameters

n, e, f and s, Func 2 gives a unique correct sequence by using constraint (4.7).

Proof. From Fig. 4.3b, it is supposed that 1 ≤ i1 ≤ n − 1 is obtained by (4.35).

It is assumed that w is a codeword that is recovered by transposing the i1-th

and (i1 + 1) symbols in y. Then, the syndrome of w is calculated as sw =∑n
k=1 k

2wk mod (2pn2 + 1) and sw = s.

It is assumed that 1 ≤ i2 ≤ n− 1 and i2 ̸= i1 is obtained by (4.37). Then, z is a

codeword that is generated by transposing the i2-th and (i2 +1) symbols in y. The

syndrome of z is given as sz =
∑n

k=1 k
2zk mod (2pn2 + 1) = s.

Since the proof approach is similar to Lemma 4.3, the specific proof steps are

omitted. Therefore, one of i from (4.35) or i from (4.37) can satisfy constraint (4.7).

This means that Func 2 can produce a unique correct sequence.

Example 4.4. (Continue the example in Section 4.3.1) The given parameters are

n = 10, e = 0, f = 0, and s = 127. It is supposed that the received sequence

y = (2, 2, 1, 2, 0, 1, 2,3,0, 3) ∈ F10
4 , where the bold symbols indicates the error sym-

bols. The parameters e′, f ′, and s′ of y are e′ = 0, f ′ = 3, and s′ = 76, then

∆e = 0,∆f = 1, and ∆s = 51.

Step 1: clarifying the error scenario.

Since n′ = n = 10,∆e = 0, and ∆f∆s ̸= 0, Td2d1 scenario occurs.
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Step 2: determining error value and position, then correcting the se-

quence. Since ∆s = 51 < p(2n − 1) = 3(20 − 1) = 57, Func 1 is used with two

parallel decoding branches as

• The first branch is for d2−d1 = q−∆f = 3. Then, the first transposed position

is verified by (4.32) is i = 1
2
( 51
4−1

− 1) = 8 and i satisfies as an even index.

The recovered sequence is ȳ = (2, 2, 1, 2, 0, 1, 2,0,3, 3) by swapping the eighth

and ninth symbols in y.

The syndrome of ȳ is calculated as sȳ =
∑10

k=1 k
2ȳk mod 601=127(= s).

• The second branch is for d′2−d′1 = ∆f = 1. Then, the first transposed position

is verified by (4.36), however, 1
2
(51
1
− 1) = 25 > 10 contradicts the condition

1 ≤ i ≤ 9. Thus, there is no value i satisfying ∆s when d′2 − d′1 = ∆f .

The correct sequence w is outputted as w = ȳ.

4.5 Redundancy symbols and code rates

In addition, the redundancy of the proposed code C(q, n) can be specified by the

potential of three parameters 0 ≤ e, f ≤ p, and 0 ≤ s ≤ 2pn2 in (4.5)–(4.7) as

n− logq |C(q, n)| ≤n− logq
qn

q2(2pn2 + 1)
≈ 2 logq n+ 4.

The proposed code C(q, n) requires at most 2 logq n + 4 redundancy symbols to

correct one edit or transposition error. For particular, we provide the redundancies

and code rates of the proposed code C(q, n) for given values of length n when q = 2

and q = 4 in Table 4.2.
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Table 4.2: The redundancies and code rates of the proposed code C(q, n) for length

n when q = 2, q = 3 and q = 4.

n
q = 2 q = 3 q = 4

Redundancy Code rate Redundancy Code rate Redundancy Code rate

100 18 0.820 13 0.870 11 0.890

150 19 0.873 14 0.907 12 0.920

200 20 0.900 14 0.930 12 0.940

250 20 0.920 15 0.940 12 0.952

300 21 0.930 15 0.950 13 0.957

1000 24 0.976 17 0.983 14 0.986

Table 4.3: Comparisons between the referenced works and proposed code.

Type of code Type of error Length of received Redundancy
sequence

Varshamov et al. [18] Binary 1 indel n− 1 or n+ 1 log2(n+ 1) bits

Levenshtein [19] Binary 1 edit n− 1 or n+ 1 or n log2 n+ 1 bits

Tenengolts [20] q-ary (q > 2) 1 indel n− 1 or n+ 1 logq n+ 1 symbols

Nguyen et al. [37] Quaternary 1 edit n− 1 or n+ 1 or n log2 n+ 1 symbols

Gabrys et.al [42] Binary
1 deletion or

n− 1 or n
log2 n+O(log2 log2 n)

transposition bits

Proposed code q-ary (q ≥ 2)
1 edit or

n− 1 or n+ 1 or n 2 logq n+ 4 symbols
transposition

To highlight our contributions to this code design, Table 4.3 provides a compar-

ison between the proposed code and the referenced works, where codes were also
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constructed by several constraints. As shown in Table 4.3, the proposed code in-

vestigates the scenarios involving one edit or transposition error, which were not

addressed in the referenced works. Furthermore, we propose the q-ary code scheme

with arbitrary q ≥ 2, expanding beyond the limitations of prior works [18–20, 37]

which focused solely on indel (deletion or insertion) or edit (deletion/insertion/substitution)

errors and a predetermined scheme as binary, quaternary, or q-ary with q > 2. While

the codes in [42] extended the scope of the error to include deletion or transposi-

tion errors, the scheme remained binary. Additionally, this code cannot handle a

substitution error since the substitution error can alter the markers, leading to an

inaccurate determination of error scenarios and positions. Despite requiring more

redundancy, the proposed code’s broader error coverage justifies this necessity. Al-

though the proposed code requires more redundancy, its broader scheme and scope

of error correction confirm this requirement.



Chapter 5

Summary of contributions and

future works

5.1 Thesis conclusion

The communication and storage systems are prone to synchronization errors,

especially deletion, insertion, substitution, and adjacent transposition errors, which

are the most popular errors affecting information synchronization in these systems.

These errors can cause data errors and loss of synchronization, as well as reduce the

efficiency of communication, flash memories, and DNA-based data storage systems.

Designing the error correction codes to deal with these errors is an essential challenge

to improve the performance of the communication and storage systems.

Throughout this dissertation, two classes of code designs are introduced to mit-

igate the specific number of errors involving deletion, insertion, substitution, and

84
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adjacent transposition errors. Specifically, we first construct a binary code design

to tackle one deletion and one insertion errors co-occurring in a codeword. The

second class of code design is a nonbinary code that can address an edit or adjacent

transposition error. The conclusions of this dissertation are listed as follows.

• We propose a novel binary code design to correct one deletion and one insertion

errors in any position in a codeword. In comparison with the referenced code

designs, the proposed code can solve the error cases that have been considered

by any specific design. Furthermore, the proposed code requires competitive

redundancy bits. To highlight the error correction ability of the proposed code,

we also present the mathematical proofs for each constraint and the decoding

procedure for all error scenarios.

• We study a nonbinary code design to mitigate an edit or adjacent transposition

error with three constraints. Moreover, we verify the feasibility of the error

correction ability and decoding processes of the proposed code by mathemat-

ical proofs. To compare with the referenced code designs, the proposed code

can solve the limitations in distinguishing the substitution error and transpo-

sition error scenarios. The proposed code with q = 4 can be directly applied

to DNA storage systems due to the properties of this code design and the

error-prone nature of DNA channels.
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5.2 Future research directions

As information and storage systems demand higher quality standards, synchro-

nization emerges as a crucial concern, underscoring the significance of rectifying

deletion, insertion, substitution, and transposition errors. Building upon proposed

error correction codes, several directions on error correction designs open, including:

• While significant efforts have been made to devise error correction codes for

distinct error types, the simultaneous occurrence of discrete and burst errors

within a codeword has received limited attention. Consequently, the inves-

tigation of codes capable of mitigating both discrete and burst errors holds

significant importance in communication and storage systems. For example,

designing codes can correct m1 ≥ 1 deletion and a burst of m2 ≥ 2 insertion,

substitution, or transposition errors.

• Furthermore, the proposed codes currently address a predetermined number

of errors. One future direction is to develop a code capable of rectifying un-

stable errors, a more challenging study than addressing stable errors, such as

designing a code capable of correcting at most one edit error and one trans-

position error, or at most m1 ≥ 1 deletion and at most m2 ≥ 1 substitution

or transposition errors.

• Another future direction is to apply error correction codes to DNA-based data

storage systems. Some researchers consider specific m and arbitrary m dele-

tion errors and certain algebraic error correction codes have been designed
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under this assumption. However, the co-occurrence of at least two of deletion,

insertion, and substitution, transposition errors pose a significant challenge in

DNA storage. Future research could explore novel assumptions about DNA

errors and corresponding error correction codes to address these scenarios.

Besides designing codes to overcome synchronization errors that may occur

during synthesis and sequencing in DNA-based data storage, some rules of

codewords in DNA are also considered such as homopolymer run, GC-balance

content, and secondary structure.
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Appendix A

Proof in Chapter 3

A.1 Proof for Lemma 3.5

It is assumed that the indexes belonging to the run of the (l − 1)-th bit zero or

the l-th bit zero in y are expressed as l = (l1, l1+1, · · · , l1+r−1), where the length

of the run is r and l is one element in l.

For D0I0, from Table 3.3, the distances u′
lk−1 − u′

m for l1 ≤ lk ≤ l1 + r − 1 are

given as

u′
lk−1 − u′

m = ∆d − 2n− 2. (A.1)

For D0I1, from Table 3.3, the distances u′
lk−1 − u′

m are presented as

u′
lk−1 − u′

m = ∆d − n−m− 2. (A.2)

Since the run l is all zeros, from (3.3), u′
lk−1 for all lk in l are the same. Thus,

the terms u′
lk−1 − u′

m in (A.2) are the same for all lk in l and similarly, u′
lk−1 for

all lk in (A.2) are same for all lk in l. This means that the multiple candidates for
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the deletion error position, which have the same distance, can be reduced to one

candidate.

For D1I0, the distances u′
lk−1 − u′

m are given as

u′
lk−1 − u′

m = ∆d − n+ lk + 1. (A.3)

Since the run l is all ones, from (3.3), u′
lk−1 increases by one for all lk in l. Then,

the term u′
lk−1 − u′

m in (A.3) increases by one for all lk in l. However, lk is an index

belonging to the run l in y, and the values u′
m of the insertion error are the same.

Thus, the deletion error can be recovered by adding a bit in any position in the run.

This means that the multiple candidates in l can be reduced to one candidate.

For D1I1, the distances u′
lk−1 − u′

m are represented as below

u′
lk−1 − u′

m = ∆d + lk −m− 1. (A.4)

Similar to the scenario D1I0, the term u′
lk−1 increases by one for all lk in l, then

the term u′
lk−1 − u′

m in (A.4) increases by one for all lk in l. Though the distances

are not the same for all lk in l, the multiple candidates in l can be reduced to one

candidate.

A.2 Proof for Lemma 3.9

Similar to Lemma 3.8, according to the definitions of set Sa, Tm, and S in (3.46)–

(3.48), since the first indexes at the runs of the inserted bit a are included in S, the

first index m at the run of the exact insertion position j is also included in S. Since

the first indexes at the runs of the deleted bit b are elements in S, the first index l
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at the run of the exact deletion position i is also included in S. It supposed that

a codeword z generated from the first indexes (l,m) and the run-length of the i-

th bit and j-th bit in y are ri and rj, respectively to find the original codeword

x = (x1, x2, · · · , xn). This means that m ≤ j ≤ m + rj − 1 and l ≤ i ≤ l + ri − 1.

The syndrome e′′z of z is calculated as

e′′z ≡
n∑

k=1

vkzk mod (4n− 5)

=

(m−1∑
k=1

vkzk +

m+rj−1∑
k=m

vkzk +
l−1∑

k=m+rj

vkzk +

l+ri−1∑
k=l

vkzk +
n∑

k=l+ri

vkzk

)
mod (4n− 5).

(A.5)

By a similar approach to Lemma 3.8, the three terms
∑m−1

k=1 vkzk,
∑l+ri−1

k=l vkzk,

and
∑n

k=l+ri
vkzk in (A.5) are the same as

∑m−1
k=1 vkxk,

∑l+ri−1
k=l vkxk, and

∑n
k=l+ri

vkxk,

respectively. Since the insertion position j is between m and m+ rj − 1 and in the

same run,
∑m+rj−1

k=m vkzk =
∑m+rj−1

k=m vkxk. Moreover, the deletion position i is be-

tween l and l+ ri − 1 and in the same run,
∑l+ri−1

k=l vkzk =
∑l+ri−1

k=l vkxk. Therefore,∑n
k=1 vkzk =

∑n
k=1 vkxk, and the syndrome e′′z in (A.5) is the same as ex and ∆e = 0.

A.3 Proof for Lemma 3.10

For p < k ≤ q, yk and yk−1 are the same or different. If yk and yk−1 are the same,

yk and yk−1 belong to the same run, and term vk(yk−yk−1) is also zero. If yk and yk−1

are different, yk and yk−1 belong to different runs and the term yk − yk−1 in (3.50) is

0-1=-1 or 1-0=1. Therefore, if h = (h1, h2, · · · ) is an index vector which composes

of increasing elements and denotes whole indexes where yk and yk−1 belong to the
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different runs for p < k ≤ q,
∑q

k=p+1 = vk(yk − yk−1) is expressed as

q∑
k=p+1

vk(yk − yk−1) =


vh1 − vh2 + vh3 − vh4 + · · · for yp = 0,

−vh1 + vh2 − vh3 + vh4 − · · · for yp = 1.

(A.6)

Since the number of elements of h can be even or odd, we consider the number of

elements of h as 2l or 2l + 1. For even cases, (A.6) is rewritten as

q∑
k=p+1

vk(yk − yk−1) =


vh1 − vh2 + · · ·+ vh2l−1

− vh2l
for yp = 0,

−vh1 + vh2 − · · · − vh2l−1
+ vh2l

for yp = 1.

(A.7)

The terms (vh1 − vh2 + · · · + vh2l−1
− vh2l

) and −(vh1 − vh2 + · · · + vh2l−1
− vh2l

)

are always negative and positive, respectively, since the sequence v is positive and

increasing and the number of signs in the terms is the same.

For odd cases, (A.6) is rewritten as below

q∑
k=p+1

vk(yk − yk−1) =


vh1 − vh2 + · · · − vh2l

+ vh2l+1
for yp = 0,

−vh1 + vh2 − · · ·+ vh2l
− vh2l+1

for yp = 1.

(A.8)

The term (vh1 − vh2 + · · · − vh2l
+ vh2l+1

) in (A.8) can be regarded as vh1 + (−vh2 +

· · · − vh2l
+ vh2l+1

). Since the number of sign change in (−vh2 + · · · − vh2l
+ vh2l+1

)

is the same, (−vh2 + · · · − vh2l
+ vh2l+1

) is always positive. Moreover, since vh1 is

also positive, the term (vh1 − vh2 + · · · − vh2l
+ vh2l+1

) in (A.8) is always positive.

Similarly, the term (−vh1 + vh2 − · · · + vh2l
− vh2l+1

) in (A.8) can be rewritten as

−vh1 − (−vh2 + · · ·−vh2l
+vh2l+1

), and it is always negative. Thus, the term (−vh1 +

vh2 − · · ·+ vh2l
− vh2l+1

) in (A.8) is always negative.
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Therefore, from (A.7), (A.8), and the sequence v is non-negative and increasing,∑q
k=p+1 vk(yk − yk−1) is not equal to zero. Since

∣∣∣∣∑q
k=p+1 vk(yk − yk−1)

∣∣∣∣ < (4n− 5)

according to Lemma 3.3,
∑q

k=p+1 vk(yk − yk−1) mod (4n− 5) is also not zero.
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