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I. Abstract 

Purpose: To automate glomerular filtration rate (GFR) measurement by developing deep learning (DL) models 

for generating automated regions of interest (ROIs) on 99mTc-diethylenetriamine pentaacetic acid (99mTc-DTPA) 

renal scans and/or for directly regressing the GFR from the 99mTc-DTPA renal scans. 

Methods: Manually-drawn ROIs as well as the corresponding GFR values were retrieved from a Picture 

Archiving and Communications System were used as ground-truth (GT) (or silver standard) labels and target 

values, respectively. To this end, we developed two models: one using a two-dimensional U-Net convolutional 

neural network (CNN) architecture (ROI generator network) with multichannel input to automatically generate 

kidney and background ROIs, from which GFR was calculated using the Gates formula, and another model 

using a two-dimensional encoder CNN architecture (GFR regressor network) with multichannel input to directly 

predict GFR values without the need for ROIs, respectively. The agreement between GFR values from GT and 

DL ROIs was evaluated using Lin’s concordance correlation coefficient (CCC) and slope coefficients for linear 

regressor analyses. Bias and 95% limits of agreement (LOA) were assessed using Bland-Altman plots. 

Results: A total of 24364 scans (12821 patients) were included. Regarding the ROI generator network, we 

found excellent concordance between GT and DL GFR for left (CCC 0.982, 95% confidence interval [CI] 

0.981–0.982; slope 1.004, 95% CI 1.003–1.004), for right (CCC 0.969, 95% CI 0.968–0.969; slope 0.954, 95% 

CI 0.953–0.955), and for both kidneys (CCC 0.978, 95% CI 0.978–0.979; slope 0.979, 95% CI 0.978–0.979). 

Bland-Altman analysis revealed minimal bias between GT and DL GFR, with mean differences of −0.2 (95% 

LOA −4.4–4.0), 1.4 (95% LOA −3.5–6.3) and 1.2 (95% LOA −6.5–8.8) mL/min/1.73 m² for left, right and both 

kidneys, respectively. Regarding the regressor network, GT and DL estimated GFR values is as follows for the 

left kidney (CCC 0.969, 95% CI 0.969–0.970), right kidney (CCC 0.969, 95% CI 0.968–0.969), and for both 

kidneys (CCC 0.972, 95% CI 0.971–0.972). Bland-Altman analysis revealed with mean differences of −0.06 

(95% LOA −5.5–5.4), 0.15 (95% LOA −5.4–5.7) and 0.08 (95% LOA −8.9–9.1) mL/min/1.73 m² for left, right 

and both kidneys. Notably, 19960 scans (81.9%) showed an absolute difference in GFR of less than 5 

mL/min/1.73 m² by the ROI generator network. Similarly, the regressor network showed an absolute difference 

in GFR of less than 5 mL/min/1.73 m² in 18,770 scans (77.0%). 
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Conclusion: Our ROI generator network and GFR regressor network exhibited excellent performance in the 

generation of ROIs and estimate GFR on 99mTc-DTPA renal scans. This automated approach could potentially 

reduce manual effort and enhance the precision of GFR measurement in clinical practice. 
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III. List of Figures, Supplementary Figures 

Figure 1. Schematic representation of the manual ROI extraction and GFR calculation process utilized in this 

study. A structured report along with 80 raw frame images (15 second per frame) was obtained in DICOM 

format. The images were anonymized automatically with a black-filled square using in-house software. GFR 

was calculated on the basis of renal uptake of 99mTc-DTPA captured in a 2–3-minute (9–12th frame) summed 

image (blue arrow). The manual ROIs for each kidney and the background delineated in the structured reports 

were identified using color-based edge detection methods (red arrow). These ROIs were subsequently 

superimposed onto the 2–3-minute summed images for GFR estimation. 

Figure 2. Schematic diagrams illustrating the data allocation and deep CNN architecture (a) Data allocation 

strategy (training:test-set ratio of 3:1) with a four-fold cross-validation-like training scheme. (b) U-Net 

architecture for kidney ROI delineation using deep learning with multi-channel image input (N × 256 × 256 × 

4). The output image is assessed against the ground truth using the Dice loss function. (c) The specific 

architecture of the U-Net for ROI delineation. (d) The specific architecture of the regressor model estimate GFR 

Figure 3. Patient flow diagram 

Figure 4. Scatter plots showing the agreement between the counts on the reported PACS form and the count 

calculated from the extracted ground-truth ROI for (a) left kidney and (b) right kidney. Dashed lines represent 

lines of equality. 

Figure 5. Scatter plots for GT GFR and DL GFR. Plots (a), (b), and (c) correspond to the left kidney, right 

kidney, and both kidneys, respectively, using the U-Net model. Plots (d), (e), and (f) represent the same kidneys 

using the regressor model. Dashed lines represent lines of equality. 

Figure 6. Bland-Altman plots for the agreement between GT GFR and DL GFR are presented for the left kidney 

(a), right kidney (b), and both kidneys (c), utilizing the U-Net model. Similarly, plots (d), (e), and (f) correspond 

to the same kidneys but employ the regressor model. Solid lines, indicating mean differences, are included at the 

end of each plot description. 

Figure 7. Visual interpretability of the GFR regressor model's heatmap. (a) Left and right masked input images. 

(b) Ground truth (GT) kidney ROIs. (c) Images obtained by applying K-means clustering and a 60% maximum 
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threshold from the raw image to identify the kidney regions. (d) Heatmap extracted from the final layer of the 

network. (e) Heatmap from (d) zoomed to a size of 256x256 pixels. (f) Final heatmap obtained by identifying 

the region overlapping the most with the clustered kidney region in (c) and applying a threshold of 0.1. 

Figure 8. Representative images showing a low concordance between GT ROIs and DL ROIs. Each row 

displays a 2–3-minute summed image (left), the same image with superimposed ROIs (middle) and a 

corresponding CT image or intravenous pyelogram (right). Panel (a) shows an example where the GT ROI 

includes a tumor in the upper pole of the left kidney (yellow arrow), whereas the DL ROI does not. Panel (b) 

shows a case where the GT ROI excludes the tumor in the lower pole of left kidney (yellow arrow), but the DL 

ROI includes it. Panel (c) presents a left ectopic kidney in the pelvic cavity that was not delineated by the DL 

ROI (yellow arrow). 

Supplementary Figure 1. Scatter plots showing the agreement between GT GFR and DL GFR for left kidney, 

right kidney and both kidneys across four cross-validation folds. Dashed lines represent lines of equality.  

Supplementary Figure 2. Scatter plots showing the agreement between GT GFR and regressor GFR for left 

kidney, right kidney and both kidneys across four cross-validation folds. Dashed lines represent lines of 

equality. 

Supplementary Figure 3. Bland-Altman plots illustrating the agreement between GT GFR and DL GFR for left 

kidney, right kidney and both kidneys across four cross-validation folds. Solid lines represent mean differences. 

Dashed lines represent 95% limits of agreement. 

Supplementary Figure 4. Bland-Altman plots illustrating the agreement between GT GFR and regressor GFR 

for left kidney, right kidney and both kidneys across four cross-validation folds. Solid lines represent mean 

differences. Dashed lines represent 95% limits of agreement. 
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1. Introduction 

Accurate measurement of glomerular filtration rate (GFR) is crucial for the diagnosis and management of 

renal diseases, as well as for adjusting medication dosages and monitoring kidney dysfunction across various 

clinical settings.  

99mTc-diethylenetriamine pentaacetic acid (99mTc-DTPA) is an extensively utilized radiopharmaceutical for 

measuring GFR. This compound exhibits minimal protein binding properties and is excreted solely through 

glomerular filtration without tubular secretion [1]. Split renal GFR is the most important quantitative marker 

derived from radionuclide renography with 99mTc-DTPA and is crucial for clinical decision making in many 

clinical situations, including hydronephrosis, vesicoureteral reflux, renal artery stenosis, tumourous conditions, 

and renal transplant donor evaluation [2].  

Calculation of GFR using a gamma camera often involves the Gates formula, necessitating the establishment 

of regions of interest (ROIs) for both kidneys and their background area [3, 4]. Because only 20% of renal blood 

flow is generally filtered by the glomeruli [5], 99mTc-DTPA images show relatively low signal-to-noise ratio 

with low renal uptake and high background activity. Therefore, GFR measurement by the Gates method might 

be sensitive to the ROI settings [6]. Commercially available software provides manual or automated tools for 

ROI drawing for GFR calculation on 99mTc-DTPA scans. In cases where the kidneys have irregular shapes or 

overlap with adjacent organs such as the liver or spleen, automated approaches can face challenges. These issues 

can limit the routine clinical use of automated methods. On the other hand, manual ROI drawing is considered 

the most accurate method, though it is often time-consuming and dependent on the operator. Automated 

approaches, although potentially enhancing convenience and reproducibility, may face limitations in routine 

clinical use due to these challenges. Manual ROI drawing remains the most accurate method but is often time-

consuming and operator-dependent [7]. 

Artificial intelligence, particularly convolutional neural network (CNN) algorithms, has gained traction in 

nuclear medicine imaging analysis [8-14]. U-Net-based deep learning (DL) algorithms, in particular, have 

shown promise in tasks such as tumor delineation on PET/CT scans [15]. With access to large datasets with 

well-controlled labels, deep learning-based image segmentation holds potential for improving the accuracy and 

reproducibility of GFR measurement on 99mTc-DTPA scans, thereby reducing manual effort and time. 
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The U-Net model (ROI generator network) is a type of CNN specifically designed for biomedical image 

segmentation [16]. Its architecture consists of a contracting path to capture contexts or features and a symmetric 

expanding path for precise localization. The contracting path follows the typical architecture of a CNN, 

involving repeated application of convolutions, followed by max pooling for downsampling. The expanding 

path consists of upsampling and concatenation with the corresponding feature maps from the contracting path, 

allowing the model to accurately segment structures within the image. 

In the context of 99mTc-DTPA scans, the ROI generator network is trained to automatically generate ROIs for 

the kidneys. This involves using large datasets of labeled scans to teach the model how to identify and delineate 

kidney boundaries accurately. By automating the ROI generation process, the ROI generator network reduces 

the need for manual intervention, which can be time-consuming and prone to variability.  

The GFR regressor network [18], on the other hand, is used to predict the GFR directly from the input 99mTc-

DTPA scans without the need for precise ROI delineation. This model is typically a type of regression-based 

CNN that learns to map the input image data to a continuous output representing the GFR value. The training 

process involves using labeled data where the GFR values are known, allowing the model to learn the 

relationship between the image features and the GFR. This approach can be beneficial in clinical settings as it 

simplifies the workflow and potentially offers quick and reliable GFR measurements. In addition to this, our 

team has explored two methodologies for building the GFR regressor network. One approach uses a scratch 

basis by taking only the encoder structure from the ROI generator network, which allows the model to learn 

directly from the raw data without pre-learned weights. The other approach utilizes a pretrained encoder from 

the ROI generator network, incorporating this pretrained component into the GFR regressor network's fully 

connected layers for training. This method leverages previously acquired knowledge, potentially accelerating 

the learning process and improving performance. 

By conducting both approaches, i.e., the ROI generator network for ROI segmentation and the GFR regressor 

network for direct GFR estimation, the study aims to enhance the accuracy and efficiency of GFR measurement 

in clinical practice. The ROI generator network ensures precise and accurate ROI delineation, which is crucial 

for accurate GFR calculation using traditional methods, while the GFR regressor network offers a more 

streamlined approach by directly estimating GFR from the scans. These models, trained with extensive datasets 
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of 99mTc-DTPA scans with labelled data retrieved from our Picture Archiving and Communication System 

(PACS), aims to streamline and enhance the GFR measurement process in clinical practice. 

Hence, we propose the utilization of ROI generator network for the automatic generation of kidney ROIs. 

This model, trained with extensive datasets of 99mTc-DTPA scans with labelled ROI data retrieved from our 

Picture Archiving and Communication System (PACS), aims to streamline and enhance the GFR measurement 

process in clinical practice. In addition to the ROI generator network, we developed a GFR regressor network 

that predicts GFR directly. To calculate kidney depth, which is essential for accurate GFR estimation, this 

regressor network concatenates age, height, and weight within the network. This dual approach leverages the 

strengths of both networks: the U-Net for its explainable ROI generation and the regressor network for its direct 

GFR prediction, offering a comprehensive solution for improved kidney function assessment. 
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2. Materials and methods 

2.1 Patients 

This study was conducted at a single center (Asan Medical Center) and included data from patients who 

underwent a 99mTc-DTPA renal scan for GFR measurement at our institution from October 2009 to November 

2021. Scans were excluded if they met any of the following criteria: 1) presence of a single kidney (such as 

post-nephrectomy or transplant kidney); 2) severely decreased split renal function (relative function < 20%) 

[19]; 3) inconsistency in the number of frames (not 80); and 4) patient age ≤ 15 years [20]. The study adhered to 

the Declaration of Helsinki and institutional guidelines, with approval from the local institutional review board 

(IRB No. 2022-0333). Informed consent was waived due to the retrospective nature of the study. 

Electronic medical records and 99mTc-DTPA renal scans were reviewed retrospectively by experienced 

nuclear medicine physician (S.H., S.H.), and serum creatinine, blood urea nitrogen (BUN) level, and GFR 

estimated by the CKD-EPI equation [21] within 1 month of the scan were collected. 

 

2.2 99mTc-DTPA scan acquisition and report 

As outlined in our previous study, quantitative 99mTc-DTPA renal scans were conducted following specific 

protocols [22]. Patients were instructed to consume 300–500 mL of water 30–60 minutes before the scan, with 

intravenous hydration provided if necessary. NSAIDs were discontinued 2–3 days prior to the scan, and patients 

were instructed to void just before the procedure. Intravenous administration of 185 MBq of 99mTc-DTPA was 

performed, with imaging conducted using dual-head gamma cameras equipped with either low-energy high-

resolution or all-purpose collimators. Dynamic imaging was performed over 20 minutes, resulting in 80 frames, 

with the injection site included in the scan field for monitoring. Radioactivity of the syringe pre- and post-

injection was measured to determine the exact injection dose, factoring in decay correction. 

Images were analyzed prospectively by expert nuclear medicine radiologic technologists using Syngo 

workstation (Siemens Healthineers, Forchheim, Germany). Manual delineation of ROIs for each kidney was 

conducted, excluding any present tumors. The perirenal background ROI was placed inferolaterally to the 

kidney center, ensuring adequate distance from neighboring organs to minimize scatter activity. 
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GFR was calculated based on renal uptake during a 2–3-minute interval (frames 9–12) using the gamma 

camera-based Gates method [3, 4]. Kidney depth calculation employed the Tonnesen formula [23] until July 

2014, transitioning to the Taylor formula [24] thereafter, with manual calculation for patients with renal 

anomalies [25]. For patients with renal anomalies or variations in kidney position, kidney depth was manually 

calculated on CT images. Final structured reports were reviewed and approved by experienced nuclear medicine 

physicians (S.H., S.Y.C., and D.H.M.) before uploading to the in-house PACS system known as PetaVision. 

 

2.3 Parsing PACS data 

Data sets comprising structured reports (1132 × 860 matrix) and 80 raw frame images were obtained in the 

Digital Imaging and Communications in Medicine (DICOM) format. Internal software was employed for 

automatic anonymization of the images. Various parameters such as kidney and background ROIs, time-activity 

curves, patient demographics (age, height, weight), split kidney functions, kidney depth, and GFR values were 

extracted from the structured reports using character recognition techniques [26]. To elaborate on the method for 

extracting digits, we extracted each digit (0–9) from the values presented in the report format. We then applied a 

matched filter approach, utilizing patches from the areas where the digits were located. The correlation between 

these patches and the extracted digits (0–9) was assessed to verify the validity of the digit extraction process. 

Each kidney depth, depth corrected kidney counts, GFR is calculated using the following formula: 

Tonnesen kidney depth [cm] 

Left kidney depth =  13.2 ∗ (
𝑊𝑒𝑖𝑔ℎ𝑡

𝐻𝑒𝑖𝑔ℎ𝑡
) + 0.7 

Right kidney depth =  13.3 ∗ (
𝑊𝑒𝑖𝑔ℎ𝑡

𝐻𝑒𝑖𝑔ℎ𝑡
) + 0.7 

Taylor kidney depth [cm] 

Left kidney depth =  15.31 ∗ (
𝑊𝑒𝑖𝑔ℎ𝑡

𝐻𝑒𝑖𝑔ℎ𝑡
) + 0.22 ∗ 𝐴𝑔𝑒 + 0.077 
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Right kidney depth =  16.17 ∗ (
𝑊𝑒𝑖𝑔ℎ𝑡

𝐻𝑒𝑖𝑔ℎ𝑡
) + 0.027 ∗ 𝐴𝑔𝑒 − 0.94 

Left/Right kidney counts [cpm] 

Depth– corrected Left kidney counts =
𝐿𝑒𝑓𝑡 𝑘𝑖𝑑𝑛𝑒𝑦 𝑐𝑜𝑢𝑛𝑡 − 𝐿𝑒𝑓𝑡 𝑏𝑎𝑐𝑘𝑔𝑟𝑜𝑢𝑛𝑑 𝑐𝑜𝑢𝑛𝑡

 𝑒𝑥𝑝(−0.153 ∗ 𝐿𝑒𝑓𝑡 𝑘𝑖𝑑𝑛𝑒𝑦 𝑑𝑒𝑝𝑡ℎ)
 

Depth– corrected Right kidney counts =
𝑅𝑖𝑔ℎ𝑡 𝑘𝑖𝑑𝑛𝑒𝑦 𝑐𝑜𝑢𝑛𝑡 − 𝑅𝑖𝑔ℎ𝑡 𝑏𝑎𝑐𝑘𝑔𝑟𝑜𝑢𝑛𝑑 𝑐𝑜𝑢𝑛𝑡

 𝑒𝑥𝑝(−0.153 ∗ 𝑅𝑖𝑔ℎ𝑡 𝑘𝑖𝑑𝑛𝑒𝑦 𝑑𝑒𝑝𝑡ℎ)
 

Total kidney uptake [%] 

Total kidney uptake =
𝐷𝑒𝑝𝑡ℎ 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑 𝑘𝑖𝑑𝑛𝑒𝑦 𝑐𝑜𝑢𝑛𝑡

𝑝𝑟𝑒– 𝑖𝑛𝑗𝑒𝑐𝑡𝑖𝑜𝑛 𝑐𝑜𝑢𝑛𝑡 − 𝑝𝑜𝑠𝑡– 𝑖𝑛𝑗𝑒𝑐𝑡𝑖𝑜𝑛 𝑐𝑜𝑢𝑛𝑡
 ∗  100 

Total/Left/Right GFR [ml/min] 

Total GFR = 9.8127[ml/min * %] Total Kidney uptake – 6.82519 

Left GFR =  𝑇𝑜𝑡𝑎𝑙 𝐺𝐹𝑅 ∗
𝐿𝑒𝑓𝑡 𝑘𝑖𝑑𝑛𝑒𝑦 𝑐𝑜𝑢𝑛𝑡𝑠

𝑇𝑜𝑡𝑎𝑙 𝐾𝑖𝑑𝑛𝑒𝑦 𝑐𝑜𝑢𝑛𝑡𝑠
 

Right GFR =  𝑇𝑜𝑡𝑎𝑙 𝐺𝐹𝑅 ∗
𝑅𝑖𝑔ℎ𝑡 𝑘𝑖𝑑𝑛𝑒𝑦 𝑐𝑜𝑢𝑛𝑡𝑠

𝑇𝑜𝑡𝑎𝑙 𝐾𝑖𝑑𝑛𝑒𝑦 𝑐𝑜𝑢𝑛𝑡𝑠
 

Normalized GFR [ml/min/1.73m2] 

Normalized GFR =  
𝑇𝑜𝑡𝑎𝑙 𝐺𝐹𝑅

1.73𝑚2
  

 

Extraction of manual ROIs, which were routinely traced by nuclear medicine technologists, for each kidney 

and background was performed using color-based edge detection methods. This served as the ground-truth (GT) 

label for the following DL processing, where manual ROIs defined by nuclear medicine technologists may 

suffer from considerable inter-rater variability, in turn, we can consider this as “silver standard”. These ROIs 

were then superimposed onto the 2–3-minute summed images to estimate GFR (Figure 1). Validation of the 

extraction process was conducted by comparing kidney counts from the structured reports with those obtained 
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through extraction. The report format depicted ROIs as contours (red/green for kidneys, yellow/blue for 

backgrounds) rather than filled areas. Typically, these contours formed a closed circuit, providing contiguous 

pixel connections. In cases of open contours, we applied morphological operations in Python, including binary 

closing and hole filling, to ensure the integrity of the ROIs. Scaling of ROI dimensions from the report format 

image space (192 x 192 or 166 x 166) to the raw data space (64 x 64) was performed before the overlay onto 

raw data. 

 

Figure 1 

 

2.4 Deep CNN-based ROI generator network and GRF regressor network: Network Architecture 

and Training/Test 

Schematic diagrams illustrating the dataset setup and the architecture of both DL models are available in 

Figure 2. GT labels were established using the ROIs extracted from each kidney and the background. A dataset 

comprising images summed over 2–3 minutes with a resolution of 256 × 256 pixels, along with their 

corresponding GT ROIs, was randomly split into training (75%) and testing (25%) sets. To ensure model 

effectiveness and prevent overfitting, a four-fold cross-validation approach was implemented, creating four 

distinct test groups, each containing 25% of the data. [11, 27] 
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Figure 2  
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ROI generator network 

For the ROI generator network, a 2D ROI generator network architecture was developed to accurately 

replicate the GT ROIs. This model employed a continuous CNN structure alternating between contracting and 

expanding paths, integrating residual learning through skip connections to generate segmented images. To 

enhance model generalization, data augmentation techniques including random translations, rotations, scaling, 

and shearing were applied to both input data and labels. The Dice similarity coefficient (DSC) served as the loss 

function, optimized using the adaptive moment estimation algorithm. Rectified linear unit activation functions 

were utilized in convolutional layers, while a sigmoid function was employed as the final activation function to 

produce binary ROI outputs, and training began with an initial learning rate of 1e-5. Following deep-learning 

training, a post-processing step was implemented to refine the generated masks, employing a 2D-connected 

component analysis-based approach to eliminate islands and fill holes. 

𝐷𝑖𝑐𝑒 𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 𝐶𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 =
2|𝑃 ∩ 𝐺|

|𝑃| + |𝐺|
 

 

𝐿𝑜𝑠𝑠 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 = 1 − 𝐷𝑖𝑐𝑒 𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 𝐶𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 

 

Following ROI generation by DL, a post-processing step was implemented to refine the generated masks, 

employing a 2D-connected component analysis-based approach to eliminate islands and fill holes. Since 

variability was observed in the spatial and morphological characteristics of the GT background ROIs, we 

developed an automated algorithm to generate background ROIs in cases where DL-based background ROIs 

were not generated. This algorithm performed morphological operations such as dilation, subtraction, and angle 

selection on each 2D kidney mask to create pie-shaped background ROIs positioned at the 5 and 7 o'clock 

directions for the right and left kidneys, respectively. 

GFR regressor network 

Our team has developed a deep CNN architecture to accurately estimate the GFR from 99mTc-DTPA renal 

scans. In our approach, we utilized different regressor networks to enhance the accuracy and interpretability of 

GFR estimation. The first model, a scratch-based GFR regressor network, leverages an encoder structure 

derived from the ROI generator network.  
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The second approach involves using a pretrained encoder from the ROI generator network to construct the 

GFR regressor network. This pretrained model has already learned from a broader dataset, capturing generalized 

features that are useful for interpreting the renal images. By integrating this pretrained encoder into our GFR 

regressor network, we benefit from enhanced feature extraction capabilities, which can lead to more accurate 

and reliable GFR estimations.  

Specifically, by combining input data such as age, height, and weight with the features extracted by the 

encoder, the model can more accurately calculate kidney depth and enhance GFR predictions. We use Mean 

Squared Error (MSE) as the loss function to minimize the difference between predicted and actual GFR values, 

ensuring that the model's predictions are as accurate as possible. The final layer of our GFR regressor network 

employs a linear activation function, providing a continuous range of GFR outputs, which is essential for precise 

clinical evaluations. 

𝑀𝑒𝑎𝑛 𝑆𝑞𝑢𝑎𝑟𝑒𝑑 𝐸𝑟𝑟𝑜𝑟 =
1

n
∑(𝑦𝑖 − 𝑦̂𝑖)

2

𝑛

𝑖=0

 

 

Utilizing various regressor networks, including those with pretrained weighted encoders and models trained 

from scratch, represents a significant advancement in applying deep learning techniques to medical imaging. 

This approach allows us to leverage the strengths of different model architectures, thereby providing a more 

robust and effective tool for clinical assessments. By comparing these different regressor networks, we can 

enhance GFR estimation accuracy and explore a wider range of potential applications for our models in the 

medical field. 

To determine which parts of the input the GFR regressor network focuses on to produce results, we employed 

grad-CAM to generate heatmaps. Given that the GFR regressor network lacks a parameter to differentiate 

between the left and right kidneys, we used masked inputs for training and evaluation. Heatmaps were generated 

from the final layer of the network, and to assess their quality, we resized them to 256x256 pixels to match the 

size of the labeled images. Next, we applied K-means clustering to the masked input images and used a 

threshold of 60% of the maximum value to approximately identify the kidney regions. We calculated the overlap 

between each cluster's area and the identified kidney region, selecting the best cluster with the greatest overlap 

to define the final heatmap. Finally, we evaluated the heatmap against the label ROI using the Dice coefficient. 
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All DL models were implemented by tensorflow-based Python scripts (version 2.6.0) on a system equipped 

with a GeForce NVIDIA RTX 3090 GPU and an AMD Ryzen Threadrippers 3960X CPU.  

Since our study has weaker notion of GT (or silver standard), the performance of all DL models were 

evaluated using the Concordance Correlation Coefficient (CCC) of GFR values generated by DL models versus 

that of GT. 

2.5 Statistical analysis 

Continuous data were reported as mean ± standard deviation or median with interquartile range (IQR). CCC 

and slope coefficients from linear regressor analyses were utilized to assess agreements between: 1) kidney 

counts on the standard PACS report form and those extracted from the GT ROIs (to validate ROI extraction); 2) 

GFR values derived from GT ROIs versus those from DL ROIs (to evaluate DL model performance); and 3) 

GFR values derived from GT ROIs versus those directly predicted from the DL regressor. Bland-Altman plots 

were employed for visual assessment of potential bias and 95% limits of agreement (LOA) between these 

variables. Statistical analyses were conducted using R (version 4.1.1; R Foundation for Statistical Computing, 

Vienna, Austria) and Python (version 3.8; Python Software Foundation, Wilmington, DE). 
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3. Results 

3.1 Baseline characteristics 

Out of 29,550 scans conducted during the study period, 3,334 were excluded due to single kidney presence, 

1,653 due to severely decreased split renal function, 178 due to a different number of slices (not 80), and 21 due 

to patient age ≤ 15 years. Consequently, 24,364 scans from 12,822 patients were included in the DL process and 

analysis. The number of scans performed using each gamma camera is summarized in Supplementary Table 1. 

99mTc-DTPA scan sessions per patient are summarized in Supplementary Table 2. 

  

Figure 3 

 

The median patient age was 57.0 years (IQR, 47.0–65.0), median creatinine level was 0.87 (IQR, 0.73–1.01), 

median BUN level was 14.0 (IQR, 12.0–18.0), and median GFR estimated by the CKD-EPI equation was 91.0 

(IQR, 77.0–101.0). A total of 9,835 99mTc-DTPA scans were performed on patients following partial 

nephrectomy. Serum creatinine, BUN, and estimated GFR (by the CKD-EPI equation) levels within one month 

from the date of 99mTc-DTPA scan were available in 23,260, 12,777, and 17,284 scans, with median time 

intervals of 0 (IQR 0–2), 0 (IQR 0–1), and 0 (IQR 0–5) days, respectively. These baseline characteristics of the 

patients are summarized in Table 1. 
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3.2 ROI extraction 

The kidney and background ROIs extracted from the PACS standard report forms demonstrated excellent 

agreement with left kidney counts (CCC 0.992, 95% CI 0.992–0.993; slope 0.991, 95% CI 0.990–0.991) and 

right kidney counts (CCC 0.991, 95% CI 0.99–0.991; slope 1.015, 95% CI 1.014–1.016) calculated from the 

extracted GT ROIs (Figure 4). 

 

Figure 4 

 

3.3 ROI generation-based GFR calculation and direct GFR prediction 

ROI generator Network 

The mean DSCs across all test sets were 0.928 (95% CI: 0.888–0.968), 0.927 (95% CI: 0.884–0.970), and 

0.565 (95% CI: 0.563–0.567) for the left kidney, right kidney, and background ROIs, respectively. The DL 

model failed to generate a background ROI in 428 scans, and an automatic algorithm-based background ROIs 

were applied in these cases. The study demonstrates a remarkable concordance between GFRs derived from GT 

and DL ROIs when utilizing the ROI generator network architecture. Specifically, the CCC for the left kidney 

was 0.982 (95% CI 0.981–0.982) with a slope of 1.004 (95% CI 1.003–1.004). For the right kidney, the CCC 

was 0.969 (95% CI 0.968–0.969) with a slope of 0.954 (95% CI 0.953–0.955), and for both kidneys combined, 

the CCC was 0.978 (95% CI 0.978–0.979) with a slope of 0.979 (95% CI 0.978–0.979). (Figure 5) The Bland-
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Altman analysis revealed mean differences between GFR from GT and DL ROIs of -0.2 (95% LOA: -4.6 to 

4.2), 1.4 (95% LOA: -2.1 to 4.9), and 1.2 (95% LOA: -5.2 to 7.6) mL/min/1.73 m^2 for the left, right, and both 

kidneys. For 19,960 scans (81.9%) (Figure 6), the absolute difference between GFR from GT and DL ROIs in 

both kidneys was less than 5 mL/min/1.73 m^2. The total GFR values showed a percent difference of less than 

10% between the DL ROI and GT ROI methods in 22,023 (90.4%) cases and exhibited a percent difference of 

less than 20% in 24,133 (99.1%) cases. 

GFR regressor Network 

The results from the scratch-based GFR regressor network exhibited a high level of concordance, similar to 

the pretrained encoder-based model. Specifically, the CCC for the left kidney was 0.969 (95% CI 0.969–0.970), 

for the right kidney it was 0.969 (95% CI 0.968–0.969), and for both kidneys combined, it was 0.972 (95% CI 

0.971–0.972). The Bland-Altman analysis for the GFR regressor network revealed mean differences of -0.06 

(95% LOA −5.5–5.4), -0.15 (95% LOA −5.4–5.7), and -0.08 (95% LOA −8.9–9.1) mL/min/1.73 m² for the left, 

right, and both kidneys, respectively. 18,770 (77.0%) scans showed a difference of less than 5 mL/min/1.73 

m^2, 20,580 (84.4%) cases had a percent difference within 10%, and 22,424 (98.0%) cases had a percent 

difference within 20%. These results are comparable to those obtained from the pretrained encoder-based 

model, indicating that both approaches are effective in estimating GFR values accurately. This similarity 

underscores the robustness of our models in handling the complexities of renal function assessment through 

imaging. 

Among the various methods attempted to accurately define the heatmap, applying K-Means clustering and a 

60% threshold of the maximum value from the raw image to identify the kidney region yielded the best results 

in terms of alignment with the GT kidney ROI. This method achieved a Dice coefficient of 0.796 for the left 

kidney and 0.744 for the right kidney. These results indicate that this approach effectively highlights the regions 

of interest that the model focuses on, significantly improving interpretability. Figure 7 illustrates this method, 

showcasing its superior performance compared to previous attempts and demonstrating its utility in enhancing 

clinical relevance by accurately identifying anatomical regions of interest. 

The heatmap generated by the ROI generator network effectively highlights the ROI, providing a clear 

understanding of the areas the model focuses on. This enhanced visualization is crucial for clinical 
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interpretation, assisting medical professionals in identifying key areas of concern. In comparison, while the GFR 

regressor network also generates heatmaps that generally align with the GT kidney ROI, they are significantly 

less clear and less intuitive than those produced by the ROI generator network. This suggests that the ROI 

generator network provides more discernible and actionable insights, which are essential for clinical decision-

making. Despite achieving accurate GFR estimates, the heatmaps from the GFR regressor network did not 

consistently match the expected anatomical regions of interest, highlighting the superior interpretability of the 

ROI generator network approach. 

Representative cases where ROI generator network failed to draw an ROI or showed low concordance 

compared with GT are presented in Figure 8. Upon visual review, poor renal uptake, severe hydronephrosis, 

large renal tumor, or an ectopic kidney was often accompanied in the cases where kidney ROI was not drawn or 

had a low concordance. 

 

Figure 5 
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Figure 6 

 

 

Figure 7 
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Figure 8 
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4. Discussion 

ROI generator Network 

Our study showcased the efficacy of a 2D-CNN with a U-Net structure in accurately delineating kidney ROIs 

and measuring GFR on 99mTc-DTPA renal scans. The GFR values obtained from DL-based ROIs closely 

matched those from manually-drawn ROIs, with an absolute difference of less than 5 mL/min/1.73 m² in 81.9% 

of cases and a relative difference within 10% in 90.4% of cases. This suggests that using our DL model, 80–

90% of patients may undergo GFR measurement without requiring additional manual correction effort. Even in 

the remaining 10–20% of cases, editing the DL-generated ROI could significantly reduce the overall effort 

needed for scan analysis. Remarkably, our DL model processed 24,364 99mTc-DTPA scans in less than a second 

each, demonstrating remarkable efficiency. While 99mTc-DTPA scans are widely used for GFR measurement, 

they suffer from limited precision and variability, which our DL model can help mitigate by minimizing human 

error in the image analysis process. [28, 29] 

Regarding unique aspect of our ROI generator network research is leveraging existing ROI labels from 

standard reports stored in our PACS, eliminating the need to generate extensive labels, a common challenge in 

DL training. Our fully automated approach, from downloading DICOM files to processing images, sets a 

precedent for large-scale DL studies involving ROIs in related fields. Comparing our approach with Pi et al.'s 

study, where CNN regressor was applied to derive kidney counts or GFR values directly from dynamic renal 

images, we speculate that generating ROIs may enable more accurate GFR measurement than direct prediction. 

Additionally, our DL model's explainable GFR values can be corrected by modifying the ROI if needed, 

offering flexibility and accuracy in measurement. Moreover, our model for setting kidney and background ROIs 

can be applied not only for GFR measurement but also for generating renograms to assess renal conditions. 

GFR regressor Network 

An exceptional milestone in our methodology was the successful extraction of GFR values without the 

reliance on creating ROIs, representing a significant leap forward in renal scan analysis. By harnessing the 

capabilities of deep learning, our networks autonomously discerned and quantified pertinent features directly 

from the input scans, eliminating the need for the conventional ROI generation step. This innovative approach 
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not only streamlined the analysis process but also underscored the potential of deep learning in revolutionizing 

medical image analysis. 

To estimate the GFR, our GFR regressor network used features such as age, height, and weight, incorporating 

these parameters into a single input to predict GFR values directly from the scans. This model employed mean 

squared error as its loss function, with a linear activation function for the output layer to produce continuous 

GFR values. The results indicated that the model effectively predicted GFR values with an absolute difference 

of less than 5 mL/min/1.73 m² in 77.0% of cases and within 10% in 84.4% of cases. This shows the potential 

utility of our GFR regressor network for direct GFR estimation, offering a streamlined workflow without the 

need for ROI delineation. 

Comparing our approach with Pi et al.'s study, where a CNN regressor was applied to derive kidney counts or 

GFR values directly from dynamic renal images, we speculate that generating ROIs may enable the model to 

measure GFR with results similar to those obtained from direct prediction. Additionally, our DL model's 

explainable GFR values can be corrected by modifying the ROI if needed, offering flexibility and accuracy in 

measurement. 

Limitations and Future Studies 

Despite these strengths, our study has limitations. Firstly, due to its single-institutional nature and the 

exclusion of cases with severely reduced renal function, the generalizability of our findings to broader patient 

populations may be limited. Additionally, the presence of interrater variability in the delineation of GT ROIs by 

different radiologists introduces uncertainty into the accuracy of the GT. This variability leads to inconsistencies 

in the inclusion or exclusion of tumors within the ROIs, which in turn affects the predictions of our DL model. 

As a result, the lack of uniformity in the GT may contribute to an underestimation of the CCC values. 

Furthermore, while our DL model demonstrates superior reproducibility over manual methods in many cases, 

direct evidence supporting this claim is lacking, warranting further research to validate its performance and 

reliability. 

We addressed the concern of potential overestimation due to multiple scans per patient through two key 

safeguards. We ensured a sufficient time interval between scans to capture distinct physiological states, 

minimizing the likelihood of similar results due to unchanged conditions. Additionally, we used different 
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imaging devices and interpreted by various radiologists to minimize systematic biases. This enhanced the 

generalizability and reliability of our findings. 

The grad-CAM visualizations demonstrated a significant improvement in the explainability of the GFR 

regressor network. By utilizing left and right masked inputs, the network produced more accurate and relevant 

heatmaps that closely aligned with the labeled ground truth. This approach allowed the GFR regressor network 

to focus its feature extraction processes on the specific anatomical regions of interest for each kidney, thereby 

enhancing the interpretability of the model's predictions. In previous analyses, grad-CAM heatmaps exhibited 

discrepancies, often showing activity near both kidneys when predicting the GFR for one side. This issue likely 

arose because the input image used for the renal scan included information from both kidneys, whereas the 

labels were designated for the GFR of each kidney separately. By using masked inputs, the network can now 

target the relevant kidney, resulting in heatmaps that better align with the clinically labeled ROIs. 

However, despite these improvements, the explainability of the GFR regressor network still falls short 

compared to the ROI generator network. While the GFR regressor network's heatmaps are more accurate than 

before, they are not as intuitively clear or as well-aligned with the labeled ROIs as those produced by the ROI 

generator network. This suggests that the ROI generator network remains superior in providing clear and 

actionable insights for clinical decision-making.  
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5. Conclusions 

Our 2D-CNN model, incorporating the ROI generator network architecture, showcased remarkable 

proficiency in segmenting kidney ROIs on 99mTc-DTPA scans. The GFR values derived from automatically 

generated ROIs exhibited strong agreement with those manually delineated by experts. In a significant majority 

of cases (80-90% of patients), the DL approach enabled GFR measurements without the need for additional 

manual calibration, showing negligible absolute differences or relative differences within 10%.  

Additionally, the GFR regressor network demonstrated similar concordance in terms of the CCC. Although it 

does not provide the same level of explainability, the GFR regressor network produced comparable CCC results, 

suggesting its potential utility in GFR estimation from renal scans. This indicates that the GFR regressor 

network can serve as an efficient alternative for direct GFR estimation, offering a streamlined workflow without 

the need for ROI delineation. 

As a result, our study paves the way for straightforward, operator-independent analysis of 99mTc-DTPA scans 

for GFR assessment in a consistently reproducible manner. However, variability in GT labeling due to different 

radiologists' interpretations may have led to an underestimation of the CCC values. Future research should 

continue to explore these findings across multiple institutions and in patients with a broader range of renal 

functions to further validate and refine our model. 
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7. Korean Abstract 

 
목적  Glomerular filtration rate (GFR) 측정을 위한 99mTc-diethylenetriamine 

penataacetic acid (DTPA) 신장 스캔에서 자동화된 관심영역(ROI)을 생성하기 위한 딥러닝 

모델을 개발하였다. 

방법  수동으로 그려진 ROI 와 해당 GFR 값은 Picture Archiving and 

Communications System (PACS) 에서 검색한 GT 레이블 및 대상 값으로 사용하였다. 이를 

위해, 다차원 입력을 사용하는 2 차원 U-Net 합성곱 신경망(CNN) 아키텍처(ROI 생성기 

네트워크)와 다차원 입력을 사용하는 2 차원 인코더 CNN 아키텍처(GFR 회귀 네트워크)로 

구성된 두 가지 모델이 훈련되어 DL ROI 및 DL GFR 값을 생성하였다. 후자(즉, 회귀) 모델은 

ROI 를 생성하지 않고 GFR 값을 생성하기 위해 사용되었다. GT 및 DL ROI 간의 GFR 값의 

일치는 Lin 의 일치 상관 계수(CCC) 및 선형 회귀 분석의 기울기 계수를 사용하여 평가하였다. 

바이어스 및 95% 근접한 한계(LOA)를 Bland-Altman 그림을 사용하여 평가하였다. 

결과  총 24364 개의 스캔 (12821 명의 환자)이 포함되었다. ROI 생성 네트워크에 

대해서는 좌측 신장(CCC 0.982, 95% 신뢰 구간 [CI] 0.981-0.982; 기울기 1.004, 95% CI 

1.003-1.004), 우측 신장(CCC 0.969, 95% CI 0.968-0.969; 기울기 0.954, 95% CI 0.953-

0.955), 그리고 양쪽 신장(CCC 0.978, 95% CI 0.978-0.979; 기울기 0.979, 95% CI 0.978-

0.979)에 대해 GT 및 DL GFR 사이의 일치가 우수한 것을 발견하였다. Bland-Altman 분석 

결과, 좌측, 우측 및 양쪽 신장에 대한 GT 및 DL GFR 간의 평균 차이는 각각 -0.2 (95% LOA -

4.4-4.0), 1.4 (95% LOA -3.5-6.3) 및 1.2 (95% LOA -6.5-8.8) mL/min/1.73 m² 임을 

확인하였다. 회귀 네트워크의 경우, GT 및 DL 추정 GFR 값은 좌측 신장 (CCC 0.969, 95% CI 

0.969-0.970), 우측 신장 (CCC 0.969, 95% CI 0.968-0.969) 및 양쪽 신장 (CCC 0.972, 95% CI 

0.971-0.972)임을 확인하였다. 주목할 만하게, ROI 생성 네트워크에 의해 GFR 이 5 

mL/min/1.73 m² 미만의 절대 차이를 보인 스캔은 19960 건(81.9%)이었다. 유사하게, 회귀 

네트워크는 18770 건의 스캔(77.0%)에서 GFR 이 5 mL/min/1.73 m² 미만의 절대 차이를 보였다. 
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결론  우리의 ROI 생성기 네트워크와 GFR 회귀 네트워크는 99mTc-DTPA 신장 

스캔에서 ROIs 생성 및 GFR 을 예측하는데 우수한 성능을 보였다. 이 자동화된 접근 방식은 

임상 실무에서 수동 노력을 줄이고 GFR 측정의 정밀도를 향상시킬 수 있다. 

 



28 

 

8. Figure legends 

 

Figure 1. Schematic representation of the manual ROI extraction and GFR calculation process utilised in this 

study. A structured report along with 80 raw frame images (15 second per frame) was obtained in DICOM 

format. The images were anonymised automatically with a black-filled square using in-house software. GFR 

was calculated on the basis of renal uptake of 99mTc-DTPA captured in a 2–3-minute (9–12th frame) summed 

image (blue arrow). The manual ROIs for each kidney and the background, identified using color-based edge 

detection (red arrow), were superimposed onto the summed images for GFR estimation. 

 

Figure 2. Schematic diagrams illustrating the data allocation and deep CNN architecture (a) Data allocation 

strategy (training:test-set ratio of 3:1) with a four-fold cross-validation-like training scheme. (b) U-Net 

architecture for kidney ROI delineation using deep learning with multi-channel image input (N × 256 × 256 × 

4). The output image is assessed against the ground truth using the Dice loss function. (c) The specific 

architecture of the U-Net for ROI delineation. (d) The specific architecture of the regressor model for estimating 

GFR. 

 

Figure 3. Patient flow diagram 

 

Figure 4. Scatter plots showing the agreement between the counts on the reported PACS form and the count 

calculated from the extracted ground-truth ROI for (a) left kidney and (b) right kidney. Dashed lines represent 

lines of equality. 
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Figure 5. Scatter plots showing the agreement between ground truth (GT) GFR and deep learning (DL) GFR for 

(a) left kidney, (b) right kidney and (c) both kidneys using the U-Net model, and (d) left kidney, (e) right kidney 

and (f) both kidneys using the regressor model. Dashed lines represent lines of equality. 

 

Figure 6. Bland-Altman plots illustrating the agreement between ground truth (GT) GFR and deep learning 

(DL) GFR for (a) left kidney, (b) right kidney and (c) both kidneys using the U-Net model, and (d) left kidney, 

(e) right kidney and (f) both kidneys using the regressor model. Solid lines represent mean differences. Dashed 

lines represent 95% limits of agreement. 

 

Figure 7. Visual interpretability of the GFR regressor model's heatmap. (a) Left and right masked input images. 

(b) Ground truth (GT) kidney ROIs. (c) Images obtained by applying KMeans clustering and a 60% maximum 

threshold from the raw image to identify the kidney regions. (d) Heatmap extracted from the final layer of the 

network. (e) Heatmap from (d) zoomed to a size of 256x256 pixels. (f) Final heatmap obtained by identifying 

the region overlapping the most with the clustered kidney region in (c) and applying a threshold of 0.1. 

 

Figure 8. Representative images showing a low concordance between ground truth (GT) ROIs and deep 

learning (DL) ROIs. Each row displays a 2–3-minute summed image (left), the same image with superimposed 

ROIs (middle) and a corresponding CT image or intravenous pyelogram (right). Panel (a) shows an example 

where the GT ROI includes a tumour in the upper pole of the left kidney (yellow arrow), whereas the DL ROI 

does not. Panel (b) shows a case where the GT ROI excludes the tumour in the lower pole of left kidney (yellow 

arrow), but the DL ROI includes it. Panel (c) presents a left ectopic kidney in the pelvic cavity that was not 

delineated by the DL ROI (yellow arrow). 



30 

 

 

Supplementary Figure 1. Scatter plots showing the agreement between ground truth (GT) GFR and U-Net 

(DL) GFR for left kidney, right kidney and both kidneys across four cross-validation folds. Dashed lines 

represent lines of equality. 
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Supplementary Figure 2. Scatter plots showing the agreement between ground truth (GT) GFR and regressor 

model (Regression) GFR for left kidney, right kidney and both kidneys across four cross-validation folds. 

Dashed lines represent lines of equality. 
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Supplementary Figure 3. Bland-Altman plots illustrating the agreement between ground truth (GT) GFR and 

U-Net (DL) GFR for left kidney, right kidney and both kidneys across four cross-validation folds. Solid lines 

represent mean differences. Dashed lines represent 95% limits of agreement. 
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Supplementary Figure 4. Bland-Altman plots illustrating the agreement between ground truth (GT) GFR and 

regressor model GFR for left kidney, right kidney and both kidneys across four cross-validation folds. Solid 

lines represent mean differences. Dashed lines represent 95% limits of agreement. 
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9. Table 

Table 1. Study characteristics 

Data are expressed as number (proportion) or median. 

*The estimated GFR was calculated by CKD-EPI equation 

Variables Total scans Scans with renal mass Scans without renal mass 

Number of scans 24364 4067 20297 

Number of patients 12822 2081 10741 

Age at scan time (years) 56 (16–94) 56 (16–91) 56 (16–94) 

Male:Female 15799:8565 2562:1505 13237:7060 

History of partial nephrectomy 10525 (43%) 122 (3%) 10403 (52%) 

Serum creatinine (mg/dL) 0.87 (IQR, 0.73–1.01) 0.86 (IQR, 0.71–1.00) 0.87 (IQR, 0.71–0.96) 

BUN (mg/dL) 14.0 (IQR, 12.0–18.0) 14.0 (IQR, 11.0–17.0) 13.0 (IQR, 11.0–15.0) 

Estimated GFR (mL/min/1.73 

m2)* 

   

<15 40 (0%) 4 (0%) 36 (0%) 

15–30 168 (1%) 19 (0%) 149 (1%) 

30–45 519 (2%) 80 (2%) 439 (2%) 

45–60 1564 (6%) 271 (7%) 1293 (6%) 

60–90 9161 (38%) 1553 (38%) 7608 (37%) 

≥90 11451 (47%) 1941 (48%) 9510 (47%) 

Not available 1461 (6%) 199 (5%) 1262 (6%) 
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Supplementary Table 1. The number of scans performed using each gamma camera 

Cameras Number of Scans 

Intevo Bold 80 

Intevo 16 39 

Symbia E 11,536 

Symbia E2 3,350 

Symbia T2 2,083 

E.cam 5,417 

Evo Excel 1,859 

Total 24,364 

 

Supplementary Table 2. Summary of 99mTc-DTPA scan sessions per patient. 

Sessions per patient Patients (n) Total Scans (n) 

Time interval between 

scans (months) 

1 8,743 8,743 N/A 

2 1,329 2,658 5.9 

3 1,056 3,168 7.5 

4 542 2,168 12.1 

5 289 1,445 11.9 

6 263 1,578 12.1 

7 300 2,100 12.1 

8 221 1,768 12.1 

9 56 504 12.1 

10 21 210 12.0 

11 2 22 11.8 

Total 12,822 24,364  

Data are expressed as number or median 


	목차
	1 Introduction 1
	2 Materials and Methods 4
	2.1 Patients 4
	2.2 99mTc-DTPA scan acquisition and report 4
	2.3 Parsing PACS data 5
	2.4 Deep CNN-based ROI generator network and GRF regressor network: Network Architecture and Training/Test 7
	2.5 Statistical analysis 11

	3 Results 12
	3.1 Baseline characteristics 12
	3.2 ROI extraction 13
	3.3 DL performance evaluation 13

	4 Discussions 18
	5 Conclusion 21
	6 References 22
	7 Korean Abstract 26


