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1. Abstract 

Purpose This work tried to verify two abilities of deep generative models using several tasks. The first task is the 

performance to distinguish features in the image analysis task of 18F-FP-CIT PET in Parkinson's Disease patients, 

and the second is the data distribution learning (generator) performance in unsupervised anomaly detection of 

non-contrast 3D brain CT. 

Methods The first study involved 2,672 18F-FP-CIT PET scans retrospectively collected. We build a 3D pre-

training model with the generative method and evaluate the model's performance to discriminate features using 

linear probing and fine-tuning. We did binary classification of Essential Tremor (ET) / early onset Parkinson's 

disease and multi-class classification of Parkinson's disease (PD), multiple system atrophy (MSA) and progressive 

supranuclear palsy (PSP). Also, the pre-trained model was used in the motor-symptom onset year regression task, 

and the model's performance was evaluated similarly to classifications. The second study involved 34,085 non-

contrast brain CT scans retrospectively collected with healthy subjects. We trained a 3D generative model using 

only the normal CT scans. After learning the normal data distribution, this model could detect abnormal scans 

that deviated from the normal distribution. 

Results In the first task, the proposed network achieved the area under the receiver operating characteristic curve 

(AUROC) of 0.997(internal), 0.994 (external) with the area under the precision-recall curve (AUPRC) of 

0.998(internal), 0.991(external) in the cross-validation of ET/PD classification and AUROC of 0.920(internal), 

0.919(external) with AUPRC of 0.881(internal), 0.670(external) in the cross-validation of PD/MSA/PSP 

classifications. In the regression task, the model achieved the Mean Absolute Error (MAE) of 2.013(internal) and 

1.965(external) with the concordance correlation coefficient (CCC) of 0.701(internal) and 0.733(external). In the 

second task, our network detected normal and abnormal images with0.91 0.93, 0.91, and 0.91 of accuracy, 

precision, recall, and F1-score in the internal test set and 82, 0.82, 0.82, and 0.82 in the external test set, 

respectively. 

Conclusion This study suggested that the deep generative models could become a discriminant of the functional 

brain images' clinical features. Also, this could become a distribution learner of the structural brain images, which 

detect whether an image is in the distribution or deviated. 

 

2. Introduction 

The landscape of deep learning has seen remarkable advancements with the development of generative models to 

capture the underlying data distribution, allowing them to create new, realistic samples. These models have 

become integral to various applications, demonstrating significant potential in generating new samples and 

understanding existing data.[1][2] Recent models like GPT (Generative Pre-trained Transformer) and T5 (Text-

To-Text Transfer Transformer) have garnered significant attention by unifying generative and discriminative tasks. 

Unlike traditional models focusing solely on classification or generation, these models leverage a generative pre-

training approach to enhance their performance on discriminative tasks.[3][4] Generative models excel in creating 

new samples by approximating the data distribution. This capability implies that they also achieve a semantic 
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understanding of the raw visual data, which is crucial for recognition tasks. By learning to generate data, these 

models inherently learn to discriminate between different data classes.[5] Diffusion Probabilistic Models have 

recently dominated the field of image generation. [6][7] These models generate images through a gradual 

denoising process, starting from pure noise and progressively refining the image. This approach has proven 

effective in producing high-quality, realistic images. Based on DPMs, some models emerged to solve the problem 

of DPMs having no practical and meaningful latent space. Among them, Hierarchical Diffusion Autoencoders 

(HDAE) perform well in extracting the fine-to-coarse-level feature for the latent space of diffusion models. In this 

sense, this model could simultaneously become a great discriminant and data distribution learner (generator). So, 

we did two tasks using HDAE, especially 3D inflated HDAE. One was the image analysis of 18F-FP-CIT PET in 

patients with Parkinson's disease, mainly using the faculty in view of classifier and regressor. Another is the 

unsupervised anomaly detection in 3D non-contrast brain CT, which employs the ability of data distribution 

understanding.  

  

The First task is the image analysis of 3D 18F-FP-CIT PET in Parkinson's Disease patients. Parkinson's Disease 

(PD) is a chronic and progressive neurodegenerative disorder that primarily affects the central nervous system, 

leading to significant motor system impairments. The hallmark motor symptoms of PD include tremors, rigidity, 

bradykinesia (slowness of movement), and postural instability, collectively known as parkinsonism. These 

symptoms typically emerge gradually and worsen over time, severely impacting affected individuals' quality of 

life and functional abilities. [1] FP-CIT (Fluoropropyl-carbomethoxyiodophenyl-tropane) is a radioligand used in 

neuroimaging to visualize dopamine transporters in the brain. It binds specifically to the dopamine transporter 

(DAT) sites in the striatum, enabling detailed imaging of dopaminergic neuron integrity. FP-CIT imaging is 

critical in the evaluation of diseases that affect dopaminergic pathways, such as PD. FP-CIT Single Photon 

Emission Computed Tomography (SPECT) is a widely used imaging technique that employs FP-CIT as a 

radiotracer. This method is beneficial for diagnosing PD and differentiating it from other conditions that affect 

motor function. However, FP-CIT Positron Emission Tomography (PET) is a more advanced imaging technique 

that also uses FP-CIT as a radiotracer. Compared to SPECT, PET imaging offers higher resolution and greater 

sensitivity, providing more detailed and accurate images of dopamine transporter distribution.[8]  

 

Diagnosing PD can be challenging due to its symptom overlap with other neurodegenerative disorders such as 

Essential Tremor (ET), Multiple System Atrophy (MSA), and Progressive Supranuclear Palsy (PSP). These 

conditions share similar motor symptoms, making accurate diagnosis difficult. However, accurate differentiation 

between these disorders is crucial for developing effective therapeutic strategies.[9] Without a characteristic, PD 

has similar diseases; one of the other features of PD is progressive neurodegeneration. Progressive loss of the 

ascending dopaminergic projection in the basal ganglia is a fundamental pathological feature of Parkinson's 

disease. Imaging biomarkers in PD are increasingly important for monitoring progression in clinical trials and 

also have the potential to improve clinical care and management. [10] 
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 For this reason, it is meaningful to build a reliable computer-aided diagnosis and imaging biomarker that reflects 

progressive neurodegeneration that could assist neurologists in making precise diagnoses.[11] Conventional 

quantitative analyses of FP-CIT imaging typically focus on specific brain region uptake values, such as the striatal 

binding ratio (SBR) or Standardized uptake value ratio (SUVR). While these measures are helpful, conventional 

analyses often focus on predefined regions of interest (ROIs), potentially overlooking relevant information in 

other areas of the brain. Deep learning has demonstrated exceptional performance in various domains, including 

medical image analysis. It can automatically learn and extract relevant features from raw images without the need 

for manual ROI delineation. However, FP-CIT PET is a sophisticated imaging modality that is difficult to acquire, 

expensive, and challenging to image. Consequently, there have been relatively few studies utilizing this modality 

despite its potential for providing detailed insights into dopaminergic dysfunctions in PD. By building deep 

learning models trained on a large dataset of FP-CIT PET images, this study aims to support neurologists in 

making accurate diagnoses and monitoring disease progression. 

 

This study compares several generative pre-training techniques to determine their efficacy in downstream 

classification and regression tasks. By pre-training on a generative task, models can learn robust feature 

representations that are beneficial for subsequent discriminative tasks such as classification and regression. 

Various methods for generative pre-training exist, each with its unique advantages. After generative pre-training, 

the encoder is subjected to linear probing and fine-tuning. Linear probing involves training only a trainable simple 

linear classifier on the pre-trained features while fine-tuning adjusts all the pre-trained weights on the specific 

downstream tasks. This study evaluates the encoder's performance in two classification tasks: ET vs. early PD 

and PD vs. MSA vs. PSP. Early PD patients include patients whose FP-CIT PET scans were acquired undergone 

years of motor symptom onset. In addition, we performed a regression task to predict the onset year of motor 

symptoms. Also, using this regression network, we calculated the correlation coefficient between the actual 

duration of PD progression and the predicted duration of PD. See Figure 1 for overall workflow. 

 

We adopted the Hierarchical Diffusion Autoencoder (HDAE) [12], Denoising Diffusion Autoencoder (DDAE) 

[13], Simple masked image modeling (SimMIM) [10], Disruptive AE (DisAE) [14], and Pixel2Style2Pixel (PSP) 

[15]. Both DDAE and HDAE are based on diffusion pre-training, but HDAE includes a semantic encoder, while 

DDAE does not. We also compared the model using Discrete Wavelet Transforms (DWT) as preprocessing to 

enhance the performance of HDAE and DDAE, naming the Hierarchical Wavelet Diffusion Autoencoder 

(HWDAE) and Wavelet Denoising Diffusion Autoencoder (WDDAE), respectively. We also trained 3D stylegan2 

[16] with cascaded training methods and built a generative adversarial network inversion network PSP based on 

the encoder method to find W+ space in stylegan2. In addition, we adopt two models SimMIM and DisAE which 

have swin transformer encoder but have different pre-training strategy. SimMIM uses masking, and DisAE uses 

super-resolution and denoising pre-training strategy. Lastly, we compared classification and regression 

performances using these pre-trained models to those of the supervised network, 3D ResNet34. Among various 
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diffusion models and tasks, HWDAE demonstrated generally superior linear probing and fine-tuning performance 

among the various models tested. This model's ability to capture intricate details during the generative pre-training 

phase translates into enhanced discriminative capabilities, making it particularly effective for medical image 

analysis. 

 

In summary, our contributions to this first study are as follows: 

⚫ We compared the semantic encoder of generative models and demonstrated that pre-trained generative 

self-supervised models achieve comparable classification and regression performance to supervised 

models in differential diagnosis and symptom onset prediction of PD, using a large dataset of FP-CIT 

PET scans. 

⚫ We suggested the predicted symptom onset years could be a reasonable imaging biomarker to monitor 

the progression of PD. 

⚫ We reconfirmed the correlation between the actual disease progression interval and the changes in 

presynaptic dopaminergic neuron degradation observed in FP-CIT PET scans. 

 

 

Figure 1. The overall workflow of upstream and downstream tasks. In the upstream process, a generative self-

supervised model was trained. In the downstream process, the pre-trained encoder weights from the generative 

model were used for binary and three-class classification, symptom onset regression, and follow-up image analysis. 

 

Our second task is unsupervised anomaly detection (UAD) in 3D non-contrast brain CT. Neurological 

emergencies require diagnosing and treating a wide variety of lesions they may encounter at any time. Non-

contrast brain computed tomography (NCCT) is the current standard imaging modality for the initial screening 
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and diagnosis of neurological conditions because it can detect a broad spectrum of disorders and has a fast-

scanning time. With the development of deep learning, several studies have demonstrated its potential to help with 

various radiology tasks. These studies show that deep learning-based radiology classification can improve 

workflow efficiency, speed up radiology reporting, and timely manage patients with critical findings. However, 

building large-scale annotated training datasets remains a major hurdle in developing deep learning systems in 

medicine, especially in emergencies where they must deal with various lesions with heterogeneous morphology, 

sizes, locations, and intensities. 

 

Different from supervised deep learning with a narrow clinical focus, which has limited usage in this condition, 

unsupervised anomaly detection, recently DDPMs, has been studied to detect diverse lesions that deviate from the 

normal distribution. Deep generative models learn to capture normal data distribution; hence, they can detect 

anomalous data that deviate from the normal distribution without prior knowledge of anomalies. These methods 

are categorized as reconstruction-based methods, in which the raw pixel difference between the source image and 

its reconstruction by generative model indicates the degree of anomaly. Normal patients do not differ much from 

the training distribution, so the reconstruction has a small residual error from the original image. In contrast, the 

model maps abnormal patients who deviate from the training distribution to the normal distribution. The normal-

like reconstruction image has a relatively large residual error from the original image. The overall workflow is in 

Figure 2. However, although previous studies using deep generative models have attracted considerable attention, 

we suspected that some conceptual rethinking and expanding of anomaly detection were needed. (1) The anomaly 

lesion segmentation perspective was the focus, and the Dice Coefficient Score was one of the main evaluation 

metrics; (2) Many studies set further study as the expansion model to 3D.  

 

We first started with doubts about the evaluation metric and raised the need for a combination of the structure-

conscious and the texture-focusing anomaly detection model that approaches anomalies from a different 

perspective. The evaluation metric used in most existing papers is the Dice Coefficient Score. This is a quantitative 

result of how well the anomaly map matches the existing lesion. We questioned this approach as we observed the 

results in Figure 3, which displays three different cases of brain anomalies. Column (b) shows the reconstruction 

results of one of our models, the texture-focusing anomaly detection model, and column (c) shows the 

reconstruction results of the other model, both the texture and structure-conscious anomaly detection model. If 

we let the model evaluate the Dice Coefficient Score as the anomaly segmentation point, the results in column (b), 

which only considers texture, would be good normal distribution predictors. But even without the quantitative 

results, good or not, a casual observer might think that the images in column (b) are some kind of anomalies out 

of normal distribution. Unlike networks that only consider texture, performing texture and structure-conscious 

anomaly detection methods yields the results in column (c), which a casual observer might consider more normal 

than column (b). For brevity, we will refer to the texture and structure-conscious anomaly detection model as the 

anatomical model and the texture-focusing anomaly detection model as the texture model. 
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Figure 2. The overall workflow of the unsupervised anomaly detection tasks. In the training process, a generative 

model was trained only using normal brain CT images. In the inference process, when abnormal images were 

input, the generative model predicted normal-like images, which have similarities to the original images. After 

that, we could yield the anomaly map by using a difference map of the abnormal image and the normal-like image. 

The display windowing is [0, 80] HU 

 

 

 

Figure 3. Scans of three cases of brain anomalies, each row corresponding to a different case. Within each case, 

Column (a) presents the original scans exhibiting anomalies, Column (b) shows the predictions only consider 

texture, and Column (c) displays the predictions that consider texture and structure. The display windowing is 

[0, 80] HU 
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So, is the texture model a bad thing? It should not be. Lesions in the brain have varying intensities, morphologies, 

locations, and sizes. However, even without lesions, the normal distribution of the gyrus, sulcus, and ventricle is 

highly randomized across individuals due to the nature of the brain. Look at Figure 4, which displays three other 

different cases of brain anomalies. Even if the anatomical model predicts the normal distribution, the brain 

structure of the prediction could be different from the original patient’s uniquely characterized brain structure, 

like gyrus or sulcus, resulting in false positives in residual error as anomalies. These false positives can be 

measured with larger anomaly scores than the lesions, especially with small intensity differences from 

surroundings or small size. Therefore, preserving the structure and selecting only the anomalies as the view of the 

texture model is also important. 

 

 

Figure 4. Scans of three cases of brain anomalies, each row corresponding to a different case. Within each case, 

Column (a) presents the original scans exhibiting anomalies, Column (b) shows the predictions only consider 

texture, and Column (c) displays the predictions that consider texture and structure. The display windowing is 

[0, 80] HU 

 

Given the above, we used to combine the anatomical and texture models to derive accurate abnormality scores. 

With these anomaly scores, we solved the anomaly detection problem from the perspective of binary classification 

(normal and emergency) based on anomaly scores rather than segmentation labels. The radiologist in the 

emergency room assigned the labels normal and abnormal. 

  

Unlike most previous work, which mainly considered the anomaly segmentation perspective, our study gave new 

insight into anomalies based on anatomical and texture views. We also explored the UAD as a 3D model and tried 

to find the gain of scaling up. We use real-world datasets; there are abnormal patients in about 10 percent of the 

whole dataset. The model we adopted is the 3D inflated Hierarchical Diffusion autoencoder [15], which model is 
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composed of DDPM and a semantic encoder.  

 

 Our contribution can be summarized as follows.  

⚫ We proposed decision-making methods for classifying normal and abnormal patients, which consider 

anatomical and texture, using real-world datasets with internal and external validation. 

⚫ We explored 3D UAD. 

 

3. Materials and Method 

3.1 Datasets, Image Acquisition, and Preprocessing of the 18F-FP-CIT PET Image Analysis 

We retrospectively collected patients who visited the movement disorder clinic at the AMC from January 2005 to 

March 2022. Patients diagnosed with Parkinson’s disease (PD), multiple system atrophy (MSA), progressive 

supranuclear palsy (PSP), essential tremor (ET), and other types of secondary Parkinsonism were included. The 

United Kingdom PD Society Brain Bank criteria1, probable MSA criteria from the second consensus statement 

on the diagnosis of MSA, probable PSP criteria from the Movement Disorder Society criteria for PSP, and the 

diagnostic criteria for essential tremor were utilized. The clinical diagnoses of secondary Parkinsonism were based 

on the clinical presentation and imaging findings as evaluated by movement specialists. Only patients who 

undertook both 18F-FP-CIT PET and brain magnetic resonance imaging (MRI) scans at the AMC and who were 

assessed by the two designated movement specialists (SJC and SYJ) were included. Exclusions were made for 

patients with PET and MRI scans over five years apart, significant PET image artifacts, ischemic striatum lesions 

on PET, scans post-deep brain stimulation surgery, or PET images with a slice thickness of 3 mm. See Figure 5. 

for details. 

 

18F-FP-CIT was synthesized according to the method previously described5. 18F-FP-CIT PET images were 

acquired 180 minutes after administration of 185 MBq 18F-FP-CIT intravenously, utilizing two scanners: the 

Biograph TruePoint 40 (Bio40) and Vision 600 (Vision) (Siemens, Knoxville, TN, USA). These scanners achieve 

an in-plane spatial resolution of 2.0 mm full width at half maximum at the center of the field of view. A low-dose 

brain computed tomography (CT) scan, typically at 120 kVp and 20 mAs with a slice thickness of 1.5 mm, was 

performed immediately prior to the PET imaging to assist in image fusion and attenuation correction. The PET 

scanning duration was 10 minutes for Bio40 and seven minutes for Vision, both conducted in three-dimensional 

mode. For image reconstruction, we employed the TrueX algorithm for Bio40 and also time-of-flight 

implementation for Vision, using all-pass filters across matrices of 336 × 336 (Bio40) and 440 × 440 (Vision). 

All brain MRI T1 images were acquired in the axial orientation with parameters presented as median [interquartile 

ranges] values, reflecting parameter variations resulting from the study's retrospective design: TR 450.0 ms [6.5, 

450.0], TE 8.0 ms [3.0, 10.8], flip angle 69.0° [9.0, 70.0], x, y-voxel spacing 0.5 × 0.5 mm [0.4, 0.5], slice 

thickness 5.0 mm [2.0, 5.0], and spacing between slices 7.0 mm [2.0, 7.5]. 
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Figure 5. Schema of data collection and the labeling criteria used in the 18F-FP-CIT PET image analysis. 

 

We first converted PET and MRI images from the DICOM to the Nifti format and removed skulls using 

SynthStrip6 for PET and HD-BET [17] for MRI images. After bias field correction, T1 images were co-registered 

to the corresponding PET images, and then T1 images were normalized to the Montreal Neurological Institute 

(MNI) template using SPM12 software (Statistical Parametric Mapping, the Wellcome Trust Centre for 

Neuroimaging). Subsequently, we applied the inverse deformation map obtained from the previous normalization 

step to the following region-of-interests (ROIs) from the brain atlases defined in the same MNI space: ventral 

striatum, caudate, putamen, limbic, executive, and sensorimotor striatum from the Oxford-GSK-Imanova 

structural8 and connectivity9 striatal atlases; calcarine cortex from the Automated Anatomical Labelling Atlas 

310. Accordingly, we gained an ROI mask on the native space of the co-registered T1 and PET images. The 

standardized uptake values (SUVs) of the ROIs were calculated using these masks. For model training and testing, 

PET images were intensity normalized by dividing by the average SUV of the bilateral calcarine cortices of each 

image, followed by min-max normalization. Finally, we cropped the PET images to a uniform size of 192 × 192 

× 96, centered on the nonzero region of each image. 

 

3.2 Datasets, Image Acquisition, and Preprocessing of Unsupervised Anomaly Detection 

34,085 healthy non-contrast brain CT scans were retrospectively collected from Jan. 2000 to Aug. 2018 in a 

tertiary academic hospital to create the training dataset. Additionally, brain CT scans were from individuals 

undergoing emergency screenings for suspected neurological issues in the emergency departments (EDs). These 

34,085 scans have a mean age of 42.9 years, a standard deviation of 19.6, and a gender ratio of 46.5:53.5. Internal 

(N=80) and external (N=160) test sets were enrolled with normal and abnormal (1:1 ratio) patients comprising 

various brain abnormalities such as acute infarctions, brain mass-like lesions, hydrocephalus, and intracranial 

hemorrhages. 
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As the pre-processing, we first performed skull stripping using CT BET [46], and the CT volume was resized 

into 256*256*32 for efficient training. Input images are intensity normalized [-10, 90] HU to [0, 1]. 

 

3.3 Diffusion Probabilistic Models 

Drawing Inspiration from non-equilibrium statistical physics, Sohl-Dickstein et al. [6] introduced Diffusion 

Probabilistic Models (DPMs), tractable and flexible generative models capable of matching a data distribution by 

training to reverse a gradual, multi-step noising process. They derive bounds on the entropy. More recently, Ho 

et al. [7] showed Denoising Diffusion Probabilistic Models (DDPM), establishing a connection between DPMs 

and score matching [18][19] with Langevin dynamics. A predefined diffusion process progressively adds random 

noise in these models, erasing information. The denoising process, which works in the opposite direction, is 

approximated with a neural network. These models generate samples by gradually removing noise from a signal, 

and their training objective is formulated as a reweighted variational lower bound. 

 

In the medical domain, there are various applications of DPMs, including image generation, anomaly detection, 

segmentation, and others.[2] 3D imaging generation and its applications are also beginning to emerge. [20] The 

progression of PD usually brings volumetric degeneration. Because this property is challenging to observe in 2D 

imaging, we did generative pre-training in 3D PET images. Also, for the lesions of brain CT that have volumetric 

properties, we did generative normal training using 3D brain CT images. 

 

3.4 Hierarchical Diffusion Autoencoder 

While DPMs beat other generative models with superior image sample quality, unlike GANs or VAEs, their latent 

variables lack semantic meaning and are useless for other applications. Preechakul et al. [21] searched to extract 

a linear, semantically meaningful, and decodable representation of an input image via autoencoding, which uses 

DPMs and proposed Diffusion Autoencoders (DAE). The DAE consists of a semantic encoder and a conditional 

DDIM. A learnable semantic encoder captures the semantics of input images, and a conditional DDIM is the 

image decoder that reconstructs the original input images. In the backward process, the conditional DDIM is 

conditioned on an additional latent vector derived from the semantic encoder. In the medical image domain, DAE 

is sometimes used as a diagnosis model with good accuracy, interpretability, and meaningful latent space to reflect 

the progression or disease classes. [22][23]. 

 

However, Zeyu Lu et al. [12] found that a semantic latent code of DAE cannot fully reflect the information of 

hierarchical feature representation from low level to high level, resulting in insufficient image reconstruction. To 

mitigate those limitations, they propose Hierarchical Diffusion Autoencoders (HDAE) that exploit the fine-

grained-to-abstract and low-level-to-high-level feature hierarchy for the latent space of diffusion models. While 

the DAE puts a single 512-dimensional vector drawn from the last part of the encoder as the condition for every 
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encoder-decoder block of the DPMs, the HDAE extracts different vectors depending on the resolution of the 

feature maps of the semantic encoder and then provides them as conditions for every block of the encoder and 

decoder of the DPMs with the exact resolution. The structure of the semantic encoder is the same as the encoder 

of a DDPM UNet. 

 

In our 3D inflated DAE, we also experimentally observed that DAE cannot reconstruct the original FP-CIT PET 

images or brain CT well and even distorted the crucial parts. So, we adopt HDAE as the 3D inflated model with 

a semantic encoder. For PET datasets, we reconstructed the input data regardless of what type of disease they had, 

while for brain CT, we only reconstructed normal data as input data.  

 

Like previous works [22] [23], for PD has progressive degenerative properties and other similar but different 

diseases, HDAE could be a compelling analytical tool for the diagnosis of PD. Also, in the unsupervised anomaly 

detection task, although DDPMs generate high-fidelity images, the backward reconstruction process could 

accumulate errors and misalignment, and sometimes, it does not exactly reconstruct the original structure of the 

scans. To address this issue, conditioning through semantic encoders was devised and applied to restore the 

reconstruction image close to the original one. [21] [24] [25] In this view, a Hierarchical Diffusion Autoencoder 

as the UAD model is a fascinating reconstruction tool. 

 

3.5 Architecture Improvements with Discrete Wavelet Transform in the 18F-FP-CIT PET Image 

Analysis 

Brain imaging often has a three-dimensional tensor, unlike X-ray or fundus images. Three-dimensional images 

consume a relatively large amount of GPU memory during the training process, limiting the model's size. In the 

case of PET image resolution 192*192*96, we observed that the initial channel of HDAE is only 8 channels and 

DDAE is 16 channels based on 2 batch sizes on a 48GB GPU. In [26] [27] [28], they used Discrete Wavelet 

Transform in DPMs for fast inference conditional probabilities as the method to generate realistic high-resolution 

images and to avoid high-resolution feature maps. We replaced the learnable first layer of DDAE and HDAE with 

preprocessing using the discrete wavelet transform to increase the model's size and enhance image recognition 

performance, which was named WDDAE and HWDAE. As a result, we could increase the number of initial 

channels to 128. We decompose a 3D PET scan 𝑦 ∈ 𝑅192∗192∗96 into 8 wavelet coefficients at half-resolution 

resolution. See Figure 6 for the HWDAE model architecture. 

 

3.6 Methodological Improvements with Anatomical & Texture Ensemble in Unsupervised Anomaly 

Detection 

For the trait of unsupervised anomaly detection, we need to set the threshold as post-processing. However, there 

is a trade-off. A high threshold alleviates false positives but passes over small anomalies as false negatives, and a 

low threshold could detect small anomalies but yield false positives notoriously. We tried to solve this trade-off 
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problem by combining models. 

 

We built two models independently to cover the anatomical and texture views. Before our study, several studies 

argued that structure was essential and envisioned SSIM loss in their networks. [29] [30] However, our approach 

is to make separate and combined models of both perspectives. The anatomical model is an HDAE network trained 

with a resolution of 128*128*32 to see the coarse feature, the anatomical structure. The anomaly score is then 

obtained after up-sampling to the original resolution of 256*256*32. The model mainly focuses on coarse 

anatomical anomalies to detect large anomalies like hydrocephalus or extensive hemorrhages. We applied a 

relatively high threshold in this model to relieve the false positives. 

 

Unlike large volumetric or intensity difference anomalies, there are anomaly types that have small differences. 

Sometimes, these anomalies can easily be confused with normal tissues or passed under a threshold that is handled 

by post-processing. To see these types, we built another texture-focusing network trained with a resolution of 

256*256*32. Unlike an anatomical model, which could easily create false positives in brain structures as normal 

variation, this texture model needs to restrict false positives, which is equal to preserving the unique brain structure 

of the original patients as much as possible. So, it was necessary for hard conditioning. We determined that the 

gyrus, sulcus, and ventricle are the most distorted parts during reconstruction. Therefore, we put the above 

segmentation map [31] as a condition to see the texture while preserving the structure. This model could possibly 

detect anomalies that have less dense difference HU values, like acute infarctions and intracranial hemorrhage. 

We applied a relatively low threshold in this model to detect the small volumetric or intensity difference anomalies. 

Lastly, we combined models as a multi-stage sequence where the texture model is first performed to distinguish 

normal from abnormal; then, the abnormal group is inferred once more by the anatomical model to add the 

abnormality scores. See Figure 7 for the architectures of models. 

 

3.7 Implementation Details of the 18F-FP-CIT PET Image Analysis 

All experiments, including upstream, downstream, and other ablations, were conducted using a single NVIDIA 

RTXA6000 48GB GPU. The optimizer for all models is AdamW [32], with optimizer momentum parameters set 

at 0.9 and 0.999 and a weight decay of 0.05. A cosine decay learning rate scheduler [33]is used. Data augmentation 

techniques applied include rotation, flip, and zoom-in-out. 

 

For upstream, the learning rate starts at a base value of 4e-5 and reduces to an end value of 2e-5. The loss function 

across all models is L2 loss. Training parameters show a batch size of 2 for all models, with a warm-up period of 

5 epochs on the whole dataset. The initial channels for the models are specified as follows: HWDAE at 128, 

HDAE at 8, WDDAE at 128, DDAE at 16, SimMIM & DisAE at 48, and PSP at 64. Channel multiplication factors 

vary across models, with HWDAE using 1, 1.2, 2, and 4; HDAE employing 1, 4, 8, 16, 32, and 64; WDDAE 

using 1, 1, 2, and 4; DDAE using 1, 2, 4, and 8; SimMIM & DisAE using 1, 2, 4, and 8; and PSP also using 1, 2, 
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Figure 6. The model architecture of HWDAE in the 18F-FP-CIT PET image analysis. The FP-CIT pet scans 

decompose and concatenate as channel dimensions first.  

 

 

 
Figure 7. The model architecture of anatomical and texture HDAE in unsupervised anomaly detection. The FP-

CIT pet scans decompose and concatenate as channel dimensions first.  

 

4, and 8. The training epochs are set to 400 for HWDAE, HDAE, WDDAE, DDAE, SimMIM, and DisAE, and 

PSP is trained for 30 epochs. Correspondingly, the training durations are roughly 14 days for HWDAE, 9 days 

for HDAE, 12 days for WDDAE, 7 days each for DDAE and SimMIM & DisAE, and 7 days for PSP. 

 

Downstream tasks are divided into Classification and Regression, with each having three different setups: Linear 

Probe, Scratch, and Fine-tuning. In the Classification section, the loss function used is cross-entropy, with a label 

smoothing value of 0.1. For Regression, the loss function is Huber loss. The selection criteria for weight are micro 

AUROC for Classification and loss for Regression. The batch size for Linear Probe in both Classification and 

Regression is set to 6, while for Scratch and Fine-tuning, it is set to the maximum that can fit in a GPU. The 

learning rate (lr) parameters are specified as follows: end lr is 1e-6 for all setups, base lr varies with 1e-3 for 

Linear Probe, 5e-5 for Scratch, and 1e-3 for Fine-tuning in Classification, and 1e-4 for all setups in Regression. 

The warm-up epochs differ, with Classification Linear Probe having 10, Scratch 20, and Fine-tuning 20, while 
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Regression has 30 for Linear Probe, 60 for Scratch, and 60 for Fine-tuning. The total epochs for training are 

uniformly set to 50 for Classification and 30 for Regression across all setups. 

 

3.8 Implementation Details of the Unsupervised Anomaly Detection 

All experiments were performed on a single NVIDIA RTX A6000 48GB GPU. The optimizer is AdamW [33], 

with optimizer momentum parameters set at 0.9 and 0.999 and a weight decay of 0.05. A cosine decay learning 

rate scheduler [34]is used. The base learning rate is 4e-5, and the end learning rate is 2e-5. Total epochs are 10 

with 1 warm-up epoch. The texture-HDAE has the initial channels as 16 and channel multiplication factors as 

1,2,4,8 and 16. The anatomical-HDAE has the initial channels as 64 and channel multiplication factors as 1,2,4 

and 8. Only the block before the bottleneck has self-attention. The batch size is 2 of the texture-HDAE and 5 of 

the anatomical-HDAE, respectively. 

 

4. Experiments and Results of the 18F-FP-CIT PET Image Analysis 

We mainly selected ablation models with pretraining and fine-tuning phases with 3D generative or image 

reconstruction methods. We compared HWDAE and WDDAE with HDAE, and DDAE does not have a DWT 

preprocessing step, and SimMIM, Disruptive Autoencoder both have the same swin-transformer-based encoder, 

but the pretraining method is different. SimMIM has image masking of 0.6 ratio, and DisAE has channel masking 

of 0.6 ratio with denoising and super-resolution tasks. In addition, we had a question about the encoder-based 

generative adversarial network(GAN) inversion model, which would be a good classifier. So, we first trained 3D 

stylegan2 using cascaded methods and second trained 3D Pixel2Style2Pixel, one of the encoder-based GAN 

inversion models. Lastly, we set the Resnet scratch model as the anchor. 

 

After the pretraining phase on unconditional image generation or reconstruction, we perform three downstream 

tasks: ET / (early onset) PD Classification, PD/MSA/PSP Classification, and PD patients’ motor symptom onset 

year regression. Lastly, we selected 30 patients who took pet images twice and analyzed the correlation between 

real-time PD progress and prediction duration. For classification, we use the area under the receiver operating 

characteristic curve (AUROC) and the area under the precision-recall curve (AUPRC) as evaluation metrics. We 

use the mean absolute error (MAE) and concordance correlation coefficient (CCC) for regression. We use the 

Pearson correlation coefficient as an evaluation metric for the follow-up patients.  

 

We conduct linear probing and fine-tuning evaluations with training from scratch to evaluate the feature extract 

performance. We evaluated all the linear probing, fine-tuning, and scratch with 5-fold cross-validation with the 

hold-out test set PS03, which is the unseen internal test dataset scanned from the same scanner as the upstream 

training dataset. PS04 is another unseen test dataset scanned by different scanners in the same clinical center and 

considered an external set. 
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4.1 ET/PD Classification 

Essential Tremor (ET) and Parkinson’s Disease (PD) are both common movement disorders and have tremor and 

gait difficulty. However, accurate diagnosis is important to treat properly because they require different 

management and treatment strategies. Several studies classify ET/PD using conventional quantitative analyses, 

machine learning, and deep learning with the data of UPDRS or medical imaging (FP-CIT SPECT, FP-CIT PET). 

[34] [35] [36] [37] 

 

We showed the quantitative ET / (early onset) PD binary classification results for pre-trained models. As previous 

studies usually show more than 90% accuracy, our experiments showed high performance; even linear probing 

achieved near 1.0 AUROC and AUPRC in both PS03 and PS04. We only perform linear probing except for 

resnet34 because it already yielded good performance in linear probing. HWDAE achieved the best performance 

in the AUROC AUPRC. WDDAE generally ranked second. In this task, we observed that DWT could enhance 

model performance compared to HWDE vs HDAE and WDDAE vs DDAE. See Table 1 and Figure 8 for the 

results. 

 

Table 1. Mean AUROCs, AUPRCs, and SDs of ET/PD classification. All values are the results of linear probing, 

except Resnet(scratch). Bold text represents the best linear probing performance. Underlined text is the second-

best linear probing performance. 

 

Mean (SD) ET / PD classification 

Models 
(Linear 

Probe) 

AUROC AUPRC 

PS03 PS04 PS03 PS04 

Resnset 

(scratch) 

1.000 

(0.000) 

0.999 

(0.001) 

1.000 

(0.000) 

0.999 

(0.001) 

HWDAE 
0.997 

(0.004) 

0.994 

(0.001) 

0.998 

(0.003) 

0.991 

(0.002) 

HDAE 
0.928 

(0.009) 

0.949 

(0.004) 

0.957 

(0.994) 

0.925 

(0.008) 

WDDAE 
0.987 

(0.011) 

0.979 

(0.006) 

0.991 

(0.009) 

0.967 

(0.008) 

DDAE 
0.969 

(0.002) 

0.953 

(0.010) 

0.975 

(0.002) 

0.936 

(0.012) 

SimMIM 
0.827 

(0.025) 
0.813 

(0.030) 
0.842 

(0.047) 
0.718 

(0.038) 

DisAE 
0.946 

(0.004) 

0.980 

(0.002) 

0.963 

(0.003) 

0.966 

(0.002) 

PSP 
0.966 

(0.006) 
0.966 

(0.008) 
0.976 

(0.005) 
0.949 

(0.012) 
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Figure 8. AUROCs, AUPRCs box plots of ET/PD linear probing results on PS03, PS04  

 

4.2 PD/MSA/PSP Classification 

In several studies that validated the diagnosis of PD using the pathologic examination at autopsy, they concluded 

that the general accuracy of diagnosis of Parkinsonian disorders is not satisfying and challenging. About 80% of 

patients have accurate diagnoses, even movement disorders experts have decided. [38] [39]. The most 

misdiagnosed atypical parkinsonian syndromes (APS) are multiple system atrophy (MSA) and progressive 

supranuclear palsy (PSP). Reducing misdiagnosis could avoid inappropriate medicines and treatments. Several 

studies tried to discriminate PD and APS using conventional methods, machine learning, and deep learning. Zhao 

et al. introduced DAT-Net for the diagnosis of PD and APS, which showed 0.934 as the average AUROC of PD, 

MSA, and PSP. They proved that the deep-learning-based method could achieve a more accurate diagnosis than 

conventional binding ratio quantification. [40] 

 

Our study also confirmed that deep learning classification methods showed high AUROCs and AUPRCs overall. 

In addition, we proved that a model trained only using a scanner could accurately diagnose PD and APS. We 

organized the quantitative results of PD/MSA/PSP Classification for pre-trained models. We conduct linear 

probing except for resnet34. In the PS03, DDAE achieved the best linear probing performance, and HWDAE and 

WDDAE achieved a comparable performance in the AUROC AUPRC. In the PS04, HWDAE outperformed all 

other models. In these results, DWT selectively enhances model performance only for HWDAE. See Table 2 and 

Figure 9 for the results. 

 

In the results of the fine-tuning, HWDAE achieved the best fine-tuning performance in the AUROC and AUPRC 

except for the AUPRC of the PS04. Although HWDAE and HDAE have similar scratch performance, DWT 

enhances fine-tuning performance in this case. In other cases, WDDAE showed fine-tuning performance similar 

to that of DDAE. (Table 2, Figure 9) Like linear probing results, we observed DWT selectively enhances model 

performance only for HWDAE. 
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Figure 9. The average AUROCs and AUPRCs bar plots of the results of PD/MSA/PSP. The results of linear 

probing, scratch, and fine-tuning were evaluated on PS03 and PS04 test sets. 

 

Table 2. Mean AUROCs, AUPRCs, and SDs of the average of PD/MSA/PSP on PS03 and PS04 test sets. All 

Resnet values are the results of training from scratch. Other models’ values have the results of linear probing, 

training from scratch, and fine-tuning. Bold text represents the best performance, and the underlined text 

represents the second-best performance. 

 

 Linear Probing Scratch Fine tuning 

Models 
AUROC AUPRC AUROC AUROC AUPRC AUROC 

PS03 PS04 PS03 PS03 PS04 PS03 PS03 PS04 PS03 PS03 PS04 PS03 

Resnset 
0.910 

(0.013) 

0.914 

(0.014) 

0.834 

(0.027) 

0.694 

(0.057) 

0.910 

(0.013) 

0.914 

(0.014) 

0.834 

(0.027) 

0.694 

(0.057) 

0.910 

(0.013) 

0.914 

(0.014) 

0.834 

(0.027) 

0.694 

(0.057) 

HWDAE 
0.857 

(0.008) 

0.899 

(0.015) 

0.765 

(0.022) 

0.620 

(0.015) 

0.895 

(0.008) 

0.833 

(0.053) 

0.816 

(0.040) 

0.540 

(0.063) 

0.920 

(0.017) 

0.919 

(0.025) 

0.881 

(0.013) 

0.670 

(0.029) 

HDAE 
0.722 

(0.012) 

0.632 

(0.024) 

0.553 

(0.019) 

0.370 

(0.005) 

0.890 

(0.020) 

0.840 

(0.023) 

0.805 

(0.028) 

0.514 

(0.022) 

0.848 

(0.020) 

0.807 

(0.050) 

0.742 

(0.037) 

0.518 

(0.052) 

WDDAE 
0.852 

(0.012) 

0.858 

(0.013) 

0.774 

(0.028) 

0.528 

(0.044) 

0.891 

(0.022) 

0.866 

(0.054) 

0.820 

(0.023) 

0.557 

(0.056) 

0.907 

(0.031) 

0.887 

(0.035) 

0.849 

(0.030) 

0.626 

(0.039) 

DDAE 
0.866 

(0.006) 

0.781 

(0.010) 

0.789 

(0.014) 

0.506 

(0.015) 

0.856 

(0.017) 

0.807 

(0.048) 

0.752 

(0.030) 

0.498 

(0.035) 

0.909 

(0.027) 

0.890 

(0.042) 

0.852 

(0.026) 

0.606 

(0.033) 

SimMIM 
0.617 

(0.024) 

0.498 

(0.012) 

0.476 

(0.023) 

0.347 

(0.007) 

0.888 

(0.020) 

0.824 

(0.048) 

0.797 

(0.029) 

0.506 

(0.032) 

0.798 

(0.042) 

0.761 

(0.062) 

0.698 

(0.074) 

0.460 

(0.041) 

DisAE 
0.576 

(0.013) 

0.615 

(0.011) 

0.424 

(0.020) 

0.364 

(0.004) 

0.888 

(0.020) 

0.824 

(0.048) 

0.797 

(0.029) 

0.506 

(0.032) 

0.772 

(0.025) 

0.798 

(0.050) 

0.669 

(0.054) 

0.500 

(0.052) 

PSP 
0.778 

(0.017) 

0.684 

(0.014) 

0.619 

(0.038) 

0.422 

(0.013) 

0.910 

(0.016) 

0.879 

(0.031) 

0.851 

(0.025) 

0.626 

(0.053) 

0.911 

(0.013) 

0.889 

(0.010) 

0.858 

(0.029) 

0.637 

(0.038) 

 

We also present the result of fine-tuning each for PD/MSA/PSP. HWDAE achieved almost the best fine-tuning 

performance in the AUPRCs for each class and comparable results in the AUROCs. See Table 3 and Figure 10 

for the results. 
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Table 3.  Mean AUROCs, AUPRCs, and SDs of PD/MSA/PSP for each class. The results of fine-tuning were 

evaluated on PS03 and PS04. Bold text represents the best performance, and underlined text represents the second-

best performance. 

 

Mean 

(std) 

PD/MSA/PSP 

AUROC AUROC 

Models 
Fine-Tuning Fine-Tuning 

PS03 PS03 PS03 PS03 

Resnset 

(scratch) 
0.902/0.918/0.911 

(0.021/0.007/0.018) 
0.925/0.895/0.921 

(0.02/0.049/0.038) 
0.874/0.908/0.721 

(0.027/0.009/0.073) 
0.991/0.722/0.371 

(0.002/0.154/0.07) 

HWDAE 
0.911/0.909/0.939 

(0.005/0.013/0.011) 
0.928/0.932/0.898 

(0.007/0.004/0.035) 
0.878/0.909/0.854 

(0.013/0.015/0.031) 
0.991/0.776/0.242 

(0.001/0.043/0.09) 

HDAE 
0.802/0.869/0.872 

(0.02/0.029/0.038) 
0.807/0.838/0.777 

(0.076/0.046/0.092) 
0.782/0.839/0.605 

(0.016/0.036/0.098) 
0.971/0.485/0.099 

( 0.014/0.129/0.038) 

WDDAE 
0.9/0.899/0.922 

(0.023/0.023/0.038) 
0.897/0.903/0.861 

(0.027/0.012/0.042) 
0.847/0.89/0.811 

(0.042/0.033/0.032) 
0.986/0.616/0.276 

(0.005/0.049/0.094) 

DDAE 
0.916/0.901/0.91 

(0.014/0.012/0.043) 
0.93/0.845/0.893 

(0.006/0.029/0.03) 
0.872/0.896/0.786 

(0.018/0.036/0.048) 
0.991/0.506/0.32 

(0.001/0.116/0.077) 

SimMIM 
0.741/0.784/0.87 

(0.049/0.043/0.041) 
0.761/0.789/0.732 

(0.062/0.067/0.09) 
0.722/0.75/0.623 

(0.067/0.036/0.132) 
0.962/0.34/0.077 

(0.013/0.086/0.032) 

DisAE 
0.747/0.728/0.841 

(0.02/0.043/0.044) 
0.804/0.806/0.784 

(0.048/0.093/0.075) 
0.673/0.699/0.635 

(0.044/0.067/0.125) 
0.969/0.414/0.117 

(0.01/0.169/0.049) 

PSP 
0.905/0.912/0.917 

(0.015/0.008/0.028) 
0.89/0.857/0.921 

(0.013/0.016/0.02) 
0.872/0.904/0.799 

(0.021/0.025/0.065) 
0.984/0.615/0.313 

(0.003/0.071/0.086) 

 

4.3 Motor Symptom Onset Year Regression 

Information on the disease progression rate is useful in planning clinical trials. However, determining the 

progression of PD is difficult. PD may not progress constantly because each stages have a different rate. Also, 

sometimes, they rely on demographic factors that could be different from each other. [41] Despite these challenges, 

many studies quantitatively revealed the disease progression associated knowledge by using several imaging 

modalities like MRI, PET, and Free-water imaging. They tried to show the clear temporal relevance of diagnostic 

and progression imaging biomarkers to be used by clinicians and researchers. [42] Morrish et al. [43] found that 

putamen influx and clinical rating correlate. Huang et al. [44] found that PD progression was associated with 

increasing metabolism in the subthalamic nucleus (STN) and internal globus pallidus, as well as in the dorsal pons 

and primary motor cortex. Gaurav et al. [45] observed a progressive and measurable decrease in neuromelanin-

based substantia nigra (SN) signal and volume in PD. They showed the correlation between neuromelanin SN 

changes and disease severity and duration. We aim to build a deep-learning model of the onset year prediction 

and use the prediction as a biomarker that could monitor progression. Because the predicted onset year is just 

from the FP-CIT PET images, the model's onset year output equals degradation on the imaging level. If a PET 

image has a small predicted onset year, this image has a relatively small degradation. If a PET image has a large 

predicted onset year, this image relatively has a large degradation. 
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Figure 10. AUROCs and AUPRCs bar plots of the results of PD/MSA/PSP for each. The results of linear probing, 

scratch, and fine-tuning were evaluated on PS03 and PS04. 

 

Previous studies using dopaminergic PET usually assert three opinions. 1) symptom duration in preclinical and 

prodromal PD cases has a poor relationship with the change in PET imaging 2) There are large changes in 1 

year, with little change between 2 and 4 years 3) striatal dopaminergic markers follow an exponential decline 

and largely plateau within 5 years of diagnosis.[43] Despite these studies, there are fewer observations about the 

progression of moderate to late-stage PD. In our case, we observed not only the opinions that are usually 

asserted in previous papers but also those of late-onset PD patients. 

 

We first showed the qualitative results of onset year regression using scatter plots of Resnet, HWDAE, and 

WDDAE which showed relatively reasonable results than other ablation models. Both PS03 and PS04, our 

scatter plots have inclinations 1) From onset 0 years to 4 years, there is little correlation between the actual and 

predicted onset years. 2) After the onset of 5 years, the distribution of the scatter plot has a slope of less than 45 

degrees and is located under the diagonal line. These attributes mean that there is a plateau of decrease of striatal 

dopaminergic markers. 3) Although the plateau decreases, moderate to late-stage PD decreases steadily. See 

Figure 11 for the results. 
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Figure 11. Scatter plots of regression. a, b, and c are Resnet, HWDAE, and WDDAE of PS03, respectively. 

Scatter plots d, e, and f Resnet, HWDAE, and WDDAE of PS04, respectively. 

 

Table 4. Mean MAEs, CCCs, and SDs on PS03 and PS04 test sets. All values are the results of linear probing. 

Bold text represents the best performance, excluding Resnet(scratch). Underlined text represents the second-best 

performance. 

 
Models 

(Linear Probe) 
 Mean(std) 

MAE CCC 

PS03 PS04 PS03 PS04 

Resnset 

(scratch) 
1.966 

(0.027) 
2.029 

(0.089) 
0.711 

(0.021) 
0.668 

(0.051) 

HWDAE 
2.294 

(0.016) 
2.510 

(0.009) 
0.414 

(0.015) 
0.397 

(0.012) 

HDAE 
2.509 

(0.021) 
2.868 

(0.028) 
0.250 

(0.010) 
0.182 

(0.005) 

WDDAE 
2.499 

(0.004) 
2.799 

(0.004) 
0.180 

(0.005) 
0.110 

(0.004) 

DDAE 
2.411 

(0.007) 
2.895 

(0.041) 
0.316 

(0.007) 
0.180 

(0.006) 

SimMIM 
2.766 

(0.000) 
2.970 

(0.001) 
0.001 

(0.000) 
-0.002 

(0.000) 

DisAE 
2.659 

(0.004) 

2.888 

(0.003) 

0.055 

(0.002) 

0.023 

(0.001) 

PSP 
2.416 

(0.0220) 

2.776 

(0.089) 

0.312 

(0.011) 

0.358 

(0.015) 

 

 

 



23 

 

In DDAE, WDAE, we showed the quantitative results of onset regression for pre-trained models. We conducted 

linear probing except for resnet34. HWDAE achieved the best performance in all the evaluation metrics and in 

the internal and external datasets. However, in these linear probing results, unlike the classification tasks, 

WDDAE and DDAE didn’t show comparable performance to HWDAE. See Table 4 for the results. 

 

In the results of the fine-tuning (Table 5, Figure 12), WDDAE achieved the best fine-tuning performance in all 

the evaluation metrics of the PS03, and HWDAE achieved the best of the PS04. DWT enhances fine-tuning 

performance in both WDDAE and HWDAE. In the linear regression of onset year using SUVR, the results are 

2.592(2.084) MAE, 0.490 CCC, and 2.760(2.564) MAE, 0.458 CCC respectively PS03, PS04. The deep learning 

regression models showed better performance than the classical analytic method using SUVR. 

 

Table 5. Mean MAEs, CCCs, and SDs on PS03 and PS04 test sets from the results of scratch and fine-tuning. 

Bold text represents the best performance, and underlined text represents the second-best performance. 

 

Mean(std) MAE CCC 

Models 
Scratch Fine-Tuning Scratch Fine-Tuning 

PS03 PS04 PS03 PS04 PS03 PS04 PS03 PS04 

Resnset 

(scratch) 
1.966 

(0.027) 
2.029 

(0.089) 
1.966 

(0.027) 
2.029 

(0.089) 
0.711 

(0.021) 
0.668 

(0.051) 
0.711 

(0.021) 
0.668 

(0.051) 

HWDAE 
2.036 

(0.065) 
2.06 

(0.04) 
2.013 

(0.039) 
1.965 

(0.026) 
0.686 

(0.017) 
0.62 

3(0.026) 
0.701 

(0.013) 
0.733 

(0.006) 

HDAE 
2.075 

(0.029) 
2.331 

(0.105) 
2.061 

(0.019) 
2.188 

(0.053) 
0.678 

(0.011) 
0.493 

(0.082) 
0.661 

(0.012) 
0.545 

(0.024) 

WDDAE 
2.073 

(0.033) 
2.412 

(0.063) 
1.923 

(0.068) 
2.055 

(0.062) 
0.686 

(0.024) 
0.424 

(0.035) 
0.736 

(0.01) 
0.607 

(0.033) 

DDAE 
2.111 

(0.063) 
2.412 

(0.048) 
1.961 

(0.039) 
2.233 

(0.04) 
0.671 

(0.018) 
0.41 

(0.038) 
0.716 

(0.021) 
0.506 

(0.036) 

SimMIM 
2.111 

(0.076) 
2.532 

(0.04) 
2.029 

(0.071) 
2.249 

(0.068) 
0.650 

(0.031) 
0.378 

(0.033) 
0.682 

(0.024) 
0.54 

(0.03) 

DisAE 
2.111 

(0.076) 
2.532 

(0.04) 
2.187 

(0.08) 
2.336 

(0.121) 
0.650 

(0.031) 
0.378 

(0.033) 
0.608 

(0.036) 
0.485 

(0.052) 

PSP 
2.078 

(0.07) 

2.199 

(0.142) 

2.143 

(0.049) 

2.258 

(0.098) 

0.656 

(0.026) 

0.536 

(0.082) 

0.662 

(0.04) 

0.485 

(0.065) 
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Figure 12. MAEs and CCCs bar plots of the results of onset year regression. This was evaluated on PS03 and 

PS04 based on the results of linear probing, scratch, and fine-tuning.  

 

4.4 Follow-Up Patients Analysis 

Using the regression models, we evaluate the actual duration of PD progression and the predicted duration of 

PD [43]. For the patients in 30 pairs, 60 images are composed of an initial FP-CIT PET image and a follow-up 

FP-CIT PET. Those images are scanned from PS03. We calculate the actual duration of PD (onset year of the 

followed image - onset year of the initial image). Also, we calculate the deep-learning-based predicted duration 

of PD (onset year of the followed image- predicted onset year of the initial image). We observe there is a mild 

correlation between actual progress in PD and predicted (Pearson Correlation Coefficient 0.600, p-value<0.001). 

This means the actual duration of progression and the degradation of PET imaging have a mild correlation.  See 

Figure 13 for the results. 

 

 

Figure 13. a) A scatter plot of the onset year gap between original and predicted onset years with the Pearson 

correlation coefficient. b) A plot that indicates longitudinal information has the value of the original, predicted 

onset year of initial and follow-up images. The length of the line is equal to the duration. 

 

5. Experiments and Results of the Unsupervised Anomaly Detection 

After we trained normal data only, we inferred that internal and external test sets compose normal and abnormal 

images at a ratio of 1:1. After processing these maps, normalization, erosion, median filter, and removing small 
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objects were performed sequentially. We show some qualitative results of abnormal images (see Figure 14) and 

normal images (see Figure 15).  

 

 

Figure 14. Some cases of abnormal images and their inference results. The first column (a) is of the axial images 

of original abnormal CT scans as the inputs, the second column (b) is their output normal-like images, and the 

third column overlaps images of the anomaly map on the original image. The green means the original image has 

a higher value than the normal-like image, and the red area the original image has a lower value than the normal-

like image. 

 

 

Figure 15. Some cases of normal images and their inference results. The first column (a) is of the axial images of 

original normal CT scans as the inputs, the second column (b) is their output reconstructed images, and the third 

column overlaps images of the difference map on the original image. The red area in the original image has a 

lower value than the normal-like image 
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In the qualitative inference results of abnormal images (see Figure 13), we could observe the reconstruction images 

somewhat convert abnormal tissues to normal-like tissues. As can be seen in the various cases, our model was 

able to detect lesions of various sizes and intensities. 

 

In the qualitative inference results of normal images (see Figure 14), we could observe the reconstruction images 

with hard conditioning (segmentation mask) preserve normal tissues well. However, some false positives were 

mainly present in the calcified parts of the ventricles and the outer surface of the brain. 

 

 

Figure 16. The histograms of anomaly scores in the internal and external test sets. The orange parts are normal 

anomaly scores, and the blue parts are abnormal anomaly scores. 

 

Table 6. The quantitative results of unsupervised anomaly detection in internal test set and external test set. 

 Precision Recall F1-score Accuracy 

Internal Test Set 0.93 0.91 0.91 0.91 

External Test Set 0.82 0.82 0.82 0.82 

 

In the quantitative inference results of internal and external test sets (see Table 5 and Figure 16), using an optimal 

threshold, we parted the normal and abnormal images and calculated the precision, recall, f1-score, and accuracy 

like the binary classification. Unlike the test results of the internal test set, which achieved an accuracy of 0.91, 

the test results of the external test set relatively achieved a low accuracy of 0.82. 

 

6. Discussion of the 18F-FP-CIT PET Image Analysis 

We evaluated diffusion models as generative pre-training methods for FP-CIT PET image recognition tasks. 

Competent performance with linear probing showed that these models learned good feature representations during 

the upstream training phase. Our proposed model, HWDAE, demonstrated stable and good performance on both 

internal and external test sets for classification and regression tasks. Discrete Wavelet Transform preprocessing 

enhanced feature representation learning by providing multiple channels while conserving memory through down 

sampling. This preprocessing achieved superior performance in some settings, though occasionally without 

meaningful gains. Our study has several limitations. 
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● Consistency of network backbone: Due to limited computational resources, we could not unify the 

network backbone of the generative models to identical structures. However, we followed guidelines 

from renowned academic papers, such as those on guided diffusion and simple diffusion, for model 

structure modifications. 

● Computational efficiency: While generative pre-trained models show superior performance in several 

tasks, the improvements can be relatively small and may even fall short of the supervised model 

ResNet34, despite their high training costs. 

● Class imbalance: Reflecting the real-world prevalence gap among PD, MSA, and PSP, our dataset had 

considerable class imbalance. Nevertheless, our model, HWDAE, demonstrated relatively uniform 

performance across all three classes. We also calculated both macro and micro AUC and PRC, with the 

micro versions accounting for class weights. 

● Relationship of symptom onset and FP-CIT PET findings: We recognize that dopaminergic cell loss 

observed in FP-CIT PET scans does not always correlate with disease progression measured by symptom 

duration. Nonetheless, our study showed that image features extracted from deep learning models can 

surpass the conventional SUVR values in predicting disease duration. This result suggests that these 

features may serve as future markers for disease progression. 

● Disease subtypes and unexplored diagnoses of parkinsonism: Our dataset did not include other 

parkinsonism diagnoses such as corticobasal syndrome and Lewy body dementia. Additionally, disease 

subtypes of PD, MSA, and PSP, which could present different FP-CIT PET image findings, were not 

considered in disease classification due to a limited number of data. 

 

7. Discussion of the Unsupervised Anomaly Detection 

We built diffusion models (anatomical and texture models) for non-contrast 3D brain CT as normal distribution 

learners. Using these models, we detected abnormal areas that deviated from the normal distribution. We confirm 

that our models detected various lesions in the real data sets and even preserved normal tissues well in the 

reconstruction process. Our proposed models and combining method demonstrated good performance on internal 

and external test sets for binary classification of normal and abnormal. However, our study has several limitations 

and needs further study. 

 

⚫ The lack of proper evaluation metrics: we started our suggestions with doubts about the segmentation 

view and the dice coefficient score. However, even we thought our doubts and suggestions are 

reasonable, we encountered difficulties in finding proper evaluation metrics that accurately assessed 

anomalies. Our binary classification is one of the evaluation methods, but it has the limitation of not 

being able to assess whether the location of the lesion is correct. 

⚫ Difficulty in real-world clinical usage: Although we designed our study to closely match real-world 
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data and settings, we still suffered from the inherent problem of slow inference time, which is a major 

drawback of DDPM. In addition, we recognize the cumbersome process of adding BET and gyrus 

sulcus segmentation to be used in actual clinical practice. 

 

8. Conclusion  

In this study, we build a generative model HDAE and perform several tasks. We use this model in the 18F-FP-

CIT PET image analysis task as a discriminant of image features and in another task of unsupervised anomaly 

detection of non-contrast 3D brain CT as a data distribution learner (generator). As we observed the results of 

these tasks, we confirmed that the generative model could achieve good performances even though the tasks have 

different characteristics. In addition, the fact that brain images have three-dimensional characteristics led us to 

explore three-dimensional generation models. Despite being less studied than traditional two-dimensional 

generative models, we observed that the three-dimensional generative model performed well. 
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Abstract (with Korean) 

목적 본 연구에서는 몇 가지 작업을 통해 심층 생성 모델의 두 가지 능력을 검증하고자 했다. 첫 번째는 

파킨슨병 환자의 18F-FP-CIT PET 영상 분석에서 영상의 특징을 추출 및 구별하는 능력이고, 두 번째는 

3D 뇌 CT 의 비지도 이상 검출에서 데이터 분포를 학습(생성자)하는 능력이다. 

방법 첫 번째 연구에는 후향적으로 수집된 2,672 개의 18F-FP-CIT PET 스캔이 포함된다. 생성 방법으로 

3D 사전 훈련 모델을 구축하고 선형 검증 및 미세 조정을 사용하여 특징을 구별하는 모델의 성능을 

평가했다. 본태 떨림 / 파킨슨병의 이진 분류와 파킨슨병, 다계통 위축증, 진행성 핵상 마비의 다중 클래스 

분류를 수행했다. 또한 사전 훈련된 모델을 운동 증상 발병 연도 회귀 과제에 사용했으며, 모델의 성능을 

분류와 유사하게 평가했다. 두 번째 연구는 건강한 피험자를 대상으로 후향적으로 수집한 34,085 개의 

뇌 CT 스캔을 대상으로 했다. 정상 CT 스캔만을 사용하여 3D 생성 모델을 학습시켰다. 정상 데이터 

분포를 학습한 후 이 모델은 정상 분포에서 벗어난 비정상적인 스캔을 감지할 수 있었다. 

결과 첫 번째 과제에서 제안된 모델은 본태 떨림 / 파킨슨병의 분류의 교차 검증에서는 수신자 조작 특성 

곡선(AUROC) 0.997(내부 검증) 0.994(외부 검증)의 정량결과와 정밀도-재현율 곡선(AUPRC) 

0.998(내부), 0.991(외부) 의 정량 결과를 보였다. 파킨슨병 / 다계통 위축증 / 진행성 핵상 마비의 다중 

클래스 분류에서는 수신자 조작 특성 곡선에서 0.920(내부 검증), 0.919(외부 검증) 정밀도-재현율 

곡선에서 0.881(내부 검증), 0.670(외부 검증)의 정량 결과를 보였다. 회귀 작업에서 모델은 평균 절대 

오차(MAE)가 2.013(내부 검증), 1.965(외부 검증) 일치 상관 계수(CCC)는 0.701(내부 검증), 0.733(외부 

검증)의 정량 결과를 보였다. 두 번째 과제에서 네트워크는 내부 검증 세트에서 정확도, 정밀도, 재현율, 

F1 점수가 각각 0.91, 0.93, 0.91, 0.91, 외부 검증 세트에서 82, 0.82, 0.82 로 정상 및 비정상 이미지를 

탐지했다. 

결론 이 연구는 심층 생성 모델이 기능적 뇌 이미지의 임상적 특징을 판별할 수 있는 분류기가 될 수 

있음을 시사한다. 동시에 심층 생성 모델이 구조적 뇌 이미지의 정상 분포 학습자가 되어 이미지가 분포 

내에 있는지(정상) 또는 이탈했는지(비정상)를 감지할 수 있음을 확인하였다. 
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