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Abstract 

Introduction: Non-parametric/parametric time to event (TTE) approaches are widely used in the 

analysis of clinical trial data for drug development. It is used to assess response to drug treatment, 

patient prognosis and adverse drug reactions.  

The popularity of TTE modelling analysis is due to the ability to understand the progression of specific 

events over time, which allows simulations to predict long-term outcomes following different drug 

administration scenarios. 

Objectives: Given the variety of ways to analyze the time to event in each case, an accurate analysis is 

essential to predict the time and frequency of events in different clinical settings over the long term.  

This study aims to guide the use of appropriate methods by characterizing events, establishing an 

appropriate probability distribution function and then implementing it in NONMEM through the refined 

equations for different time-to-event data. 

Methods: Stochastic algebraic equations for different types of time-to-event data were reviewed and 

re-derived to reflect the characteristics of the data types. Based on these newly derived equations, 

parametric time-to-event analyses were performed for each typical dataset of single or repeated time-

to-event with exact or interval censored time.  The results of these parametric analyses were compared 

with the non-parametric estimates of the mean cumulative function. 

Results: We categorized time to event by single or repeated event and exact or interval censored time, 

based on whether the exact times of the events were known or only the time ranges of the events and 

the number of events within a patient. Equations for probability distributions (survival function, hazard 

function, cumulative hazard function) for each type of event dataset were re-derived for the following 

time-to-event data: repeated exact-time event, repeated interval-censored event. 

The newly derived equations were then implemented in NONMEM®  to estimate parameters for an 

exemplary time to event datasets, and they were compared with the results of conventionally used 

models in NONMEM. 

Monte-Carlo simulation showed that the newly derived model better described the exemplary datasets 

represented by mean cumulative function estimates than conventional model. 

NONMEM®  simulation results applied to the datasets provided in the existing reference and arbitrary 

virtual datasets demonstrated the goodness of fit of the refined equation and highlighted the distinct 

differences from the existing equation. 

Conclusion: Using the new equations presented in this research, we expect that we can evaluate time 

to event data from a variety of sources such as treatment outcomes and adverse drug reactions of 

investigational drugs with different characteristics. The result of the current research will help to 

properly evaluate the efficacy and safety of drugs. 
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Introduction 

Parametric time-to-event (TTE) modelling is widely used in the analysis of clinical trial data for drug development. 

It is used to assess response to drug therapy, patient prognosis and adverse drug reactions.  

The popularity of TTE modelling analysis lies in its ability to show the progression of specific events over time, 

allowing predictions of long-term drug administration scenarios through simulation. As post-treatment follow-up 

for relapse or adverse event analysis increases, there is a growing need for methods that analyze repeated events 

rather than single events. 

However, time-to-event modelling has only been established for single events, and methods for repeated events 

are not well established.  

There are only methods that consider each event independently and extend the methods used for single events, 

but methods that consider the relationship between each event, taking into account the properties of actual repeated 

events, need to be further explored. Given the variety of methods for analyzing the time to event in each case, an 

accurate analysis is essential to predict the time and frequency of events in different clinical settings over the long 

term. 

Therefore, in this study, we classified the event type into exact time event and interval censored event and explored 

the repeated time to event analysis method from the definition of the required function to the code of NONMEM, 

a commonly used program. 

This study aims to guide the use of appropriate methods by characterizing the event characteristics, establishing 

an accurate probability distribution function, and then implementing the corresponding NONMEM code through 

the equations of the repeated time-to-event model. 

Method  

I. Non-parametric estimation of the probability 

A popular non-parametric approach to time-to-event analysis is the Kaplan-Meier method. This method, which 

first appeared in a 1958 paper by Edward L. Kaplan and Paul Meier, is a censored data analysis method. It 

calculates the time-related probability of an event occurring or not occurring in a population with the same 

characteristics in a study. The probability that the event will not occur at a given time is obtained from Kaplan-

Meier.1) 

Kaplan-Meier is usually constructed based on five assumptions. 1) 2)  

The first assumption is that the censored event should be uninformative, i.e. the censored event should have the 

same probability as the observed event. This means that the underlying prognostic characteristics of subjects lost 

to follow-up should be the same as those of subjects observed. The second assumption is that subjects in a given 

trial should have the same probability of survival regardless of whether they were recruited early or late in the 

trial. The third assumption is that the exact time at which the specific event of interest occurred must be available 

to provide accurate survival estimates. The fourth assumption is that the probability is constant within the same 

time interval. Since the probability of an event occurring in the specific time interval is constant, the hazard rate 

within the specific time interval follows a unit distribution.  Here, the probability of survival is the probability that 

an event will not occur and follows a binomial distribution that considers two cases: either an event occurs for 

each subject in the entire population, or no event occurs. 

The fifth assumption is that all events observed per subject are distinct from each other and from censored events, 

so that there are no overlapping events. This assumption includes the absence of competing risk events that are 

distinct from the event of interest. For example, if the event of interest is a recurrence during a subject's follow-

up period, Kaplan-Meier could not take into account the other competing risk event called death, which is distinct 

from censoring. This means that there is one event per patient, and other competing risk events that are distinct 

from it can be treated in the same way as censoring. Only when these five assumptions are met can the Kaplan-

Meier estimator be used appropriately. The probability of survival is the probability that an event will not occur, 

and follows a binomial distribution that considers the occurrence of one event for each subject in the entire 

population. 



2 

 

For repeated events, however, the second assumption does not hold. Since each subject has multiple events, the 

probability of an event occurring is not the same for each subject over time, nor is it the case that the censored 

events have the same probability as the observed event. This violates the assumption of one event per subject. 

Therefore, the case of repeated events does not follow a binomial distribution, so the usual Kaplan-Meier equation 

cannot be applied. 

Furthermore, the fifth assumption is also not fulfilled in the case of repeated events. Not surprisingly, all events 

are distinct and are treated independently. But since there is not one event per subject, this assumption is not 

satisfied. It is easy to see that repeated events and the presence of competing risks also make it difficult to apply 

Kaplan-Meier analysis.  

As an alternative, time-to-first-event analysis is sometimes used when analyzing repeated events. The idea is to 

select only the first of several repeated events in a subject and use it to apply Kaplan-Meier estimation. By using 

this method, we can approximate probabilities that focus on the probability of the event not occurring over time.  

However, with repeated events, the more important concept is the risk of a particular event occurring at a particular 

time, taking into account all cumulative events. Therefore, time-to-first-event analysis, as modified by Kaplan-

Meier estimation, has difficulty in finding the cumulative risk of repeated events over time. In conclusion, the 

Kaplan-Meier method can be considered to be applicable when there is no competing risk event, and one event 

occurs per subject. 

Since the value obtained by the Kaplan-Meier method is a probability, when applied to repeated events it must be 

transformed into a conditional probability if the previous event has occurred. However, this does not fit the 

assumption of a binomial distribution, so another distribution is needed. 

In other words, whereas the Kaplan-Meier method focuses on the probability of the number of subjects not 

experiencing an event over time, assuming that there is one event per subject and that each subject's events are 

independent, with recurrent events there are multiple events per subject, so we need a method that focuses on the 

risk of an event occurring over time, assuming that the events in the same time interval are all independent, rather 

than that each subject's events are independent.  

In summary, for repeated events it is more appropriate to calculate the cumulative risk of an event occurring over 

time rather than the probability of an event not occurring over time. This is the mean cumulative function approach. 

Parametric methods, on the other hand, calculate probabilities based on assumptions about the distribution of the 

risk of an event, so it is possible to calculate directly the conditional probability of repeated events. If we want to 

find the probability of no event occurring at all, over time, for repeated events in a non-parametric way, we can 

use the relationship between the survival function and the cumulative hazard function, 𝑆(𝑡) =  𝑒−𝐻(𝑡). The part 

of H(t) should be a different concept of cumulative risk function from the cumulative hazard calculated by the 

conventional Kaplan-Meier method. The method used here is the mean cumulative function. 

The mean cumulative function is a concept proposed to adequately reflect the cumulative risk at a given point in 

time. This is the average number of cumulative events experienced by a subject in the study at each time point 

since the start of follow-up. This function could be considered a "mean curve", as it is the pointwise average of 

all population curves passing through the vertical line at each time point t. The mean curve is treated as continuous.  

The notation of mean cumulative function is MCC(t) or M(t). And the derivative of M(t) is m(t), which is the 

instantaneous mean population recurrence or intensity function. m(t) means that the number of events per time 

unit per population unit. Therefore, conversely, the integral of m(t) is MCC(t),  3) 

Although not the same, it can be interpreted as presenting a similar concept to the cumulative hazard obtained 

from the Kaplan-Meier estimation. The difference between the two concepts is whether the event could be repaired 

or not.  

Thus, for non-repaired events (from life data), the instantaneous failure rate is the hazard function h(t) and the 

cumulative failure rate is the cumulative hazard function. Correspondingly, for repaired events (from repeated 

data), the instantaneous mean hazard rate is the mean hazard rate function m(t) and the cumulative mean hazard 

rate function is M(t).3) 
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In MCF, three of the five assumptions of Kaplan-Meier remain the same, except for the second and fifth 

assumptions. MCF does not assume that each subject's MCF is identical. MCF estimates are valid whether or not 

there is serial correlation (or cause and effect) in the histories of events. Instead, it assumes that the occurrence of 

events in non-overlapping intervals are independent.3) MCF also allows for the occurrence of multiple events per 

patient and is applicable in the presence of competing risk events. Based on the above assumptions, MCF can be 

considered to follow a non-homogeneous Poisson process because each interval has the same mean risk rate of 

event occurrence internally, but the mean risk rate per each time interval is not homogeneous. 4) 

Conceptually, the Mean Cumulative Function (MCF) is a cumulative history function that shows the cumulative 

number of occurrences of an event, such as repairs, over time. When applied to a clinical setting, a repair can be 

thought of as a recoverable event. In the context of repair over time, the value of the Mean Cumulative Function 

(MCF) can be thought of as the average number of post-event repairs that each subject will have undergone after 

a given period of time. It applies only to subjects who have experienced recoverable events and assumes that each 

event (recovery) is identical.  

The MCF can be applied to recurrent events or adverse events that are characterized by a subject repeating the 

event many times after full treatment and recovery.5) The concepts and notations used to calculate MCF estimates 

are as follows.3) 

◼ 𝑁 : Total number of subjects 

◼ 𝑡𝑗 : Time points with distinct event times, where 1 ≤ 𝑗 ≤ 𝑚 

All time intervals use either the time of the event occurrence or a follow up period, usually in the form of closed 

on the left and open on the right, [𝑡𝑗−1, 𝑡𝑗). 

◼ 𝑐𝑗 : The number of censored subjects in each time interval 

◼ 𝑒𝑗 : The number of events that occurred in each time interval 

◼ 𝑟𝑗 : The number of competing-risk events that occurred in each time interval 

◼ 𝑛𝑗 : The number of subjects remaining in each time interval, meaning the number of subjects at risk. 

The risk set (𝑛𝑗)  means the population of subjects at risk for an event. The risk set in MCF is constructed 

differently from Kaplan-Meier. Kaplan-Meier does not include competing risk events in the risk set and includes 

them as censoring events (𝑐𝑗), but in the mean cumulative function, this part is classified differently. In Kaplan-

Meier method, individuals can only experience a censoring outcome only and are removed from the risk set. And 

individuals can experience the event of interest and are removed from the risk set. Therefore, the risk set is 𝑛𝑗 =

 𝑛1 − ∑ (𝑒𝑗 + 𝑐𝑗)𝑚
𝑗=1  and 𝑛1 = 𝑁. 

Otherwise, in the mean cumulative function, individuals can only experience a competing risk event or censoring 

outcome once and are removed from the risk set. And individuals can experience the event of interest and remain 

in the risk set without affecting the survival probability. That is, the risk set is 𝑛𝑗 =  𝑛1 − ∑ (𝑟𝑗 + 𝑐𝑗)𝑚
𝑗=1  and 𝑛1 =

𝑁.  If there is no competing risk event, 𝑟𝑗 is all zero, so the risk set is 𝑛𝑗 =  𝑛1 − ∑ 𝑐𝑗
𝑚
𝑗=1  and 𝑛1 = 𝑁. 

◼ 𝑚𝑗 = (
𝑒𝑗

𝑛𝑗 
) ∙ 𝐾𝑀(𝑡𝑗), 𝐾𝑀(𝑡𝑗) = ∏ (1 −

𝑟𝑗

𝑛𝑗 

𝑚
𝑗=1 )  : The immediate occurrence of an event unit per 

population unit in time interval, which is the mean risk rate per interval.13) 

The value of m(t) is calculated by dividing the number of events 𝑒𝑗 in the time interval of the interest by the 

remaining risk set 𝑛𝑗, multiplied by the proportion of subjects who have not suffered a competing risk event up to 

the time interval of the interest (𝐾𝑀(𝑡𝑗)). If there are no competing risk events, then 𝐾𝑀(𝑡𝑗) is 1 because 𝑟𝑗  is 0 

at all time intervals, leaving only the 
𝑒𝑗

𝑛𝑗 
 part. Then,  𝑚𝑗 =

𝑒𝑗

𝑛𝑗 
.  

Since we are calculating the average of the risk rates of events occurring in each time interval, we can assume that 

the proportion of events occurring in each time interval is constant. This is an assumption that can be made for 

any Poisson distribution with the mean as a parameter, and because the risk rate of events occurring in each time 

interval is different, we can conclude that the mean cumulative function follows a non-homogeneous Poisson 

distribution. 
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Since MCF follows a non-homogeneous Poisson process, 𝑚𝑗 are independent of each other, i.e., the mean risk 

rates for each interval can be treated as independent of each other and for all events in the same time interval, 𝑚𝑗 

is also the same. 

◼ 𝑀∗(𝑡𝑗+1) =  𝑚𝑗+1 +  𝑀∗(𝑡𝑗) : The sum of the mean cumulative event occurrence rates up to time 𝑡𝑗+1 , 

which means the cumulative risk rate up to time 𝑡𝑗+1   

Depending on the definition of 𝑚𝑗, 𝑀∗(𝑡𝑗)  is defined differently for the case with and without competing risk 

events. When competing-risk events exist, 𝑀∗(𝑡𝑗) = ∑ (
𝑒𝑗

𝑛𝑗 
) ∙ 𝐾𝑀(𝑡𝑗), 𝐾𝑀(𝑡𝑗) = ∏ (1 −

𝑟𝑗

𝑛𝑗 

𝑚
𝑗=1 )𝑚

𝑗=1  and if there 

is no competing-risk event, it is defined as 𝑀∗(𝑡𝑗) = ∑
𝑒𝑗

𝑛𝑗 

𝑚
𝑗=1 .\ 

The relationship between M(t) and m(t) in the MCF is that the derivative form of M(t) is m(t). In a staircase curve 

obtained from observed data, the value of M(ti+1) minus M(ti) equals m(ti+1). This can be easily seen by applying 

this relationship to calculate that the integral of m(t) is equal to M(t). Therefore, the differences between adjacent 

values of the estimated mean cumulative function are the number of events per time per population unit. If we 

extend the staircase graph to a continuous curve, the value of m(t) between ti and ti+1 is the mean rate of change 

between M(ti+1) and M(ti). If we make the time intervals between ti and ti+1 very small and calculate m(t) from the 

value of M(t) at one point, ti+1, which is the process of setting the  time interval, 𝛿𝑡 to zero, it becomes equal to 

the slope of the tangent line at M(ti+1), i.e., the derivative of M(ti+1) is obtained as m(ti+1).   

This relationship is used in parametric methods to curve H(t) and then find the parameters that fit the observed 

data. The calculation of h(t) at each time interval provides the basis for calculating the mean rate of change of H(t) 

using the observed data. A more detailed proof and analysis is described later in the parametric analysis section. 

This relationship is similar as the relationship between the cumulative hazard function H(t) and h(t) obtained from 

the Kaplan-Meier method. A similar relationship between M(t) and m(t) and H(t) and h(t) is shown in Figure 1 

and Figure 2 as follows. 

Figure 1. The relationship between M(ti+1) and m(ti+1) 

 

Figure 2. The relationship between H(ti+1) and h(ti+1) 
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◼ 𝑉(𝑀∗(𝑡𝑗)) =  𝑉(∑ 𝑚𝑘
𝑗
𝑘=1 ) = 𝑉(𝑚1) + 𝑉(𝑚2) + ⋯ + 𝑉(𝑚𝑗) =  𝑉 (∑

𝑚𝑘

𝑟𝑘 

𝑗
𝑘=1 ) , 𝑚𝑗  𝑖𝑠 𝑖𝑛𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑡  

◼ 𝑉(𝑚𝑗) = 𝐸(𝑚𝑗) = 
𝑚𝑗

𝑟𝑗 
 , 𝑚𝑗  ~ 𝑁𝑜𝑛ℎ𝑜𝑚𝑜𝑔𝑒𝑛𝑒𝑜𝑢𝑠 𝑝𝑜𝑠𝑠𝑖𝑜𝑛 𝑝𝑟𝑜𝑐𝑒𝑠𝑠  

Since the number of events(points) follows the non-homogeneous Poisson Process (NHPP) and each point occurs 

independently of one another in the same time interval, the mean recurrence rate of points depends on the location 

of the underlying space of the Poisson point process. Applying the concept of a constant mean risk rate at each 

time interval to a non-homogeneous Poisson process, the number of events on the time interval is a random 

variable X that follows a Poisson distribution with mean value 𝑚𝑗.  Since X is observed as the value 𝑒𝑗 for each 

interval, 𝑚𝑗 =
𝑒𝑗

𝑛𝑗 
, we can see that 

𝑋

𝑛𝑗 
 also follows the same distribution as X. Therefore, 𝑚𝑗  is a random variable 

that also follows a Poisson distribution. So, using the property that 𝐸(𝑚𝑗)= V𝑎𝑟(𝑚𝑗),  we could find the value of 

𝑉𝑎𝑟(𝑚𝑗) as
𝑒𝑗

𝑛𝑗
2 = 

𝑚(𝑡𝑗)

𝑛𝑗
. A summary of this process is shown as below. 

◼ 𝑋~ 𝑟𝑎𝑛𝑑𝑜𝑚 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒 : 𝑡ℎ𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑒𝑣𝑒𝑛𝑡𝑠 𝑑𝑒𝑝𝑒𝑛𝑑𝑖𝑛𝑔 𝑜𝑛 𝑡ℎ𝑒 𝑡𝑖𝑚𝑒 𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙 [𝑡𝑗 , 𝑡j+1) 

◼ 𝑋~𝑃𝑜𝑖𝑠(𝑚(𝑡)) =  
(𝑚(𝑡))𝑥𝑒−𝑚(𝑡)

𝑥!
,  𝑜𝑛 𝑡ℎ𝑒 𝑡𝑖𝑚𝑒 𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙 [𝑡𝑗 , 𝑡j+1) 

◼ 𝐸(𝑋)= 𝐸(𝑋 = 𝑒𝑗) = 𝑚(𝑡𝑖+1)= 𝑉𝑎𝑟(𝑋)  

: 𝑡ℎ𝑒 𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑒𝑣𝑒𝑛𝑡𝑠 𝑝𝑒𝑟 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝑢𝑛𝑖𝑡 𝑜𝑛 𝑡ℎ𝑒 𝑡𝑖𝑚𝑒 𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙 [𝑡j, 𝑡j+1) 

◼ 𝑚(𝑡𝑗+1) =  
𝑋=𝑒𝑗

𝑛𝑗
 ~ 𝑟𝑎𝑛𝑑𝑜𝑚 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒  

: 𝑡ℎ𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑒𝑣𝑒𝑛𝑡𝑠 𝑝𝑒𝑟 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝑑𝑒𝑝𝑒𝑛𝑑𝑖𝑛𝑔 𝑜𝑛 𝑡ℎ𝑒 𝑡𝑖𝑚𝑒 𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙 [𝑡j, 𝑡j+1)  

◼ 𝐸(𝑚(𝑡𝑗+1)) = 𝐸(
𝑋=𝑒𝑗

𝑛𝑗
) = 

1

𝑛𝑗
 𝐸(𝑋 = 𝑒𝑗)= 

1

𝑛j
 𝐸(𝑋) =

1

𝑛j
 ∙ 𝑚(𝑡𝑗+1) = = 

𝑀(𝑡𝑗+1) - 𝑀(𝑡𝑗)

𝑛𝑗
=

1

𝑛𝑗
 ∙

𝑋=𝑒𝑗

𝑛𝑗
=

𝑒𝑗

𝑛𝑗
2 = 𝑉𝑎𝑟(𝑚(𝑡𝑗+1)) 

◼ 𝑉𝑎𝑟(𝑀(𝑡𝑗+1)) = 𝑉𝑎𝑟(𝑚(𝑡1)) + 𝑉𝑎𝑟(𝑚(𝑡2)) + ⋯ + 𝑉𝑎𝑟(𝑚(𝑡𝑗+1)) =∑
𝑚(𝑡𝑘)

𝑛𝑘

𝑗+1
𝑘=1   

The obtained Var(M(t)) as above can be used to obtain a naive confidence interval of M(t).   

◼ 𝑀∗(𝑡𝑗) ± 𝑍𝛼/2√𝑉(𝑀∗(𝑡𝑗)) : Confidence intervals of 𝑀∗(𝑡𝑗) 

To obtain a confidence interval of (1 − 𝛼)%, in the case of the two-sided test, the points of the inverse of the 

standard normal distribution corresponding to 𝛼/2  can be found as 𝑍𝛼/2 , multiplied by the standard error of 

𝑀∗(𝑡𝑗) to obtain the upper and lower limits. This method is naïve confidence interval, and this could be applied 

to the discrete data. 

While the variance of the mean cumulative function is calculated under the assumption that the number of events 

in each time interval follows a Poisson distribution, the variance of the Kaplan-Meier function is calculated under 

the assumption that the number of individuals who experienced the event or who did not experience the event in 

each time interval follows a Binomial distribution. In Kaplan-Meier, both the shape and variance of the cumulative 

hazard function are different when the survival function is obtained by the empirical estimation 𝑆(𝑡) =

 ∏ (
𝑛𝑗−𝑒𝑗

𝑛𝑗 
) 𝑚

𝑗=1  and the Nelson's Aalen estimate 𝑆(𝑡) =  ∏ (𝑒
−

𝑒𝑗

𝑛𝑗 ) 𝑚
𝑗=1  respectively. 

The process of finding the variance of the empirical estimate is shown as below.  

◼ X ~ 𝑟𝑎𝑛𝑑𝑜𝑚 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒 : 𝑡ℎ𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙𝑠 𝑤ℎ𝑜 𝑛𝑜𝑡 𝑒𝑥𝑝𝑒𝑟𝑖𝑒𝑛𝑐𝑒 𝑒𝑣𝑒𝑛𝑡 𝑜𝑛 𝑡ℎ𝑒 𝑡𝑖𝑚𝑒 𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙 

◼ 𝑋 = 𝑛𝑗 − 𝑒𝑗~𝐵𝑖𝑛𝑜𝑚(𝑛𝑗 , 𝑝𝑗) = (𝑛𝑗
𝑥𝑗

) 𝑝𝑗
𝑥𝑗(1 − 𝑝𝑗)𝑛𝑗−𝑥𝑗 ,  𝛿𝑡 = [𝑡𝑗 , 𝑡j+1) 

𝑝𝑗  ~ 𝑡𝑟𝑢𝑒 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑜𝑓 𝑒𝑣𝑒𝑛𝑡𝑠 𝑡ℎ𝑎𝑡 𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙𝑠 𝑑𝑜𝑒𝑠 𝑛𝑜𝑡 𝑒𝑥𝑝𝑒𝑟𝑖𝑒𝑛𝑐𝑒 𝑡ℎ𝑒 𝑒𝑣𝑒𝑛𝑡 𝑜𝑛 𝑡ℎ𝑒 𝑡𝑖𝑚𝑒 𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙 

◼ 𝐵𝑦 𝑛𝑜𝑟𝑚𝑎𝑙 𝑎𝑝𝑝𝑟𝑜𝑥𝑖𝑚𝑎𝑡𝑖𝑜𝑛, if 𝑛𝑗𝑝𝑗  > 5  

𝑋 = 𝑛𝑗 − 𝑒𝑗~𝐵𝑖𝑛𝑜𝑚(𝑛j, 𝑝j)~𝑁(𝑛j𝑝j, 𝑛𝑗𝑝j𝑞𝑗) = 𝑁 (𝑛𝑗

𝑛𝑗 − 𝑒j

𝑛j

, 𝑛𝑗

𝑛𝑗 − 𝑒j

𝑛𝑗

𝑒j

𝑛𝑗

) = 𝑁(𝑛𝑗 − 𝑒𝑗 ,
𝑛𝑗(𝑛𝑗 − 𝑒𝑗)

𝑛𝑗

) 

◼ 𝑉𝑎𝑟𝑝𝑗 = 𝑉𝑎𝑟{
𝑛𝑗−𝑒𝑗

𝑛j
}=

1

𝑛𝑗
2

𝑉𝑎𝑟(𝑛𝑗 − 𝑒𝑗)= 
1

𝑛𝑗
2

𝑉𝑎𝑟(𝑋)= 
1

𝑛𝑗
2
 {

𝑒𝑗(𝑛𝑗−𝑒𝑗)

𝑛𝑗
} 

◼ 𝐵𝑦 𝑇𝑎𝑦𝑙𝑜𝑟 𝑠𝑒𝑟𝑖𝑒𝑠 𝑎𝑝𝑝𝑟𝑜𝑥𝑖𝑚𝑎𝑡𝑖𝑜𝑛, 𝑉𝑎𝑟(−𝑙𝑜𝑔𝑝𝑗) ≈  (
𝑑(−𝑙𝑜𝑔𝑝𝑗)

𝑑𝑝j
)2𝑉𝑎𝑟𝑝𝑗=

1

𝑝𝑗
2

𝑉𝑎𝑟𝑝𝑗 =
1

𝑝𝑗
2

1

𝑛𝑗
2

 {
𝑒j(𝑛𝑗−𝑒𝑗)

𝑛j
} =

𝑒𝑗

𝑛𝑗(𝑛𝑗−𝑒j)
 

◼ 𝐻(𝑡) = ∑ log 𝑚
𝑗=1 (

𝑛j

𝑛𝑗−𝑒j
)=- ∑ log 𝑚

𝑗=1 (
𝑛𝑗−𝑒j

𝑛𝑗
) =- ∑ log 𝑚

𝑗=1 (1 −
𝑒j

𝑛𝑗
), 𝑓𝑜𝑟 𝑡𝑗 ≤ 𝑡 <  𝑡𝑗+1 

◼ 𝑉𝑎𝑟𝐻(𝑡) =  𝑉𝑎𝑟{− ∑ log 𝑚
𝑗=1 (

𝑛𝑗−𝑒j

𝑛𝑗
)}= ∑ 𝑉𝑎𝑟{−𝑙𝑜𝑔 (

𝑛𝑗−𝑒j

𝑛𝑗
) } = ∑ 𝑉𝑎𝑟{−𝑙𝑜𝑔𝑝𝑗} 𝑚

𝑗=1
𝑚
𝑗=1 =  ∑ {

𝑒𝑗

𝑛𝑗(𝑛𝑗−𝑒𝑗)
} 𝑚

𝑗=1  
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The process of finding the variance of the Nelson’s-Aalen estimate is shown as below.  

◼ X ~ 𝑟𝑎𝑛𝑑𝑜𝑚 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒 : 𝑡ℎ𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙𝑠 𝑤ℎ𝑜 𝑒𝑥𝑝𝑒𝑟𝑖𝑒𝑛𝑐𝑒 𝑒𝑣𝑒𝑛𝑡 𝑜𝑛 𝑡ℎ𝑒 𝑡𝑖𝑚𝑒 𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙 

◼ 𝑋 = 𝑒j~𝐵𝑖𝑛𝑜𝑚(𝑛𝑗 , 𝑝𝑗) = (𝑛𝑗
𝑥𝑗

) 𝑝𝑗
𝑥𝑗(1 − 𝑝𝑗)𝑛𝑗−𝑥𝑗 ,  𝛿𝑡 = [𝑡𝑗 , 𝑡j+1), 

𝑝𝑗  ~ 𝑡𝑟𝑢𝑒 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑜𝑓 𝑒𝑣𝑒𝑛𝑡𝑠 𝑡ℎ𝑎𝑡 𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙𝑠 𝑒𝑥𝑝𝑒𝑟𝑖𝑒𝑛𝑐𝑒 𝑡ℎ𝑒 𝑒𝑣𝑒𝑛𝑡 𝑜𝑛 𝑡ℎ𝑒 𝑡𝑖𝑚𝑒 𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙 

◼ 𝐵𝑦 𝑛𝑜𝑟𝑚𝑎𝑙 𝑎𝑝𝑝𝑟𝑜𝑥𝑖𝑚𝑎𝑡𝑖𝑜𝑛, if 𝑛𝑗𝑝𝑗  > 5  

𝑋 = 𝑒j~𝐵𝑖𝑛𝑜𝑚(𝑛𝑗 , 𝑝j)~𝑁(𝑛j𝑝j, 𝑛𝑗𝑝j𝑞𝑗) = 𝑁 (𝑛𝑗

𝑒j

𝑛j

, 𝑛𝑗

𝑛𝑗 − 𝑒j

𝑛𝑗

𝑒j

𝑛𝑗

) = 𝑁(𝑒j,
𝑛𝑗(𝑛𝑗 − 𝑒𝑗)

𝑛𝑗

) 

◼ 𝐵𝑦 𝑇𝑎𝑦𝑙𝑜𝑟 𝑠𝑒𝑟𝑖𝑒𝑠 𝑎𝑝𝑝𝑟𝑜𝑥𝑖𝑚𝑎𝑡𝑖𝑜𝑛,  

𝑉𝑎𝑟(𝑙𝑜𝑔𝑝𝑗) ≈  (
𝑑(𝑙𝑜𝑔𝑝𝑗)

𝑑𝑝j
)2𝑉𝑎𝑟𝑝𝑗=

1

𝑝𝑗
2

𝑉𝑎𝑟𝑝𝑗 =
1

𝑝𝑗
2

1

𝑛𝑗
2

 {
𝑒j(𝑛𝑗−𝑒𝑗)

𝑛j
} =

𝑛𝑖
2

𝑒𝑗
2

1

𝑛𝑖
2

 {
𝑒𝑗(𝑛𝑗−𝑒𝑗)

𝑛j
} =

 (𝑛𝑗−𝑒𝑗)

𝑛𝑗𝑒𝑗
 

◼ 𝑉𝑎𝑟{𝑙𝑜𝑔ℎ(𝑡)} = 𝑉𝑎𝑟{𝑙𝑜𝑔{
𝑒𝑗

𝜏𝑗𝑛𝑗
}} = 𝑉𝑎𝑟{𝑙𝑜𝑔{

𝑒𝑗

𝑛j
}+𝑙𝑜𝑔{

1

𝜏𝑗
}}=𝑉𝑎𝑟{𝑙𝑜𝑔{

𝑒𝑗

𝑛𝑗
}} = 𝑉𝑎𝑟{𝑙𝑜𝑔𝑝𝑗} ≈

 (𝑛j−𝑒𝑗)

𝑛𝑗𝑒𝑗
 

◼ 𝐵𝑦 𝑉𝑎𝑟{𝑙𝑜𝑔ℎ(𝑡)} = (
ℎ(𝑡)′

ℎ(𝑡)
)

2

𝑉𝑎𝑟{ℎ(𝑡)} = (
1

ℎ(𝑡)
)

2

𝑉𝑎𝑟{ℎ(𝑡)}, 

𝑉𝑎𝑟{ℎ(𝑡)} = ℎ(𝑡)2𝑉𝑎𝑟{𝑙𝑜𝑔ℎ(𝑡)}= ℎ(𝑡)2  (𝑛𝑗−𝑒𝑗)

𝑛𝑗𝑒𝑗
 

◼ 𝐻(𝑡) = ∑  𝑚
𝑗=1

𝑒j

𝑛𝑗
= ∑  𝑚

𝑗=1

𝑒j

𝜏𝑗𝑛𝑗
𝜏j = ∑  𝑚

𝑗=1  ℎ(𝑡)𝜏j,   𝑓𝑜𝑟 𝑡𝑗 ≤ 𝑡 <  𝑡𝑗+1,  𝑤ℎ𝑒𝑟𝑒  𝜏𝑗 = 𝑡𝑗+1 − 𝑡𝑗  

◼ 𝑉𝑎𝑟𝐻(𝑡) =  𝑉𝑎𝑟{∑  𝑚
𝑗=1

𝑒j

𝑛𝑗
}= ∑ 𝑉𝑎𝑟{

𝑒j

𝜏𝑗𝑛𝑗
 𝜏j} = ∑ 𝑉𝑎𝑟{ℎ(𝑡)𝜏j} = ∑ 𝜏𝑗

2𝑉𝑎𝑟ℎ(𝑡) = ∑ 𝜏𝑗
2ℎ(𝑡)2  (𝑛𝑗−𝑒𝑗)

𝑛𝑗𝑒𝑗
 𝑚

𝑗=1  𝑚
𝑗=1

𝑚
𝑗=1

𝑚
𝑗=1  

In Kaplan-Meier, the confidence interval is calculated according to Greenwood's formula. 

A comparison of the basic assumptions, definitions, and probability equations for the Kaplan-Meier estimator and 

the mean cumulative function estimator is shown in Table 1.  
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Table 1. Summary of difference between Kaplan-Meier estimators and Mean Cumulative Function 

estimators 

Estimators Kaplan-Meier estimators2) Mean Cumulative Function estimators3)13) 

Assumption 
(Common) 

I. The observation break should be uninformative, meaning that the observations after the observation break 

should have the same probability as the event being observed.  

II. The day, month, and year in which the specific event of interest occurred must be available to provide accurate 
survival estimates.  

III. The probability inside a time interval is constant. Because the probability of an event occurring in the interval 

is constant, the hazard ratio inside the interval follows a unit-distribution.  

Assumption 

I. Each subject must have the same 
probability of survival. 

II. Each event per subject is independent of 

each other. 

I. Each subject should not have the identical mean 
cumulative function.  

II. The events occurrence in non-overlapping intervals are 

independent of each other. 

Definition 
The probability that, at a given point in time, the 

event will not occur. 

The cumulative mean number of events within a given point in 

time 

Type of event Single event Repeated events 

Characteristics Probability Not probability 

Competing risk Not available Available, not included Available, included 

Risk set 

Not include the censoring  
Not include the event 

Not include the censoring 
Include the event 

Not include the censoring 

Not include the competing risk 

Include the event 

𝑛𝑗 =  𝑛1 − ∑(𝑒𝑗 + 𝑐𝑗)

𝑚

𝑗=1

 𝑛𝑗 =  𝑛1 − ∑ 𝑐𝑗

𝑚

𝑗=1

 𝑛𝑗 =  𝑛1 − ∑(𝑟𝑗 + 𝑐𝑗)

𝑚

𝑗=1

 

Distribution  
in each interval 

Binomial distribution Nonhomogeneous Poisson process 

The number of subjects W/O events 𝑋𝑗 

𝑋𝑗~𝐵(𝑛𝑗 − 𝑒𝑗 ,
𝑛𝑗−𝑒j

𝑛j
),  

The number of events 𝑋𝑗 

𝑋𝑗~𝑃(𝑚𝑗) 

Risk function 

Hazard function, ℎ̂(𝑡) Mean risk rate function, 𝑚(𝑡) 

Probability of immediate occurrence of an event 
per unit of time in each interval 

The immediate occurrence of an event unit  

per population unit in time interval  𝑡𝑗 ≤ 𝑡 < 𝑡𝑗+1 

ℎ̂(𝑡) =
𝑒𝑗

𝑛𝑗𝜏𝑗 
 , 𝜏𝑗 = 𝑡𝑗 − 𝑡𝑗+1 𝑚(𝑡) =  

𝑒𝑗

𝑛𝑗

 𝑚(𝑡) = (
𝑒𝑗

𝑛𝑗  
) ∗ ∏(1 −

𝑟𝑗

𝑛𝑗  

𝑚

𝑗=1

) 

Cumulative risk 

function 

Cumulative hazard function, H(𝑡)  Mean cumulative function, 𝑀∗(𝑡) 

Empirical Nelson-Aalen 𝑀∗(𝑡𝑗+1) =  𝑚𝑗+1 + 𝑀∗(𝑡𝑗), 𝑡𝑗 ≤ 𝑡 < 𝑡𝑗+1 

𝐻(𝑡) = ∑ log 

𝑚

𝑗=1

(
𝑛j

𝑛𝑗 − 𝑒j

) 𝐻(𝑡) = ∑ 

𝑚

𝑗=1

𝑒j

𝑛𝑗

 𝑀∗(𝑡𝑗) = ∑
𝑒𝑗

𝑛𝑗  

𝑚

𝑗=1

 𝑀∗(𝑡𝑗) = ∑ (
𝑒𝑗

𝑛𝑗  
) ∗ ∏(1 −

𝑟𝑗

𝑛𝑗  

𝑚

𝑗=1

),

𝑚

𝑗=1

 

No risk function  𝑆(𝑡) = ∏ (
𝑛𝑗 − 𝑒j

𝑛𝑗

)  

𝑚

𝑗=1

 𝑆(𝑡) = ∏ 𝑒
−(

𝑒j

𝑛𝑗
)
 

𝑚

𝑗=1

 𝑒−𝑀∗(𝑡𝑗) = 𝑒
− ∑

𝑒𝑗

𝑛𝑗 
𝑚
𝑗=1

 𝑒−𝑀∗(𝑡𝑗) = 𝑒
−{∑ (

𝑒𝑗

𝑛𝑗  
)∗∏ (1−

𝑟𝑗

𝑛𝑗 
𝑚
𝑗=1 ),𝑚

𝑗=1 }
 

Variance of 

Cumulative risk 
∑ {

𝑒𝑗

𝑛𝑗(𝑛𝑗 − 𝑒j)
} 

𝑚

𝑗=1

 ∑ 𝜏𝑗
2ℎ(𝑡)2

 (𝑛𝑗 − 𝑒𝑗)

𝑛𝑗𝑒𝑗

 

𝑚

𝑗=1

 𝑉𝑎𝑟{∑
𝑚(𝑡)

𝑛𝑗  

𝑚
j=1 }, 𝑡𝑗 ≤ 𝑡 < 𝑡𝑗+1 

No risk function  

Survival function, S(t) 

𝑒−𝑀∗(𝑡𝑗) = 𝑒
− ∑

𝑒𝑗

𝑛𝑗 
𝑚
𝑗=1

 𝑒−𝑀∗(𝑡𝑗) = 𝑒
−{∑ (

𝑒𝑗

𝑛𝑗  
)∗∏ (1−

𝑟𝑗

𝑛𝑗 
𝑚
𝑗=1 ),𝑚

𝑗=1 }
 𝑆(𝑡) = ∏ (

𝑛𝑗 − 𝑒j

𝑛𝑗

)  

𝑚

𝑗=1

 𝑆(𝑡) = ∏ 𝑒
−(

𝑒j

𝑛𝑗
)
 

𝑚

𝑗=1

 

Confidence 

interval 
Greenwood confidence interval Naïve confidence interval 

When using the mean cumulative function, a non-parametric analysis using R, the dataset was constructed as 

follows. 

Table 2. The rule of assigning the EVENT(DV) values based on the event type in R 

Event type EVENT(DV) 

Start of study (time = 0) . 

Exact time of adverse event 1 

End of study (Censored time of follow up) 0 

For repeated interval censored events, we took the median of each interval and replaced it with repeated exact 

time events for non-parametric analysis. 

Using MCF, a non-parametric analysis, we ran example analyses for repeated exact times with and without 

competing risks. Examples for each case are shown in Table 3. 



8 

 

Table 3. The summary of examples for repeated events with/without Competing-risk events 

Type Repeated events with Competing-risk Repeated events without Competing risk 

Data simDat from reReg R packages The bladder tumor study data3) 

Total subjects 200 86(placebo = 48, thiotepa = 38) 

Total events 674 93(placebo = 87, thiotepa = 45) 

Total competing-risk events 118 No competing-risk events 

Follow up period about 60days About 55months 

Figure 3 plots the MCF of simDat, a repeated event with competing risks, and the corresponding no-risk function, 

like the survival function, as a function of 𝑒−𝑀(t). 

Figure 3. The mean cumulative function and no-risk function for simDa from reReg R packages 
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Figure 4 plots the MCF of the bladder tumor study data, a repeated event without competing risks, and the 

corresponding no-risk function, like the survival function, as a function of 𝑒−𝑀(t). 

Figure 4. The mean cumulative function and no-risk function for the bladder tumor study data 

 

II. Parametric estimation of the probability 

The non-parametric methods described in the previous session calculate the risk of an event occurring based on 

the data without assuming a specific probability distribution. Parametric methods, on the other hand, assume that 

the pattern of events in the data follows a specific probability distribution and calculate the risk (or survival) of 

an event based on this assumption. 8) 

If the assumption of a particular probability distribution for the data is valid, then inferences based on that 

probability distribution will be more accurate. Estimates of numbers, such as relative risk and median survival 

time, tend to have smaller standard errors than without the distribution assumption.9) 

In general, models that assume a specific probability distribution for survival times are called parametric models, 

so it is possible to calculate hazard rates for events other than survival for repeated events, assuming a specific 

probability distribution, depending on the shape of the cumulative hazard distribution.  

In this article, we will focus on parametric analysis of the cumulative hazard for repeated events and discuss the 

exponential, Weibull, and log-logistic distributions, which are the three most common distributions used in 

survival analysis.  

Before summarizing the equations for representative distributions, we first summarize the definitions and 

relationships of the five functions used for distributions in parametric models. Table 3 below summarizes the 

definitions of each function when there is one event per subject.  

When there are multiple events per subject, the relationships between the functions remain related, but the 

descriptions of how to define the probabilities and likelihoods of each function are different, which will be 

discussed in more detail later. This table is organized to describe the cumulative hazard distribution and the hazard 

distribution for each distribution based on the relationship between the five functions. 

The survival and hazard functions are constructed as a parametric method for the case where there are no 

competing risks. 
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The hazard function, which is the conditional probability of an event occurring immediately after the absence of 

an event up to a certain time t, can be written as = −
1

𝑆(𝑡)
 𝑙𝑖𝑚

𝛥𝑡→0

𝑆(𝑡+𝛥𝑡)−𝑆(𝑡)

𝛥𝑡
. The cumulative hazard function is the 

integral of this hazard function, and the value of 𝑒(−𝐻(𝑡)),  exponentiated by the negative cumulative hazard 

function 𝐻(𝑡) is defined as the survival function, which means the cumulative probability of an event occurring 

after a certain time t. The cumulative likelihood of an event occurring by time t is given by  
𝐹(𝑡) = 𝑃(𝑇 < 𝑡) = 1 − 𝑆(𝑡), which is 1 minus the value of the survival function. Therefore, the probability of 

an event occurring at a certain time t can be obtained by differentiating 𝐹(𝑡) i.e.,  

𝑓(𝑡) = 𝑃(𝑇 = 𝑡) = −
𝑑𝑆(𝑡)

𝑑𝑡
= ℎ(𝑡) ∗ 𝑆(𝑡). 8)9)10) 

Table 4. The meaning and equation for five functions related to Time-to Single event model 

Function Type The meaning and equation for each function (Single event) 

Survival function 

The cumulative probability that the event has not yet occurred by time t 

𝑆(𝑡) = 𝑃(𝑇 ≥ 𝑡) = 1 − 𝐹(𝑡) = 1 − ∫ 𝑓(𝑢)𝑑𝑢 = 𝑒(− ∫ ℎ(𝑢)𝑑𝑢)
𝑡

0

𝑡

0

= 𝑒(−𝐻(𝑡)) 

Probability density  
function 

The likelihood of observing the event at the time t 

𝑓(𝑡) = 𝑃(𝑇 = 𝑡) = ℎ(𝑡) ∗ 𝑆(𝑡)  = −
𝑑𝑆(𝑡)

𝑑𝑡
 

Cumulative density  

function 

The cumulative likelihood of observing the event until the time t 

𝐹(𝑡) = 𝑃(𝑇 < 𝑡) = ∫ 𝑓(𝑢)𝑑𝑢 = 1 − 𝑆(𝑡)
𝑡

0

 

Hazard function 

The instantaneous failure rate of event occurrence at the time 𝑡𝑖  or 

The probability that the event has not occurred until the time 𝑡𝑖 but will be happened in the next instant of time 𝑡𝑖 

ℎ(𝑡) = 𝑃(𝑇 = 𝑡|𝑇 ≥ 𝑡) =
𝑓(𝑡)

𝑆(𝑡)
= −

𝑑

𝑑𝑡
{𝑙𝑜𝑔𝑆(𝑡)} = −

1

𝑆(𝑡)
 𝑙𝑖𝑚
𝛥𝑡→0

𝑆(𝑡 + 𝛥𝑡) − 𝑆(𝑡)

𝛥𝑡
 

Cumulative hazard 
 function 

The cumulative instantaneous failure rate of event occurrence until the time 𝑡𝑖 or the cumulative probability that 

the event has not occurred until the time t but will be happened in the next instant of time 

𝐻(𝑡) = ∫ 𝑃(𝑇 = 𝑢|𝑇 ≥ 𝑢)
𝑡

0

𝑑𝑢 = ∫ {−
1

𝑆(𝑢)
 𝑙𝑖𝑚
𝛥𝑢→0

𝑆(𝑢 + 𝛥𝑢) − 𝑆(𝑢)

𝛥𝑢
}

𝑡

0

𝑑𝑢 

The following Table 5. are the distributional equations for these three representative distributions. The cumulative 

hazard distribution and the hazard distribution have been reconstructed based on the relationship between the 

survival function and the hazard function as described in Table 4. 

Table 5. Functions for exponential, Weibull and log-logistic distributions11) 

Distribution type 
Survival function Cumulative hazard function Hazard function 

Exponential distribution 𝑆(𝑡) = 𝑒(−𝜆𝑡) 𝐻(𝑡) = 𝜆𝑡 ℎ(𝑡) = 𝜆 

Weibull distribution 𝑆(𝑡) = 𝑒{−(𝜆𝑡)𝛾} 𝐻(𝑡) = (𝜆𝑡)𝛾 ℎ(𝑡) = 𝜆𝛾(𝜆𝑡)𝛾−1 

Log-logistic distribution 𝑆(𝑡) =
1

1 + (𝜆𝑡)𝛾
 𝐻(𝑡) = log {1 + (

𝑡

𝜆
)

𝛾

} ℎ(𝑡) =
(

𝛾
𝜆

) (
𝑡
𝜆

)
𝛾

1 + (
𝑡
𝜆

)
𝛾 

In the non-parametric analysis of repeated events described in the previous session, the MCF (Mean Cumulative 

Function) is the cumulative hazard function, so it is reasonable to compare the pattern with the cumulative hazard 

distribution of each distribution. Therefore, given each of the three representative distributions, the cumulative 

hazard function graph obtained from parametric analysis can be compared with the MCF graph obtained from 

nonparametric analysis, and the distribution like the MCF graph can be considered as the one that best describes 

the event.  

The most commonly used software for parametric analysis is NONMEM. In this paper, we describe the definitions 

of the survival and hazard functions of the conventional analysis methods used in NONMEM for repeated events, 

their limitations, and we propose the new method to define more accurate survival and hazard functions and the 

implementation of the NONMEM code. 
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A. Repeated exact time events 

If n events occur on a subject, let 𝑡𝑖 be the time at which each event occurs. The initial time point of the follow up 

period for each subject is denoted by time = 0 or 𝑡0. 

Among the repeated exact events, the likelihood of an event occurring at 𝑡𝑖+1 can be calculated as the product of 

the survival function value at 𝑡𝑖+1 and the hazard function at 𝑡𝑖+1, as defined in the table 3. When the survival 

function in the table 3 is defined as the probability of an event occurring after time = 𝑡𝑖+1 if the event occurred 

after time = 0, the survival function in repeated exact events can be redefined as the probability of an event 

occurring after time = 𝑡𝑖+1 if the event occurred after time = 𝑡𝑖  (when the event occurred just before 𝑡𝑖+1). In 

other words, it is defined as a conditional cumulative probability.  

Therefore, the survival function for repeated events is defined as 𝑆(𝑡𝑖+1|𝑡𝑖). The hazard function at time = 𝑡𝑖+1 

can also be redefined as the probability that the event has not occurred by time 𝑡𝑖+1, will not occur by 𝑡𝑖., and will 

occur immediately thereafter. In other words, the original conditional probability, the hazard function, has 

additional condition: the event must have occurred after 𝑡𝑖 . Expressed in an equation, ℎ(𝑡𝑖+1 | 𝑡𝑖 ) = 

𝑃((𝑡𝑖+1 ≤ 𝑇 < 𝑡𝑖+1 + 𝛿𝑡|𝑇 > 𝑡𝑖)|(𝑇 > 𝑡𝑖+1|𝑇 > 𝑡𝑖)). Reflecting this, the likelihood of an event occurring at time 

= 𝑡𝑖+1 is 𝑓(𝑡𝑖+1|𝑡𝑖)=𝑆(𝑡𝑖+1|𝑡𝑖) ∗ ℎ(𝑡𝑖+1|𝑡𝑖).    

However, in the conventional method of calculating the likelihood, the survival function is reflected as a 

conditional cumulative probability, but in the case of the hazard function, no additional conditional probability is 

reflected, and the definition of hazard function is considered as one event occurring per subject after time = 0, 

ℎ(𝑡𝑖+1 ) = 𝑃(𝑡𝑖+1 ≤ 𝑇 < 𝑡𝑖+1 + 𝛿𝑡|𝑇 > 𝑡𝑖+1) . In other words, the likelihood of an event occurring at 𝑡𝑖+1  is 

calculated as 𝑆(𝑡𝑖+1|𝑡𝑖) ∗ ℎ(𝑡𝑖+1) instead of 𝑓(𝑡𝑖+1|𝑡𝑖)=𝑆(𝑡𝑖+1|𝑡𝑖) ∗ ℎ(𝑡𝑖+1|𝑡𝑖).  

The figure 5 depicts the equation probability density function and the corresponding NONMEM code for 

conventional method. SURV means survival function, HAZR means hazard function, and CUMHAZ means 

cumulative hazard function. 

Figure 5. The probability density function and the NONMEM code for conventional method in repeated 

exact time events 

 

▪ Conditional time pointe of hazard function: Using the initial point 𝑡0 of total follow up period as the 

conditional time point for the hazard function, 

▪ Definition of hazard function: Although the definition of a hazard function is the probability that the 

random variable  associated with an subject's survival time, 𝑇, lies between 𝑡 and 𝑡 + 𝛿𝑡, conditional on 

𝑇 being greater than or equal to 𝑡, 𝑃(𝑡 ≤ 𝑇 < 𝑡 + 𝛿𝑡|(𝑇 ≥ 𝑡|𝑇 ≥ 𝑡0)), but set the conditional time point 

as the initial point, 𝑡0  of total follow up period.  

▪ Definition of Probability density function: The product between the cumulative probability of an event 

occurring after 𝑡𝑖+1, given in condition that the event occurs after 𝑡𝑖(SURV), and the probability of an 

event occurring immediately at time after 𝑡𝑖+1 given in condition that the event occurs after 𝑡𝑖+1 (HAZR) 
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By adding a conditional concept to the hazard function to calculate the likelihood for repeated events, a different 

value is obtained from the conventional method. When calculating the value of the hazard function at 𝑡𝑖+1  when 

an event occurs after time 𝑡𝑖, the probability expression  

ℎ(𝑡𝑖+1|𝑡𝑖) = 𝑃((𝑡𝑖+1 ≤ 𝑇 < 𝑡𝑖+1 + 𝛿𝑡|𝑇 > 𝑡𝑖)|(𝑇 > 𝑡𝑖+1|𝑇 > 𝑡𝑖)) 

is obtained, and according to the concept of conditional probability, the value of ℎ(𝑡𝑖+1|𝑡𝑖) is induced as  

𝑑

𝑑𝑡
{∫ h(𝑡)𝑑𝑡

𝑡𝑖+1

𝑡𝑖

}. 

This is the derivative of the value of the cumulative hazard function from 𝑡𝑖 to 𝑡𝑖+1. Rather than approaching it as 

the instantaneous rate of change of the hazard function at one time point 𝑡𝑖+1, it should be approached as the 

average rate of change of the cumulative hazard function from 𝑡𝑖 to 𝑡𝑖+1, which better describes the risk of the 

event occurring at 𝑡𝑖+1 after time 𝑡𝑖.  

If we approach it as the instantaneous change rate at 𝑡𝑖+1, it can be solved in the conventional way as ℎ(𝑡𝑖+1), and 

its geometric meaning is the slope of the tangent line at 𝑡𝑖+1 of the cumulative hazard function. If we approach it 

as the average rate of change of the cumulative hazard function from 𝑡𝑖 to 𝑡𝑖+1, it can be expressed as  

∫ h(𝑡)𝑑𝑡
𝑡𝑖+1

𝑡0
−∫ h(𝑡)𝑑𝑡

𝑡𝑖
𝑡0

𝑡𝑖+1− 𝑡𝑖
. 

This value is a better representation to the risk of events occurring from 𝑡𝑖 to 𝑡𝑖+1. The difference in the geometric 

meaning of the hazard function between the conventional and new methods is shown in the figure below. 

Figure 6. The difference in the geometric meaning of the hazard function between the conventional and 

new methods 

 

Using the newly calculated conditional hazard function, the obtained likelihood values and the corresponding new 

NONMEM codes are depicted as Figure 7. SURV means survival function, HAZR means hazard function, and 

CUMHAZ means cumulative hazard function. 
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Figure 7. The probability density function and the NONMEM code for new method in repeated exact time 

events 

 

▪ Conditional time point of hazard function: Using the previous event point as the conditional time point, 

𝑡𝑖 for the conditional hazard function. 

▪ Definition of conditional hazard function: Since the definition of a hazard function is the probability that 

the random variable associated with an subject's survival time, 𝑇, lies between 𝑡 and 𝑡 + 𝛿𝑡, conditional 

on 𝑇 being greater than or equal to 𝑡, when 𝑇 being greater than or equal to 𝑡𝑖, which the conditional time 

point is fixed by the previous event time point, 𝑡𝑖, 𝑃(𝑡 ≤ 𝑇 < 𝑡 + 𝛿𝑡|(𝑇 ≥ 𝑡|𝑇 ≥ 𝑡𝑖)). 

▪ Definition of Probability density function: The product between the cumulative probability of an event 

occurring after 𝑡𝑖+1, given in condition that the event occurs after 𝑡𝑖(SURV), and the probability of an 

event occurring immediately at time after 𝑡𝑖+1 given in condition that the event has not yet occurred by 

time 𝑡𝑖  and the event happens after time 𝑡𝑖+1 (CUMDIF/(𝑡𝑖+1 − 𝑡𝑖)), which is the average rate of change 

of cumulative hazard from 𝑡𝑖 to 𝑡𝑖+1. 

The definitions and derivations of the survival function, hazard function, cumulative hazard function, and the 

resulting probability density function for repeated exact events in the conventional and new methods are 

summarized in the table 6. 

The main difference is whether the hazard function is calculated from the time of the event immediately from 

preceding the event or from an initial point of the follow up time. The value of hazard function is the instantaneous 

cumulative hazard change rate (hazard) at time 𝑡𝑖+1 in the conventional method, while the new method uses the 

average change rate of the cumulative hazard values from 𝑡𝑖 to 𝑡𝑖+1.  

As a result, the method for calculating the likelihood of an event occurring at each time point has also changed. 
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Table 6. The meaning and equation for three functions related to Time-to repeated exact time model 

Function type The meaning and equations (repeated exact time) 

Conditional 
Survival function 

The probability that the event has not yet occurred by time 𝑡𝑖+1, 

in condition that the event has not yet occurred by time 𝑡𝑖 

 Conventional/New method 𝑆(𝑡𝑖+1|𝑡𝑖) = 𝑃(𝑇 > 𝑡𝑖+1|𝑇 > 𝑡𝑖) =
𝑆(𝑡𝑖+1)

𝑆(𝑡𝑖)
= 𝑒

− ∫ ℎ(𝑡)𝑑𝑡
𝑡𝑖+1

𝑡𝑖 = 𝑆(𝑡𝑖 ,  𝑡𝑖+1)  

Conditional Hazard function The instantaneous failure rate of event occurrence at the time 𝑡𝑖+1  

 Conventional method 

The probability that the event has not occurred until the time 𝑡𝑖+1 

but will be happened in the next instant of time 𝑡𝑖+1 

ℎ(𝑡𝑖+1) = 𝑃(𝑡𝑖+1 ≤ 𝑇 < 𝑡𝑖+1 + 𝛿𝑡|𝑇 > 𝑡𝑖+1) =
1

𝑆(𝑡𝑖+1)
∗ lim

𝛿𝑡→0

𝑆(𝑡𝑖+1)−𝑆(𝑡𝑖+1+𝛿𝑡)

𝛿𝑡
 

               =
1

𝑆(𝑡𝑖+1)
∗ {−𝑆′(𝑡𝑖+1)} =− [

𝑑

𝑑𝑡
{− ∫ ℎ(𝑡)𝑑𝑡

𝑡

𝑡0
}]

𝑡𝑖+1

 

 New method 

The probability that the event has not occurred until the time 𝑡𝑖 and 

the event happens after time 𝑡𝑖+1, but will be happened in the next instant of time 𝑡𝑖+1 

ℎ(𝑡𝑖+1|𝑡𝑖) = 𝑃((𝑡𝑖+1 ≤ 𝑇 < 𝑡𝑖+1 + 𝛿𝑡|𝑇 > 𝑡𝑖)|(𝑇 > 𝑡𝑖+1|𝑇 > 𝑡𝑖)) 

                  =
1

𝑆(𝑡𝑖+1|𝑡𝑖)
∗ { lim

𝛿𝑡→0

𝑆(𝑡𝑖+1|𝑡𝑖) − 𝑆(𝑡𝑖+1 + 𝛿𝑡|𝑡𝑖)

𝛿𝑡
} = −

𝑆′(𝑡𝑖+1|𝑡𝑖)

𝑆(𝑡𝑖+1|𝑡𝑖)
 

              =
𝑆(𝑡𝑖+1|𝑡𝑖)∗[−[

𝑑

𝑑𝑡
{− ∫ ℎ(𝑡)𝑑𝑡

𝑡𝑖+1
𝑡𝑖

}]]

𝑆(𝑡𝑖+1|𝑡𝑖)
=

d

dt
{∫ h(t)dt

ti+1

ti
} ≈

∫ h(t)dt
ti+1

t0
−∫ h(t)dt

ti
t0

ti+1− ti
  

Conditional Cumulative 

hazard function 
The cumulative instantaneous failure rate of event occurrence until the time 𝑡𝑖+1  

 Conventional method 

The cumulative probability that the event has not occurred until the time 𝑡𝑖 and 

the event happens after time 𝑡𝑖 < 𝑡 < 𝑡𝑖+1,  

but will be happened in the next instant of time 𝑡𝑖 < 𝑡 < 𝑡𝑖+1 

𝐻(𝑡𝑖 , 𝑡𝑖+1) =∫ 𝑃(𝑡 ≤ 𝑇 < 𝑡 + 𝛿𝑡|𝑇 > 𝑡𝑖)𝑑𝑡
𝑡𝑖+1

𝑡𝑖
=∫ [ lim

𝛿𝑡→0

𝑆(𝑡|𝑡𝑖)−𝑆(𝑡+𝛿𝑡|𝑡𝑖)

𝛿𝑡
]

𝑡𝑖+1

𝑡𝑖
𝑑𝑡 

                 =
1

𝑆(𝑡𝑖)
∗ {− ∫ 𝑆′(𝑡)

𝑡𝑖+1

𝑡𝑖
𝑑𝑡} = 

𝑆 (𝑡𝑖)−𝑆 (𝑡𝑖+1)

𝑆(𝑡𝑖)
  

 

New method 

The cumulative probability that the event has not occurred until the time 𝑡𝑖  

but will be happened in the next instant of time 𝑡𝑖 < 𝑡 < 𝑡𝑖+1 

 

𝐻(𝑡𝑖 , 𝑡𝑖+1|𝑡𝑖) =∫ 𝑃((𝑡 ≤ 𝑇 < 𝑡 + 𝛿𝑡|𝑇 > 𝑡𝑖)|(𝑇 ≥ 𝑡|𝑇 > 𝑡𝑖))𝑑𝑡
𝑡𝑖+1

𝑡𝑖
 

=∫ [{ lim
𝛿𝑡→0

𝑆(𝑡|𝑡𝑖)−𝑆(𝑡 + 𝛿𝑡|𝑡𝑖)

𝛿𝑡
} ∗

1

𝑆(𝑡|𝑡𝑖)
]

𝑡𝑖+1

𝑡𝑖
𝑑𝑡 = − ∫ [

𝑆′(𝑡|𝑡𝑖)

𝑆(𝑡|𝑡𝑖)
]

𝑡𝑖+1

𝑡𝑖
𝑑𝑡 

= −[𝑙𝑜𝑔𝑆(𝑡|𝑡𝑖)]𝑡𝑖

𝑡𝑖+1 = − [− ∫ ℎ(𝑡)𝑑𝑡
𝑡𝑖+1

𝑡𝑖
]=∫ ℎ(𝑡)𝑑𝑡

𝑡𝑖+1

𝑡𝑖
=𝐻(𝑡𝑖 , 𝑡𝑖+1)  

The new method presented in this paper may be more accurate than the conventional method in conceptually 

defining the hazard function. The table 7 shows the summary of the non-parametric and parametric analysis 

methods for repeated exact time events.  

Table 7. The summary of the non-parametric/parametric analysis methods for repeated exact time events 

Event type Type of analysis Method 

Exact time 

event 

Non-parametric analysis Kaplan-Meier estimates Mean cumulative function estimates 

Parametric analysis 

 

Def 

Survival function 
𝑆(𝑡𝑖+1|𝑡𝑖) = 𝑒

− ∫ ℎ(𝑡)𝑑𝑡
𝑡𝑖+1

𝑡𝑖 =𝑆(𝑡𝑖 ,  𝑡𝑖+1)  

Hazard function 
ℎ(𝑡𝑖+1) ℎ(𝑡𝑖+1|𝑡𝑖) =

∫ h(𝑡)𝑑𝑡
𝑡𝑖+1

𝑡0
−∫ h(𝑡)𝑑𝑡

𝑡𝑖
𝑡0

𝑡𝑖+1− 𝑡𝑖
 

Cumulative  

hazard function 
𝐻(𝑡𝑖 , 𝑡𝑖+1) =

𝑆 (𝑡𝑖)−𝑆 (𝑡𝑖+1)

𝑆(𝑡𝑖)
   𝐻(𝑡𝑖 , 𝑡𝑖+1|𝑡𝑖) =∫ ℎ(𝑡)𝑑𝑡

𝑡𝑖+1

𝑡𝑖
=𝐻(𝑡𝑖 , 𝑡𝑖+1)  

 

NM 

Initial condition CUMLAST = 0 CUMLAST  = 0 

TEVENT1    = 0 
TEVENT2    = 0 

Differential  

equation 

DATA(1)   =  HAZ 

CUMHAZ  =  A(1) 

CUMDIF    =  CUMHAZ – CUMLAST 

SURV         = EXP(-CUMDIF) 

DATA(1)   =  HAZ 

CUMHAZ  =  A(1) 

CUMDIF   =  CUMHAZ – CUMLAST 

SURV        =  EXP(-CUMDIF) 

TIME2       = TIME 

TBE           = TIME2 – TIME1 

Exact time event Y                 = SURV*HAZR 

CUMLAST = CUMHAZ 

Y                 = SURV*(CUMDIF/TBE) 

TIME1         = TIME 
CUMLAST  = CUMHAZ 

Else CUMLAST  = CUMLAST TIME1         = TIME1 
CUMLAST  = CUMLAST 

Censored event Y            = SURV = EXP(-CUMDIF) 



15 

 

B. Repeated interval censored events 

Next, we'll see how to calculate the likelihood of an event occurring in a repeated interval censoring event. Let 

(𝑡𝑖, 𝑡′𝑖] be the start and end time of each interval-censored event, given that n events occurred in a subject. The 

initial point of the follow up period for each subject is denoted by time = 0 or 𝑡0. 

For repeated interval censored events, the likelihood of the event occurring has the same basic idea and format as 

for repeated exact time events. The probability of an event occurring in an interval with a single event can be 

represented by the product of the survival function and the hazard function, as in the case of repeated exact time 

events described above. This is the basic definition of event probability. Since the survival function is the 

probability of the event occurring later at a given time, it makes sense to express the event probability at a given 

time as the product of the survival function and the hazard function. Therefore, the hazard function can be defined 

as the probability of the event occurring immediately at that time by using the survival function as a condition.  

In repeated interval censored events, the time of event occurrence is extended to an interval, so we can extend the 

concept to the cumulative likelihood of event occurrence in the censored interval rather than the likelihood event 

occurrence at an exact time point. Furthermore, in case of the repeated exact time events, since the likelihood of 

event occurrence is calculated with the condition that the event occurs after the previous event, it makes sense to 

calculate the cumulative conditional likelihood of occurrence based on the end of interval for the previous 

censored event in repeated interval censored events.11) 

Thus, for a given interval of repeated interval censored events, the likelihood of an event occurring in the interval 

(𝑡𝑖, 𝑡′𝑖] is the likelihood that the event occurring after 𝑡′𝑖−1, which is the end of the censored interval for  the 

previous event, given that the event occurred within the interval (𝑡𝑖 , 𝑡′𝑖 ] can be defined as the cumulative 

likelihood that an event will occur at each time point 𝑡 within the interval (𝑡𝑖, 𝑡′𝑖]. 

When the cumulative conditional likelihood is applied into the survival and hazard functions as the above extended 

definition of the likelihood, the survival function within an interval (𝑡𝑖, 𝑡′𝑖] is similarly defined by adding the 

condition that the event occurred after 𝑡′𝑖−1, which is the endpoint of the censored interval for the previous event. 

Expressed as an equation, this can be written as 

𝑆(𝑡|𝑡′𝑖−1) = 𝑃((𝑇 > 𝑡|𝑇 > 𝑡′
𝑖−1),  𝑡𝑖 ≤ 𝑡 ≤ 𝑡′𝑖. 

For the hazard function, under the condition that the event occurred after 𝑡′𝑖−1 , the endpoint of the censored 

interval for the previous event, we can write the hazard function within an interval (𝑡𝑖, 𝑡′𝑖] as the cumulative 

probability that the event will occur immediately after each point 𝑡 within (𝑡𝑖, 𝑡′𝑖], given that the event has not 

occurred up to that time point 𝑡. The conditional hazard function is, by definition, the cumulative probability that 

each time point 𝑡 within (𝑡𝑖, 𝑡′𝑖] can be calculated by integrating the probability of the event occurring at each 

time point 𝑡 within (𝑡𝑖, 𝑡′𝑖]. Thus, the equation can be written as follows. 

ℎ(𝑡|𝑡′𝑖−1) = 𝑃((𝑡 ≤ 𝑇 < 𝑡 + 𝛿𝑡|𝑇 > 𝑡′
𝑖−1)|(𝑇 > 𝑡|𝑇 > 𝑡′

𝑖−1)),  𝑡𝑖 ≤ 𝑡 ≤ 𝑡′
𝑖. 

However, in the conventional method of calculating the probability of an interval-censored event, although the 

survival function reflects the conditional probability based on the endpoint of the interval for the previous censored 

event, and the additional condition of the hazard function that the event occurs after the endpoint of the interval 

for the previous censored event is reflected in the same way as in the new method described above, the hazard 

function reflects the conditional probability using the different time point as a given condition.  

In case of the conventional method, when calculating the probability of event occurrence at each time point 𝑡  

within the interval (𝑡𝑖, 𝑡′𝑖], the concept of hazard function is not applied to each time point 𝑡 within the interval 

(𝑡𝑖, 𝑡′𝑖] as the condition of hazard function, but rather, it uses the time point, 𝑡𝑖, that is the starting time point of 

the interval (𝑡𝑖, 𝑡′𝑖]. This can be written as  

ℎ(𝑡|𝑡′𝑖−1) = 𝑃((𝑡 ≤ 𝑇 < 𝑡 + 𝛿𝑡|𝑇 > 𝑡𝑖−1)|(𝑇 > 𝑡𝑖|𝑇 > 𝑡′
𝑖−1)),  𝑡𝑖 ≤ 𝑡 ≤ 𝑡′

𝑖. 

Note that the new conditional hazard function and the conventional hazard function are conditioned at different 

points in the interval, (𝑡𝑖, 𝑡′𝑖]. The equations and corresponding NONMEM codes are summarized as Figure 8. 

SURV means survival function, HAZR means hazard function, and CUMHAZ means cumulative hazard function. 
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Figure 8. The probability density function and the NONMEM code for conventional method in repeated 

exact time events 

 

▪ Reference point of conditional hazard function: Using the last point, 𝑡′
𝑖−1 in the interval of the previous 

censored event as the conditional time point for the conditional hazard function in (𝑡𝑖, 𝑡′𝑖]  

▪ Definition of conditional hazard function: Although the definition of a hazard function is the probability 

that the random variable  associated with an subject's survival time, 𝑇 , lies between 𝑡  and 𝑡 + 𝛿𝑡 , 

conditional on 𝑇 being greater than or equal to 𝑡, 𝑃(𝑡 ≤ 𝑇 < 𝑡 + 𝛿𝑡|(𝑇 ≥ 𝑡𝑖|𝑇 ≥ 𝑡′
𝑖−1 )), but fix the 

condition 𝑡𝑖 as the starting point in the interval, (𝑡𝑖, 𝑡′𝑖] of the censored event, where the probability will 

be calculated. And the conditional hazard obtained at each point was integrated to obtain the cumulative 

conditional hazard. 

▪ Definition of Probability density function: The cumulative probability of an event occurring after 𝑡𝑖 given 

in condition that the event occurs after 𝑡′
𝑖−1(SURVLAST) minus the cumulative probability of an event 

occurring after 𝑡′𝑖 given in condition that the event occurring after 𝑡𝑖 (SURV) 

If we define the conditional hazard function in the conventional method, when calculating the probability of event 

occurrence at each point in the interval (𝑡𝑖, 𝑡′𝑖], the two conditions are reflected as fixed conditions that do not 

move. The first condition is that the event occurs after the end of the interval at previous censored event 𝑡′
𝑖−1, 

and the second condition is that the event occurs after the starting point of the current interval 𝑡𝑖.  

With the two conditions fixed, the two conditions are not included in the integral process while the cumulative 

probability of the event occurring immediately at each point within (𝑡𝑖, 𝑡′𝑖] is calculated. 

On the other hand, in the new method, one of the two conditions reflected in the conditional hazard function is 

used as a fixed condition, while the other condition is applied differently at each time point 𝑡  in (𝑡𝑖, 𝑡′𝑖] , according 

to 𝑡 . The first condition is if the event occurs after the end of the interval at the previous censored event 𝑡′
𝑖−1, 

and the second condition is if the event has not occurred by each time point 𝑡 in (𝑡𝑖, 𝑡′𝑖] , according to 𝑡.  

The first condition is fixed, while the second condition is not fixed and the variable 𝑡 is included in the integral 

process that yields the cumulative probability in (𝑡𝑖, 𝑡′𝑖]. The difference in how the conditional hazard function is 

calculated between the conventional and new methods is illustrated in a more intuitive way in the figure 9 and 

figure 10. 
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Figure 9. How the conditional hazard function is calculated in the conventional method 

 

Figure 10. How the conditional hazard function is calculated in the new method 

 

The definitions and derivations of the survival function, hazard function, cumulative hazard function, and the 

resulting probability density function for repeated interval censored events in the conventional and new methods 

are summarized in the table 8.  

The main difference is whether the conditional hazard function is calculated from the time of the event 

immediately from the starting point 𝑡𝑖 (fixed) of the current interval (𝑡𝑖 , 𝑡
′
𝑖]  or from the interval time point 

𝑡(moved) of the current interval (𝑡𝑖, 𝑡
′
𝑖]. As a result, the method of calculating the likelihood of an event occurring 

at the interval time point of the current interval (𝑡𝑖, 𝑡
′
𝑖] has also changed. 
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Table 8. The meaning and equation for three functions related to Time-to repeated interval censored events 

model 

Function type The meaning and equations (Repeated interval censored events) 

Conditional 

Survival function 

The probability that the event has not yet occurred by time 𝑡𝑖, 

in condition that the event has not yet occurred by time 𝑡′𝑖−1 

 
Conventional/New 

method 
𝑆(𝑡|𝑡′

𝑖−1) = 𝑃((𝑇 > 𝑡|𝑇 > 𝑡′𝑖−1) =
𝑆(𝑡)

𝑆(𝑡′𝑖−1)
= 𝑒

− ∫ ℎ(𝑡)𝑑𝑡
𝑡

𝑡′𝑖−1 =𝑆(𝑡′𝑖−1, 𝑡) ,  𝑡𝑖 ≤ 𝑡 ≤ 𝑡′𝑖 

Conditional 

Hazard function 
The instantaneous failure rate of event occurrence at the time 𝑡 inside (𝑡𝑖, 𝑡

′
𝑖]  

 Conventional method 

The probability that the event has not occurred until the time 𝑡𝑖 and 

the event happens after time 𝑡′𝑖−1, but will be happened in the next instant of time 𝑡𝑖 ≤ 𝑡 ≤ 𝑡′𝑖 

ℎ(𝑡|𝑡′
𝑖−1

) = 𝑃((𝑡 ≤ 𝑇 < 𝑡 + 𝛿𝑡|𝑇 > 𝑡𝑖−1)|(𝑇 > 𝑡𝑖|𝑇 > 𝑡′
𝑖−1)) = {−

𝑑

𝑑𝑡
𝑆(𝑡|𝑡′

𝑖−1
)} ∗  

1

𝑆(𝑡′
𝑖−1,𝑡𝑖)

    

                  =[−
𝑑

𝑑𝑡
{− ∫ ℎ(𝑡)𝑑𝑡

𝑡

𝑡′𝑖−1
}] ∗ 𝑒

− ∫ ℎ(𝑡)𝑑𝑡
𝑡

𝑡′
𝑖−1 ∗  

1

𝑆(𝑡′
𝑖−1,𝑡𝑖)

=
𝑑

𝑑𝑡
{∫ ℎ(𝑡)𝑑𝑡

𝑡

𝑡′𝑖−1
},  𝑡𝑖 ≤ 𝑡 ≤ 𝑡′𝑖   

 

New method 

The probability that the event has not occurred until the time 𝑡 inside (𝑡𝑖, 𝑡
′
𝑖] and 

the event happens after time 𝑡′𝑖−1, but will be happened in the next instant of time 𝑡𝑖 ≤ 𝑡 ≤ 𝑡′𝑖 

 
ℎ(𝑡|𝑡′

𝑖−1
) = 𝑃((𝑡 ≤ 𝑇 < 𝑡 + 𝛿𝑡|𝑇 > 𝑡𝑖−1)|(𝑇 > 𝑡|𝑇 > 𝑡′

𝑖−1)) 

= { 𝑙𝑖𝑚
𝛿𝑡→0

𝑆(𝑡|𝑡′
𝑖−1)−𝑆(𝑡+𝛿𝑡|𝑡′

𝑖−1)

𝛿𝑡
} ∗

1

𝑆(𝑡|𝑡′
𝑖−1)

=
𝑆′(𝑡|𝑡′

𝑖−1)

𝑆(𝑡|𝑡′
𝑖−1)

,  𝑡𝑖 ≤ 𝑡 ≤ 𝑡′𝑖 

Conditional Cumulative 

hazard function 
The cumulative instantaneous failure rate of event occurrence until the time 𝑡𝑖   

 

Conventional method 

The cumulative probability that the event has not occurred until the time 𝑡𝑖 and 

the event happens after time 𝑡′𝑖−1, but will be happened in the next instant of time 𝑡𝑖 ≤ 𝑡 ≤ 𝑡′𝑖 

 
𝐻(𝑡𝑖 , 𝑡′

𝑖|𝑡′
𝑖−1)=∫ 𝑃((𝑡 ≤ 𝑇 < 𝑡 + 𝛿𝑡|𝑇 > 𝑡′

𝑖−1)|(𝑇 > 𝑡𝑖|𝑇 > 𝑡′
𝑖−1))𝑑𝑡

𝑡′
𝑖

𝑡𝑖
 

                           = ∫ {−
𝑑

𝑑𝑡
𝑆(𝑡|𝑡′

𝑖−1
)}

𝑡′
𝑖

𝑡𝑖
𝑑𝑡 ∗  

1

𝑆(𝑡′
𝑖−1,𝑡𝑖)

 =
𝑆(𝑡′

𝑖−1, 𝑡′
𝑖)−𝑆(𝑡′

𝑖−1, 𝑡𝑖)

𝑆(𝑡′
𝑖−1,𝑡𝑖)

 

 

New method 

The cumulative probability that the event has not occurred until the time 𝑡 inside (𝑡𝑖, 𝑡
′
𝑖]  

and the event happens after time 𝑡′𝑖−1, but will be happened in the next instant of time 𝑡𝑖 ≤ 𝑡 ≤ 𝑡′𝑖 

 

𝐻(𝑡𝑖 , 𝑡′
𝑖|𝑡′

𝑖−1
) = ∫ 𝑃((𝑡 ≤ 𝑇 < 𝑡 + 𝛿𝑡|𝑇 > 𝑡′

𝑖−1)|(𝑇 ≥ 𝑡|𝑇 > 𝑡′
𝑖−1))𝑑𝑡

𝑡′
𝑖

𝑡𝑖
 

                             = ∫ [{ lim
𝛿𝑡→0

𝑆(𝑡|𝑡′
𝑖−1

) − 𝑆(𝑡 + 𝛿𝑡|𝑡′
𝑖−1

)

𝛿𝑡
} ∗

1

𝑆(𝑡|𝑡′
𝑖−1

)
]

𝑡′
𝑖

𝑡𝑖

𝑑𝑡 

                         = [−𝑙𝑜𝑔𝑆(𝑡′
𝑖|𝑡′

𝑖−1) + 𝑙𝑜𝑔𝑆(𝑡𝑖|𝑡′
𝑖−1)] 

                             = 𝐻(𝑡′
𝑖−1,  𝑡′

𝑖) − 𝐻(𝑡′
𝑖−1, 𝑡𝑖) =𝐻(𝑡𝑖 , 𝑡′

𝑖)  

The table 9 shows the summary of the non-parametric and parametric analysis methods for repeated interval 

censored events.  

Table 9. The summary of the non-parametric and parametric analysis methods for repeated interval 

censored events 

Type of 

event 
Type of analysis Method 

Interval 

censored 

event 

Non-parametric analysis Kaplan-Meier estimates Mean cumulative function estimates 

Parametric analysis where 𝑡𝑖 ≤ 𝑡 ≤ 𝑡′𝑖  

 

Def 

Survival function 
𝑆(𝑡|𝑡′𝑖−1) = 𝑒

− ∫ ℎ(𝑡)𝑑𝑡
𝑡

𝑡′𝑖−1 =𝑆(𝑡′𝑖−1, 𝑡) 

Hazard function ℎ(𝑡|𝑡′
𝑖−1

) =
𝑑

𝑑𝑡
{∫ ℎ(𝑡)𝑑𝑡

𝑡

𝑡′𝑖−1
} ℎ(𝑡|𝑡′

𝑖−1
) = 

𝑆′(𝑡|𝑡′
𝑖−1)

𝑆(𝑡|𝑡′
𝑖−1)

 

Cumulative  

hazard function 
𝐻(𝑡𝑖 , 𝑡′

𝑖|𝑡′
𝑖−1) =

𝑆(𝑡′
𝑖−1, 𝑡′

𝑖) − 𝑆(𝑡′
𝑖−1, 𝑡𝑖)

𝑆(𝑡′
𝑖−1

, 𝑡𝑖)
 

𝐻(𝑡𝑖 , 𝑡′
𝑖|𝑡′

𝑖−1) =∫ ℎ(𝑡)𝑑𝑡
𝑡𝑖+1

𝑡𝑖
=𝐻(𝑡𝑖 , 𝑡𝑖+1)  

 

NM 

Initial condition SURVLAST =  1  

CUMLAST   =  1 

SURV1        =  1 

CUMLAST  =  1 

Differential equation DATA(1)      =  HAZ 

CUMHAZ    =  A(1) 

CUMDIF      =  CUMHAZ – CUMLAST 

Start of  

interval censored event 

SURVLAST =  SURV SURV1        =  SURV 

CUMLAST  = CUMHAZ 

End of  

interval censored event 

Y                  = SURVLAST – SURV 

CUMLAST  =  CUMHAZ 

Y                  = SURV1*CUMDIF 

CUMLAST  = CUMHAZ 

Censored event Y                   = SURV = EXP(-CUMDIF) 
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The two example datasets used in the non-parametric analysis were applied to the parametric analysis. When using 

the two examples’ data sets for parametric analysis using NONMEM, the dataset was structured as follows. 

Table 10. The rule of assigning the EVENT(DV) values based on the event type in NONMEM 

Event Type EVID EVENT(DV) MDV INTERVAL 

Start of study(time = 0) 2 . 1 . 

Exact time of adverse event 0 0 0 . 

Start time of interval censored event 2 . 1 1 

End time of interval censored event 0 2 0 2 

End of study(Censored time of follow up) 0 1 0 . 

Result 

We applied the new methodology described in method session to two examples regarding repeated events. 

Different examples were used for Repeated exact time events and Repeated interval censored events, depending 

on the event occurrence time. The data used in analysis is as following table 11. 

Table 11. The summary of two examples for both repeated exact time event and repeated interval censored 

event 

Type Repeated exact time event Repeated interval censored event 

Data Female rat data 9) Curated and jittered of real adverse events data 

Total subjects 48(23rats, 25controls) 56 

Total events 212 94 

Follow up period about 122days, 18weeks about 10weeks, 168days, 1680hrs 

Treatment Retionid prophylaxis Obesity drug 

Dosing time first dosing at 0time first dosing at 0time 

Characteristics recurrent mammary tumors after treatment Not overlapped repeated adverse events in each subject 

I. Non-parametric estimation of the probability 
A. Repeated exact time events 

Here is a plot of Kaplan-Meier estimates (First event per subject) and mean cumulative function estimates for 

repeated recurrent events in female rat data. Kaplan-Meier estimates were analyzed using only the first event of 

each rat. 

Figure 11. Kaplan-Meier estimates of time to first event model for repeated exact time event data (rat data) 
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(a) is a survival plot using Kaplan-Meier estimates and (b) is a cumulative hazard plot. (c) and (d) are plotted by 

changing the y-axis of (a) and (b) to 0-6 instead of 0-1. In fact, changing the y-axis to 6 is not significant for (a), 

which is a survival function. (e) shows the mean cumulative function estimates.  

Figure (e), which uses all events instead of just the first event for each rat, is quite different from (b).  

Comparing (d) with (e), where the y-axis in (b) is scaled from 0 to 6 as in (e), the time to first event analysis using 

conventional Kaplan-Meier estimates underestimates the proportion of events that occur.  

The accuracy is therefore much lower. In addition, in the case of repeated events, the cumulative event rate at each 

time point has important clinical implications, whereas looking at the first event only focuses on the probability 

of no event occurring, which is difficult to find meaningful clinical implications. 

Figure (e) shows that the mean cumulative function estimates rise in a gentle curve. At the last time point, around 

week 17, censoring has largely occurred, causing the mean cumulative function estimates to rise dramatically. If 

we were to take censoring into account, we would expect the value of 4.5 found at week 16 to be closer to the 

mean cumulative function estimates at the last event.  
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B. Repeated interval censored events 

Here is a plot of Kaplan-Meier estimates (first event per subject) and mean cumulative function estimates for 

repeated recurrent events in curated and jittered real-world adverse event data. Non-parametric analysis was 

performed using the midpoint of the censored interval. Kaplan-Meier estimates were analyzed using only the first 

event of each subject. 

Figure 12. Kaplan-Meier estimates of time to first event model for repeated interval censored event data 

(curated and jittered of real adverse events data) 

 

 

(a) is a survival plot using Kaplan-Meier estimates, (b) is a cumulative hazard plot, (c) and (d) are plots by 

changing the y-axis in (a) and (b) to 0-2.5 instead of 0-1, and (e) shows the mean cumulative function estimate. It 

shows a similar tendency to the Repeated exact time events results analyzed earlier.  

Figure (e) shows that the mean cumulative function estimate rises in a slightly convex curve. At the end, around 

week 8, we see that the mean cumulative function estimate approaches around 2, while the cumulative hazard 

value of the Kaplan-Meier estimate stays around 0.6. 
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When Kaplan-Meier analyses repeated exact time events and repeated interval censored events, the 

underestimation is not surprising as only one occurrence of an event is counted. Therefore it is more appropriate 

to use the mean cumulative function estimate to check the exact rate of repeated events at each time point, thus 

validating the parametric analysis value. 

II. Parametric estimation of the probability 

A. Repeated exact time events 

The conventional method and the new method were applied to NONMEM to compare the results of the 

implementation of the rat data, which are repeated exact time event data. The parameter estimates and cumulative 

hazard plots of each of the three distributions were compared with the mean cumulative function estimate plots 

obtained from non-parametric analysis to find the most appropriate distribution. 

Figure 13. Simulation plots for three distribution model using the conventional method in NONMEM for 

repeated exact time event data (rat data) 

 

Figure 13 shows the cumulative hazard graphs obtained by applying the conventional method to the three 

distributions in repeated exact time event data. Compared with the graph obtained from the non-parametric 

analysis, we can see that the graphs obtained from the three distributions do not fit well.   

The slope is concave for the Weibull distribution and convex for the log-logistic distribution, with the exception 

of the exponential distribution which has a straight increasing slope. Of the three distributions, the Weibull 

distribution has a similar slope shape to the non-parametric analysis.   

However, the final value of the cumulative hazard estimates, which ranged from 4.0 to 5.0 in the non-parametric 

analysis, showed very different values in the plots obtained from the three distributions, with an estimate of 3.0 

for the exponential distribution, 2.0 for the Weibull distribution and 2.5 for the log-logistic distribution. 

The following figure 14 is the cumulative hazard graphs implemented by applying the new method to three 

distributions in repeated exact time events data.  
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Figure 14. Simulation plots for three distribution model using the new method in NONMEM for repeated 

exact time event data (rat data) 

 

Compared to the graphs obtained by non-parametric analysis in Figure 10, we can see that the graphs obtained 

from the three distributions have a better fit compared to the conventional method.  

In the case of slope, except for the exponential distribution, which increases in a straight line, the Weibull 

distribution increases relatively smoothly, while the log-logistic distribution is convex.  

Of the three distributions, the Weibull distribution has a similar slope shape to the non-parametric analysis. 

In the non-parametric analysis, we can see that the final cumulative hazard estimates obtained with values between 

4.0 and 5.0 are similar to the plots obtained from each of the three distributions. The exponential distribution 

showed very close values with an estimate of 4.5, the Weibull distribution 4.5 and the log-logistic distribution 4.0.  

Comparing the slope and the final estimates, we can conclude that the Weibull distribution is the best fitting model.  

The comparison between the estimates of the parameters obtained by NONMEM and the value of the objective 

function using the conventional method and the new method in repeated exact time data, rat data, is as follows 

Table 12. 
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Table 12. The summary of results in both conventional method and new method in NONMEM for repeated 

exact time event data (rat data) 

Distribution Estimator 
NONMEM 

Conventional method New method 

Exponential 

Objective function value 2021.554 1831.109 

Lamda(λ) 
Estimate 2.31E-02 3.62E-02 

S.E 2.42E-03 4.16E-03 

Weibull 

Objective function value 2015.917 1812.881 

Lamda(λ) 
Estimate 2.01E-02 6.30E-02 

S.E 2.00E-03 9.24E-03 

Gamma(γ) 
Estimate 1.18E+00 7.28E-01 

S.E 8.19E-02 6.39E-02 

Log-logistic 

Objective function value 2034.910 1837.811 

Lamda(λ) 
Estimate 3.40E+01 1.26E+01 

S.E 3.75E+00 2.15E+00 

Gamma(γ) 
Estimate 1.95E+00 1.77E+00 

S.E 1.81E-01 2.30E-01 

As the implementation of the NONMEM code is slightly different and no parameters have been added, the 

numerical comparison of the objective function values in both methods is not significant. The objective function 

values obtained by the new method are smaller than those obtained by the conventional method for all distributions.  

When all distributions are run in both methods, minimization successes are obtained and when a Wald test is 

performed on the estimates of each parameter, they all fall within 2S.E (standard errors), indicating that the 

estimates are valid. When all the estimates are valid, validation by graph is possible, and when comparing the 

graphs implemented with the estimates obtained by the two methods, it can be seen that the graph shape obtained 

by the new method better describes the rat data.  
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B. Repeated interval censored events 

The conventional method and the new method were applied to NONMEM to compare the results of implementing 

curated and jittered of real adverse events data, which are repeated interval censored time events data. The 

parameter estimates and cumulative hazard plots of each of the three distributions were compared with the mean 

cumulative function estimate plots obtained from non-parametric analysis to find the most appropriate distribution. 

Figure 15. Simulation plots for three distribution model using the conventional method in NONMEM for 

repeated interval censored event data (curated and jittered of real adverse events data) 

 

The graph above Figure 15 shows the estimates from three distributions using the conventional method on 

repeated interval censored event data. Compared with the plot obtained by non-parametric analysis, we can see 

that the three distributions fit well.  

The slope is concave for the Weibull distribution and convex for the log-logistic distribution, except for the 

exponential distribution, which increases in a straight line.  

Therefore, the log-logistic distribution has the most similar slope shape to non-parametric analysis. When 

checking the final value of the cumulative hazard estimates, the non-parametric analysis showed values between 

1.5 and 2.0, and the plots obtained from the three distributions showed that the log-logistic distribution was the 

most similar,  

The exponential distribution estimated a value of 2.2, the Weibull distribution estimated a value of 2.0, and the 

log-logistic distribution estimated a value slightly below 2.0. 
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Figure 16. Simulation plots for three distribution model using the new method in NONMEM for repeated 

interval censored event data (curated and jittered of real adverse events data) 

 

Figure 16 above shows the cumulative hazard plots obtained by applying the new method to three distributions in 

repeated interval censored event data. Compared to the graphs obtained by non-parametric analysis, the graphs 

obtained from the three distributions show a similar good fit.  

Looking at the slope and final values of the cumulative hazard estimates, we can infer that the log-logistic 

distribution, which increases gently and has a final value close to 2.0, is the best-fitting model, as are the results 

from the conventional method. 

The comparison between the estimates of the parameters obtained by NONMEM and the value of the objective 

function by applying the conventional method and the new method in repeated interval censored events, curated 

and jittered from real adverse event data, is shown in Table 13. 

Table 13. The summary of results in both conventional method and new method in NONMEM for repeated 

interval censored events data (curated and jittered of real adverse events data) 

Distribution Estimator 
NONMEM 

Conventional method New method 

Exponential 

Objective function value 805.975 802.334 

Lamda(λ) 
Estimate 1.31E-03 1.33E-03 

S.E 1.72E-04 1.79E-04 

Weibull 

Objective function value 793.754 789.517 

Lamda(λ) 
Estimate 1.65E-03 1.71E-03 

S.E 3.28E-04 3.58E-04 

Gamma(γ) 
Estimate 7.09E-01 7.02E-01 

S.E 6.90E-02 7.07E-02 

Log-logistic 

Objective function value 793.934 789.684 

Lamda(λ) 
Estimate 3.18E+02 3.04E+02 

S.E 7.95E+01 7.70E+01 

Gamma(γ) 
Estimate 1.06E+00 1.06E+00 

S.E 1.09E-01 1.02E-01 



27 

 

The implementation of the NONMEM code is slightly different, but since no parameters have been added, the 

numerical comparison of the objective function values for both methods is not significant. The objective function 

values obtained by the new method are smaller than those obtained by the conventional method for all distributions.  

When all distributions are run in both methods, minimization is successful and when a Wald test is performed on 

the estimates of each parameter, they all fall within 2 S.E. (standard error), indicating that the estimates are valid.  

If all the estimates are valid, they can be validated by the graph, and the comparison of the implemented graphs 

with the estimates obtained from the two methods shows that both methods provide a good fit. The distribution 

with the best graph behavior was the log-logistic distribution for both methods.  

As the fitted plots obtained from the conventional method and the new method were similarly good fits, the 

standard errors of the estimates were used to compare the accuracy. When comparing the standard error (S.E.) 

values of the estimated parameter values, the S.E. of the new method estimates is slightly smaller than that of the 

conventional method.  

The meaning of the S.E. is the accuracy of each estimated parameter. Therefore, we can see that the parameter 

estimates obtained by the new method are slightly more accurate. 

Discussion 

TTE modelling is a popular method in survival analysis. The single event per subject method of TTE is widely 

accepted in both parametric and non-parametric analysis. Kaplan-Meier analysis is widely used as a non-

parametric method and parametric models with different distribution assumptions such as exponential, Weibull 

and log-logistic distribution as a parametric method. In contrast to single TTE analysis, there is a need to improve 

the analysis method for repeated TTE. 

There are a lot of repeated TTE data, such as adverse events and disease recurrence, and it is not reasonable to 

apply the method of single TTE analysis to them, as is often done. For these repeated events, the risk of occurrence 

over time is often clinically important. In this paper we consider how to analyse repeated events using non-

parametric and parametric methods when the exact time of the event is known and when only the time range of 

the event is known (interval censored). 

For non-parametric methods, we have shown how to use mean cumulative function estimates, which determine 

the average risk of an event occurring in a population over time, instead of Kaplan-Meier estimates, which 

determine the probability that an event has never occurred in a population over time. We believe this is more 

appropriate for repeated events because it is more important to know the risk of an event occurring at a given time 

than the probability that the event has never occurred up to that time.  

A common approach is to calculate Kaplan-Meier estimates by considering only the first event in a series of 

repeated events. However, this tends to underestimate the overall cumulative hazard estimates because it does not 

correctly predict the rate of occurrence of cumulative events.  

Kaplan-Meier estimates assume that all subjects have the same probability of survival and that the number of 

subjects without an event is a random variable, following a binomial distribution. In addition, the hazard function 

of the Kaplan-Meier estimates calculates the probability of an immediate event occurring per unit time in each 

interval. 

On the other hand, for the mean cumulative function estimates, the number of events occurs in each interval is 

assumed to be independent of each other, and a random variable, following a non-homogeneous Poisson process. 

Thus, we calculated the probability of an event occurring instantaneously per unit subject in each interval, not per 

unit time. 

Kaplan-Meier estimates focus on the occurrence of an event at unit time, and thus on the probability of no event 

occurring l in the population of subjects with the same probability of event occurrence. However, mean cumulative 

function estimates focus on the occurrence of events per unit subject in each time interval, and are concerned with 

how many events occur at each time point within each independent time interval in the overall population.  
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Thus, Kaplan-Meier estimates could be applied to single event per subject data, such as survival data or treatment 

response, etc, whereas mean cumulative function estimates are recommended for repeated event per subject data 

that predict the risk rate over time, such as adverse events or recurrence analysis, etc. 

For parametric methods, we present a comparison between current commonly available methods and a new 

method that redefines each survival and hazard function to reflect the nature of repeated events for three 

representative distribution models: exponential, Weibull, and log-logistic.  

The main difference between the current method and the newly proposed method is how the hazard function is 

defined for both repeated exact time and repeated interval censored events. While the survival function, calculated 

as a conditional probability based on the occurrence of a previous event or the endpoint of a previous event interval, 

was the same in both cases between the current and new methods, the hazard function was different.  

Repeated exact time events should have been calculated as a conditional hazard function with the condition that 

the event occurs after the time of the previous event, but in the current, existing method it was defined as a general 

hazard function without adding such a condition. As a result, we compared the results of non-parametric analysis 

using rat recurrence data as an example with the estimates obtained from each of the three distributions, and found 

that the new method fit better than the conventional method. 

In the case of repeated interval censored events, the current method also added the condition that the event occur 

after the end of the interval in which the previous event occurred, but the condition of the original hazard function 

in the conventional method was fixed as the starting point of the interval to calculate the cumulative probability 

of the event occurring.  

The new method reflects this by modifying the original hazard function condition to reflect the time of each event, 

rather than the starting point of the interval, to calculate the cumulative probability of event occurrence. Thus, 

when integrating the probability of an event occurring immediately at each time point in the time interval of 

interest, the conventional method fixes both conditions of the hazard function, while the new method fixes only 

one condition (that an event occurs after the end of the interval in which the previous event occurred) and doesn't 

fix the other condition (that an event has not yet occurred at each time point in the current interval). We compared 

the results of the non-parametric analysis of the curated and jittered real adverse event data with the estimates 

obtained from each of the three distributions and found that the new method was broadly similar to the 

conventional method, but the estimates from the new method had smaller standard errors, indicating higher 

precision. 

The current study has the following limitations. First, the study was not accompanied by a sensitivity analysis to 

further investigate the differences between the two methods. In the future, we will conduct a sensitivity analysis 

of the new method to see in which cases it can be recommended. We also plan to validate the proposed values of 

the new method by applying it to more diverse examples. 

Secondly, in the case of repeated interval censored events, we only analysed the non-overlapping intervals and 

did not analyse the overlapping cases. Considering that most of the data obtained in clinical settings are non-

overlapping interval censored data, the method proposed in this paper may be sufficient, but such a method may 

be necessary when analysing multiple adverse events in an integrated manner. In the future, we will further 

investigate how to perform non-parametric and parametric analyses on overlapping interval censored data. 

Third, the application of the new method needs to try more repeated events data. Since we have investigated the 

new method and proved it by deriving the exact probability and likelihood expressions through algebraic process 

literally, we need to apply the more repeated events real data for validation and find more other insights. 

In terms of number of events per subject, it is generally accepted that outcomes related to treatment response, such 

as death or relapse, are identified as single events per subject, whereas recurrence at multiple sites and adverse 

events are often identified as recurrent events with regular interval follow-up. 

Also, from the perspective of time of event occurrence, in clinical trials conducted in hospitals with 24-hour 

monitoring, the exact time of the event can be confirmed, but in most clinical trials and real-world data, the exact 

time of the event is often not available to the researcher/physician unless the subject records or reports the time 

of the event during the follow-up interval, which is categorized as an interval-censored event.  
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Despite the large number of repeated events in clinical settings, the methods currently used reflect the repeated 

application of a single event or probability formulas that do not properly reflect the propensity for repeated events.  

We expect that the new method proposed in this study will help to properly evaluate the efficacy and safety of 

new drugs by accurately assessing treatment outcomes and adverse events of new drugs from different data 

sources with different characteristics as described above, and by enabling accurate predictions in different 

scenarios.  
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국문 요약 

소개: 비모수적/모수적 사건 발생 시간(TTE) 접근법은 약물 개발을 위한 임상시험 데이터를 분석할 

때 널리 사용됩니다. 약물 치료에 대한 반응, 환자 예후 및 약물 부작용을 평가하는 데 사용됩니다. 

TTE 모델링 분석의 인기는 시간에 따른 특정 사건의 진행을 이해할 수 있기 때문에 시뮬레이션을 통해 

다양한 약물 투여 시나리오에 따른 장기적인 결과를 예측할 수 있기 때문입니다. 

목표: 각 사례에서 사건 발생까지의 시간을 분석하는 다양한 방법을 고려할 때, 장기적으로 다양한 

임상 환경에서 사건의 발생 시간과 빈도를 예측하려면 정확한 분석이 필수적입니다. 

이 연구는 사건을 특성화하고 적절한 확률 분포 함수를 설정한 다음 다양한 사건 발생 시간 데이터에 

대한 개선된 방정식을 통해 NONMEM 에서 구현함으로써 적절한 방법의 사용을 안내하는 것을 목표로 

합니다. 

방법: 다양한 유형의 사건 시간 데이터에 대한 확률 대수 방정식을 검토하고 데이터 유형의 특성을 

반영하여 새로운 수식을 도출했습니다. 이렇게 새롭게 도출된 방정식을 기반으로 단일 또는 반복 

사건까지의 시간, 정확한 시간 또는 간격 검열 시간 등 각각의 일반적인 데이터 세트에 대해 모수적 

사건 발생 시간 분석을 수행했습니다. 이러한 모수적 분석 결과를 비모수적 평균 누적 함수 추정치와 

비교했습니다. 

결과: 사건의 정확한 시간을 알고 있는지, 아니면 사건의 시간 범위만 알고 있는지, 환자 내 발생 횟수를 

기준으로 단일 또는 반복 사건과 정확한 시간 또는 간격 검열 시간으로 사건까지의 시간을 

분류했습니다. 사건 데이터 세트의 각 유형에 대한 확률 분포(생존 함수, 위험 함수, 누적 위험 함수)에 

대한 방정식은 반복된 정확한 시간 사건, 반복된 간격 검열 사건과 같은 사건 데이터에 대해 새롭게 

도출되었습니다. 

그런 다음 새로 도출된 방정식을 NONMEM®에서 구현하여 임의의 가상 데이터 세트에 맞는 모수들을 

추정하여, NONMEM®에서 기존에 사용하던 모델의 결과와 비교했습니다. 

몬테카를로 시뮬레이션 결과, 새로 도출된 모델이 기존 모델보다 평균 누적 함수 추정치로 대표되는 

예시 데이터 세트를 더 잘 설명하는 것으로 나타났습니다. 

임의의 가상 데이터 세트에서 제공된 데이터 세트에 적용한 NONMEM®시뮬레이션 결과는 개선된 

방정식의 적합성을 입증하고 기존 방정식과의 뚜렷한 차이점을 강조했습니다. 

결론 본 연구에서 제시된 새로운 방정식을 사용하면 임상시험용 의약품의 치료 결과 및 이상 약물 

반응과 같이 다양한 특성을 가진 다양한 출처의 사건 발생까지의 시간 데이터를 평가할 수 있을 것으로 

기대합니다. 본 연구 결과는 의약품의 효능과 안전성을 적절히 평가하는 데 도움이 될 것입니다. 
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