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Abstract

Breast cancer is a globally prevalent cancer, categorised into hormone receptor-positive (HR+), HER2-
positive (HER2+), and triple-negative (TNBC) subtypes. The level of tumour-infiltrating lymphocytes
(TILs) is an important prognostic indicator of breast cancer. To explore the divergent roles of TIL levels
across various subtypes and examine their effect on immune cell composition and tumour
microenvironment, we employed single-cell RNA sequencing on 31 patients with breast cancer
exhibiting different TIL levels and subtypes. We observed elevated SPP1+ macrophages and reduced
mucosal-associated invariant T cells in HR+ breast cancer with high TIL levels (TIL high HR+ breast
cancer). Furthermore, SPPI expression was increased in other monocytes and macrophages
(mono/macro) subgroups in TIL high HR+ breast cancer. Both SPP1+ macrophages and TIL high HR+
breast cancer mono/macro showed increased expression of genes related to ECM remodeling.
Moreover, cell-cell interaction analyses revealed enhanced SPP1 signalling in the interaction between
mono/macro and T cells in TIL high HR+ breast cancer compared to TIL low group. Spatial
transcriptomics data of HR+ breast cancer highlighted close proximity of mono/macro, CD8+ T cells,
and CD4+ T cells in TIL high HR+ breast cancer compared to TIL low group. Collectively, we
discovered a novel role of SPPI-expressing mono/macro in influencing T cells within the tumour
microenvironment of TIL high HR+ breast cancer. Our findings may explain poor prognosis of HR+
breast cancer associated with elevated TIL levels, suggesting that SPP1+ macrophages could be
potentially targeted to improve their prognosis.
Keywords: Breast cancer, Hormone receptor (HR), Tumour-infiltrating lymphocytes, Tumour-

associated macrophages, Secreted Phosphoprotein 1
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Introduction

Breast cancer is the second most prevalent type of cancer globally, with an age-standardized incidence
rate of 46.8 per 100,000 people in 2022 [1]. It can be classified into three subtypes based on the
expression of hormone receptors and HER2 receptor: hormone receptor-positive (HR+), HER2-positive
(HER2+) and triple negative breast cancer (TNBC) [2]. A critical prognostic factor in breast cancer is
the level of tumour-infiltrating lymphocytes (TILs), which can be assessed via histologic examination
[3]. TILs are defined as mononuclear cells, including plasma cells, that infiltrate the stromal tissue
within the invasive tumour area [4]. TILs exhibit subtype-specific characteristics, with HER2+ breast
cancer and TNBC typically manifest higher TIL levels than HR+ breast cancer [5]. In HER2+ breast
cancer and TNBC, increased TIL levels are associated with improved pathological complete response
(pCR) rates after neoadjuvant chemotherapy (NAC), longer disease-free survival, and overall survival
[6]. Conversely, in HR+ breast cancer, higher TIL levels are linked to shorter overall survival [7, 8].

Numerous immune cell types can modulate TIL function within the tumour microenvironment
(TME) [9]. Among these, tumour-associated macrophages (TAMs) represent a significant proportion
of breast cancer immune cells and are closely related to unfavourable prognosis [10, 11]. Single-cell
RNA sequencing (scRNA-seq) studies have revealed specific TAM subsets linked to T cell infiltration
and immunosuppression in patients with breast cancer [12, 13]. However, our knowledge of differences
in immune cell composition, including TAMs, between low and high TIL cases is limited, and the
influence of such differences on immune cell infiltration remains poorly understood.

Different subtypes of breast cancers have different TMEs [ 14]. HR+ breast cancer often exhibits
not only a low infiltration of TILs but also higher number of TAMs, which are typically immune-
suppressive and associated with poor survival [15]. The emergence of novel technologies, including
single cell and spatial transcriptomics, has enabled more detailed characterization of the differences in
TME among breast cancer subtypes.

Here, we stratified patients with breast cancer based on their TIL levels (‘TIL high’ and ‘TIL
low’), considering each subtype (HR+, HER2+, and TNBC). We then analysed the differences in the

composition of CD45+ immune cell subtypes using scRNA-seq. Furthermore, we elucidated the



differences in immune cell interactions within the TME between TIL high and TIL low breast cancers,

employing cell-cell interaction analysis and spatial transcriptomics.



Materials and methods

Ethics

This study received approval from the Institutional Review Board of Asan Medical Center (2016-
0935) and adhered to the principles of the Declaration of Helsinki of 1975, as revised in 1983. All

patients provided written informed consent.

Single cell dissociation

Breast cancer tissue was placed in RPMI 1640 medium (11875093, Thermo Fisher Scientific, Waltham,
MA, USA) and promptly transported to the laboratory within two hours post-resection. After washing
with Dulbecco’s Phosphate Buffered Saline (DPBS, L0615, Biowest, Nuaillé, France) containing 1%
ZellShield anticontaminant agent (Minerva Biolabs, Berlin, Germany), the tumour tissues were minced
into 1-mm-diameter pieces. The minced breast cancer tissue was incubated for 1 h in digestion buffer
(DMEM-F12 (11330032, Thermo Fisher Scientific), 2% FBS (Corning, VA, USA), 1%
penicillin/streptomycin (15140-122, Thermo Fisher Scientific), 10 pg/mL insulin (51500056, Thermo
Fisher Scientific), and 10 ng/mL epidermal growth factor (PHGO311, Thermo Fisher Scientific)
supplemented with 1x collagenase/ hyaluronidase (CA094-002, Gendepot, Barker, TX, USA). The
digested samples were centrifuged at 80 x g for 30 s, and the resultant supernatant was filtered through
a 70-um nylon mesh strainer (352350, Corning Life Sciences, Tewksbury, MA, USA). The pellet from
the digested samples was resuspended in 0.25% trypsin/EDTA (25200072, Thermo Fisher Scientific)
and incubated for 3—5 min to release single cells. Once a single cell suspension was obtained, cold
Hank’s balanced salt solution (L0612, Biowest) containing 2% FBS was added, and cells were
recovered by centrifugation at 300 x g for 5 min. Subsequently, the cells from the supernatants and the

single cells from the pellet were combined, counted, and cryopreserved.


https://www.biocompare.com/107154-Corning-Life-Science/

CDA45+ cell isolation

CD45+ cells were isolated either by magnetic bead sorting or by fluorescence-activated cell sorting
(FACS) sorting. In the magnetic separation method, dead cells were initially removed using a dead cell
removal kit (130-090-101, Miltenyi Biotec, Auburn, CA, USA), followed by cell labelling with CD45-
microbeads (130-045-801, Miltenyi Biotec) and enriched using a magnetic-activated cell sorting
(MACS) column (130-042-901, Miltenyi Biotec) and MACS separator (130-091-051, Miltenyi Biotec).
For FACS sorting, single cells were stained with an anti-human CD45 antibody (304016, Biolegend,
San Diego, CA, USA) and resuspended in 4',6-diamidino-2-phenylindole solution (D1306, Thermo
Fisher Scientific). CD45+ live cells were sorted using FACSAria (BD bioscience, San Jose, CA, USA).
The isolated cells were resuspended in CS10 freezing media (100-1061, Stemcell Technologies,

Bothell, WA, USA) and stored in an NL2 tank until the next use or were immediately sequenced.

scRNA-seq library preparation and sequencing

scRNA-seq library preparation was carried out using the Chromium Single Cell 3" Kit v2 and the
Chromium Next GEM Single Cell 3’ Kit v3 platform (10x Genomics, Pleasanton, CA, USA). Cell
suspension volumes were determined to attain a target capture of either 5,000 or 10,000 cells per sample.
This process involved the generation of gel beads in emulsion (GEMs), barcoding, GEM-reverse
transcription (RT) clean-up, complementary DNA amplification, and library construction, following
the manufacturer's specified protocol. Library quality assessment was then performed using Bioanalyzer
2100 (Agilent, Santa Clara, CA, USA). Subsequently, sequencing was executed using the NovaSeq

6000 System (Illumina, Inc., San Diego, CA, USA), generating 150 base pairs (bp) paired-end reads.

scRNA-seq data processing

To increase the sample size and analyze independent datasets, we performed joint analysis of our dataset

with a public dataset (GSA, HRA000477 [16]), which was a single cell RNA sequencing dataset where



TIL values were measured and human CD45+ cells were sorted from breast cancer tissue. Analysis was
conducted starting from the Cell Ranger processing stage with raw fastq files. The 10x Genomics Cell
Ranger 6.1.2 [17] was used for mapping sequencing reads against the GRCh38 human reference (2020-
A, GENCODE v32/Ensembl 98), unique molecular identifier (UMI) counting, and cell identification.
Pre-processing using the Seurat package (version 4.1.1) [18] was performed in R (version 4.1.3) [19].
In total, 31 samples were merged. Cells that had >20% mitochondrial genes or unique feature counts
over 6,000 or less than 200 were excluded, then 110,059 cells remained. To normalise the dataset, we
employed the “NormalizeData” procedure. Scaling was applied to the dataset with 2000 features
selected through “FindVariableFeatures”. We then performed principal components analysis (PCA) on
the scaled data using “RunPCA” (dims = 1:30). Harmony (version 0.1.0) [20] was employed for batch
effect correction, using each sample as a batch assignment. Harmony embedding was used in
downstream analysis. Uniform manifold approximation and projection (UMAP) was performed using

“RunUMAP”.

Cell type annotation

Azimuth package (version 0.4.5) [18, 21] (reference = PBMC) was used for cell type annotation for
CD45+ immune cells. The metadata column named 'predicted.celltype.12' determined by Azimuth was
utilised to isolate immune cells into four groups: T-cell (predicted.celltype.l2 = "CD4 CTL", "CD4
Naive", "CD4 Proliferating", "CD4 TCM", "CD4 TEM", "CD8 Naive", "CDS8 Proliferating", "CD8
TCM", "CD8 TEM", "dnT", "gdT", "MAIT", "NK", "NK Proliferating", "NK_CDS56bright", and
"Treg"), B-cell (predicted.celltype.]2 = "B memory", "B intermediate", "B naive", and "Plasmablast"),
DC (predicted.celltype.2 = "ASDC", "cDCI1", "cDC2", and "pDC"), and mono/macro
(predicted.celltype.l2 = "CD14 Mono" and "CD16 Mono"). Further annotation was conducted for T
cells and mono/macro. Memory T cells (predicted.celltype.l2 = "CD8 TCM”, "CD8 TEM”, "CD4
TCM”, and "CD4 TEM”) were defined based on marker expression. CCR7 and SELL double positive
cells (UMI count >0) were annotated as TCM, while others as TEM. Mono/macro cells

(predicted.celltype.l2 = "CD14 Mono” and "CD16 Mono”) were separated and clustered (resolution
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0.3). Each cluster were named based on expressed marker except mitochondrial genes. Expressed
markers were identified using the “FindAllMarkers” function in Seurat with the parameter “pct = 0.5,

Following cell type annotation, each breast cancer subtype was individually analysed in downstream.

Pathway enrichment analysis

Differentially expressed genes (DEGs) were computed for each group using the “FindMarkers” function
in Seurat. Specifically, we considered genes as up-regulated if they exhibited an average log2 fold
change greater than 1 and a p-value less than 0.05, for further analysis. Pathway enrichment analysis
was subsequently conducted using the “enrichPathway” method from the ReactomePA package
(version 1.38.0) [22] in R. Bar plots, visualising significant pathways based on an adjusted p-value
threshold of less than 0.05 (utilising the Benjamini—Hochberg method), were generated using ggplot2

[23].

Cell-cell interaction analysis

CellChat package (version 1.6.1) [24] was used to analyse cell-to-cell interactions. CellChat object was
created using the createCellChat function and CellChatDB human dataset. T cells were categorised into
four groups: CDAT ("CD4 CTL", "CD4 Naive", "CD4 Proliferating", "CD4 TCM", and "CD4 TEM"),
CDS8T ("CDS8 Proliferating", "CD8 TCM", "CD8 TEM", and "CDS8 Naive"), NK ("NK", "NK
Proliferating" and "NK_CDS56bright"), and OtherT ("dnT", "gdT", "MAIT", and "Treg"). To identify
differential interactions in cell-cell communication and to explore conserved and context-specific
signalling pathways across different TIL levels, we compared TIL high and TIL low with
“netVisual diffInteractions” and “rankNet”. Then, we analysed SPP1 signalling in each cell group of
varying TIL levels. To visualise SPPl signalling pathway, “netVisual heatmap” and
“netVisual aggregate” were used. Identification of signalling roles of cell group was performed by

utilising functions “netAnalysis computeCentrality” and “netAnalysis_signallingRole network”. To



compute the contribution of each ligand-receptor pair and plot signalling gene expression distribution,

“netAnalysis_contribution” and “plotGeneExpression” were employed.

Spatial transcriptomics data processing and signature scoring

Seurat objects for each sample were created using the filtered count matrix and spatial data from the
Zenodo data repository [25] via Seurat package. To normalise each sample, we employed the
“SCTransform” function. TIL levels of each sample in H&E images were assessed by a certified
pathologist.

To identify cell type signatures, markers for each cell group were analysed in sScRNA-seq data
using the “FindMarkers” function with default parameters. We selected the top 25 markers as signature
genes. Signature scoring was conducted through the “AddModuleScore” method with a list of signature
genes. To minimize the influence of variations in TIL quantity on the scores, we normalized each score.
We scaled and centred the signature scores in R and subsequently employed them for correlation

coefficient analysis.

Cell cycle scoring

To assign cell cycle scores to each cell, we utilised G2/M and S phase markers. This calculation was

performed using the “CellCycleScoring” function available in the Seurat.

Statistical analysis

The Wilcoxon rank sum test and Kruskal-Wallis rank sum test were performed using R stats package
(ver.3.6.2) [19]. Additionally, Spearman’s rank correlation coefficient was calculated using R package

ggpubr (ver.0.6.0) [26].



Data availability

The study's datasets are available from the corresponding author upon a reasonable request. The public

data used in the research has been specified in the main manuscript.



Results

Heterogeneity of tumor microenvironment in breast cancer

To identify the characteristics of TME in breast cancer and its differences based on TIL levels, we
conducted scRNA-seq using isolated CD45+ cells from 21 primary tumour tissues with accompanying
TIL data. These TIL levels were evaluated by a certified pathologist using H&E stained slides. We also
included 10 samples from the Genome Sequence Archive (GSA, HRA000477) dataset [16]. In total, we
analysed 31 samples (21 samples from this study, 10 from GSA database) using scRNA-seq, comprising
16 TNBC (10 and 6) and 11 HR+ (8 and 3) and 4 HER2+ samples (3 and 1). Samples with TIL value
>10 were classified as TIL high group (n= 18, (TNBC n = 10, HR+ n =5, and HER2+ n = 3)) and those
with <10 as TIL low group (n = 13, (TNBC n = 6, HR+ n = 6, and HER2+ n = 1)) (Table S1). Quality
control was carried out to remove low-quality cells, and 110,059 cells were left for analysis (Figure
Sla-c). After removing the batch effect, cells were distributed evenly unaffected by sample type, breast
cancer subtype, or TIL levels (Figure 1a, b). We clustered and visualised the cells using UMAP (Figure
Ic). The annotation was validated using canonical markers (Figure 1e). We performed more detailed
annotation of immune cell subtypes with canonical markers and gene signatures (Figure 1d and S1d—
h). To investigate a difference in proportion of cell types between samples, we generated plots depicting
the proportion of cell type relative to TIL levels and subtypes (Figure 1f, g). Regardless of TIL levels
and subtypes, breast cancer showed a high degree of heterogeneity in the proportion of immune cell
subtypes (Figure 1g). The proportions of immune cell subtypes did not significantly differ among HR+,

HER2+, and TNBC (Figure 1h).
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Figure 1. Heterogeneity of immune cell composition in breast cancer.

(a—d) UMAP plot shows breast cancer subtype, TIL levels, cell type, and detailed cell type of 31
samples.

(e) Dot plot shows each major cell type and their expression of selected marker genes.

(f) Bar plot shows TIL value. TIL levels of each sample are represented in colours.

(g) Bar plot shows proportion of cell types in 31 samples.

(h) Bar plot shows proportion of cell types in breast cancer subtypes.

TIL, tumour-infiltrating lymphocytes; DC, dendritic cells; Mono/macro, monocytes, and macrophages.
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High proportion of SPP1+ macro in TIL high group of HR+ breast cancer

Our objective was to understand whether and how variations in TIL levels led to differences in immune
cell composition. Given that breast cancer shows different characteristics depending on its subtype, we
compared the composition within the same breast cancer subtype. Figure 2a—c presents the immune cell
distribution of each subtype based on TIL levels. Although each subtype showed different proportions
of immune cell subtypes based on TIL levels, these differences were not statistically significant (Figure
2d). Then, we divided cells by major branches (T, B, dendritic cells and mono/macro) and compared
the proportions of cells within each branch when further divided into detailed subtypes, based on TIL
levels (Figure S2a-c). Mucosal-associated invariant T cells (MAIT) in T-cell (p = 0.028) and SPP1+
macro in mono/macro (p = 0.0043) in HR+ breast cancer showed statistically significant differences
(Figure 2e, f and S2d). MAIT cells was more abundant in the TIL low group while SPP1+ macrophages
exhibited higher proportions in the TIL high group. Due to the insufficient number of MAIT cells to
perform further comparative analysis, we focused on SPP1+ macrophages. Sub-clustering of HR+
breast cancer mono/macro highlighted the differences in the distribution of SPP1+ macrophage based

on the TIL levels (Figure 2g).
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Figure 2. Comparison of cell type proportion by TIL levels revealed increased SPP1+
macrophages in TIL high HR+ breast cancer.

(a—c) UMAP plot shows detailed immune cell subtypes according to TIL levels and breast cancer
subtypes.

(d) Bar plot shows cell type proportion of breast cancer subtype in accordance with TIL levels (left),

and the corresponding sample size (right).
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(e) Bar plot shows proportion of cell types of mono/macro in HR+ breast cancer in accordance with
TIL levels.

(f) Boxplot shows proportion of SPP1+macro in accordance with TIL levels (Wilcoxon rank sum test).
(g) UMAP plot shows proportion of mono/macro in HR+ breast cancer in accordance with TIL levels.
Red circles indicate the difference in the number of SPP1+ macro.

TIL, tumour-infiltrating lymphocytes; DC, dendritic cells; Mono/macro, monocytes, and macrophages.
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TIL high HR+ mono/macro enriched in ECM remodeling-associated pathways with elevated

SPP]1 expression

To explore the characteristics of SPP1+ macrophages in HR+ breast cancer, we performed pathway
enrichment analysis with DEGs of SPP1+ macrophages with other mono/macro. From the DEG
analysis, 24 up-regulated genes including SPP1, CSTB, SLC2A1, and NURPI were used for pathway
enrichment analysis (Figure 3a). In this analysis, pathways related to ECM remodeling, such as ECM
degradation, collagen degradation, and ECM organisation, were significantly enriched in SPP1+
macrophages from HR+ breast cancer (Figure 3b). Similarly, ECM remodeling pathways including
ECM degradation, were enriched in SPP1+ macrophages of HR+ breast cancer TIL low group (Figure
S3a, b).

To explore whether these characteristics were associated with TIL status, we compared TIL
high and low groups within HR+ breast cancer mono/macro subtypes. In 8 out 10 mono/macro cell
subtypes, including SPP1+ macrophages, ECM degradation pathway was enriched in the TIL high
group (Figure S3c).

To establish whether pathway enrichment related to ECM remodeling was a characteristic of
mono/macro from TIL high HR+ breast cancer, we utilised 32 up-regulated genes in the TIL high group
for pathway enrichment analysis (Figure 3c). Pathways related to ECM remodeling including ECM
degradation and organisation, were enriched in the TIL high group (Figure 3d). A heatmap showing the
expression levels of 41 genes involved in ECM degradation revealed that these genes were highly
expressed not only in TIL high group SPP1+ macrophages but also in other mono/macro subtypes
compared to TIL low group (Figure 3e).

In DEG analysis of HR+ mono/macro, SPPI gene was up-regulated in the TIL high group
(adjusted p-value = 6.128E-273, log2 fold change = 2.963) (Figure 3c). Both feature and violin plots
confirmed higher SPPI expression in TIL high group compared to TIL low group, and this was not
specific to SPP1+ macrophages subtype (Figure 3f). These trends were not observed in other breast

cancer subtypes (Figure S3d, e).
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In addition, we compared the expression of genes involved in angiogenesis in SPP1+
macrophages and other mono/macrophages to investigate whether SPP1+ macrophages played an
angiogenic role, as previously reported [27]. However, we did not observe any significant increase in
angiogenic genes within SPP1+ macrophage (Figure S4a—c). Similarly, no positive correlation of SPP1
expression and angiogenic gene expression was observed in mono/macro (Figure S4d—f). Taken
together, TIL high HR+ breast cancer mono/macro exhibited higher expression of SPP1, particularly in

SPP1+ macrophages subtype, and displayed gene enrichment associated with ECM remodeling.
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Figure 3. Genes related to ECM remodeling process and SPPI are increased in TIL high HR+

breast cancer mono/macro.
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(a) Volcano plot of DEGs between SPP1+macro and other mono/macro cell subtypes of HR+ breast
cancer. Red dots indicate DEGs.

(b) Bar plot shows enriched pathways of up-regulated genes in SPP1+ macro.

(c) Volcano plot of DEGs between HR+ mono/macro of TIL high and TIL low group. Red dots indicate
DEGs.

(d) Bar plot shows enriched pathways of up-regulated genes in TIL high HR+ mono/macro.

(e) UMAP plot shows HR+ mono/macro (left), Feature plot shows level of SPPI expression in HR+
Mono/macro in accordance with the TIL levels (middle), Violin plot shows level of SPPI expression
in HR+ Mono/macro in accordance with the TIL levels (right).

(f) Heatmap of gene expression associated with ECM degradation in HR+ Mono/macro in accordance
with the TIL levels and detailed cell type.

DEQG, differentially expressed genes; macro, macrophages; mono/macro, monocytes, and macrophages;
TIL, tumour-infiltrating lymphocyte; NS, not significant; avg Log2FC, average log, fold change;

p_val, p-value; p.adjust, adjusted p-value.

17



TIL high HR+ Mono/macro interact more with TIL via SPP1 signalling

Cell-to-cell interaction analyses were performed to study the interactions of SPP1+ macrophages with
other immune cells using CellChat [24]. We initially compared TIL high and low HR+ breast cancer
with differential number of interactions and differential interaction strength (Figure 4a, b). Figure 4a
shows that the number of interactions within mono/macro and interactions from mono/macro toward
CDS8T were more enriched in TIL high group. Moreover, these interactions along with those from
mono/macro to CDAT exhibited stronger interaction strengths in the TIL high group (Figure 4b).
Comprehensive analysis within the HR+ subtype identified significant enrichment of the SPPI
signalling pathway in the TIL high group (Figure S5a), indicating a potential role of SPP1 gene in
immune cell interactions.

To determine which immune cell subtypes interact via SPPI, we analysed SPP1 signalling in
TIL high and low HR+ breast cancer. In TIL low HR+ breast cancer, SPP1+ macrophages were the
primary source (sender) of SPP1, playing a crucial role (Figure 4c). However, in TIL high group, other
mono/macro also contributed substantially sources, enabling them to perform a similar function (Figure
4d). Similarly, SPP1+ macrophages had a higher communication probability in SPP1 signalling than
other mono/macro subtypes in the TIL low group (Figure 4e), while most of mono/macro displayed
similar communication probabilities in the TIL high group (Figure 4f). We proceeded to analyse the
role of SPP1 in intercellular communication network and identified the cell types involved in this
process. In TIL low group, SPP1+ macrophages were the major sender (Figure 4g), but in TIL high
group, various mono/macro subtypes acted as senders of SPP1 signalling (Figure 4h). Additionally, T
cells tended to act as the major receiver in SPP1 signalling in TIL high group (Figure 4h).

To determine which ligand-receptor pairs are important in SPP1 signalling, we analysed the
contribution of each pair in the SPP1 signalling pathway (Figure S5b, ¢). SPP1-CD44 was the highest
contribution in both TIL high and low groups. The receptor action of ITGA+ITGB to SPP1 was more
pronounced in the TIL high group compared to the low group. While SPP1 expression level was higher
in the TIL high group, CD44 levels remained similar between the TIL high and low groups.

Furthermore, the expression level of ITGBI was elevated in TIL high group (Figure S5d, e).
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Additionally, we examined the expression of immunosuppression and proliferation-related markers in
T cells based on the expression of SPP/ in mono/macro to evaluate the impact of SPP1 signalling on T
cells. The analysis revealed no significant differences (Figure S6a—c). Collectively, these findings
underscored the significant role of SPP1 in intercellular interaction between mono/macro and T cells in

TIL high HR+ breast cancer.
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Figure 4. Cell-to-cell interaction comparison analysis between TIL high HR+ breast cancer and

TIL low group.
(a) Differential number of interactions between TIL high and TIL low. Arrow represents direction,

coloured edges indicate increased signalling in TIL high (red) or TIL low (blue) and line width reflects

strength value.
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(b) Differential interaction strength between TIL high and TIL low, Arrow represents direction,
coloured edges indicate increased signalling in TIL high (red) or TIL low (blue) and line width reflects
interaction number.

(¢) Communication probability of SPP1 signalling network of source (sender) (rows) across target
(columns) in TIL low.

(d) Communication probability of SPP1 signalling network in TIL high.

(e) Hierarchy plot shows cell-cell communication network of SPP1 signalling in TIL low. Circle size
indicates each cell group proportion and edge width represents communication probability.

(f) Cell-cell communication network of SPP1 signalling in TIL high.

(g) Heatmaps show relative importance of each cell group across signalling roles in TIL low and (h)
relative importance of each cell group across signalling roles in TIL high.

TIL, tumour-infiltrating lymphocyte; mono/macro, monocytes, and macrophages; CD4T, CD4+ T cells;

CDST, CD8+ T cells; NK, NK T cells; OtherT, other T cells.
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Spatial colocalization of mono/macro and CD8T/CDA4T in TIL high HR+ breast cancer

Through cell-to-cell interaction analysis, we demonstrated differential interactions between
mono/macro and CDS8T/CDAT in TIL high and low HR+ breast cancer. Furthermore, we identified
mono/macro as sender, and CDS8T/CDAT as receivers in SPP1 signalling. To explore the spatial
proximity of these cells for potential interactions, we utilised two spatial transcriptomics datasets of
HR+ breast cancer [25]. They were classified as TIL high (CID4535) and TIL low (CID4290) based on
H&E images (Figure 5a, ¢). We confirmed appropriate pathologic annotations were done to determine
the distribution of invasive cancer, stroma, lymphocyte, and other components in deconvoluted
classification. (Figure 5b, d).

Subsequently, we employed signature scoring of cell subtypes using the top 25 genes to
annotate the spots obtained through spatial transcriptomics. These scores were then utilised for
conducting correlation analyses across the scores in each spot. Signature scores of mono/macro, CD8T,
and CDA4T were calculated using our scRNA-seq data of CD45+ breast cancer (Figure 5Se, f). To validate
the legitimacy of the signature score of our CD45+ sorted dataset, we employed a public non-sorted
scRNA-seq dataset (GSE176078) to establish additional signature score criterion [28]. Comparing the
distribution of signature scores calculated from the public dataset with our dataset, we found no
significant differences (Figure S7c—f). Then, we analysed the correlation of signature scores in each
spot of interest. The correlation between mono/macro score and CDS8T score (R?=0.52), and
mono/macro score and CD4T score (R>=0.43) was higher in the TIL high group than that in the low
group (R*=0.045 and 0.017, respectively) (Figure 5g, h). These results showed that in TIL high group,
macro/mono and CD8T/CD4T were more likely in the same spot compared to TIL low group, implying

their colocalization.

22



g samplo 5 cinaso B cowss h samplo B ciows0 i cioisss

A%=0.045,p<2.2e-16 . R*=0.017,p=89e-11
R*=052,p<22e16 . R*=043,p<22e-16

Figure 5. Mono/macro and CD8T/CDA4T are spatially colocalised in TIL high HR+ breast cancer.
(a, c) H&E image of tissue section analysed using VISIUM.

(b, d) Classification of VISIUM public dataset.

(e, f) Signature score of Mono/macro, CD8T, and CD4T.

(g, h) Correlation of signature scores (Spearman’s correlation coefficient).

Mono/macro, monocytes, and macrophages; CDST, CD8+ T cells; CD4T, CD4+ T cells; TIL, tumour-

infiltrating lymphocyte.
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Discussion
Here, we highlighted the abundance of SPP/-expressing macrophages in TIL high HR+ breast cancer,
and their heightened interaction with colocalised T cells through SPP1 signalling.

The SPPI gene encodes osteopontin, a matricellular protein previously associated with
promoting angiogenesis in breast cancer [29]. Single cell studies have indicated that SPP1+
macrophages interact with FAP+ fibroblasts in colon cancer, exhibiting a pro-angiogenic signature [27,
30]. However, our study revealed that SPP1+ macrophages did not exhibit higher expression of
angiogenic marker genes, and SPPI expression in macrophages was not correlated with the expression
of angiogenic marker genes. This pattern remained consistent across all breast cancer subtypes. Thus,
in breast cancer, SPP1+ macrophages may serve roles other than angiogenesis.

In this research, we proposed a novel role of SPP/ within tumour-associated macrophages in
breast cancer, shedding light on their primary interaction mediated by SPP1 signalling with other
immune cells. This signalling pathway was associated with cancer-promoting pathways in gastric
cancer [31], and was linked to TAM infiltrations and poor prognosis in glioma [32]. However, these
studies mainly focused on the role of SPP1+ macrophages in their interaction with tumour epithelial
cells. In a recent study involving ovarian cancer, SPPI expression was associated with higher TIL
levels, but also with increased immune checkpoint marker gene expression and poor prognosis,
potentially indicating immune tolerance [33]. Unfortunately, this study did not specify the cell types
responsible for these expression changes. We could not identify any significant correlation between
heightened SPPI expression in macrophages and immune checkpoint marker gene expression or cell
cycle progression scores in T cells. Additionally, Tregs did not appear as the primary recipients of SPP1
signalling in TIL high HR+ breast cancer. Therefore, it is plausible that the impact of macrophage-
derived SPPI on T cells may not be associated with immune suppression, and further research is needed
to ascertain their precise role.

SPP1+ macrophages have previously been associated with fibrogenesis in chronic
inflammation [34, 35] and a higher metastatic rate in cancer [36, 37]. To examine how macrophage
function affects TILs, we conducted DEG analyses. Both SPP1+ macrophages and

monocytes/macrophages in TIL high HR+ breast cancer showed upregulation of genes related to ECM
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degradation compared to other monocytes/macrophages and those in the TIL low group. These findings
suggest an increased ECM remodeling process in TIL high HR+ breast cancer, potentially facilitating
tumour invasion and metastasis [38]. Although the precise mechanism underlying this up-regulated
ECM remodeling in macrophages in TIL high HR+ breast cancer remains unclear, it could potentially
contribute to the unfavourable prognosis associated with this subtype.

In contrast to other breast cancer subtypes, patients with HR+ breast cancer having higher TIL
levels are associated with worse prognosis [7, 8]. However, after receiving chemotherapy, patients
having higher TIL levels are associated with higher pCR rates along with longer disease-free survival
[7, 39]. While our study suggests increased SPPI expression in macrophages as a unique characteristic
of TIL high HR+ breast cancer that may impact TILs, ECM remodeling and prognosis, all patients with
HR+ breast cancer included in our study were untreated, which limits our ability to assess the impact
of chemotherapy on the TME and its association with prognosis. Notably, recent research has indicated
an elevated risk of recurrence in tamoxifen-treated HR+ breast cancer cases with high SPP/ mRNA
expression in bulk tumour tissue [40]. This association may be attributed to the previously mentioned
immunosuppressive and ECM remodeling effects of SPP1+ macrophages [33, 38]. Therefore, a
potential strategy to enhance the prognosis of patients with TIL high HR+ breast cancer could involve
combining drugs that target SPP/ with the current chemotherapy regimen.

Currently, there are no commercially available drugs for SPP/ inhibition. However, based on
our investigation utilising the Drug Gene Budger (DGB) [41], daunorubicin was identified as a potential
agent capable of reducing SPPI expression in acute myeloid leukaemia cell lines such as SKM1.
Nonetheless, further research is imperative for drug development, as daunorubicin did not exhibit
similar effects in other cell lines within the DGB database.

In conclusion, we demonstrated that increased SPPI expression in monocytes/macrophages in
TIL high HR+ breast cancer may directly influence TILs, potentially enhancing ECM remodeling and
T cell interactions. Therefore, targeting SPP1+ macrophages could offer a promising approach to

ameliorate the poor prognosis associated with TIL high HR+ breast cancer.
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Supplementary information

Table S1. Clinical information of breast cancer patients involved in the study.

subtype TIL level Sample Name TIL value cell counts
BC17157 80 2440
GSA6 60 15739
BC19104 40 3384
GSAl 40 9249
. BC17114 30 2059
High
GSA3 30 4624
GSA2 20 10637
BC18050 10 2695
TNBC
BC19127 10 4133
GSA4 10 1074
BC17087 5 2172
BC17166 5 3512
BC19115 5 3462
Low
GSAS 5 3077
BC18051 2 2317
BC19108 2 2984
BC17100 90 2380
BC17079 40 2960
High BC17148 30 767
BC17172 20 3638
GSA7 20 524
HR+ BC17083 5 218
GSA8 5 4953
GSA9 5 5268
Low
BC17146 2 459
BC17080 0 3271
BC17122 0 593
BC17134 40 2035
High BC17140 40 1703
HER2+
GSA10 10 4919
Low BC17121 1 2813

TNBC, Triple-negative breast cancer; HR+, Hormone receptor-positive breast cancer, HER2+, HER2-

positive breast cancer.
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Figure S1. Sample quality control and detailed annotation of immune cells.

(a) UMAP plot shows predicted cell type 12 by Azimuth.

(b) UMAP plot shows predicted cell type 12 represented by ref.umap.

(c) Feature plot shows percent.mt, nFeature RNA and ncount RNA.

(d) Expression level of CCR7 and SELL in T-cell

() UMAP plot shows predicted cell type 12 by Azimuth (left) and detailed cell type (right) in T-cell.
(f) Expression level of canonical markers of monocyte and macrophages in mono/macro.

(g) Dot plot shows expression level of gene signature of clusters in mono/macro.
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(h) UMAP plot shows predicted cell type 12 by Azimuth (left) and detailed cell type (right) in
Mono/macro.

Mono/macro, monocytes, and macrophages; DC, dendritic cells.
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Figure S2. Proportion of immune cells in different subtypes of breast cancer.
(a—c) Bar plot shows proportion of each cell type across TIL levels.
(d) Boxplot shows proportion of MAIT in HR+ subtype across TIL levels (Wilcoxon rank sum test)

TIL, tumour-infiltrating lymphocytes; MAIT, mucosal-associated invariant T cells.
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Figure S3. Supplementary data for pathway enrichment analysis and SPPI expression in breast
cancer.

(a) Volcano plot of DEGs between SPP1+ macro and other mono/macro cell types of TIL low group in
HR+ subtype. Red dots indicate DEGs.

(b) Bar plot shows enriched pathways of up-regulated genes of DEG analysis between SPP1+ macro
and other mono/macro cell types of TIL low group in HR+ subtype.

(c) Bar plots show enriched pathways of up-regulated genes of DEG analysis between TIL high and
TIL low of each mono/macro subtype in HR+ breast cancer.

(d) Feature plot shows SPPI expression level in each breast cancer subtype.

(e) Expression level of SPPI in TNBC and HER2+ subtype across TIL levels.

(f) Expression level of SPP1 in TNBC, HR+ and HER2+ subtype across samples.

DEQG, differentially expressed gene; macro, macrophages; mono/macro, monocytes, and macrophages;
TIL, tumour-infiltrating lymphocytes; NS, not significant; avg Log2FC, average log, fold change;

p_val, p-value; p.adjust, adjusted p-value.
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Figure S4. SPPI expression of mono/macro was not associated with the expression of angiogenic

markers in breast cancer.
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(a) Violin plot showing expression level of genes in mono/macro of TNBC.

(b) Violin plot showing expression level of genes in mono/macro of HR+ subtype.

(c) Violin plot showing expression level of genes in mono/macro of HER2+ subtype.

(d) Correlation of SPP1 and angiogenic markers (VEGFA, VCAN, FCNI1, and THBSI) in mono/macro
of TNBC (Spearman correlation coefficient).

(e) Correlation of SPP1 and angiogenic markers (VEGFA, VCAN, FCNI, and THBS1) in mono/macro
of HR+ subtype (Spearman correlation coefficient).

(f) Correlation of SPP1 and angiogenic markers (VEGFA, VCAN, FCN1, and THBSI) in mono/macro
of HER2+ subtype (Spearman correlation coefficient).

Mono/macro, monocytes, and macrophages.
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Figure S5. Supplementary data for cell-to-cell interaction analysis.

(a) Bar plot shows all significant signalling pathways that are ranked based on their differences of
overall information flow between TIL high and TIL low groups in HR+ breast cancer. The signalling
pathways coloured by red are more enriched in TIL high group, the black ones are equally enriched in
TIL high and TIL low groups, and the blue ones are more enriched in TIL low group.

(b) Relative contribution of each ligand-receptor pair to the SPP1 signalling network in TIL low HR+
breast cancer.

(c) Relative contribution of each ligand-receptor pair to the SPP1 signalling network in TIL high HR+

breast cancer.
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(d) Violin plot shows expression levels of ligand and receptors of the SPP1 signalling in TIL low HR+
breast cancer.
(e) Violin plot shows expression levels of ligand and receptors of the SPP1 signalling in TIL high HR+
breast cancer.

TIL, tumour-infiltrating lymphocytes.

38



?l
33 i "
Hﬂl | LT R
g b
2 1
w wits o7 00t Tt T T T T
NS ES LSS, RS ESRSE w" SRSt S S SR TS ST
PR ASEaSek Sk SO SOk SALE A AL S PR ASOONEL SR SRR SRt A LKA ANC S
sample sample
CTLA4
2.
::;: ] Iusaz.
32 HR
C G2M.Score g‘ ‘ ‘ ’ "
15 LRAC————= i D A e
. SEESEIEES LR ELEASEEELS ISP ISR
Vil ey
1 Tmc sample
00 Yevyvyees e ol 'vv e «>
B E BT ESFRIR XX RERREYS _
PR AN NN ACE AR AN &glvlplsf’ P ‘g;z’éf AR g,
sample 'g'a HER2+
E |
S.Score é‘
. 3
075 l l
0.50 HER2+
HR+
lhh ALLM 1 1 l 1 l ii LB

sample

Figure S6. SPP1 expression of mono/macro was associated with neither cell cycle score nor
expression of immune checkpoint markers of T cells in breast cancer.

(a) Expression level of SPPI of each sample in mono/macro.

(b) Expression level of immune checkpoint molecules (PDCDI, LAG3, CTLA4 and TIGIT) of each
sample in T cells.

(c) Violin plot showing cell cycle score of each sample in T cells.

Mono/macro, monocytes, and macrophages.
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Wu et al. (2021) Wu et al. (2021)

Figure S7. Signature scoring in VISIUM.

(a) UMAP plot shows cell types of HR+ subtype. T cells were divided into four groups.

(b) Feature plots show signature score of each cell type in HR+ subtype.

(c) Signature score represented in CID4290. Signature genes are derived from GSE176078 (ER+
subtype).

(d) Signature score represented in CID4290. Signature genes are derived from our HR+ subtype data.
(e) Signature score represented in CID4535. Signature genes are derived from GSE176078 (ER+
subtype).

(f) Signature score represented in CID4535. Signature genes are derived from our HR+ subtype data.
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