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Abstract 

Breast cancer is a globally prevalent cancer, categorised into hormone receptor-positive (HR+), HER2-

positive (HER2+), and triple-negative (TNBC) subtypes. The level of tumour-infiltrating lymphocytes 

(TILs) is an important prognostic indicator of breast cancer. To explore the divergent roles of TIL levels 

across various subtypes and examine their effect on immune cell composition and tumour 

microenvironment, we employed single-cell RNA sequencing on 31 patients with breast cancer 

exhibiting different TIL levels and subtypes. We observed elevated SPP1+ macrophages and reduced 

mucosal-associated invariant T cells in HR+ breast cancer with high TIL levels (TIL high HR+ breast 

cancer). Furthermore, SPP1 expression was increased in other monocytes and macrophages 

(mono/macro) subgroups in TIL high HR+ breast cancer. Both SPP1+ macrophages and TIL high HR+ 

breast cancer mono/macro showed increased expression of genes related to ECM remodeling. 

Moreover, cell-cell interaction analyses revealed enhanced SPP1 signalling in the interaction between 

mono/macro and T cells in TIL high HR+ breast cancer compared to TIL low group. Spatial 

transcriptomics data of HR+ breast cancer highlighted close proximity of mono/macro, CD8+ T cells, 

and CD4+ T cells in TIL high HR+ breast cancer compared to TIL low group. Collectively, we 

discovered a novel role of SPP1-expressing mono/macro in influencing T cells within the tumour 

microenvironment of TIL high HR+ breast cancer. Our findings may explain poor prognosis of HR+ 

breast cancer associated with elevated TIL levels, suggesting that SPP1+ macrophages could be 

potentially targeted to improve their prognosis. 

Keywords: Breast cancer, Hormone receptor (HR), Tumour-infiltrating lymphocytes, Tumour-

associated macrophages, Secreted Phosphoprotein 1  
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Introduction 

Breast cancer is the second most prevalent type of cancer globally, with an age-standardized incidence 

rate of 46.8 per 100,000 people in 2022 [1]. It can be classified into three subtypes based on the 

expression of hormone receptors and HER2 receptor: hormone receptor-positive (HR+), HER2-positive 

(HER2+) and triple negative breast cancer (TNBC) [2]. A critical prognostic factor in breast cancer is 

the level of tumour-infiltrating lymphocytes (TILs), which can be assessed via histologic examination 

[3]. TILs are defined as mononuclear cells, including plasma cells, that infiltrate the stromal tissue 

within the invasive tumour area [4]. TILs exhibit subtype-specific characteristics, with HER2+ breast 

cancer and TNBC typically manifest higher TIL levels than HR+ breast cancer [5]. In HER2+ breast 

cancer and TNBC, increased TIL levels are associated with improved pathological complete response 

(pCR) rates after neoadjuvant chemotherapy (NAC), longer disease-free survival, and overall survival 

[6]. Conversely, in HR+ breast cancer, higher TIL levels are linked to shorter overall survival [7, 8]. 

Numerous immune cell types can modulate TIL function within the tumour microenvironment 

(TME) [9]. Among these, tumour-associated macrophages (TAMs) represent a significant proportion 

of breast cancer immune cells and are closely related to unfavourable prognosis [10, 11]. Single-cell 

RNA sequencing (scRNA-seq) studies have revealed specific TAM subsets linked to T cell infiltration 

and immunosuppression in patients with breast cancer [12, 13]. However, our knowledge of differences 

in immune cell composition, including TAMs, between low and high TIL cases is limited, and the 

influence of such differences on immune cell infiltration remains poorly understood. 

Different subtypes of breast cancers have different TMEs [14]. HR+ breast cancer often exhibits 

not only a low infiltration of TILs but also higher number of TAMs, which are typically immune-

suppressive and associated with poor survival [15]. The emergence of novel technologies, including 

single cell and spatial transcriptomics, has enabled more detailed characterization of the differences in 

TME among breast cancer subtypes. 

Here, we stratified patients with breast cancer based on their TIL levels (‘TIL high’ and ‘TIL 

low’), considering each subtype (HR+, HER2+, and TNBC). We then analysed the differences in the 

composition of CD45+ immune cell subtypes using scRNA-seq. Furthermore, we elucidated the 
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differences in immune cell interactions within the TME between TIL high and TIL low breast cancers, 

employing cell-cell interaction analysis and spatial transcriptomics. 
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Materials and methods 

Ethics 

This study received approval from the Institutional Review Board of Asan Medical Center (2016-

0935) and adhered to the principles of the Declaration of Helsinki of 1975, as revised in 1983. All 

patients provided written informed consent. 

 

Single cell dissociation 

Breast cancer tissue was placed in RPMI 1640 medium (11875093, Thermo Fisher Scientific, Waltham, 

MA, USA) and promptly transported to the laboratory within two hours post-resection. After washing 

with Dulbecco’s Phosphate Buffered Saline (DPBS, L0615, Biowest, Nuaillé, France) containing 1× 

ZellShield anticontaminant agent (Minerva Biolabs, Berlin, Germany), the tumour tissues were minced 

into 1-mm-diameter pieces. The minced breast cancer tissue was incubated for 1 h in digestion buffer 

(DMEM-F12 (11330032, Thermo Fisher Scientific), 2% FBS (Corning, VA, USA), 1% 

penicillin/streptomycin (15140-122, Thermo Fisher Scientific), 10 μg/mL insulin (51500056, Thermo 

Fisher Scientific), and 10 ng/mL epidermal growth factor (PHG0311, Thermo Fisher Scientific) 

supplemented with 1× collagenase/ hyaluronidase (CA094-002, Gendepot, Barker, TX, USA). The 

digested samples were centrifuged at 80 × g for 30 s, and the resultant supernatant was filtered through 

a 70-μm nylon mesh strainer (352350, Corning Life Sciences, Tewksbury, MA, USA). The pellet from 

the digested samples was resuspended in 0.25% trypsin/EDTA (25200072, Thermo Fisher Scientific) 

and incubated for 3–5 min to release single cells. Once a single cell suspension was obtained, cold 

Hank’s balanced salt solution (L0612, Biowest) containing 2% FBS was added, and cells were 

recovered by centrifugation at 300 × g for 5 min. Subsequently, the cells from the supernatants and the 

single cells from the pellet were combined, counted, and cryopreserved. 

  

https://www.biocompare.com/107154-Corning-Life-Science/
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CD45+ cell isolation 

CD45+ cells were isolated either by magnetic bead sorting or by fluorescence-activated cell sorting 

(FACS) sorting. In the magnetic separation method, dead cells were initially removed using a dead cell 

removal kit (130-090-101, Miltenyi Biotec, Auburn, CA, USA), followed by cell labelling with CD45-

microbeads (130-045-801, Miltenyi Biotec) and enriched using a magnetic-activated cell sorting 

(MACS) column (130-042-901, Miltenyi Biotec) and MACS separator (130-091-051, Miltenyi Biotec). 

For FACS sorting, single cells were stained with an anti-human CD45 antibody (304016, Biolegend, 

San Diego, CA, USA) and resuspended in 4',6-diamidino-2-phenylindole solution (D1306, Thermo 

Fisher Scientific). CD45+ live cells were sorted using FACSAria (BD bioscience, San Jose, CA, USA). 

The isolated cells were resuspended in CS10 freezing media (100-1061, Stemcell Technologies, 

Bothell, WA, USA) and stored in an NL2 tank until the next use or were immediately sequenced. 

 

scRNA-seq library preparation and sequencing 

scRNA-seq library preparation was carried out using the Chromium Single Cell 3′ Kit v2 and the 

Chromium Next GEM Single Cell 3′ Kit v3 platform (10x Genomics, Pleasanton, CA, USA). Cell 

suspension volumes were determined to attain a target capture of either 5,000 or 10,000 cells per sample. 

This process involved the generation of gel beads in emulsion (GEMs), barcoding, GEM-reverse 

transcription (RT) clean-up, complementary DNA amplification, and library construction, following 

the manufacturer's specified protocol. Library quality assessment was then performed using Bioanalyzer 

2100 (Agilent, Santa Clara, CA, USA). Subsequently, sequencing was executed using the NovaSeq 

6000 System (Illumina, Inc., San Diego, CA, USA), generating 150 base pairs (bp) paired-end reads. 

 

scRNA-seq data processing 

To increase the sample size and analyze independent datasets, we performed joint analysis of our dataset 

with a public dataset (GSA, HRA000477 [16]), which was a single cell RNA sequencing dataset where 
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TIL values were measured and human CD45+ cells were sorted from breast cancer tissue. Analysis was 

conducted starting from the Cell Ranger processing stage with raw fastq files. The 10x Genomics Cell 

Ranger 6.1.2 [17] was used for mapping sequencing reads against the GRCh38 human reference (2020-

A, GENCODE v32/Ensembl 98), unique molecular identifier (UMI) counting, and cell identification. 

Pre-processing using the Seurat package (version 4.1.1) [18] was performed in R (version 4.1.3) [19]. 

In total, 31 samples were merged. Cells that had >20% mitochondrial genes or unique feature counts 

over 6,000 or less than 200 were excluded, then 110,059 cells remained. To normalise the dataset, we 

employed the “NormalizeData” procedure. Scaling was applied to the dataset with 2000 features 

selected through “FindVariableFeatures”. We then performed principal components analysis (PCA) on 

the scaled data using “RunPCA” (dims = 1:30). Harmony (version 0.1.0) [20] was employed for batch 

effect correction, using each sample as a batch assignment. Harmony embedding was used in 

downstream analysis. Uniform manifold approximation and projection (UMAP) was performed using 

“RunUMAP”. 

 

Cell type annotation 

Azimuth package (version 0.4.5) [18, 21] (reference = PBMC) was used for cell type annotation for 

CD45+ immune cells. The metadata column named 'predicted.celltype.l2' determined by Azimuth was 

utilised to isolate immune cells into four groups: T-cell (predicted.celltype.l2 = "CD4 CTL", "CD4 

Naive", "CD4 Proliferating", "CD4 TCM", "CD4 TEM", "CD8 Naive", "CD8 Proliferating", "CD8 

TCM", "CD8 TEM", "dnT", "gdT", "MAIT", "NK", "NK Proliferating", "NK_CD56bright", and 

"Treg"), B-cell (predicted.celltype.l2 = "B memory", "B intermediate", "B naive", and "Plasmablast"), 

DC (predicted.celltype.l2 = "ASDC", "cDC1", "cDC2", and "pDC"), and mono/macro 

(predicted.celltype.l2 = "CD14 Mono" and "CD16 Mono"). Further annotation was conducted for T 

cells and mono/macro. Memory T cells (predicted.celltype.l2 = "CD8 TCM”, "CD8 TEM”, "CD4 

TCM”, and "CD4 TEM”) were defined based on marker expression. CCR7 and SELL double positive 

cells (UMI count >0) were annotated as TCM, while others as TEM. Mono/macro cells 

(predicted.celltype.l2 = "CD14 Mono” and "CD16 Mono”) were separated and clustered (resolution 
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0.3). Each cluster were named based on expressed marker except mitochondrial genes. Expressed 

markers were identified using  the “FindAllMarkers” function in Seurat with the parameter “pct = 0.5”. 

Following cell type annotation, each breast cancer subtype was individually analysed in downstream. 

  

Pathway enrichment analysis 

Differentially expressed genes (DEGs) were computed for each group using the “FindMarkers” function 

in Seurat. Specifically, we considered genes as up-regulated if they exhibited an average log2 fold 

change greater than 1 and a p-value less than 0.05, for further analysis. Pathway enrichment analysis 

was subsequently conducted using the “enrichPathway” method from the ReactomePA package 

(version 1.38.0) [22] in R. Bar plots, visualising significant pathways based on an adjusted p-value 

threshold of less than 0.05 (utilising the Benjamini–Hochberg method), were generated using ggplot2 

[23]. 

  

Cell-cell interaction analysis 

CellChat package (version 1.6.1) [24] was used to analyse cell-to-cell interactions. CellChat object was 

created using the createCellChat function and CellChatDB human dataset. T cells were categorised into 

four groups: CD4T ("CD4 CTL", "CD4 Naive", "CD4 Proliferating", "CD4 TCM", and "CD4 TEM"), 

CD8T ("CD8 Proliferating", "CD8 TCM", "CD8 TEM", and "CD8 Naive"), NK ("NK", "NK 

Proliferating" and "NK_CD56bright"), and OtherT ("dnT", "gdT", "MAIT", and "Treg"). To identify 

differential interactions in cell-cell communication and to explore conserved and context-specific 

signalling pathways across different TIL levels, we compared TIL high and TIL low with 

“netVisual_diffInteractions” and “rankNet”. Then, we analysed SPP1 signalling in each cell group of 

varying TIL levels. To visualise SPP1 signalling pathway, “netVisual_heatmap” and 

“netVisual_aggregate” were used. Identification of signalling roles of cell group was performed by 

utilising functions “netAnalysis_computeCentrality” and “netAnalysis_signallingRole_network”. To 
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compute the contribution of each ligand-receptor pair and plot signalling gene expression distribution, 

“netAnalysis_contribution” and “plotGeneExpression” were employed. 

  

Spatial transcriptomics data processing and signature scoring 

Seurat objects for each sample were created using the filtered count matrix and spatial data from the 

Zenodo data repository [25] via Seurat package. To normalise each sample, we employed the 

“SCTransform” function. TIL levels of each sample in H&E images were assessed by a certified 

pathologist. 

To identify cell type signatures, markers for each cell group were analysed in scRNA-seq data 

using the “FindMarkers” function with default parameters. We selected the top 25 markers as signature 

genes. Signature scoring was conducted through the “AddModuleScore” method with a list of signature 

genes. To minimize the influence of variations in TIL quantity on the scores, we normalized each score. 

We scaled and centred the signature scores in R and subsequently employed them for correlation 

coefficient analysis. 

 

Cell cycle scoring 

To assign cell cycle scores to each cell, we utilised G2/M and S phase markers. This calculation was 

performed using the “CellCycleScoring” function available in the Seurat. 

 

Statistical analysis 

The Wilcoxon rank sum test and Kruskal–Wallis rank sum test were performed using R stats package 

(ver.3.6.2) [19]. Additionally, Spearman’s rank correlation coefficient was calculated using R package 

ggpubr (ver.0.6.0) [26]. 

 



 
 

8 

Data availability 

The study's datasets are available from the corresponding author upon a reasonable request. The public 

data used in the research has been specified in the main manuscript. 
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Results 

Heterogeneity of tumor microenvironment in breast cancer 

To identify the characteristics of TME in breast cancer and its differences based on TIL levels, we 

conducted scRNA-seq using isolated CD45+ cells from 21 primary tumour tissues with accompanying 

TIL data. These TIL levels were evaluated by a certified pathologist using H&E stained slides. We also 

included 10 samples from the Genome Sequence Archive (GSA, HRA000477) dataset [16]. In total, we 

analysed 31 samples (21 samples from this study, 10 from GSA database) using scRNA-seq, comprising 

16 TNBC (10 and 6) and 11 HR+ (8 and 3) and 4 HER2+ samples (3 and 1). Samples with TIL value 

≥10 were classified as TIL high group (n = 18, (TNBC n = 10, HR+ n = 5, and HER2+ n = 3)) and those 

with <10 as TIL low group (n = 13, (TNBC n = 6, HR+ n = 6, and HER2+ n = 1)) (Table S1). Quality 

control was carried out to remove low-quality cells, and 110,059 cells were left for analysis (Figure 

S1a-c). After removing the batch effect, cells were distributed evenly unaffected by sample type, breast 

cancer subtype, or TIL levels (Figure 1a, b). We clustered and visualised the cells using UMAP (Figure 

1c). The annotation was validated using canonical markers (Figure 1e). We performed more detailed 

annotation of immune cell subtypes with canonical markers and gene signatures (Figure 1d and S1d–

h). To investigate a difference in proportion of cell types between samples, we generated plots depicting 

the proportion of cell type relative to TIL levels and subtypes (Figure 1f, g). Regardless of TIL levels 

and subtypes, breast cancer showed a high degree of heterogeneity in the proportion of immune cell 

subtypes (Figure 1g). The proportions of immune cell subtypes did not significantly differ among HR+, 

HER2+, and TNBC (Figure 1h). 
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Figure 1. Heterogeneity of immune cell composition in breast cancer. 

(a–d) UMAP plot shows breast cancer subtype, TIL levels, cell type, and detailed cell type of 31 

samples. 

(e) Dot plot shows each major cell type and their expression of selected marker genes. 

(f) Bar plot shows TIL value. TIL levels of each sample are represented in colours. 

(g) Bar plot shows proportion of cell types in 31 samples. 

(h) Bar plot shows proportion of cell types in breast cancer subtypes. 

TIL, tumour-infiltrating lymphocytes; DC, dendritic cells; Mono/macro, monocytes, and macrophages. 
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High proportion of SPP1+ macro in TIL high group of HR+ breast cancer 

Our objective was to understand whether and how variations in TIL levels led to differences in immune 

cell composition. Given that breast cancer shows different characteristics depending on its subtype, we 

compared the composition within the same breast cancer subtype. Figure 2a–c presents the immune cell 

distribution of each subtype based on TIL levels. Although each subtype showed different proportions 

of immune cell subtypes based on TIL levels, these differences were not statistically significant (Figure 

2d). Then, we divided cells by major branches (T, B, dendritic cells and mono/macro) and compared 

the proportions of cells within each branch when further divided into detailed subtypes, based on TIL 

levels (Figure S2a-c). Mucosal-associated invariant T cells (MAIT) in T-cell (p = 0.028) and SPP1+ 

macro in mono/macro (p = 0.0043) in HR+ breast cancer showed statistically significant differences 

(Figure 2e, f and S2d). MAIT cells was more abundant in the TIL low group while SPP1+ macrophages 

exhibited higher proportions in the TIL high group. Due to the insufficient number of MAIT cells to 

perform further comparative analysis, we focused on SPP1+ macrophages. Sub-clustering of HR+ 

breast cancer mono/macro highlighted the differences in the distribution of SPP1+ macrophage based 

on the TIL levels (Figure 2g). 

  



 
 

12 

 

Figure 2. Comparison of cell type proportion by TIL levels revealed increased SPP1+ 

macrophages in TIL high HR+ breast cancer. 

(a–c) UMAP plot shows detailed immune cell subtypes according to TIL levels and breast cancer 

subtypes. 

(d) Bar plot shows cell type proportion of breast cancer subtype in accordance with TIL levels (left), 

and the corresponding sample size (right). 
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(e) Bar plot shows proportion of cell types of mono/macro in HR+ breast cancer in accordance with 

TIL levels. 

(f) Boxplot shows proportion of SPP1+macro in accordance with TIL levels (Wilcoxon rank sum test). 

(g) UMAP plot shows proportion of mono/macro in HR+ breast cancer in accordance with TIL levels. 

Red circles indicate the difference in the number of SPP1+ macro. 

TIL, tumour-infiltrating lymphocytes; DC, dendritic cells; Mono/macro, monocytes, and macrophages. 
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TIL high HR+ mono/macro enriched in ECM remodeling-associated pathways with elevated 

SPP1 expression 

To explore the characteristics of SPP1+ macrophages in HR+ breast cancer, we performed pathway 

enrichment analysis with DEGs of SPP1+ macrophages with other mono/macro. From the DEG 

analysis, 24 up-regulated genes including SPP1, CSTB, SLC2A1, and NURP1 were used for pathway 

enrichment analysis (Figure 3a). In this analysis, pathways related to ECM remodeling, such as ECM 

degradation, collagen degradation, and ECM organisation, were significantly enriched in SPP1+ 

macrophages from HR+ breast cancer (Figure 3b). Similarly, ECM remodeling pathways including 

ECM degradation, were enriched in SPP1+ macrophages of HR+ breast cancer TIL low group (Figure 

S3a, b). 

To explore whether these characteristics were associated with TIL status, we compared TIL 

high and low groups within HR+ breast cancer mono/macro subtypes. In 8 out 10 mono/macro cell 

subtypes, including SPP1+ macrophages, ECM degradation pathway was enriched in the TIL high 

group (Figure S3c). 

To establish whether pathway enrichment related to ECM remodeling was a characteristic of 

mono/macro from TIL high HR+ breast cancer, we utilised 32 up-regulated genes in the TIL high group 

for pathway enrichment analysis (Figure 3c). Pathways related to ECM remodeling including ECM 

degradation and organisation, were enriched in the TIL high group (Figure 3d). A heatmap showing the 

expression levels of 41 genes involved in ECM degradation revealed that these genes were highly 

expressed not only in TIL high group SPP1+ macrophages but also in other mono/macro subtypes 

compared to TIL low group (Figure 3e). 

In DEG analysis of HR+ mono/macro, SPP1 gene was up-regulated in the TIL high group 

(adjusted p-value = 6.128E-273, log2 fold change = 2.963) (Figure 3c). Both feature and violin plots 

confirmed higher SPP1 expression in TIL high group compared to TIL low group, and this was not 

specific to SPP1+ macrophages subtype (Figure 3f). These trends were not observed in other breast 

cancer subtypes (Figure S3d, e). 
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In addition, we compared the expression of genes involved in angiogenesis in SPP1+ 

macrophages and other mono/macrophages to investigate whether SPP1+ macrophages played an 

angiogenic role, as previously reported [27]. However, we did not observe any significant increase in 

angiogenic genes within SPP1+ macrophage (Figure S4a–c). Similarly, no positive correlation of SPP1 

expression and angiogenic gene expression was observed in mono/macro (Figure S4d–f). Taken 

together, TIL high HR+ breast cancer mono/macro exhibited higher expression of SPP1, particularly in 

SPP1+ macrophages subtype, and displayed gene enrichment associated with ECM remodeling. 
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Figure 3. Genes related to ECM remodeling process and SPP1 are increased in TIL high HR+ 

breast cancer mono/macro. 



 
 

17 

(a) Volcano plot of DEGs between SPP1+macro and other mono/macro cell subtypes of HR+ breast 

cancer. Red dots indicate DEGs. 

(b) Bar plot shows enriched pathways of up-regulated genes in SPP1+ macro. 

(c) Volcano plot of DEGs between HR+ mono/macro of TIL high and TIL low group. Red dots indicate 

DEGs. 

(d) Bar plot shows enriched pathways of up-regulated genes in TIL high HR+ mono/macro. 

(e) UMAP plot shows HR+ mono/macro (left), Feature plot shows level of SPP1 expression in HR+ 

Mono/macro in accordance with the TIL levels (middle), Violin plot shows level of SPP1 expression 

in HR+ Mono/macro in accordance with the TIL levels (right). 

(f) Heatmap of gene expression associated with ECM degradation in HR+ Mono/macro in accordance 

with the TIL levels and detailed cell type. 

DEG, differentially expressed genes; macro, macrophages; mono/macro, monocytes, and macrophages; 

TIL, tumour-infiltrating lymphocyte; NS, not significant; avg_Log2FC, average log2 fold change; 

p_val, p-value; p.adjust, adjusted p-value. 
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TIL high HR+ Mono/macro interact more with TIL via SPP1 signalling 

Cell-to-cell interaction analyses were performed to study the interactions of SPP1+ macrophages with 

other immune cells using CellChat [24]. We initially compared TIL high and low HR+ breast cancer 

with differential number of interactions and differential interaction strength (Figure 4a, b). Figure 4a 

shows that the number of interactions within mono/macro and interactions from mono/macro toward 

CD8T were more enriched in TIL high group. Moreover, these interactions along with those from 

mono/macro to CD4T exhibited stronger interaction strengths in the TIL high group (Figure 4b). 

Comprehensive analysis within the HR+ subtype identified significant enrichment of the SPP1 

signalling pathway in the TIL high group (Figure S5a), indicating a potential role of SPP1 gene in 

immune cell interactions. 

To determine which immune cell subtypes interact via SPP1, we analysed SPP1 signalling in 

TIL high and low HR+ breast cancer. In TIL low HR+ breast cancer, SPP1+ macrophages were the 

primary source (sender) of SPP1, playing a crucial role (Figure 4c). However, in TIL high group, other 

mono/macro also contributed substantially sources, enabling them to perform a similar function (Figure 

4d). Similarly, SPP1+ macrophages had a higher communication probability in SPP1 signalling than 

other mono/macro subtypes in the TIL low group (Figure 4e), while most of mono/macro displayed 

similar communication probabilities in the TIL high group (Figure 4f). We proceeded to analyse the 

role of SPP1 in intercellular communication network and identified the cell types involved in this 

process. In TIL low group, SPP1+ macrophages were the major sender (Figure 4g), but in TIL high 

group, various mono/macro subtypes acted as senders of SPP1 signalling (Figure 4h). Additionally, T 

cells tended to act as the major receiver in SPP1 signalling in TIL high group (Figure 4h). 

To determine which ligand-receptor pairs are important in SPP1 signalling, we analysed the 

contribution of each pair in the SPP1 signalling pathway (Figure S5b, c). SPP1-CD44 was the highest 

contribution in both TIL high and low groups. The receptor action of ITGA+ITGB to SPP1 was more 

pronounced in the TIL high group compared to the low group. While SPP1 expression level was higher 

in the TIL high group, CD44 levels remained similar between the TIL high and low groups. 

Furthermore, the expression level of ITGB1 was elevated in TIL high group (Figure S5d, e). 
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Additionally, we examined the expression of immunosuppression and proliferation-related markers in 

T cells based on the expression of SPP1 in mono/macro to evaluate the impact of SPP1 signalling on T 

cells. The analysis revealed no significant differences (Figure S6a–c). Collectively, these findings 

underscored the significant role of SPP1 in intercellular interaction between mono/macro and T cells in 

TIL high HR+ breast cancer. 
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Figure 4. Cell-to-cell interaction comparison analysis between TIL high HR+ breast cancer and 

TIL low group. 

(a) Differential number of interactions between TIL high and TIL low. Arrow represents direction, 

coloured edges indicate increased signalling in TIL high (red) or TIL low (blue) and line width reflects 

strength value. 
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(b) Differential interaction strength between TIL high and TIL low, Arrow represents direction, 

coloured edges indicate increased signalling in TIL high (red) or TIL low (blue) and line width reflects 

interaction number. 

(c) Communication probability of SPP1 signalling network of source (sender) (rows) across target 

(columns) in TIL low. 

(d) Communication probability of SPP1 signalling network in TIL high. 

(e) Hierarchy plot shows cell-cell communication network of SPP1 signalling in TIL low. Circle size 

indicates each cell group proportion and edge width represents communication probability. 

(f) Cell-cell communication network of SPP1 signalling in TIL high. 

(g) Heatmaps show relative importance of each cell group across signalling roles in TIL low and (h) 

relative importance of each cell group across signalling roles in TIL high. 

TIL, tumour-infiltrating lymphocyte; mono/macro, monocytes, and macrophages; CD4T, CD4+ T cells; 

CD8T, CD8+ T cells; NK, NK T cells; OtherT, other T cells. 
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Spatial colocalization of mono/macro and CD8T/CD4T in TIL high HR+ breast cancer 

Through cell-to-cell interaction analysis, we demonstrated differential interactions between 

mono/macro and CD8T/CD4T in TIL high and low HR+ breast cancer. Furthermore, we identified 

mono/macro as sender, and CD8T/CD4T as receivers in SPP1 signalling. To explore the spatial 

proximity of these cells for potential interactions, we utilised two spatial transcriptomics datasets of 

HR+ breast cancer [25]. They were classified as TIL high (CID4535) and TIL low (CID4290) based on 

H&E images (Figure 5a, c). We confirmed appropriate pathologic annotations were done to determine 

the distribution of invasive cancer, stroma, lymphocyte, and other components in deconvoluted 

classification. (Figure 5b, d). 

Subsequently, we employed signature scoring of cell subtypes using the top 25 genes to 

annotate the spots obtained through spatial transcriptomics. These scores were then utilised for 

conducting correlation analyses across the scores in each spot. Signature scores of mono/macro, CD8T, 

and CD4T were calculated using our scRNA-seq data of CD45+ breast cancer (Figure 5e, f). To validate 

the legitimacy of the signature score of our CD45+ sorted dataset, we employed a public non-sorted 

scRNA-seq dataset (GSE176078) to establish additional signature score criterion [28]. Comparing the 

distribution of signature scores calculated from the public dataset with our dataset, we found no 

significant differences (Figure S7c–f). Then, we analysed the correlation of signature scores in each 

spot of interest. The correlation between mono/macro score and CD8T score (R2=0.52), and 

mono/macro score and CD4T score (R2=0.43) was higher in the TIL high group than that in the low 

group (R2 = 0.045 and 0.017, respectively) (Figure 5g, h). These results showed that in TIL high group, 

macro/mono and CD8T/CD4T were more likely in the same spot compared to TIL low group, implying 

their colocalization. 
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Figure 5. Mono/macro and CD8T/CD4T are spatially colocalised in TIL high HR+ breast cancer. 

(a, c) H&E image of tissue section analysed using VISIUM. 

(b, d) Classification of VISIUM public dataset. 

(e, f) Signature score of Mono/macro, CD8T, and CD4T. 

(g, h) Correlation of signature scores (Spearman’s correlation coefficient). 

Mono/macro, monocytes, and macrophages; CD8T, CD8+ T cells; CD4T, CD4+ T cells; TIL, tumour-

infiltrating lymphocyte.  
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Discussion 

Here, we highlighted the abundance of SPP1-expressing macrophages in TIL high HR+ breast cancer, 

and their heightened interaction with colocalised T cells through SPP1 signalling. 

The SPP1 gene encodes osteopontin, a matricellular protein previously associated with 

promoting angiogenesis in breast cancer [29]. Single cell studies have indicated that SPP1+ 

macrophages interact with FAP+ fibroblasts in colon cancer, exhibiting a pro-angiogenic signature [27, 

30]. However, our study revealed that SPP1+ macrophages did not exhibit higher expression of 

angiogenic marker genes, and SPP1 expression in macrophages was not correlated with the expression 

of angiogenic marker genes. This pattern remained consistent across all breast cancer subtypes. Thus, 

in breast cancer, SPP1+ macrophages may serve roles other than angiogenesis. 

In this research, we proposed a novel role of SPP1 within tumour-associated macrophages in 

breast cancer, shedding light on their primary interaction mediated by SPP1 signalling with other 

immune cells. This signalling pathway was associated with cancer-promoting pathways in gastric 

cancer [31], and was linked to TAM infiltrations and poor prognosis in glioma [32]. However, these 

studies mainly focused on the role of SPP1+ macrophages in their interaction with tumour epithelial 

cells. In a recent study involving ovarian cancer, SPP1 expression was associated with higher TIL 

levels, but also with increased immune checkpoint marker gene expression and poor prognosis, 

potentially indicating immune tolerance [33]. Unfortunately, this study did not specify the cell types 

responsible for these expression changes. We could not identify any significant correlation between 

heightened SPP1 expression in macrophages and immune checkpoint marker gene expression or cell 

cycle progression scores in T cells. Additionally, Tregs did not appear as the primary recipients of SPP1 

signalling in TIL high HR+ breast cancer. Therefore, it is plausible that the impact of macrophage-

derived SPP1 on T cells may not be associated with immune suppression, and further research is needed 

to ascertain their precise role. 

SPP1+ macrophages have previously been associated with fibrogenesis in chronic 

inflammation [34, 35] and a higher metastatic rate in cancer [36, 37]. To examine how macrophage 

function affects TILs, we conducted DEG analyses. Both SPP1+ macrophages and 

monocytes/macrophages in TIL high HR+ breast cancer showed upregulation of genes related to ECM 
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degradation compared to other monocytes/macrophages and those in the TIL low group. These findings 

suggest an increased ECM remodeling process in TIL high HR+ breast cancer, potentially facilitating 

tumour invasion and metastasis [38]. Although the precise mechanism underlying this up-regulated 

ECM remodeling in macrophages in TIL high HR+ breast cancer remains unclear, it could potentially 

contribute to the unfavourable prognosis associated with this subtype. 

In contrast to other breast cancer subtypes, patients with HR+ breast cancer having higher TIL 

levels are associated with worse prognosis [7, 8]. However, after receiving chemotherapy, patients 

having higher TIL levels are associated with higher pCR rates along with longer disease-free survival 

[7, 39]. While our study suggests increased SPP1 expression in macrophages as a unique characteristic 

of TIL high HR+ breast cancer that may impact TILs, ECM remodeling and prognosis, all patients with 

HR+ breast cancer included in our study were untreated, which limits our ability to assess the impact 

of chemotherapy on the TME and its association with prognosis. Notably, recent research has indicated 

an elevated risk of recurrence in tamoxifen-treated HR+ breast cancer cases with high SPP1 mRNA 

expression in bulk tumour tissue [40]. This association may be attributed to the previously mentioned 

immunosuppressive and ECM remodeling effects of SPP1+ macrophages [33, 38]. Therefore, a 

potential strategy to enhance the prognosis of patients with TIL high HR+ breast cancer could involve 

combining drugs that target SPP1 with the current chemotherapy regimen. 

Currently, there are no commercially available drugs for SPP1 inhibition. However, based on 

our investigation utilising the Drug Gene Budger (DGB) [41], daunorubicin was identified as a potential 

agent capable of reducing SPP1 expression in acute myeloid leukaemia cell lines such as SKM1. 

Nonetheless, further research is imperative for drug development, as daunorubicin did not exhibit 

similar effects in other cell lines within the DGB database. 

In conclusion, we demonstrated that increased SPP1 expression in monocytes/macrophages in 

TIL high HR+ breast cancer may directly influence TILs, potentially enhancing ECM remodeling and 

T cell interactions. Therefore, targeting SPP1+ macrophages could offer a promising approach to 

ameliorate the poor prognosis associated with TIL high HR+ breast cancer. 
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Supplementary information 

Table S1. Clinical information of breast cancer patients involved in the study. 

subtype TIL level Sample Name TIL value cell counts 

TNBC 

High 

BC17157 80 2440 
GSA6 60 15739 

BC19104 40 3384 
GSA1 40 9249 

BC17114 30 2059 
GSA3 30 4624 
GSA2 20 10637 

BC18050 10 2695 
BC19127 10 4133 

GSA4 10 1074 

Low 

BC17087 5 2172 
BC17166 5 3512 
BC19115 5 3462 

GSA5 5 3077 
BC18051 2 2317 
BC19108 2 2984 

HR+ 

High 

BC17100 90 2380 
BC17079 40 2960 
BC17148 30 767 
BC17172 20 3638 

GSA7 20 524 

Low 

BC17083 5 218 
GSA8 5 4953 
GSA9 5 5268 

BC17146 2 459 
BC17080 0 3271 
BC17122 0 593 

HER2+ 
High 

BC17134 40 2035 
BC17140 40 1703 
GSA10 10 4919 

Low BC17121 1 2813 

TNBC, Triple-negative breast cancer; HR+, Hormone receptor-positive breast cancer; HER2+, HER2-

positive breast cancer.  
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Figure S1. Sample quality control and detailed annotation of immune cells. 

(a) UMAP plot shows predicted cell type l2 by Azimuth. 

(b) UMAP plot shows predicted cell type l2 represented by ref.umap. 

(c) Feature plot shows percent.mt, nFeature_RNA and ncount_RNA. 

(d) Expression level of CCR7 and SELL in T-cell 

(e) UMAP plot shows predicted cell type l2 by Azimuth (left) and detailed cell type (right) in T-cell. 

(f) Expression level of canonical markers of monocyte and macrophages in mono/macro. 

(g) Dot plot shows expression level of gene signature of clusters in mono/macro. 
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(h) UMAP plot shows predicted cell type l2 by Azimuth (left) and detailed cell type (right) in 

Mono/macro. 

Mono/macro, monocytes, and macrophages; DC, dendritic cells. 
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Figure S2. Proportion of immune cells in different subtypes of breast cancer. 

(a–c) Bar plot shows proportion of each cell type across TIL levels. 

(d) Boxplot shows proportion of MAIT in HR+ subtype across TIL levels (Wilcoxon rank sum test) 

TIL, tumour-infiltrating lymphocytes; MAIT, mucosal-associated invariant T cells. 
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Figure S3. Supplementary data for pathway enrichment analysis and SPP1 expression in breast 

cancer. 

(a) Volcano plot of DEGs between SPP1+ macro and other mono/macro cell types of TIL low group in 

HR+ subtype. Red dots indicate DEGs. 

(b) Bar plot shows enriched pathways of up-regulated genes of DEG analysis between SPP1+ macro 

and other mono/macro cell types of TIL low group in HR+ subtype. 

(c) Bar plots show enriched pathways of up-regulated genes of DEG analysis between TIL high and 

TIL low of each mono/macro subtype in HR+ breast cancer. 

(d) Feature plot shows SPP1 expression level in each breast cancer subtype. 

(e) Expression level of SPP1 in TNBC and HER2+ subtype across TIL levels. 

(f) Expression level of SPP1 in TNBC, HR+ and HER2+ subtype across samples. 

DEG, differentially expressed gene; macro, macrophages; mono/macro, monocytes, and macrophages; 

TIL, tumour-infiltrating lymphocytes; NS, not significant; avg_Log2FC, average log2 fold change; 

p_val, p-value; p.adjust, adjusted p-value. 
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Figure S4. SPP1 expression of mono/macro was not associated with the expression of angiogenic 

markers in breast cancer. 
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(a) Violin plot showing expression level of genes in mono/macro of TNBC. 

(b) Violin plot showing expression level of genes in mono/macro of HR+ subtype. 

(c) Violin plot showing expression level of genes in mono/macro of HER2+ subtype. 

(d) Correlation of SPP1 and angiogenic markers (VEGFA, VCAN, FCN1, and THBS1) in mono/macro 

of TNBC (Spearman correlation coefficient). 

(e) Correlation of SPP1 and angiogenic markers (VEGFA, VCAN, FCN1, and THBS1) in mono/macro 

of HR+ subtype (Spearman correlation coefficient). 

(f) Correlation of SPP1 and angiogenic markers (VEGFA, VCAN, FCN1, and THBS1) in mono/macro 

of HER2+ subtype (Spearman correlation coefficient). 

Mono/macro, monocytes, and macrophages. 
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Figure S5. Supplementary data for cell-to-cell interaction analysis. 

(a) Bar plot shows all significant signalling pathways that are ranked based on their differences of 

overall information flow between TIL high and TIL low groups in HR+ breast cancer. The signalling 

pathways coloured by red are more enriched in TIL high group, the black ones are equally enriched in 

TIL high and TIL low groups, and the blue ones are more enriched in TIL low group. 

(b) Relative contribution of each ligand-receptor pair to the SPP1 signalling network in TIL low HR+ 

breast cancer. 

(c) Relative contribution of each ligand-receptor pair to the SPP1 signalling network in TIL high HR+ 

breast cancer. 
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(d) Violin plot shows expression levels of ligand and receptors of the SPP1 signalling in TIL low HR+ 

breast cancer. 

(e) Violin plot shows expression levels of ligand and receptors of the SPP1 signalling in TIL high HR+ 

breast cancer. 

TIL, tumour-infiltrating lymphocytes.  
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Figure S6. SPP1 expression of mono/macro was associated with neither cell cycle score nor 

expression of immune checkpoint markers of T cells in breast cancer. 

(a) Expression level of SPP1 of each sample in mono/macro. 

(b) Expression level of immune checkpoint molecules (PDCD1, LAG3, CTLA4 and TIGIT) of each 

sample in T cells. 

(c) Violin plot showing cell cycle score of each sample in T cells. 

Mono/macro, monocytes, and macrophages. 
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Figure S7. Signature scoring in VISIUM. 

(a) UMAP plot shows cell types of HR+ subtype. T cells were divided into four groups. 

(b) Feature plots show signature score of each cell type in HR+ subtype. 

(c) Signature score represented in CID4290. Signature genes are derived from GSE176078 (ER+ 

subtype). 

(d) Signature score represented in CID4290. Signature genes are derived from our HR+ subtype data. 

(e) Signature score represented in CID4535. Signature genes are derived from GSE176078 (ER+ 

subtype). 

(f) Signature score represented in CID4535. Signature genes are derived from our HR+ subtype data.  
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국문요약 

유방암은 세계적으로 가장 흔한 암이며, 호르몬 수용체와 HER2 수용체의 발현에 따라 

호르몬 수용체 양성(HR+), 사람 상피세포 성장인자 수용체 양성(HER2+), 삼중음성 

유방암의 세 가지 아형으로 나뉠 수 있다. 유방암에서 종양침윤림프구 (TIL)의 수준은 

중요한 예후 인자이다. 유방암의 아형에 따른 TIL 수준의 다양한 역할을 분석하고 

종양미세환경과 면역세포 구성이 미치는 영향을 조사하기 위해, 31명의 환자의 유방암 

조직에서 단일세포전사체 분석을 시행하였다. 그 결과 높은 TIL 수준을 가진 HR+ 

유방암에서 SPP1+ 대식세포가 증가하였고 점막연관 불변사슬 T세포 (MAIT)가 감소한 

것을 관찰하였다. 또한, SPP1 발현은 높은 TIL 수준의 HR+ 유방암의 다른 단핵구 및 

대식세포 하위 그룹에서도 증가 하였으며, SPP1+ 대식세포와 높은 TIL 수준의 HR+ 

유방암의 단핵구 및 대식세포 모두에서 세포외기질 (ECM) 재형성과 관련된 유전자의 

발현이 증가하였다. 게다가, 세포간 상호작용 분석에서 낮은 TIL 수준의 그룹에 비해 높은 

TIL 수준의 HR+ 유방암에서 단핵구 및 대식세포와 T 세포 사이의 상호작용에서 증가된 

SPP1 신호전달을 보여주었다. HR+ 유방암의 공간전사체 분석에서 우리는 낮은 TIL 

수준의 데이터에 비해 높은 TIL 수준의 데이터에서 단핵구 및 대식세포와 CD8+ T 세포 및 

CD4+ T 세포의 근접성을 강조하였다. 종합적으로, 우리는 높은 TIL 수준의 HR+ 유방암의 

종양미세환경 내 T 세포에 영향을 미치는 SPP1을 발현하는 단핵구 및 대식세포의 새로운 

역할을 발견하였다. 이러한 발견은 높은 TIL 수준과 연관된 HR+ 유방암의 나쁜 예후를 

설명할 수 있으며, 이는 SPP1+ 대식세포가 그들의 예후를 개선하기 위한 잠재적인 대상이 

될 수 있음을 시사한다. 

 

주제어 : 유방암, 호르몬 수용체 (HR), 종양침윤림프구, 종양관련대식세포, 분비 인단백질 1 

(SPP1) 
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