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ABSTRACT

In this work, dynamically adaptive refinement masking (DARM) and mirror-

sharing variational U-shaped architecture are proposed in order to improve the

performance of error correction code transformer (ECCT). Instead of fixed bi-

nary masking, DARM module is designed to create unique masking for each

attention head that reinforces the self-attention mechanism by further enhance-

ment of the contrast in the attention map with dynamic magnitudes taking the

distribution of the attention weight as reference. Furthermore, under the use of

sequential neural architecture, DARM modules are designed to be sequentially

connected, creating an iterative refinement effect. For moderate coding lengths,

the mirror-sharing variational U-shaped architecture is introduced to enhance the

overall efficiency of the transformer-based decoder. The U-shaped architecture

with variational-autoencoder-like skip-connection provides a segmentation like be-

havior that operates well with moderate length codes, especially at low coding

rates. As the U-shaped model requires a certain level of depth to achieve desir-

able performance, an architectural-level parameter-sharing scheme called mirror-

sharing is introduced to effectively scale the U-shaped model to achieve better ef-

ficiency and performance. Experimental results show considerable improvements

in bit error rates compared to the baseline ECCT, while also significantly increas-

ing the training convergence speed.
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CHAPTER 1

INTRODUCTION

1.1 Motivation

Among the technologies utilized in wireless communication systems, error

correction codes (ECCs) is one of the essential factors contributing to the relia-

bility of data transmission. ECCs are known for their capability of correcting er-

rors in the corrupted received signals by relying on complex likelihood decoding

algorithms such as belief propagation (BP) decoding. Despite its their advantages,

the NP-hard level of complexity for optimization of the decoding algorithms have

also challenged the advancement of ECCs.

In recent years, the learning-based ECC decoding have gained favor due

to their superior performance compared to traditional methods. The different ap-

proaches range widely from model-free designs [12–15] to model-based adapta-
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CHAPTER 1. INTRODUCTION

tion of traditional decoding algorithm with neural networks [4,5,9–11]. While the

model-based designs adopting the BP algorithm suffer from the complexity of the

Tanner-graphs, the model-free approaches, though less restrictive, are hindered by

the curse of dimensionality, especially when dealing with significantly large code

length.

As an alternative to direct codeword estimation, a neural network with model-

free syndrome-based decoding [16] focused on training the network to estimate

the multiplicative noise from the channel output and removing the noise to obtain

the approximated transmitted signal. By adopting this principle, the authors of

[17] proposed the transformer-based method, namely error correction codes trans-

former (ECCT), that successfully adapted the components of the original trans-

former in [18] to decoding ECCs. The ECCT in [18] was able to achieve a signif-

icant reduction in error probability compared to the state-of-the-art BP-based neu-

ral decoding approaches as well as other previous learning-based models includ-

ing that of [16]. Nevertheless, this approach was the first attempt at transformer-

based decoders, which had not fully explored potential of transformer-based de-

coder through the reliability decoding.

The research on neural network architectural design has been highly success-

ful, yielding renowned models such as ResNet [25, 26], DenseNet [27, 28], and

MobileNet [29]. Among the popular architectural designs, U-Net [30] is known

as the state-of-the-art image segmentation convolutional model. While it is well-
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CHAPTER 1. INTRODUCTION

known for its application in the field of computer vision, many researchers have

successfully adapted this design to time-series data and other fields of research,

as well as combining it with models other than convolutional neural networks.

1.2 Contribution

As an attempt to explore the compatibility of transformer and reliability de-

coding as well as improving the performance of ECCT [17], this work proposes

a dynamically adaptive refinement masking (DARM) mechanism and the varia-

tional U-shaped architecture. The proposal of DARM addresses problem of unex-

plored interaction between the transformer-based model and the syndrome-based

reliability decoding. On the other hand, the design of variational U-ECCT aims

to enhance performance of the ECCT at moderate code lengths while ensuring

model efficiency through parameters sharing.

To further enhance the code-aware self-attention mechanism with the ex-

plored learning pattern, DARM is proposed as a learnable mask generating mech-

anism. DARM creates filtered masks that adapt to the attention dot-product ma-

trices through a set of adaptive thresholds uniquely obtained for each attention

head. Along each row of its input matrix, this filtering mechanism reduces the

range of positive values below peak-magnitude. The filtered information is then

dynamically learned through a parameterized transformation. The combination of

these steps is considered a sub-max reduction transformation. The DARM is com-

3



CHAPTER 1. INTRODUCTION

pleted with two consecutive sub-max transformation. The input and output of the

first sub-max transform operation are both transposed, forming a module akin to

a mask-mixing mechanism.

Inspired by the U-Net model of [30], a U-shaped architecture for ECCT is

proposed to improve the high-rate, moderate-length decoding performance. This

architecture consists of two major network flows: the main flow and the shortcut

connections. While the decoding process of the main network flow is similar to

the baseline ECCT, the shortcut connections interact with the main flow through

a multiplicative operator. With this mechanism, the proposed model learns to gen-

erate and combine two different segments of the embedding dimension, retaining

common information between the two flows, which significantly enhances the de-

coding process, particularly targeting large code-length cases. Furthermore, the

U-ECCT is designed with multi-level scaling with four different levels of hidden

dimension, providing flexibility and reducing model size compared to the baseline

ECCT [17].

In order to improve the general performance of the U-ECCT at all code

rates, the U-shaped architecture is combined with the variational autoencoder (VAE)

model to form a variational U-ECCT. In our improved model, the interaction be-

tween the main network flow and the shortcut connections is modified to resemble

the VAE. This modified U-ECCT model provides a way to estimate the common

distribution of the shortcut connections. By this effect, the large syndrome length

4



CHAPTER 1. INTRODUCTION

is fully utilized, enabling significant improvements in low-rate codes.

Finally, in an effort to enable an efficient U-ECCT design, a new weight-

sharing strategy is proposed, called mirror-sharing. Our weight-sharing strategy is

applied so that the second half of the U-shaped model reuses the parameters of its

first half in a reflective manner. This method effectively compresses our proposed

U-ECCT models, enabling a deep, light-weight model that performs better than

the baseline ECCT.

In experimentation, the DARM-equipped models achieves considerable im-

provements in increasing the conversion speed during training as well as reducing

bit error rates (BER) during inference stage, resulting in an performance gains of

0.3dB for Bose-Chaudhuri-Hocquenghem (BCH) codes and low-density parity-

check (LDPC) codes, and up to 0.6dB for polar codes compared to the base-

line model of [17]. The variational U-ECCT models achieve significantly better

performance than the baseline ECCT for moderate code-length cases (from 256

to 1024), and still provide noticeable improvement for short code-length cases

(less than 256). In terms of decoding performance, the the U-shaped model pro-

vides improvements that vary between 0.3dB and 0.5dB for moderate code-length

cases, depending on the code structure and code rates. Especially for low code

rate cases, the variational design is able to achieve improvements between 0.5dB

and 0.65dB. Regarding efficiency, our models with a mirror-sharing strategy pro-

vide effective compression, achieving up to 73% reduction in the number of train-

5



CHAPTER 1. INTRODUCTION

able parameters compared to the baseline ECCT [17].

The rest of this paper is organized as follows. Chapter 2 introduces the

related knowledge to this work. Chapter 3 consists of detailed explanations for

proposed methodology. The experimental results and discussions are described in

Chapter 4. Finally, we provide our conclusions to this work in Chapter 5.
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CHAPTER 2

BACKGROUND AND

RELATED WORKS

In this chapter, necessary background knowledge is provided for coding,

syndrome-based reliability decoding for model-free neural network decoder [4],

transformer [18], key features of the ECCT [17], Integrated Gradients [41] for

model interpretation, U-Net and variational autoencoder (VAE).

2.1 Coding

In a standard wireless communication system, the transmission process em-

ploys a linear code C to encode an input message s ∈ {0,1}k into a codeword

x∈ {0,1}n by calculating the Galois field matrix product with a generator matrix

7
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G. The linear code is defined by a binary generator matrix G of size k×n and a

binary parity-check matrix H of size (n−k)×n, such that GHT = 0, where T de-

notes the matrix transposition. A codeword x, satisfying Hx = 0, is then transmit-

ted via a binary-input-symmetric-output, additive white gaussian noise (AWGN)

channel. The channel output can be modeled as y = xs+z, where xs is the mod-

ulated codeword (commonly considered binary phase shift keying (BPSK)), and

z, defined by z ∼ N (0,σ2), represents the AWGN which is independent of the

codeword x. Without loss of generality, the modulated codeword xs can be ob-

tained using xs = bipolar(x), where bipolar(·) represents the conversion by 0 to

1 and 1 to −1, and is also obtainable as bipolar(a)= 1−2a with input a∈{0,1}.

At the decoder, the main objective is to provide a soft estimation x̂ of the

original codeword. Thus, the decoding function can be viewed as a function of y,

which is x̂ = f (y). A basic decoding method for linear block codes is syndrome-

decoding. This decoding scheme is performed by obtaining the syndrome s(y)

performing the Galois field matrix product between the hard-decision mapping

yb of y and the parity-check matrix H. The syndrome s(y) is defined by s(y) =

Hyb ∈ {0,1}n−k. In an ideal non-erroneous transmission, the received codeword is

expected to yield a zero syndrome Hyb = 0. However, in practical transmission, a

certain level of errors is anticipated. In such cases, the syndrome s(y) is non-zero

Hyb ̸= 0 and is utilized to identify positions and values of the errors. For a single-

bit error, basic syndrome decoding is adequate. However, when multiple error

8
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bits occur in the same codeword, more advance likelihood decoding techniques

are required, such as belief propagation (BP), min-sum, or maximum likelihood

decoding (ML), all of which incorporates the principle of Tanner-graph involving

the parity-check matrix H.

2.2 Syndrome-based reliability decoding system model

The Syndrome-based reliability decoding model is presented in Fig. 2.1 which

follows the model proposed in [17]. The general principle of communication sys-

tem and coding considered for this model is explained in Section II.A. In the cur-

rent section, the pre-processing and post-processing methods proposed by [16] for

the receiver are discussed. These methods are regarded as an extended version of

symdrome-based decoding that includes channel reliabilities, aiming to overcome

overfitting by eliminating the need to simulate codewords during training.

The pre-processing step modifies channel output y with a vector of length

2n− k, which can be defined as

ỹ = h(y) = |y|⊔ s(y), (2.1)

where ⊔ denotes the vector concatenation and |y| represents the element-wise

magnitude of y.

The binary hard-decision transformation of y can be obtained by yb =
1
2(1−

sign(y)). The sign function sign(·) is defined by

9
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sign(c) =



1, c > 0,

0, c = 0,

−1, c < 0.

(2.2)

The post-processing step multiplies the bipolar mapping of the channel out-

put y with the decoder output to create the estimation x̂ of the original codeword

x. To be more specific, the prediction takes the below form

x̂ = y⊗ fθ (ỹ), (2.3)

where fθ (·) denotes the neural decoder parameterized by θ and ⊗ is the component-

wise multiplication.

Figure 2.1: System model for syndrome-based reliability decoding framework.

The objective of the neural decoder is to generate an estimation which mit-

igates the effect of channel noise and recovers the original codeword when mul-

tiplied with the channel output y. With such approach, syndrome-based decoding

10
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proposed method in [16] focused on prediction of the multiplicative noise z̃. Let

z̃s denote the soft multiplicative noise such that y = xs⊗ z̃s (proof of Lemma 1

in [24]), thereby obtaining the following expression z̃s = z̃s⊗x2
s = y⊗xs. However,

since the target of prediction is the occurrence of bit-flipping, the bipolar problem

of z̃s can be simplified to a binary problem where the detected bit-flipped case

is labeled as 1 and non-erroneous case as 0. Hence, the target data for the loss

function is the binary the multiplicative noise, defined by z̃b = bin(sign(y⊗xs)).

With such objective, the loss function for training the neural decoder is chosen

as the binary cross-entropy (BCE) loss between the decoder output fθ (y) and the

target z̃b, which is formalized as

LBCE =−
n

∑
i=1

(z̃b,i log( fθ (ỹi))+(1− z̃b,i log(1− fθ (ỹi))). (2.4)

Ultimately, the estimation of the original codeword x is obtained by x̂b =
1
2(1−

sign( fθ (ỹ)⊗ sign(y))).

2.3 Transformer

The transformer was introduced in [18] as a successor to RNN in sequence-

to-sequence learning tasks. The vanilla transformer in [18] consists of two major

components: the positional encoding and multi-head attention mechanism. Cur-

rently, the transformer not only dominates the performance scale in the field of

natural language processing, but also emerges as the leading model in multiple

11
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mainstream topics including language-based classification [31,33], time series data

analysis [34], and image classification [35]. Several researchers have also adopted

the design of the transformer to enhance the communication system such as 6G

intelligent network designs [37], and attention-inspired feedback codes [38, 39].

At the heart of the transformer, and also the key to its success, is the multi-

head attention mechanism. By employing a learnable scaled dot-product mapping

of a vector pair, specifically query and key, the model generates attention weights

capturing the relation between each element to every other elements within the

same sequence (self-attention) or between a reference query sequence and another

sequence projected into key and value vectors (cross-attention). The scaled dot-

product attention can be formulated as

A(Q,K,V ) = So f tmax(
QKT
√

dh
)V, (2.5)

where dh is the dimension of the learned linear projections of query and key vec-

tors, which is originally calculated by dmodel/h. Herein, dmodel denotes the embed-

ding dimension after performing positional encoding on the input sequence and

h represents the number of parallel heads during the linear projection of query,

key, and value vectors.

The multi-head self-attention is formulated as MHSA(Q,K,V ) =

Concat(head1, ...,headh)W O, where headi = A(QW Q
i ,KW K

i ,VWV
i ). The linear pro-

jections of Q,K,V , and the attention output are parameterized by matrices W Q
i ∈

Rdmodel×dh , W K
i ∈ Rdmodel×dh , WV

i ∈ Rdmodel×dh , and W O
i ∈ Rhdh×dmodel . As explained

12
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in [18], the masked self-attention module takes the summation of causal masks

and the dot product of the query-key vector pair. This mechanism was proposed

to prevent the language decoder from attending to subsequent positions in the

sequence, thereby avoiding the network from learning to simply copy the input.

2.4 Error Correction Code Transformer

The authors of [17] introduced two key features, namely positional reliability

encoding and code-aware self-attention, which will be discussed in this subsec-

tion.

2.4.1 Positional reliability encoding

In [17], the authors proposed a unique positional encoding method that pro-

vides more attention to the magnitude of the input sequence (i.e., the pair of chan-

nel corrupted codeword and its respective syndrome). Each dimension of {ỹi}2n−k
i=1

in the positional encoding is regarded as the pre-processed version of the chan-

nel output y by (2.1). The encoding process projects the vector ỹ to a dmodel

dimensional embedding {φ i}2n−k
i=1 which is defined by

φ i =


|yi|Wi, if i≤ n,

(1−2(s(y))i−n+1)Wi, otherwise,

(2.6)

where {Wi ∈Rd}2n−k
i=1 denotes the one-hot encoding vector corresponding to each

bit position of ỹ. As shown in [17], this embedding method yields a desirable
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effect during the self-attention dot product operation such that the unreliable in-

formation (i.e., low magnitude positions) would collapse to the origin, whereas

the syndrome bits yield negative scaling. The proposed encoding can be under-

stood as a positional encoding corresponding to the input reliability, hence the

name positional reliability encoding.

2.4.2 Code-aware self-attention

Similar to the conventional decoding process that relies on the parity-check

matrix, the transformer counterpart introduced in [17] is designed to incorporate

unique sparse masks capturing the patterns of the parity-check matrix for each

respective code type. Since each bit of the input vector is not necessarily related

to all other bits, traditional causal masking as well as non-masking would yield

sub-optimal performance.

Algorithm 2.1 Pseudo-code of the binary mask generating algorithm
Input: Parity-check matrix H
Output: Mask based on H
M← I(2n− k)
for i = 1, 2, . . . , n− k do

idx ← where(H[i] == 1)
for j ∈ idx do

M[n+ i, j]← 1
M[ j,n+ i]← 1
for h ∈ idx do

M[ j,h]← 1
M[h, j]← 1

end
end

end
M← (−∞(¬M))
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Figure 2.2: Demonstration of parity-check matrix for Hamming (7,4) with its
equivalent representation in Tanner-graph and attention mask.

Thus, for a parity-check matrix H, the parity-check-based attention mask is

denoted by g(H) : {0,1}(n−k)×n −→ {−∞,0}(2n−k)×(2n−k). First, the mask is initial-

ized with an identity matrix. Taking reference to each row of the parity-check

matrix H at a time, for every bit one in H, a pair of positions (simultaneously

considering row and column) in g(H) is unmasked, i.e, assigned with one. Con-

sequently, this process provides a symmetric mask containing information about

every pairwise bit relations. The construction of the mask g(H) is explained by

Algorithm 2.1. An example of the generated mask is shown in Fig. 2.2.

In light of the given objective function (2.6), the ECCT design is utilized

as the neural decoder to effectively achieve the estimation of the multiplicative

noise. Considering the binary mask g(H) generated by Algorithm 2.1, the masked
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self-attention mechanism for ECCT can be defined as

Amask(Q,K,V ) = So f tmax(
QKT +g(H)√

dh
)V. (2.7)

By summation of g(H) and the query-key dot product, the values of desirable

positions in the product are retained while the prohibited positions theoretically

yield −∞. This value assignment is designed with consideration of Softmax acti-

vation. Positions assigned a value of −∞ collapse to the nearest possible value to

zero after the Softmax is applied. This prevents any information of the correspond-

ing positions from influencing attention weights. Hence, the pattern of attention

weight matrix also adheres to the symmetric pattern of g(H), resulting in a code-

aware attention mechanism [17]. While sustaining useful information learned by

the dot product, the binary design only acts as a restriction against learning non-

desirable positions. As shown by the works of [21–23], dynamic masking instead

of binary masking has the potential to encourage the attention process to more

effectively extract desirable information.

2.5 Integrated Gradients

Integrated gradients (IG) [41] is a gradient-based neural network interpreting

method. IG explain the learning pattern by integrating the gradient ∇ fθ (a) along

an ith dimension in input space. In the simplest form, the trajectory is chosen to

be the segment (ã,a) connecting the baseline ã to an input a. Integrated gradients
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define feature-wise scores as

Ri(a) = (ai− ãi)×
∫ 1

0
(∇ fθ (ã+ t× (a− ã))idt. (2.8)

It is proven by the author of [40] that Integrated gradients satisfy an axiom called

Completeness where the summation of attribution scores for all dimensions is

equal to the difference between the output of fθ (·) at input a and baseline ã (

∑i Ri(a) = fθ (a)− fθ (ã)). For most of the tested neural network models, it is

shown that the baseline can be chosen such that the prediction on the baseline

point is near-zero. Hence, it can also be inferred that the accumulative scores is

approximately equal to the neural network output at input x, which is ∑i Ri(a)≈

fθ (a). In such cases, the attributions can interpreted as ignoring the baseline and

distributing the output to each input features.

2.6 U-Net

In the field of computer vision, a popular convolutional network architec-

ture called U-Net was proposed in [30] for semantic segmentation in images.

This architecture is designed with one side for down-sampling and the other side

for up-sampling operations. The features extracted by the down-sampling side

are also forwarded and learned by the up-sampling side through skip connec-

tions, concatenation, and re-scaling modules. As a result of its success in the ini-

tial proposed problem set, U-Net was later combined with other neural network
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families to provide efficient solutions for a variety of tasks, including U-shape

swin transformers (SUNet [42]) and U-Net VAE [43] for image denoising, U-

Net transformer (Ds-transunet [44]) for enhanced medical image segmentation,

one-dimension convolutional U-Net [45] for times series learning, and Seq-U-

Net [46] for sequence modelling. In the majority of its applications, U-Net was

proposed due to its highly effective capability for segmenting different parts of

the superimposed input data and extracting hidden patterns that enable restora-

tion of distorted information. In this context, we note that U-Net architecture has

great potential in noise segmentation problems such as channel decoding in com-

munication systems.

2.7 Variational Autoencoder

Initially introduced in [47], VAE is one of the successful deep generative

models. As suggested by its naming convention, this variant of the autoencoder

belongs to the family of methods called variational Bayes methods. In general,

this family of methods is used to solve the variational inference problem, where a

posterior distribution of unobserved latent variables given some input data is ap-

proximated by a variational distribution. VAE operates as a parameterized model

to optimize the process of discovering the variational distribution across all input

data points.

This process is achieved by using an encoder neural network to map the
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input data to a latent space. Then, a separate parameterized model learns the

mean and variance of the encoded latent space to generate new samples from

the prior distribution. Finally, an decoder network approximates the distribution

of the input data (the variational distribution) by extracting the features from the

newly generated samples. A combination of VAE and transformers had also been

proposed for generative tasks [48]. In the communication point of view, VAE has

also been proposed for channel coding [49, 50] and joint source-channel coding

[51].

19



CHAPTER 3

THE PROPOSED METHODS

In this chapter, the proposed ECCT is discussed in details. The first contribu-

tion, DARM, is a dynamic mask generating mechanism that learns to adapt and

enhance reliable information detected by the query-key dot product of the self-

attention mechanism. The second contribution, the variational U-ECCT, is de-

signed to improve the ECCT performance for moderate code lengths. In Fig. 3.1,

the overall transformer architecture including the proposed ECCT is presented.

3.1 Intuitive interpretation of ECCT learning pattern

Since our focus is effectively learning the reliable information from the chan-

nel output, the attention mechanism is regarded as the reliability learning prob-

lem (attention to high magnitude positions). In the original design of the self-

attention mechanism, the objective is learning the relation between different po-
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Figure 3.1: Overview of system architecture for the proposed ECCT.

sitions within the given sequence. This is slightly different from the code-aware

attention introduced in [17] for the syndrome-based reliability decoding. As ex-

plained with the syndrome-based decoder system model in ?? and its objective

function (2.6), the model target of estimation is the binary multiplicative noise.

Therefore, it can be inferred that the self-attention learning pattern is focusing on

the relation between the erroneous positions and the rest of the input information.

Following the usual behavior of the self-attention mechanism, the softmax atten-

tion matrix is anticipated to exhibit significantly higher values along the columns

corresponding to the erroneous positions (reliable information) while assigning

lower values to other positions (unreliable information). Henceforth, stronger con-

trast in softmax attention matrix between reliable and unreliable information can
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lead to better decoding performance for the transformer-based model.

3.2 Dynamically Adaptive Refinement Masking

With this idea and inspiration from the works of [21–23], DARM is designed

to produce adaptive mappings of the attention products that not only restrict un-

reliable information but also refine and accelerate the attention mechanism. Our

design of DARM operates with a mechanism called sub-max reduction transform.

This mechanism consists of two steps: low-magnitude reduction and multi-head

projection. Let Dp indicates the dot-product (Qp(Kp)
T) for each attention head.

The sub-max reduction step first generates a binary mask of positions with pos-

itive magnitudes less than the peak value along each row (or sub-max positive

values) of Dp, which is defined as

Mp,submax =


1, 0≤ Dp,i, j < Dp,i,max,

0, otherwise.

(3.1)

The Mp,submax is used to generate two modifications of Dp: Dp,submax which re-

tains only the sub-max positive positions retained and Dp,non−submax which masks

out those same positions. Finally, these two are combined to generate a modified

D
′
p where the sub-max positive positions are reduced. The modified dot-product
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D
′
p can be obtained by

D
′
p = δ (Dp)

= Dp,non−submax +(Dp,submax− τ p),

= Dp⊗ (1−Mp,submax)+(Dp⊗Mp,submax− τ p),

(3.2)

where δ (·) represents the sub-max reduction operation, τ p is the adaptive thresh-

old obtained by calculating the arithmetic mean of the non-zero elements along

the column dimension of Dp,submax. The threshold τ p is defined by τ p = {τ p,i}2n−k
i=1

= { 1
2n−k−o ∑

2n−k
j=1 (Dp,non−submax)i, j}2n−k

i=1 with o represents the number of zero ele-

ments. The purpose of this adaptive threshold is to reduce the sub-max positive

range so that the output dot-product has a better contrast with better highlighted

the peak-value positions. This design aims to align the attention score to be more

akin to the outputs shown for the deeper models and longer training epochs. From

the analyzed behavior of the ECCT model, it can be expected that the more con-

trasted the attention score (Q-K dot-product), the better the network estimates the

erroneous positions. Given the work of the code-aware attention in [17], which

aims to highlight the erroneous positions, our design focuses on expediting this

process by reducing, though not completely restricting, the range of values inter-

fering the highlighted positions (typically the positions with peak magnitude).

However, one potential hurdle that can be anticipated from the using only

the sub-max reduction step is that the code-aware attention may not be well-

trained in early stages, which could lead to the model learning incorrect informa-
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tion and providing undesirable performance. Therefore, to mitigate this problem,

the multi-head transformation step is proposed to enable a fully-trainable mech-

anism for DARM. Each independent attention head p ∈ {1, ...,h} in the sub-max

multi-head learning process is defined by

Ω(Op) = F((Op ·Wp)+g(H)), (3.3)

where Ω(·) represents the parameterized transformation, Op is the input of Ω(·)

on each head and F(·) is the Mish activation introduced in [20]. The learning

process is parameterized by Wp ∈ R(2n−k)×(2n−k). In order to reduce the model

size and complexity, Wp is initialized only once and shared across all layers in

a model with M number of layers.

The entirety of DARM is formed by consecutively applying the sub-max

reduction transformation along the column and row dimension of the dot-product

Dp, respectively. This formation allows all information in the attention scores to

be learned by the sub-max reduction transform mechanism. The attention score

is being treated similar to an image of size (2n− k)× (2n− k) with h number

of channels. In this case, our proposed formation is similar to the placement of

proposed by the MLP-mixer model for vision tasks in [40]. Thus, the DARM

module is defined by

DARMp = Ω2(Ω1(δ (D)T
p)

T), (3.4)

where Ω1 and Ω2 are the respective multi-head transformations for the column
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and row dimensions, respectively. More specifically, the input of the Ω1 is the

transposition of the Q-K dot-product matrix, and the Ω2 operation is performed

on the transposition of the output of Ω1. By including our dynamic mask, the

attention in (2.5) can be rewritten as

ADARM(Q,K,V ) = So f tmax(
QKT +DARM+g(H)√

dp
)V, (3.5)

where DARM is the general output of the mask learning mechanism, defined by

DARM = {DARMp}h
p=1.

The choice of Mish activation [20] in (3.13) is closely linked to the utiliza-

tion of Softmax and the summation of the query-key dot product and the output

of DARM during calculation of the attention weight matrix. By design, Softmax

penalizes lower and negative input values while rewarding higher positive values.

To prevent the attention to unreliable information (low and negative-value posi-

tions), the mask-generating function is designed so that the output mask contains

negative values at undesirable positions, where the minimal allowed value is typ-

ically zero. Among many negative permitting activation functions, Mish allows

for a wider range of negative outputs based on negative inputs, which is suitable

for our design. Furthermore, as shown in [20], Mish is preferable in backward

propagation compared to other ReLU-resemble activation functions because of its

better gradients at zero-region.

In (3.16), the mask learning operation only considers the dot product matri-

ces from its respective layer and the binary mask g(H). However, when consider-
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Figure 3.2: DARM local relation with the multi-head self-attention module and
sequential connection within the transformer architecture.

ing an architecture of M transformer layers, by independently considering DARM

for individual attention layer, DARM modules may generate masks with varying

patterns, which can be unstable during training. Therefore, at the m-th layer, the

mask learning of each head DARMp,m takes the output of the (m− 1)-th layer

DARMp,m−1 as one of its inputs. The updated form of (3.13) is expressed as

DARMp.m = Ω2(Ω1(DT
p.m)

T)+DARMp,m−1. (3.6)

Through this mechanism, DARM layers are sequentially connected alongside the
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existing relation with the stacked transformer layers, which is shown in Fig. 3.2.

This structure ensures that every DARM layer in the transformer architecture can

be computed with stability during backward propagation.

Figure 3.3: An example of sub-max reduction operation.

3.3 Variational U-ECCT

Inpsired by the U-Net from [30] and the variational autoencoder from [47],

we propose a variational U-shaped architecture for the ECCT model with spe-

cific modifications to enable performance improvement at moderate code lengths.

In Fig. 3.4, the architecture of variational U-ECCT is presented along with its

sub-layer operations. This architecture is designed as a counterpart to the stan-

dard six-layer ECCT model in [17]. The proposed model consists of the main

network flow of information and the shortcut connections. The main flow is a
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network of sequentially connected components, including the bottleneck layer and

transformer layers. The bottleneck layer is placed at the center of the network,

dividing it into two halves.

Figure 3.4: Diagrams for variational U-ECCT architecture.

Instead of the simple forward-passes and concatenations, the shortcut con-

nections are combined to resemble a variational autoencoder. The variational Bayes

inference method, inspired by the VAE in [47], is adopted to provide approxi-

mation for the outputs of transformer layers on the former half of the network.

As shown in Fig. 3.4, the outputs of each layer on the first half of the net-

work are combined through summation and normalized before feeding to the ap-
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proximation module. The mechanism of the approximation module adopts the re-

parameterization trick proposed in [47], where the distribution of the latent space

is approximated by a deterministic function, defined by

s̃ = µ +σ ⊗ ε, ε ∼N (0,1), (3.7)

where s̃ is the latent vector, µ is the learned mean vector of the latent distribution,

σ is the learned variance vector of the latent distribution, and ε is the random

vector drawn from the standard normal distribution. This formula is called the

reparameterization trick, and in this particular case, it is designed to generate ran-

dom vectors from the location-scale distribution family. The latent vector s̃ is fed

to the second half of the network. In Fig. 3.4, the second half is structured with

two types of transformer layers, denoted by T-SA (transformer with self-attention

sub-layer) and T-CA (transformer with cross-attention sub-layer). The two types

of attention modules were first introduced by the authors of [18] in their trans-

former architecture and proven effective in learning the relation between differ-

ent positions in a teach-forcing manner. The T-SA takes only one input, which

is either the previous T-SA output (first half side) or the summation of the out-

puts from the bottleneck layer and the latent space approximation. For the T-CA,

as shown in Fig. 3.4, the query vector Q is directly taken from the preceding

transformer layer, whereas the key and value vectors, K and V , are obtained by

taking in the summation between the main flow information and the latent ap-

proximation. By this mechanism, the second half of the U-shaped architecture
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operates as a decoder, extracting high-reliability information from the combined

distribution between the main flow and the latent approximation of the superim-

posed shortcut connections. In particular, the shortcut information obtained from

approximating the distribution of encoder outputs enables the extraction of the

common learning patterns at each T-SA layer on the encoder side, as opposed

to the individual shortcut connections at each scaling level in our basic U-ECCT

design. This mechanism mitigates the unwanted noise when the syndrome length

of n− k is larger than half the code length, contributing more than one-third of

the total input length (2n−k) in lower code rate cases. However, this mechanism

is less effective when the syndrome length is small, rendering the performance

of the variational U-ECCT closer to the basic U-ECCT design.

In the variational U-ECCT architecture, the dimensionality is uniform across

all layers. In the case of the U-Net, the multi-level scaling provides flexibility to

adjust the model size as well as effectively distribute the parameters to impor-

tant parts of the network. On the contrary, the variational U-ECCT architecture

becomes highly complex when applying multi-level scaling due to the additional

use of rescale layers to provide an equal hidden dimension for the summation be-

fore and after the latent space approximation step. Thus, the model size increases

significantly compared to the basic U-ECCT, while the performance slightly de-

grades conpared to the variant with a uniform hidden dimension, losing both the

model reduction benefit of the basic U-ECCT and the intended performance su-
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periority of the variational U-ECCT architecture.

As part of the VAE, the objective function of the model is modified to in-

clude the KL-divergence term in addition to the cross-entropy loss. This combina-

tion can be deduced from the evidence lower bound, which was detailed in [47].

The new loss function is defined as

Lθ = LBCE(z̃b, fθ (ỹ))+DKL(N (µ,σ2I) ∥N (0,σ2
y I), (3.8)

where LBCE is the binary cross-entropy (BCE) term which is obtained by (2.6),

DKL is the KL-divergence term, and σy is the standard deviation of the chan-

nel output y. In our design, the target standard normal distribution in the KL-

divergence is modified to the normal distribution with a zero mean and the stan-

dard deviation σy calculated from the observed channel output y. The KL loss

between two normal distribution is defined by

DKL(N (µ1,Σ1) ∥N (µ2,Σ2)) =
1
2
[
tr(Σ−1

2 Σ1)

+(µ2−µ1)
T
Σ
−1
2 (µ2−µ1)+ r+ log

|Σ2|
|Σ1|

,

(3.9)

where r is the size of the random vector, which, in this case, is the hidden di-

mension dmodel of the latent vector. Leveraging the formula derived by the authors

of [49] (Appendix B, [49]) and the considered distributions in our case, the KL-
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divergence loss term can be calculated as

DKL(N (µ,σ2I) ∥N (0,σ2
y I)) =

1
2σ2

y

r

∑
j=1

µ
2
j

− r
2
(1−

σ2
y

σ2 + log
σ2

y

σ2 ).

(3.10)

In this formulation, the latent distribution is designed to have a similar power

factor to the channel output, further enhancing the estimation of the multiplicative

noise. Furthermore, during training, the derived form in (3.10) is tractable during

back-propagation.

The mechanism of the variational U-ECCT provides significant resistance

to the unwanted noise provided by the extensively large syndrome length in low

code rate cases. Furthermore, it is able to take advantage of the additional syn-

drome information to enhance the multiplicative noise estimation process. There-

fore, the variational U-ECCT exhibits considerably better performance in low

code rate cases compared to the basic U-ECCT design. However, as a trade-off,

the multi-level scaling of the basic design is not applicable for the variational

model, losing much of the scaling flexibility of the U-ECCT model.

The parameter utilization is determined by the total number of parameters

in the entire model. This refers to the sum of the number of weights and bi-

ases from different types of layers trained for the given task. In the sub-layer

architecture of both our proposed design and the baseline ECCT in [17], three

main sub-layer types are used, namely layer normalization (LN), multi-head at-

tention (MHA), and feed-forward network (FFN). For ECCT [17], the number of
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parameters used by each type of sub-layer can be calculated as a function of the

embedding dimension dmodel. The building block of all sub-layers is referred to as

the dense layer or fully connected layer, with din and dout denoting its input and

output dimensions, respectively. Its number of parameters, Pdense, is calculated by

Pdense(din,dout) = din×dout +dout. (3.11)

The number of parameters for layer normalization, PLN, is defined as

PLN = 2dmodel. (3.12)

From (3.12) and (3.13), the number of parameters for MHA and FFN sub-

layers can be defined as

PMHA = 4Pdense(dmodel,dmodel)

= 4× (d2
model +dmodel)

= 4d2
model +4dmodel,

(3.13)

PFFN = Pdense(dmodel,dFFN)+Pdense(dFFN,dmodel)

= (dmodel×dFFN +dFFN)+(dFFN×dmodel +dmodel)

= 4d2
model +4dmodel +4d2

model +dmodel +2dmodel

= 8d2
model +5dmodel.

(3.14)
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where dFFN is the dimensionality of the FFN module inner-layer, which was equal

to four times the embedding dimension dmodel in [17] and [18]. The FFN compo-

nent, was originally proposed in [18] along with the MHA module, is composed

of a neural layer with GELU activation [56] followed by a linear activated layer.

In this pair of layers, the output dimension of the first layer and the input di-

mension of the second layer are equal to dFFN.

By accumulating the sub-components parameters, the total number of pa-

rameters for a transformer layer is calculated by

PTransformer = PMHA +PFFN +2PLN

= 4d2
model +4dmodel +8d2

model +5dmodel +4dmodel

= 12d2
model +13dmodel.

(3.15)

Let M denote the number of transformer layers in the model. The size of

an M-layers ECCT model is determined by multiplying PTransformer number of

parameters of each transformer layer by M number of layers used in the model

architecture, which results in the following form as

PECCT = M×PTransformer = 12Md2
model +13Mdmodel. (3.16)

In this context, the variational U-ECCT architecture is slightly expanded in

the number of parameters with the addition of the bottleneck layer and the pair of
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variational approximating layers. With the additional components, the parameter

quantification for the variational U-ECCT model is obtained as

PVariationalU−ECCT = M×PTransformer +Pµ+Pσ+PBottleneck

= M×PTransformer +3Pdense(dmodel,dmodel)

= (12M+3)d2
model +(13M+3)dmodel.

(3.17)

3.4 Mirror-sharing for model compression

Figure 3.5: The proposed mirror-sharing strategy for the variational U-ECCT.

In this sub-section, a new model compression strategy, named mirror-

sharing, is introduced. This strategy is based on the weight-sharing method, which

increases learning efficiency. While there were numerous effective weight-sharing

strategies proposed in previous works, we came to the conclusion that, in order to
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effectively apply weight-sharing to the setting of U-ECCT, a new weight-sharing

scheme is required.

In our weight-sharing strategy, each transformer layer in the first half of the

U-shaped architecture is assigned an independent set of parameters. For the sec-

ond half of the architecture, we reuse the parameter sets from the first half. In this

structure, the proposed weight-sharing method is called mirror-sharing since one

side of the network mimics the parameters of the other side in an U-shaped archi-

tecture that has reflective characteristics regarding dimensionality. During training,

the first half and the second half of the U-shaped model share the same set of pa-

rameters, or, in other words, this set of parameters is trained twice during the for-

ward and backward propagation. This means that when considering an M-layers

model, only M
2 sets of parameters are used, which results in a new model with

only half the number of parameters. Nevertheless, depending on the computational

power required for specific cases, the sharing rate needs to be adjusted. Further-

more, the weight-sharing technique cannot be applied to rescale layers since they

are not reflective in dimensionality. Each rescale layer has a unique dimension-

ality, which is highly complex when applying the weight-sharing technique.

Fig. 3.5 shows the mirror-sharing strategy for the variational U-ECCT archi-

tecture with M = 10. A fully mirror-sharing strategy is shown in Fig. 3.5, where

both sides of the U-shaped model share the same five sets of parameters for trans-

former layer, denoted by W1, W2, W3, W4, and W5. The parameters set W6 of the
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Table 3.1: Model size comparison between ECCT, proposed models with and
without mirror-sharing.

Setting indicator Number of layers Quantification of parameters

ECCT M = 6 72d2
model +78dmodel

Without mirror-sharing With mirror-sharing

Variational
U-ECCT

M = 6
(without mirror-sharing)

M = 10
(with mirror-sharing)

PVU−ECCT = 75d2
model +81dmodel

PVU−ECCT ≈ PECCT

∆P = 3d2
model +3dmodel

P
′
VU−ECCT = 60d2

model +65dmodel

P
′
VU−ECCT < PECCT < PVU−ECCT

∆P
′
= 12d2

model +13dmodel

bottleneck layer in Fig. 3.5 is not subject to sharing since this layer is used only

once in the entire model. Five sets of parameters are specifically chosen for shar-

ing to reduce model size and obtain optimal performance.

Table 3.1 presents the model size comparison for the baseline ECCT in [17]

and variational U-ECCT models with and without mirror-sharing. Without mirror-

sharing, the model size of the proposed architecture is approximately equal to the

baseline ECCT. On the other hand, the mirror-sharing model enables a consider-

able model size reduction.
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EXPERIMENTATION

4.1 Setup and training

The experimentation incorporates the baseline of ECCT [17], Hyper-Graph-

Net decoder [6], BP [43]. To demonstrate the improvement in our design, training

and inference stages are executed on both our proposed models and the baseline

model from [17] with identical hyperparameter settings. Similar to [17], our de-

sign is evaluated with three classes of codes, namely LDPC codes, Polar codes,

and BCH codes. Specifically for Polar codes, simulation results of Successive

Cancellation List decoding (SCL) [56] are included for comparison.

For LDPC (576,432) and LDPC (1248,936), which are respectively IEEE

802.11e and IEEE 802.16e standards, the results of the state-of-the-art neural nor-

malized min-sum decoder (NNMS) reported in [7] are included for comparison.
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Table 4.1: Hyperparameters setting for all methods.

Method Hyperparameter Code structures
SCL [56] List size L = 128 Polar

SNNMS-LR-Q [7]
Iterations I = 10

Number of layers M = 22
LDPC

BP [55] Iterations: I = 50,200

Hyper-Graph-Net BP [6]
Iterations: I = 50

Network g hidden size dg = 16neurons
Hypernetwork f hidden size d f = 128 neurons

LDPC,
BCH,
Polar

ECCT [17] and
DARM-ECCT

Embedding size dmodel = 128
FFN hidden size dff = 4×dmodel
Number of attention heads h = 8
Number of layers M = 6 layers

Variational U-ECCT

Embedding size dmodel = 128
FFN hidden size dff = 4×dmodel
Number of attention heads h = 8
Number of layers M = 10 layers

The model from [7] used for comparison is the parameter-sharing NNMS with

Leaky ReLU and 12-bit quantizer (SNNMS-LR-Q). The parity-check matrices for

all codes are taken from [52].

Both the baseline ECCT [17] and the proposed models train and test results

are evaluated for architectures with 6 layers, 8 attention heads, and embedding di-

mension dmodel = 128. A summary of the hyperparameters settings for all methods

is presented in Tab. 4.1. The notation shown in Tab. 4.1 are defined as follows:

L: the list size of the SCL decoding. I: the number of iterations for BP-based

methods. M: the number of layers in neural network models. dg: the number

of neurons for the decoder network g, and d f : the number of neurons for the

hyper-network f in Hyper-Graph Neural BP [6]. The results of Hyper-Graph-Net

decoder [17] and SNNMS-LR-Q [7] are obtained from their respective hyperam-

eters as well as training and testing setup. All simulation tasks are performed on
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a workstation equipped with an AMD Ryzen Threadripper Pro 5995WX proces-

sor, 512GB of RAM, and two NVIDIA RTX 4090-24GB GPUs. All simulations

are programmed using the PyTorch framework [53].

Figure 4.1: BER comparison for baseline models and our proposed models - Polar
codes.

For training, data samples are generated for ECCT [17] and our models

with 128 samples per batch for 1000 batches for cases with input length satisfy

2n−k≤ 200 (all code cases with code length within range of n≤ 128 bits), which

makes up 128000 samples. However, due to constraint on GPU memory, data are

generated with 64 samples per batch for cases of input length within the range of

300 ≤ 2n− k < 500 (Polar (256,128), CCSDS (256,128)), 16 samples per batch

for cases satisfy 500 ≤ 2n− k < 1000 (Polar (512,384), LDPC (576,432)), and

6 samples per batch for cases of input length 2n− k ≥ 1000 (Polar (1024,768),
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LDPC (1248,936)). All training data are all-zero codewords as it is shown to

be sufficient for training in [16,17] without overfitting. Similar to [17], all neural

network models are trained on noise-corrupted codewords with the energy per bit

to noise power spectral density ratio Eb/N0 generated within the range of 2dB

and 7dB. The Adam optimizer [54] is used with initial learning rate of 10−4.

Training is conducted over 1000 epochs using the cosine annealing weight decay

method [57] without warm restart until learning rate reaches 5×10−7.

Figure 4.2: BER comparison for baseline models and our proposed models -
LDPC and BCH codes.

For inference on the trained models of the baseline ECCT and our de-
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signs, the generator matrix G is obtained from the respective parity-check matrix

and used to generate the codewords through Galois field matrix product, defined

by x = sG. With this operation, 128 samples are generated for each test batch

for 1000 batches for Eb/N0 below 7dB. During simulation, it is observed that

the logarithmic BER is mostly below 10−6 for Eb/N0 ≥ 7dB. As a result, for

Eb/N0 ≥ 7dB, test data is instead generated with total number of samples ex-

ceeding 107, ensuring a minimum of 100 error frames to obtain accurate BER

results. Similarly, for BP with 50 iterations, Monte-Carlo simulations are con-

ducted with a total of 107 samples to ensure accurate results across all Eb/N0

regions. All methods are tested over the Eb/N0 range between 1dB and 7dB.

4.2 Decoding performance of DARM-ECCT

Figs. 4.1 and 4.2 show the logarithmic BER over the test range of Eb/N0

for codes with different code lengths and coding rates. As can be observed from

the logarithmic BER results in Figs. 4.1 and 4.2, the performance superiority of

CRPE, DARM, and CRPE-DARM ECCTs, are prominent for all code types and

different coding rate. Especially, CRPE-DARM ECCT is the model with best per-

formance in operational Eb/N0 region (4dB - 6dB), able to achieve performance

gains of 0.4dB to 0.6dB for Polar variants, 0.2dB to 0.5dB for LDPC variants,

and 0.3dB for BCH variants. When applying DARM and CRPE separately, each

method also shows noticeable improvements over ECCT, with DARM resulting
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in better performance than CRPE. Evidently, this indicates the significance of

DARM mechanism in guiding the self-attention operation to concentrate on the

reliable information.

Figure 4.3: BER results for large code lengths.

Fig. 4.3 shows the logarithmic BER result for larger code-lengths. Across

all results shown in Fig. 4.3, it is further proven that the proposed model achieves

better performance than the baseline models for different code settings. Fig. 4.3

showcases the performance for codes with code length satisfy n > 500. When

comparing with the SNNMS-LR-Q [?], it can be observed that the ECCT fall

shorts for cases of Eb/N0 ≥ 4dB while our models are capable of surpassing
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the performance of SNNMS-LR-Q. Considering the overall results, the ECCT-

based models are superior to all BP-based methods in terms of decoding perfor-

mance. As the basic ECCT is less appealing for larger code lengths, the improve-

ments provided by the proposed models are further emphasized. The performance

proven the potential of well-designed model-free design can achieve significant

gains over model-based decoders.

Additionally, frame error rate (FER) results are shown in Fig. 4.4. The FER

results is utilized to confirm the decoder capability of recovering accurate entire

frame (codeword) as appose to individual bits. From the FER results in Fig. 4.4,

the proposed models also achieve superior whole codeword recovery performance

compared to the other considered techniques.

4.3 Training convergence

In Fig. 4.12, the convergence of logarithmic BER over 1000 epochs is pro-

vided for Polar(64,32), BCH(63,51) and LDPC(121,80). Based on the BER val-

idation curve over 1000 epochs, it is further confirmed that the combination of

CRPE and DARM, named CRPE-DARM ECCT, provides the best result. From

the results of both Figs. 4.1 and 4.5, CRPE-DARM ECCT shows improvements

in both inference performance and convergence speed compared to either CRPE

or DARM when they are considered separately.

The results in Fig. 4.5 also confirm that both DARM and CRPE provide
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Figure 4.4: FER result across different code settings.

considerable improvements in convergence speed compared to the baseline ECCT

when they are applied separately. Furthermore, DARM shows its significance in

the BER convergence during training stage and BER performance during infer-

ence stage in comparison with CRPE results.
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Figure 4.5: BER convergence over 1000 epochs for Polar(64,32), BCH(63,51) and
LDPC(121,80).

4.4 Ablation analysis for DARM

In this section, the proposed designs are further analyzed to better explain

their learning pattern and potential. To verify the assumed learning patterns of

self-attention in error detection, the softmax attention score is inspected in com-

bination with analysis on the attribution score obtained through IG method. Fur-

thermore, the sub-components in DARM are tested separately, proving the essen-

tially of interactions between them.
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Figure 4.6: Dynamic masks generated by DARM for each attention head.

Figure 4.7: Comparisons for masking between DARM and ECCT.

4.4.1 Softmax attention score analysis

In this subsection, the effect of the proposed DARM mechanism is analyzed

for our tested Polar(64,32). In Fig. 4.6, the learned mask matrices are provided
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Figure 4.8: Attention weight matrices during inference stage at 4dB for Polar
(64,32) - baseline ECCT [17] vs DARM-ECCT.

for all 8 attention heads. Each head learns a slightly different distribution since

each head provides independent version of the query-key dot-product. However,

all output masks follow a similar pattern where the magnitudes of the masks

strongly concentrate at only specific positions that have some spatial relation to

one another. As intended, DARM not only adapts to the attention dot-product

matrix but also learns to amplify specifically high magnitude positions. Fig. 4.7

shows a comparison between a dynamic mask generated by DARM ECCT and a

binary mask of ECCT. The dynamic mask in Fig. 4.7a not only contains the po-

sitional information (the edges in the PCM) similar to the binary mask of ECCT

(Fig. 4.7b) but also contains the magnitudes of each position through adaptively

learning the information of the Q-K dot-product.

Fig. 4.8 demonstrates examples of attention weight matrices for DARM and

baseline ECCTs during inference. From the attention weights of the trained DARM-

ECCT (Fig. 4.8a) and baseline ECCT (Fig. 4.8b), it is certain that DARM pro-
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Figure 4.9: Attention score for single error bit at 5dB for Polar (32,16) - baseline
ECCT [17] vs DARM-ECCT.

vides a better concentrated attention mapping than the masking of the baseline

ECCT. Although the attention weights of the baseline ECCT shows a highlight

of fewer positions, the spatial distribution in the attention matrix of ECCT is

sparse and shows unrelated patterns, where medium to high magnitude positions

are often located apart from each other.

In order to understand the quality of decoding, the ECCT-based models are

tested on pre-defined error cases. In Fig. 4.9, the softmax attention scores of

attention-based models tested on Polar (32,16) with single-bit error at Eb/N0 =

5dB are presented. The softmax score at each input position is obtained by sum-

mation of all values along the column dimension of the heads-average attention

matrix of the last MHSA layer of each respective model. This result confirms
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Figure 4.10: IG attribution score for single error bit at 5dB for Polar (32,16) -
baseline ECCT [17] vs DARM-ECCT.

that code-aware self-attention highlights the reliable information that are benefi-

cial to obtain the target which is the binary multiplicative noise. In this particular

case, it assign very high attention score to the same position as the error bit in

the received signal. The DARM-equipped models showcase a significantly better

contrast between the softmax score at the error positions and the other positions.

This result verifies the sub-max reduction functionality of DARM design and its

reason for performance superiority. Nevertheless, inspection of the softmax atten-

tion score alone can be less appealing when it comes to interpreting the dynamic

of the entire architecture.

50



CHAPTER 4. EXPERIMENTATION

4.4.2 Integrated Gradient attribution score analysis

As there are certain general interpretability limitation through softmax at-

tention matrices visualization, IG is adopted to analyze the general behavior of

attention-based decoder. The IG attribution score is obtained for the similar sin-

gle error bit case as with the softmax score analysis. Fig, 4.10a shows the IG

attribution scores heat-map for each position against every other positions in the

target data. Fig. 4.10b presents the mean-normalized IG scores where value at

each position is the summation along the respective column of the IG heat-map

in Fig. 4.10a. Since the IG performs the calculation over the entire gradient space

of the model for each inspected positions of the output, the attribution score leads

to a better representation of the model overall learning pattern. From the IG at-

tribution scores obtained for attention-based models, it can be observed that the

position with the highest attribution score is the same as the error position. This

further provides confirmation for the pattern shown when inspecting the softmax

attention scores. Furthermore, the contrast between the error position (peak-value)

and other positions in the attribution scores for DARM-equipped models is much

higher, confirming the model performance improvement.

4.4.3 Quantitative assessment

In order to confirm that DARM provide a consistent high contrast atten-

tion score and IG heat-map, peak-to-average-power-ratio (PAPR) is measured for
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Figure 4.11: PAPR for the column normalized summation for softmax attention
scores and IG attribution scores.

the normalized summation score of bot the attention matrices and IG attribution

score heat-map. The ECCT and DARM-ECCT models trained on Polar (32,16)

are tested on random single-bit error cases for 1000 samples over the Eb/N0 range

between 3dB and 7dB. For each sample, number of cases where the peak-value

position of the column summation of attention matrix and IG heat-map are mon-

itored. For each matched cases, PAPR is obtained from the column summation

score of attention matrix and IG heat-map. In Fig. 4.11, the described PAPR re-

sults of 2-layer ECCT, 6-layer ECCT and 6-layer DARM are shown, where Fig.

4.11a and Fig. 4.11b are the PAPR of the normalized column summation atten-

tion scores and the IG attribution scores, respectively. It can be observed that the

DARM-ECCT model provide a consistent PAPR curve for both type of model

information. Furthermore, for IG attribution score, the PAPR values is the high-
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est among all models between 5dB and 7dB, remaining almost constant over this

range. In contrast, the ECCT yield highly fluctuated PAPR characteristic, even at

operating Eb/N0 range.

4.5 Significance of mirror-sharing

Figure 4.12: BER performance of variational U-ECCT with mirror-sharing and
without mirror sharing for Polar (512,171).

The proposed mirror-sharing strategy described in Section III provides a so-

lution to configure deeper U-ECCT networks without increasing the number of

parameters. In Fig. 4.12, the BER performance is shown for the baseline meth-

ods, the variational U-ECCT with and without mirror-sharing. The effectiveness

of mirror-sharing is confirmed by the result of variational U-ECCT models, where
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Table 4.2: Calculated model size of ECCT and variational U-ECCT with chosen
dmodel = 128.

Setting indicator Without
mirror-sharing

With
mirror-sharing

ECCT 1189632 N/A
Variational
U-ECCT

1222656 (↑ 2.7%) 991360 (↓ 11%)

the mirror-sharing U-ECCT significantly outperforms both its non-sharing variant

and the baseline ECCT.

Nevertheless, the variational U-ECCT without mirror-sharing demonstrates

its improvement over baseline ECCT with a noticeable gain in performance. Note

that in this case, the BP continues to demonstrate its advantages in the low Eb/N0

region up to the 4dB, while all neural models begin narrowing the gap and even-

tually outperform the traditional method. In this regard, our models, particularly

the mirror-sharing variants, exhibit a significantly greater improvement over BP

and the baseline ECCT.

Table 4.2 presents the calculated size of all tested neural network models

based on the chosen embedding dimension of dmodel = 128. ECCT models and

proposed models without mirror sharing utilizes M = 6 layers. Mirror-sharing

models utilizes M = 10 layers. The size difference columns consists of model

size difference in percentage between ECCT and the models in the preceding

column to the right. The model size reduction is enabled on all proposed models

with mirror-sharing. Coupled with the advantage in performance, the variational

U-ECCT variants are much more efficient in utilizing the parameters for mul-
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Figure 4.13: BER performance results for the baseline methods and U-ECCT
models on polar codes with a code-length of 256 at different code rates.

tiplicative noise estimation. The results further prove the efficiency as well as

superiority of the U-ECCT design compared to the baseline ECCT.

4.6 BER performance of U-ECCT variants

By testing the proposed designs on a variety of coding cases, it has been ver-

ified that the proposed variational U-ECCT provides considerable improvements

compared to baseline ECCT. In Fig. 4.13, the BER performance results tested on

different code rates for Polar codes with a code length of 256 are plotted for BP,

ECCT, and our designs. It can be observed that variational U-ECCT outperform

other methods, specifically within the range of Eb/N0 between 4dB and 7dB. Fur-

thermore, the variational U-ECCT model shows its advantage for low code rates,

providing considerable performance gains compared to the baseline ECCT [17].
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Figure 4.14: BER performance results for the ECCT and U-ECCT variants on
large code-length.

In Fig. 4.14, BER results are shown for ECCT and variational U-ECCT on

larger code-length. As anticipated from the U-shaped design, the proposed model

exhibits better performance at larger code-length cases. Comparing the perfor-

mance on polar codes at the high code rate R = 3
4 , at a code-length of 1024

bits, the average performance gains of the variational U-ECCT to the baseline

ECCT are 0.6dB in Eb/N0 at BER = 10−5 in Fig. 4.14(a), which improved by

0.2dB compared to the 0.4dB average performance gains at the smaller code-

length of 256 bits in Fig. 4.13(a). In the three cases of LDPC codes in Figs.

56



CHAPTER 4. EXPERIMENTATION

4.14(d), 4.14(e), 4.14(f), the improvements provided by our models are obvious,

with average performance gains of 0.6dB for LDPC (512, 256) and 0.4dB for

LDPC (576, 480). Even at lower Eb/N0 values of 3dB, where the noise level

is higher, the variational U-ECCT model still provides a 0.4dB gain for LDPC

(512, 256). For low rate codes of Polar (256, 86) in Fig. 4.13(c) and Polar (1024,

342) in Fig. 4.14(b), variational U-ECCT model demonstrates considerably supe-

rior performance to the basic U-ECCT, showcasing the combined advantages of

the U-shaped model and the VAE-like structure.

Table 4.3 presents the performance results of baseline ECCT and our pro-

posed mirror-sharing U-ECCT model for a variety of code structures at different

code-length and coding rates. This table showcases results for BCH codes, LDPC

codes, and polar codes. The results are presented in negative natural logarithm of

BER for Eb/N0 cases from 4dB to 6dB (larger value is better). As shown in Table

4.3, improvements can be observed over all code-length cases with larger gains

for larger codes (with code-length from 256 to 1024). Evidently, based on the

obtained results, the mirror-sharing variational U-ECCT outperforms the baseline

ECCT in all cases, some less than others.
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Table 4.3: Additional performance results of ECCT and our proposed variational
U-ECCT with mirror-sharing.

Code types ECCT Variational U-ECCT
4 5 6 4 5 6

Polar (512, 384) 4.79 7.29 10.99 5.32 8.79 13.09
Polar (128, 43) 5.75 7.86 10.56 6.44 8.81 11.73
Polar (64, 32) 6.99 9.36 12.55 7.10 9.91 13.24

LDPC (576, 480) 7.04 12.24 18.28 7.89 14.18 21.93
LDPC (121, 80) 7.00 10.83 15.38 7.82 12.58 18.53
BCH (255, 163) 4.29 6.11 9.26 4.35 6.34 9.69
BCH (127, 64) 3.39 4.56 6.43 3.47 4.71 6.80
BCH (63, 51) 5.52 7.72 10.67 5.73 8.02 11.34

4.7 Comparisons between DARM and mirror-sharing

variational U-ECCT

In Fig. 4.15, comparisons between the DARM ECCT and mirror-sharing varia-

tional U-ECCT are presented. It can be observed that the DARM ECCT performs

on similar level to mirror-sharing U-ECCT in both training and testing phases for

Polar (64,32). However, when it comes to larger code lengths, DARM ECCT is

inferior to the U-shaped model. Since the mirror-sharing variational U-ECCT en-

ables more layers than DARM ECCT, it is anticipated that this model operates

better when the input space is much larger.

Considering computational complexity, the mirror-sharing variational U-ECCT

scale better with the size of the input due to having the parameter-sharing feature.

On the other hand, the DARM ECCT faces an issue when the length of the input
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Figure 4.15: Performance and training curve comparisons between DARM ECCT
and mirror-sharing variational U-ECCT.

vector (2n− k) is large. Since the mask learning mechanism utilizes the weight

matrix of size (2n− k×2n− k), the scale of the model is increased as the code

lengths grew larger. Since our current focus for DARM is the performance en-

hancement of the self-attention in error estimation problem, the complexity cost

at large code length was not well handled. Hence, the efficiency of DARM ECCT

is not as beneficial as the mirror-sharing variational U-ECCT model.
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CONCLUSION

With the rise of model-free transformer-based design for ECC decoding,

DARM and variational U-shape architecture are proposed in order to improve re-

liability syndrome-based decoding for ECCTs. The evaluation of DARM-ECCT

is conducted based on various aspects, including comparison between the pro-

posed methods and baseline methods using BER over operating Eb/N0 range for

different code types, analysis of the effect of DARM for attention weight ma-

trix and learned mask matrix, evolution of DARM outputs over the sequential

architecture. In decoding comparison, DARM- ECCT achieves best performance,

resulting in improvements between 0.2dB and 0.6dB compared to baseline ECCT.

Under examination of the attention weight matrix and the learned mask matrix

of DARM, it is shown that DARM dynamically adapts to the spatial distribu-

tion of the query-key dot-product, guiding the self-attention mechanism to better
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concentrate on reliable information.

The U-ECCT design forms a unique interaction between the shortcut con-

nections and the main network flow, supporting an enhanced extraction of reliable

information beyond just relying on the self-attention mechanism. This enables

the model to achieve both performance enhancement and model size reduction.

With the proposed mirror-sharing strategy, parameter utilization efficiency has sig-

nificantly increased. This method also enables a deeper yet lighter model, thus

achieving better performance and size reduction compared to the baseline ECCT.

With the modification in the form of variational U-ECCT, the decoding perfor-

mance at low code rates is significantly enhanced, providing up to 0.7dB in av-

erage performance gains on the scale of Eb/N0.

However, we also observe few potential directions in which the design can

be improve upon. In terms of CRPE, though providing improvement in perfor-

mance, using the parity-check matrix for embedding requires the initial projection

from the syndrome length to the chosen model embedding size, which cost ad-

ditional parameters compared to the embedding in baseline ECCT [17]. When

looking at DARM, since its mechanism relies on the existing query-key prod-

uct, if the query-key product fails to capture the reliable information, DARM

module can not detect this failure and will provide improper information back

to the self-attention mechanism. However, such behavior is less likely to occur

since the code-aware self-attention mechanism is already well-performed. While
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effective for moderate code cases, the variational U-ECCT is yet to achieve desir-

able efficiency for code lengths larger than 1024 bits. Such large dimension cases

requires thorough study and additional model scaling methods such as domain

specific pruning and model quantization to achieve a desirable level of complex-

ity for practical decoding. Finally, similar to the baseline ECCT [17], our pro-

posed models requires learning each code structure, coding rate, and code length

separately, in which the required training time can be considerably large under

practical circumstances. In this case, a design allowing heterogeneous learning

of different code structures within a certain range of code length can be a more

effective and practical model.
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국문요약

본 연구에서는 ECCT(Error Correction Code Transformer)의 성능을 향상시키

기 위해 DARM(Dynamic Adaptive Refinement Masking)과 Mirror-Sharing Vari-

ational U자형 아키텍처를 제안합니다. 고정된 바이너리 마스킹 대신 DARM 모

듈은 주의 가중치 분포를 참조로 사용하는 동적 크기를 사용하여 주의 지도의

대비를 더욱 강화하여 자기 주의 메커니즘을 강화하는 각 주의 머리에 대한

고유한 마스킹을 생성하도록 설계되었습니다. 또한, 순차 신경 구조(Sequential

Neural Architecture)를 활용하여 DARM 모듈이 순차적으로 연결되도록 설계하

여 반복적인 정제 효과를 만들어냅니다. 적당한 코딩 길이의 경우 변환기 기반

디코더의 전반적인 효율성을 향상시키기 위해 미러 공유 변형 U자형 아키텍

처가 도입되었습니다. 변형 자동 인코더와 같은 건너뛰기 연결을 갖춘 U자형

아키텍처는 중간 길이의 코드, 특히 낮은 코딩 속도에서 잘 작동하는 분할과

같은 동작을 제공합니다. U자형 모델은 바람직한 성능을 달성하기 위해 일정

수준의 깊이가 필요하므로 미러 공유라는 아키텍처 수준 매개변수 공유 방식이

도입되어 U자형 모델을 효과적으로 확장하여 더 나은 효율성과 성능을 달성

할 수 있습니다. 실험 결과는 기본 ECCT에 비해 비트 오류율이 크게 향상되는

동시에 훈련 수렴 속도도 크게 향상되는 것을 보여줍니다.
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