UIT Report Vol.15, No.1, pp.45~54, 1984 ] T3 A15% 4 1% pp.45~54, 1984

A Study On Structure-Oriented Text Editing In The
Interactive Computer Systems*

Koh Jae Jin + Wu Chi Su « Lee Jung Tae
Dept. of Computer Science
(Received September 1, 1983)

<Abstract>

Editing tasks are the most frequent daily tasks we do in daily life. It is the task that changes
the state of some target entity, whether we do it by computer or other tools. This paper
examines computer based interactive editing systems, first on general systems and next on
structure-oriented text editing systems. This paper defines terms, and provides a comprehensive

features of editing systems.

This paper provides user views of the editing process, and suggests system views of the editing
process. Some historical perspective is presented and the functional capabilities of editor are expl-
ained and discussed. We emphasize on user-level rather than implementation level considerations.

This paper also presents the feature of the structure-oricnted text editing systems which aims
at a generalized approach to data editing in interactive computer systems. The structure-oriented
text editor has the ability to handle hierarchical structures with screen-oriented text editing

facilities.
A BRENAY F2A P FEAAA BE 9T
2AF - A5 o] HH
A A A A
(1983, 9. 1 FH<)
g o2b

ARz £ SH ] S A Fhak wlwE e delwh o L2 AFHR e, FHE R )
E, o Aol J& Xz AWE A "Hﬂ—- Elgiag

ol BEL AFHE Yas ¥ dEd 1A Aamld A dystm, A2 gy Az deA
Agstn, o FEAAE FEA$Y 39 Az Aa A AEdeh

1
of wEAAL o1 BT, WPAxE] FoT F¥ol A A8 5o
o wEe 4AAAE AgAt nE QA Aadel ab QaAdA Aedch B4 G e 94
4 A sokid AEda ,ﬂﬂ7—1ﬂ—ﬂ]ﬂﬂﬂ Ak
Sde AR At RN _w A4S e oA DR 2BE T
) e iz AFH 2T el 49 B ¢ 4 S AE mEAY FaA9 244
F A2 Fag o ) v1aw o Tz A% £F AL A BAALel A5d 3

* o] nES 1982 ERY shEd T 2odula] ] G A8

— 45—



2 Koh Jae Jin + Wu Chi Su - Lec Jung Tac

A% ol gl A ASH T2E R A 44 WY F dE THE AT A

I. Introduction

Editor is a program that edits data and
programs in computer storage.

The interactive editor is an editor that
operates interactively for editing data and
programs. Nowadays the interactive editor
becomes an cassential part of computer systems.
The funetions of the editor are the creation,
addition, deletion, and modification of data
and programs.

The interactive editor will become Kkey
components of the office automation systems,
pecaus¢ of it's characteristics to edit files,
manuscripts, messages, lists, reports, etc.
Knowledge workers, whether they are authors,
teachers or doctors,

composers, researchers,

think the editor an important tool they use
daily life. There has been little researches to
formalize terminology, or to make a framework
for analyzing cditing systems. This paper is a

comprehensive introduction to  text editing,

especially on structure-oriented text editing.

I. The internal structure of the editor

Editors have an architecture similar to Fig.
1. The interaction language processor accepts
input from the input devices, lexically analyzes
and tokenizes the input stream, syntactically
analyzes the stream of tokens, and invokes
the appropriate semantic routines At the
syntactic level, the interaction language pro-
cessor may generate an intermediate represen-
tation of the desired editing operations. The
semantic routines invoke traveling, editing,
viewing, and display.

With the viewing and displaying, there need
not be a one-to-one relationship between what
is “in view”, that is, what is displayed on the
screen currently, and what can be edited. In
editing a document, the current editing pointer
determines the start of area to be edited.

The current editing pointer can be set or

reset by the user with a traveling command.

Editing —>| Editing
Processor | | Buffer |<—| Editing
- Filter h
e+ )
Traveling |—===—==——==== L D Main
Processor |—= =——==———= -» . Memory
Interaction | bero-o - . o | Viewing
Input Language N Viewing Filter b
Processor ey Viewing €
Processor Buffer .
l
™ Display File
P system
Output device w—m—f ~ ocooior ¥

Control Flow

— e Data Flow

Fig.1. The architecture of the editor



A Study On Structure-Oriented Text Editing In The Interactive Computer Systems 3

The traveling processor performs the setting
nf the current editing and viewing pointers,
The editing filter filters the document to
generate a new editing buffer based on the
current eliting pointer as well as the editing
filter parameters,

The filter paramecters provide such infor-
mation as the range of text that can he
affected by the operation, (or cxample, the
“current line” in a line editor or the “current
gereen” in a display editor.

Editing buffer is a [iltered subset of the
document data structurc. The current viewing
pointer determines the start of the area to he
viewed.

When the display needs to be updated, the
viewing filter filters the document to generate
a new viewing filter parameters.

The viewing filter parameters provide such
information as the number of characters needed
to fill the display and how to select them from
the document,

The viewing buffer is then passed to the
display processor, which maps it to a window
or viewport, a rectangular subset of the screen
io produce a display.

The editing and viewing buffers can be
related in many ways. They may be identical,
disjoint, partially overlapping or properly
contained in one another.

Mapping viewing buffers to windows that
cover only part of the screen is uscful for
editors on modern, high-resolution rastergra-
phics-based work stations, as they allow the
user to cxamine and to interact with multiple
views, for inter-and intra-file editing and
“cutting and pasting” The notion of multiple
viewing buffers and multiple windows showing
differing portions of the same or multiple files
at the same time on the screen is designed
into modern editors.

The viewing buffer-to-window mapping is

accomplished by two processors of the system.

The viewing processor formats an ideal view,
expressed in a device-independent intermediate
representation.  The display processor takes
this idcalized view and maps it to = physical
output device in the most efficient maaner
possible,

Much research is concerned with optimal
screen updating algorithms that compare the
current version of the screen with the following
version and, using the basic capabilities of
the terminal, write only those characters
needed to generate a correct display.

Device-independent  Input/output promotes
interaction language portability. Many editors
make us¢ of a terminal control database. The
processors communicate with a user document
on two levels: in main memory and in the
disk file system. In modern systems, the cditor
maps. the cntire {ile into virtual memeoery and
is letting the operating system perform
efficient demand paging.

In systems without virtual memory, cditor
paging routines are required. These read in
one or more logical chunks of a doecument,
called, pages into main memory, where they
reside until a user operation requires another
piece of document. Documents are often
represented not as sequential strings of chara-

cters, but in an editor data structure that

allows addition, deletion, and modification
with a minimum of I/0 and character
movement.

The computing environments in which editors

opcrate are timesharing, stand-alone, and
distributed.

The timesharing cditor must operate swiftly
within the context of the load on the compu-
ter’s processor, primary memory, and sccondary
memory. The editor on a stand-alonc system
must have access to the functions provided by
a small local opcrating system.

The editor in a distributed resource-sharing

local network must run independently on cach



4 Koh Jae Jin« Wu Chi Su + Lee Jung Tac

user’s machine and must contend for shared
resources such as files.

The intelligent terminals have their own
microprocessors and local buffer memories in

which editing manipulations can be done.
. Structure-Oriented Text Editing

It is important in interactive computer
systems that one can edit text data.

The editor is a program that arc performing
editing functions in computer systems.

There has been many unified approaches to
the editing task. Handling hierarchically
structured text was considered an important
part of the editor.

This section s primarilly written for
manipulation of hicrarchically structured texts.

Text editing is the most frequent task to be
done, so it has to be very cfficiently done.

The users model must be simple. The first
editors were very simple, often run through
cards.

Since terminals were put on line, a rapid
development of text editors took place. By
the mid sixties, some text editors had full
programming language capabiliticsCTDAM 711,

The idea of this section came from taking
the inhcrent structure of texts into account.
This means that we can have several view
options of 2 document.

For example, one can choose to display just
the skcleton, perhaps the section headers, or
look at cverything in some paragraph. The
most. editor today are streamlined to run on
video terminals. The current part of the text
is kept on scrcen and every change on the
acreen immediately updates the mirrored text.

Nowadays, cditors have been line-oriented or
treated the text as string of characters.

Natural-language-like commands of the editor
are easier to learn (LEDS80], but the commands

must be very simple, keeping typing over head

at a minimum [CARS0].
1. The K editor

The K cditor is a structure-oriented text
editor. The idea of this editor is to superimypcge
The tree

resembles a table of contents. However changes

a ftree structure into the text.

in the tree structure will cause the text parts
to be correspondingly reordered. Selection of
text part is made by traversing the tree
structure using menus produced from the
current structure, When a leaf is reached text
editing mode is cntered. The editor works
through cooperation of a tree editor and a text
editor,

The K editor has two types of nodes. Those
arc tree nodes and text nodes. A text node is
a sequence of characters. A trec node is a list
which has a head and a scquence of zero or
more references to other nodes, its subnodes,
The subnodes can be text nodes or tree nodes,
If & subnode is a tree node it is the reot of a
subtree. In K editor the node head is a text

node, We can put arbitrary information in
the head. The node head can have informations
such as node names, comments about the text.

In K cditor we have a paragraph in ecach
text node. The tree structure shows how these
paragraphs from sectiong and chapters.

The node heads can have headers and
formatting commands.

We ean display the structure of a tree or
the text in a node. If the current node is a
tree node the first line of the head and the
first line of each subnede is showed. The
subnodes are numbered and these numbers can
be used as arguments to a command.

The current node is the node that is showed
on the screen. To traversc the different parts
of the trec is to change current node.

Tree traversal is done by menu selection.

We can make the subnode a current node by

selecting the subnode number. Some commands



A Study On Structure-Oriented Text Editing In The Interactive Computer systems 5

arce needed for the user to walk around in a
tree and get a general view of a structured
document. There are commands to select the
n th subnode, go up to root node, go one level
up, go the next and the previous node on the
same level in the tree. The ideca of these
commands comes from the structure editor in
the INTERLISP programming system [TEI78)
{SAN78).

There is a command to show several levels
of the tree. The indentation of node numbers
is used to indicate how the tree nodes are
connected. If the current node is a text node
the whole text is displayed. There is a
command to show what the text would look
like if all the nodes in the subtree were
merged.

There arc commands to deletc a subtree,
insert a node after current node, insert a node
before current node, and to join current node
with next node.

There are commands to change order between
subnodes. There are commands to copy a
subtree into another subtree. The creation of
new trec nodes is done by grouping the nodes
that shall be its subnodes.

There is a command to split a tree node into
its subnodes. The edit command is used to
change the information in a node. There must
Le the text editor for the text nodes. The head
is edited if current node is a tree node, There
are commands to communicate with the file
svstem. The whole tree or a subtree can he
saved on files with or without the tree struc-
turc. Files with structure can later be loaded
as a subtree at any position in tree. Files
without the structure information can be loaded
as a text node.

The user can then split the text and build a
structure over it.

The text cditor have a part of the text pre-
sented in a window, and makes extensive use

of control characters. The editor inserts normal

characters at the place of cursor. For string
replacement, it is made possible to change to
command mode, where the command is visualized
on a dedicated now. To create new text nodes,
the text editor has two commands, one manual
and onc automatic.

The “new node”-command(control-N) splits
the text at current position and inserts the {irst
part of the text before current node while the
second part is kept in the text editor. The
“guess”-command on the command line is used
to devide a text node depending on the charac-
ters in the text.

2. Internal Structure of K editor

The text nodes is referenced from a tree node
or is on the free list. All texts are in one big
buffer and a text node contains thc length of
the text and a pointer into the text buffer.

Since texts of variable length are inserted,
deleted and changed, it is necessary to compact
All text

nodes in the tree are linked together in the same

the buffer and reclaim unused space,

order as they have space allocated in the buffer.
Net text nodes arc added in the end of the
buffer. If there is not free space enough the
buffer is compacted. Before editing a text it is
copied to the end of the buffer. This makes it
possible for the text to grow and it gives the
user a chance to get back the old version of the
node.

To delete a text node it is just to remove it
{rom the list of active texts and put it on the
the list of

active text nodes is went through once and the

free list. To compact the buffer,

texts in the buffer are moved so they follow
direct after each other.

A trec node is implemented as linked list.
The first list element contains a pointer to the
head followed by a list of zero or more subno-
des. Each list cell contains two pointers and a
type tag.

A tree structure is stored on a scquential text



] Koh Jae Jin - Wu Chi Su - lLec Jung Tae

file with the structure with parentheses repre-
senting tree nodes and the structure of charac-
ters in text nodes written as decimal integers,

All text in the tree are written in depth first
order. This cxternal format for the structurc
is used to make the loading fast. The tree struc
ture is built when the structure part of the file
is read. Each new text node points to the place
in the text buffer where the text later will be
loaded. After the structure part is read the
rest of file can be moved directly into the text
buffer. Other file formats are program files
where the structure information is strored in

comments and text files without stucture.

F. The manipulation of structured
information

The K-system is for the mapipulation of
structured information. In interactive program-
ming environments such as K-system, a prog-
rammer may design, implement, document,
debug, test, analyze, validate, maintain and
trapsport his programs. The K-system provides
a programming team with tools for specifying
a design, enforcing a programming methodology
and verifying interfaces.

The kerncl of K-system in a syntax directed
eidtor in which cvery ohbject is represented as an
operator-operand tree, usually called an abstract
a tree

syntax tree. For a given language,

grammar, called the abstract syntax of the
languages, defines legal abstract syntax trees
in that language.

These tree data structures arc shared by
several processors. The characteristics of this
interactive,

programming cnvironment are

programmable, language independent, and
multilingual. Multilinguality means that several
Janguages may be handled simultaneously and
subtrees of the same iree may represent prog-

rams in different programming Janguage.

L. The specification language

To add a new formalism, or, programming
language, to K-system, it is necessary to write
a specification language program that defines
this formalism.

Since the Specificalion language is one of the
formalisms that may be manipulated under
K-system, it has been defined in itself.

The user who wants to add a new language
to K-system will do so in the K-system
programming environment. In a K-system
the COMPILE command creates the
tables for the formalism defined by the current

session,

specification language program.
Then,

may he directed to use this new formalism as

within the same session, K-system
current language.

The first implementaation of the specification
language under K-system has been obtained by
bootstrap is handcompiling the specification
language program that defines the specification
language itself.

The specification language is one example of
language whose compiler taken as input the K-
system tree structure rather than the textual
representation of programs.

A specification language program, say s,
that d.efincs a formalism F, contains the
following components.

(1) The concrete syntax of F

This is a set of rules to decide whether or
not a given sentence belongs to F.

These rules will be .used to creatc a parser
for F.

(2) The abstract syntax of F

The syntax of trees to represent correct pro-
grams in the formalism F.

(3) The tree building functions

These functions indicate which tree corr-
esponds to each component of the language.

The tree gencrator of F is created from these

functions.



A Study On Structure-Oriented Text Editing In The Interactive Computer Systems 7

Each concrete syntax production is associated
with a semantic action, called a tree building
function.

When passing a program in F, whenever a
reduction is performed by the parser, the
associated semantic action is executed.

A tree is built and pushed onto a stack.

(4) The unparsing specifications of I

These specifications specify the converse con-
nection, between, tree form and text form.

They indicate the piece of text associated with

each elementary ahstract tree.

The connection between text form and tree
form is accomplished by two processors.
(1) the universal parser(constructor)

This builds a tree from the text form,

It is driven by tables compiled from the
concrete syntax and the tree building functions.
(2) The unparser

This builds a text from an abstract tree,

It is driven by tables compiled from the

unparsing specifications.

2. The syntax of a small programming
language

~This language is called ASPLE defined by
its denotational semantics in (DON 78],
{program}:: =begin{dc] — traind>{stm—train} end
{dcl—train):: ={declaration)
[{dch—train)>{declaration>
{declaration):: =(mode>{(idlist)
<moded:: =hool
|int
Iref{modc>
Cidlisty:r=ddy
[<idlisty, (id)
{gtm— traind:: =(statcment)
[{stm—train}; {statement)
{statement):: ={asgt--stm)
|{cond— stm)>
| {loop— stm>
[{transput—stm)

{asgt—stmd::={d}: ={exp)
{cond-stm)::=if{exp) thendstm—train} fi
lif{exp) then{stm - train)
clsedstm—train) fi
{Jdoop—stm):: =while{exp) do {stm~train) end
{transput—stm>:: =inputdid)
[output{expd
{expy::~={factor)
[{exp>+(factor)
{{actor):: ={primary’
| {factory<primary)

{primary i ={d>

| {constant)

[ ({exp))

[ ({compare})
{compare):: ={expy=<{exp)

[{exp) #{exp)
Adyr:=%ID
{constant): : =<{bool}
[{num)
<hoolyri=true
{false

{numd:: =% NUMBER

3. The abstract syntax of a small prog-
ramming language

The abstract syntax consists of operators and
phyla. The operators label the nodes of the
abstract trees, There are two kinds of operators:
fixed arity and list operators. The arity of
fixed arity operators is limited to 3.

Operators with arity zero are the leaves of
ahstract trecs and represent atoms of the
language.

Opcrators of fixed arity can have offsprings
of different kinds, where as all offsprings of
list operators must be of the same kind. The
meaning of “kind of offspring” is formalized
by the concept of phylum.

The phyla and non empty sets of opcrators.
To cach offspring position of an operator is
associated a phylum. This phylum contains

those operators that are allowed as had-operator



8 Koh Jae Jin - Wu Chi Su - Lee Jung Tae

of a subtree in this offspring position. Each

occurrence in an ahstract syntax tree is associ-

ated with a phylum that indicates what
operators are allowed at this location.

This phylum depends on the father of this
occurrence, and on the rank of this occurrence
as a son of its father. To define an abstract
syntax one must describe both operators and
phyla.

For operators, this involves defining their
arity and the phyla associated with their sons.

For phyla, this means defining which
operators they include. To define the abstract
syntax of a language, we must keep the follo-
wing criteria in mind.

(1) Subtrees should correspond to semantically
significant concepts of the language.

(2) The abstract structures should be close
enough to the concrete syntax so that the
user may understand and remember them
easily.

The abstract syntax of a small program-
ming language(ASPLE) is given below.

Operators are in lower case, phyla are in
upper case. To define an operator, one gives
the phyla of its sons, and to define a phylum
one cnumerates the operators that belong to
it. The arity of an operator is equal to the
number of phyla on the right hand side of
the rule defining the operator.

Symbols --.. indicate that the operator is

a list operator, for a list that cannot be

empty, while symbols3¢... denote a list that
can be empty.

A single phylum is given for all sons of a
list operator.

The operator “program” is binary, its first
son is an operator belonging to the phylum
DECLS and its second son belongs to the
phylum STMS. The operator stms is a non-
empty list operator, the sons of which belong
to the phylum STATEMENT.

The operators hool, int, and id are nullary

operators and they will be leaves of abstract

trees,

program— DECLS STMS;

decls— DECLARATIONH-... ;

declaration— MODE IDLIST;

idlist—ID+.,.;

bool—;

int——;

ref——MODE;

stms— STATEMENT+...;

assign—-ID EXP;

ifthen—EXP STMS;

ifthenelse—»EXP STMS STMS:

While—EXP STMS;

input—--ID;

output——EXP;

plus—EXP EXP

times— EXP> EXP

equal—EXP EXP

different—EXP EXI?

boolean—;

number—;

id——-;

comment-—-;

comment-g—- +COMMENT¥...;

meta—;

deref— EXP;

and—EXP EXP;

or~—EXP EXP;

DECLS:: =decls;

STMS:: =stms;

DECLARATION:: =declaration:

MODE:: =bool int ref;

IDLIST:: =idlist;

STATEMENT:: =assign ifthen i{thenelse

while input output;

EXP::=plus times ID cqual different
CONSTANT AUX;

CONSTANT:: =number boolean;

ID:: =id;

COMMENT: : =commicnt;

AUX::=deref and or;

—_— K2 —



A Study On Structure-Oriented Text Editing In The Interactive Computer systems ‘.

4. translation from text fo free

An cssentiul component of a specification
language program is a list of rules that specify
a concrete grammar with a translation of con-
crete text representation to abstract tree
representation,

(1) Atomic trees

Atomic trees are built with the atom const-
ructor. This constructor takes the name of an
atomic operator as a left operand and the valuc
of the atom as a right operand. For the
following production

{idy;; = %ID
when the parser makes a rcduction using this
production, it means that a token, accepted by
the regular expression that defines %ID in the
scanner, has been met in the text.

The generated tree must he an atomic tree
with the operator id of the abstract syntax of
a small programming language(ASPLE), and
its value must be the string representation of
that token. The function that builds such a
tree is

id —atom(%ID)

In the specification language program we have
the rule;

{id»;; =751D;

id-atom(%ID)

There are four rules in the specification
language program that builds atomic trees:

{ddir =%ID:

id—atom(%ID)

{num):: ~FHNUMBER;

number —atom(%NUMBER)

<hooly:: —true;

hoolean —atom( ‘true’)

{bool>:: ==false;

boolean —atom( “false”)

(2) Fixed arity operators

For the following production,

{mode):: =ref{mode);

The trec generating function will be ref({mo-

dey) This means that the corresponding tree
will consist of the unary operator ref with, as
a son, the tree associated with the non-terminal
<{mode). For the following production,

{factor):: ={factor) # ¥ {primary};

The sharp sign, #, is the specification
language forcing character. It has to precede
every terminal which is a specification language
keyword or punctuation-mark.

The tree generating function will be times

({factory, {(primary))

This means that a tree is built up with the
binary operator times and, as first son, the tres
associated with the nonterminal{factor) and, as
sccond son, the tree associated with the nonter-
minal{primary>,

V. Conelusion

The cditors offer a set of frequently used
standard functiops such as editing, traveling,
viewing and display.

The K editor was designed prototype for a
structure-oriented text editor. The structure
handling mechanisms and the screen-oriented
text cditing primitives of the K editor were
presented. The hierarchical structuring of text
objects provides qualities for information hand-
ling of database management facilities. The
flexible hierarchical structuring mechanisms is
a very useful tool for organizing and maintai-
ning larger text files or data collections. In the
allocation of text to nodes a trec browsing
interfacc based on menu selection sigficantly
improves the access to node data. The K system
is an abstract manipulation system at the core
of a programming environment. The user cor-
responds to the system through the concrete
syntax. The user can visualize his trees with
unparsing, and conversely input his program
text with parsing. The abstract syntax mani-
pulation language should bhave a powerful
procedure abstraction mechanism.



10 Koh Jae Jin+ Wu Cha Su

1t is important that the K system can

manipulate structured annotations, linked to
the structure of the program, hut conceived as
scparate entities. We envision & structure-
oriented text editing svstem which unify the
whole range of & programming activity such
as design, devclopment, documentation, debug-

ging, waintenance and transport.

9. References

[BBN 73) Bolt Beranex And Newman Inc.
TENEX test editor and corrector manual,
combridge, Mass., Oct., 1973,

'CAR 801 Card, s ¢t al, The Keystroke-Level

Time with

Model for User Performance

Interactive systems, comm. ACM, vol.23,
pp. 396410, July 1980
1COMS 671 Com-Share, Inc. QED reference

manual, Ann Arbor, Mich., 1967.

[Cris 65) Crisman, P.A., ED. The compatible
time Sharing svstem: A programmer’s guide,
ond ed,, M.LT. Press, Combridge, Mass.,
1965,

[DAM 717 Van Dam, A. and Rice, D.E., On-
line text editing: A survey, comput. Ssurv.
vol.3, no3, pm 93—114, September 197L.

[Don 78] V. Donzeau-Gouge, G. Kahn, B. Lang,
A complete machine-checked definition of a
simple programming language using denota-
tional semantics I.R.1.A. Rescarch Report
no. 330, QOctoher 1978,

[Enge 73) Engelbart, D.C., Watson, R.W.,
and Norton, J.C. “The augmented Knowledge

Lee Jung Tae

workship, ” in Proc, National Computer Coni.,
val. 42, AFIPS Press, Arlington, Va., 1973,
np. 9—21,

[(FAJM 73) Fajman, R, “WYLBUR: An inter-
active text editing and remote job entry
system” Comm. ACM 16, 5(May 1973), 314
--322,

(Bans 717 Hansen, W. J. “Creation of hierarchic

Rep. ANL
7818, Argonne National Laboratory, Argonne,
I, July 1971.

(IBM 671 International
Magnetic Tape selectric typewriter, New
York, 1967.

[Lamp 781 Lampson, B.W.
in Alto wuser's handbook, Xerox Palo Alto

Palo Alto, Calif., Nov.

text with a computer display,”

Business Machines

“Bravo manual,”

Research Center,
1978, pp. 31—62.

[(LED 80) Ledgard, H ¢t al, The Natural
Language of Interactive Systems, Comm.
ACM, vol.23, no.1 O, pp.556-—563, October
1980,

[SAN 78] Sandewall, E., Programming in an
Interactive Environment: the Lisp Experience,
ACM Comp. Surveys, vol.10, no.1, pp. 35—
71, 1978.

[Suth 63) Sutherland, LE, “THOR-A display
based timesharing system,” in Proc. Spring
Jt. Computer Conf., vol.23, Spartan, Balti-
more, 1963, p. 329,

[TEI 78) Teitelman, W., The INTERLISP
Reference Manual, Xerox PARC, Palo Alto,
Calif, 1978.



