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A Note on Weakly Singularity and Atomic Measure
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(Abstract)

Elementary properties of weakly singularity and atomic measure has been studied by R. A. Johnson
and N.Y.Luther. Extending their methods in this paper, we arc going to give some fundarmecntal
theorems which are set function defined on measurable set.
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1. Introduction

All measures in this paper are measures on
a o-ring & of subsets of X. For each 4 mn &,
we denoted by us the comtracted set function
defined on & by the formura g (E)=p(ANE);
«clearly s, 15 a measure on .

The purpose of this paper 1s to investigate
elementary properties of this mcasure, For
example, as is well know, form of the Lebesgue
.decomposition theorem as stated i Theorem
(2,1) has heen studied by R.A. Johnson and
N.Y.Luther., We apply 1t to the study of the
relations between weakly singularity and abso-
lutely continuity in § II.

Finally, in § @l elementary properties of ato-

mic and nonatomic measures are investigated.

I. Weakly singularity and
ahsolutely continuity.

Lex X be a set, ® be a g-ring of subscts of
X, and g, v be measures on ®. We say that v
is absolutely comtinuwous with respect to p,
denoted vy, if v (E)=0 whenever Fe5% and
u(E)=0. Recall that the sets E in & are called
measurable. We say that a subset A of X is
locally measurable (with respect to &) if its
intersection with every mecasurable sel is mea-
if ENAed for every F in
&. We say that v is singular with respect to

surable, that is,

¢, denoted ui{ g, 1f there exists locally measu-
rable 4 such that w(ENA)=0=u(E—A4) for
each E=b. Finally, we say thal » 15 weakly
singular with respect to g, denoted »Sp, if
Fz=% such that

given E=9®, there exists
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v(E)=w(ENF) and u(F)=0.

This is shown in [4) which also contains the
following casily verified properties of weakly
singularity that we shall need.

1. vSv 1f, and only if, »=0.

2. If v8u and 2<7p, then vSA.

3. If »Sp and v 4, then v=0.

We shall make use of the following form of
the Lebesgue Decomposition Theorem n [4,
Theorem 2.1. or 6, Theorem 1.1.]

Theorem 2.1, (Lebesgue Decomposition T heo-
rem) Let u and v be measures on @ a-ving ®.
Then there exists a unique decomposition v=1iy
“we Of v trifo the suin of measures vi, v, On o
such that vy p. v.Su, and wSva.

It 15 eacy to see that although singularity is
a symmetric relation, weakly singularity docs
not possess this property. Moreover, clearly
vl g implies that vSp and wSv. However, the
converse does not hold. But we give a condition
under which weakly singularity is symmetric.
This remarkable theorcm has been proved by
R.A. Johnewon in (4]

Theorem 2.2. If v s o-finite and vSp, then
given E=b, there exisis F=% such that v(E—
F) 0 and u(F)=0. Heuce pSy in this case.

Definition 2.3, For cach 4=8, we denoie by
¢4 the contracted sct functzon defined cn ® by
the formula p(E)=p(ANE).

Clearly g, is a measure on &, and g« gt

Lemma 2.4, (a) If vSu, then viSu for all
A2,

(WD) If v o, then va “p for all A=5.

Proof. Follows from definition of weakly
singular and absolutely continuous.

Theorem 2.5. vSp of and only if v(A)=0
whenever va .

Proof. Suppose vSp. Then v,Sy for all 4=
by Lemma(2.4). If va g, then =0 so that
v(A4)=0.

To prove the converse, we assume that »(4)
=0 whenever vs-Zp. By the Lebesgue decompo-

sition theotem, we may write v=y,+u,, where

vi<ip, vaSp, and pSv,. In order to show that
vSu, it suffices to show that v (E)=0 for all
E in &, Suppose, then, that FEe&d. Since
wSy;, there exists F in & such that v (E)=1,
(ENF) and uw(F)=0. Necessarily, vr=(v)s.
Since vy, we have (w)rsip so that pp<ip.
By hypothcesis, we have v(F)=0. Then pn,(E)
= (ENF)=u(FY=0, and we are donc.

Theorem 2.6, wepu if and only if v(4)=0
whenever vaSy.

Proof. Suppose v<ig. Then vy for all
A=d by Lemma (2.4). If vaSy, then p,:-0
50 that v(A)=0.

To prove the converse, we assume that »(A4)
=0 whenever »;Su. By the Lebesgue decompo-
sition theorem. we may write v=-v;+v,; where
viSey Sy and Sy, In order to show that
v<ly, it suffice to show that w(E)=0 for all
E in & Suppose, then, that E<=&. Since wi:fp
and v.8u, we have v;Su;. Therefore there exists
F in & such that w(E) -w.(ENF) and v, (F)
=0, Necessarlly, vp=Cv:)r. Since v;Sp, we have
(v.)#Su 50 that ppSp. By h_vpothcsn-:,, we have
v(F)=0. Then v (E)=w:(ENF)<w(F)=0, and
the proof is completed.

. Atomic and nonatomic measure.

A set Ee® will be called an atom for y if
p(E)>0 and given Fe&b, either u(ENF) or
u(E—F) is 0. We notice that if E is an atom
for g and p(EUF) 0, then EF is also an atom
for u. We shall say that y 15 purely atomic or
simply atomic 1f every measurable set of positive
measure contamns an atom. We shall say that g
15 nonatomic 1f therc are no atoms for g This
means that every measurable set of positive
measure can be split into two disjoint measurable
scts, each having positive measure. Clearly the
zero measure is the only measure which is both
purely atomic and nonatomic, Here we shall
prepare the following theorem which has Leen
proved by R.A. Johnson in [5].
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Thecrem 3.1. If v<i--p¢ and uSA where v is
burely atomec and u is nonatomic, them uSv.
Hence, if 1 is nonatomic, v 15 atomic, and
vy, then uSy.

Theorem 3.2. If u is any measure on B,
then there exist measures @ and p. Such that
u= i+ g, where w 15 purely atomic and p. is
nonatomic, uSu, and uSu.

Theorem 2.3, If p1s atomic, vis nonatomic,
and v p, lhen pSv.

Using these theorems, it 1s casy to sce that
a measure 1s purely atomic (nonatomic] 1f an
equivalent measurc s purcly atomic [resp.,
nonatomic].

Theorem 3.4. (a) IF uris purely atomic, then
S0 45 uq for each A in ®.

(b) If u és nonatomic, lhen so is ua for each
Ain &,

Proof, If ps(EY0, then pw(ANE)>0. Since
(¢ 18 purely atomic, there exists a p-atom F
such that FC(ANE). Then, given G5,
cither #(FNG)=0 or w(F—G)-0. Hence, at
least one of i (ENF) or w(E—F) is equal lo
zero, and this proves (a).

To prove (), suppose E is an atom for s,
Then, given F&d, cither w(ENF) or y(E—-
F) is equal to zero., Hence AMNE 1s an atom
for ¢, and this proves the result.

Theorem 3.5. (a) yu 25 purely atomic if and
only if u(A)=0 whenever ps 1s nonatomic,

(b) ¢ is nonatomic if and only if u(A)=0
whenever ua is purely atomic.

Proof. To prove (a), suppose p is purely
atomic. Then p, is purely atomic by (a) of
Theorem (3.4). Since p, is nonatomic by hypo-
thesis, we have p4=0 so that p(A4)=0,

To prove the converse, we assume that
#(A)=0 whenever y, is nonatomic. In view of
Theorem (3.2), we may write py=p,+y, where
t is purely atomic, g, is nonatomic, Sy and
125¢. In order to show that g is purely atomic,
it suffices to show that w(£)=0 for all E in

®. Suppose, then, that E in &, Since pSu,

there cxists F mn & such that w(E)=p(ENF)
and (n(F)=0. Necessarily, pr=(g)s. Since (uo)s
is nonatomic by (b) of Theorem (3.4), we have
ur is nonatomic so that p(F)=0 by hypothesis.
Then (E)=p (ENF)Zp (F) =0. and this
proves (a).

To prove (b), suppose g is nonatomic. Then
4 is nonatomic by (b) of Theoramn (3.4). Since
pa is purely atomic by hypothesis, we have
#4=0 so that p(A)=0.

To prove the converse, we assume that u(A)
=0 whenever y4 15 purely atomic. In view of
Theorem (3.2), we may write p=p; -+, where
¢t 15 purcly atomic, g, 1s nonatomie, ;,5p;, and
St

It suffices to show that w(E)=0 for all E
then, that £ in ®. Since
1Sy, there exists F in & such that p(E) =
w(ENF) and p(F)=0. Necessarily, pr=_(u)p.
Since () is purely atomic by (a) of Theorem

in &, Suppose,

(3.4), we have pr is purely atomic so that
#(F)=0 by hypothesis. Then @ (E) =, (ENF)
Zu(F)=0, and this proves the result.

Corollary 3.6. (Cf.[5, Theorem 2,4]). Sup-
bose v+lp, where p is o-finite,

(@) If u ts purely atoinic, then v is purely
atomic.

(b)Y If p is nonatomic, then v is nonatomic.

Proof. To prove(a), suppose v, 1s nonatomic.
In order to show that » is purely atomic, 1t
suffices to show that v(A4)=0. Since vu-Ip by
(b) of Lemma(2.4) and since  is purely atomic,
we have pSvs by Theorem (3.3). Since g is
o-finite, we have wv,Sp by Theorem (2.2).
Therefore we have v,=0 so that »(4)=0.

To prove (b), suppose va is purely atomic.
It suffices to show that »(A4)=0. Since wy=y
and since p is nonatomic, we have ¢Sya by
Theorem (8.1). Since x 18 o-finite, we have
vaSy. Therefore we have v,=0 so that »(A4)=0,

and this proves the result.
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