p-continuous functions

R. Prasad*·Chae, Gyu Ihn·I. J. Singh*

Dept. of Mathematics

(Received October 30, 1982)

(Abstract)

The concept of c-continuity is due to Gentry and Hoyle [3] and that of H-continuity owes to Long and Hamlett[6]. It is known that continuity $\Rightarrow H$ -continuity $\Rightarrow c$ -continuity and that implications are not reversible. In this paper the authors investigate and study a new function which lies between continuous function and c-continuous function but independent of H-continuous function.

p-연속 함수에 관하여

R. Prasad*·채규인·I. J. Singh* 후 학 과 (1982. 10. 30 접수)

《요 약》

노는 [3]과 [6]에서, "연속함수를 H-연속함수를 c-연속함수"가 성립되다 그 역들은 성립하지 않음이 보 이끌다.

이 논문하므는 일속함수의 c-일속함수 사이에, 그러나 H-인속함수와는 독립적인, 제로운 함수 p-인속함수에 난한 일꾼이다.

I. Preliminary

The concept of c-continuity as a generalization of continuity is due to Gentry and Hoyle [3]. A function $f: X \longrightarrow Y$ is said to be c-continuous if for each $x \in X$ and each open set V containing f(x) and having compact complement there exists an open set U containing x such that $f(U) \subset V$ [3]. Long and Hamlett [6] defined H-continuity on replacing compact complement by H-closed complement in the definition of c-continuity. We recall that a set P in a space (X, \mathcal{F}) is said to be H-closed if and only if for each \mathcal{F} -open co-

vering $\{U_{\alpha}\}$ of P it has a finite subfamily $\{U_{\alpha_i}\}$ such that $P \subset \bigcup_{i=1}^n \{U_{\alpha_i}\}$ [6]. Continuity \Rightarrow H-continuity \Rightarrow c-continuity and these implications are not reversible. In this paper the authors investigate and study a new function which lies between continuous function and a c-continuous function but independent of H-continuous function.

II. Properties of p-continuous functions

Definition 1. A function $f: X \longrightarrow Y$ is said to be p-continuous if for each $x \in X$ and each open set V containing f(x) and having paracom-

^{*} Professors of Dept. of Math., University of Saugar, India

pact complement, there exists an open set U containing x such that $f(U) \subset V$. (We recall that a space X is paracompact if and only if every open cover has a locally finite open refinement.)

Proposition 1. Let $f: X \longrightarrow Y$ be a function from a topological space X into a topological space Y. Then the following statements are equivalent:

- (a) f is p-continuous.
- (b) If V is an open subset of Y with paracompact complement, then $f^{-1}(V)$ is an open subset of X.
- (c) If K is a closed paracompact subset of Y, then $f^{-1}(K)$ is closed.

Proof. (a) $\mathcal{L}(b)$. If V is an open subset of Y with paracompact complement, then for each $x \in f^{-1}(V)$, V is neighbourhood of f(x). Hence there is a neighbourhood U of x such that $f(U) \subset V$. Thus $f^{-1}(V)$, being a neighbourhood of each of its points, is open.

(b) $\forall \cdot (a)$. Let $x \in X$ and V be an open subset of Y containing f(x) and having paracompact complement. Then $f^{-1}(V)$ is an open set containing x and $f(f^{-1}(V)) \subset V$.

(b) \dashv (c). Let $K \subset Y$ be a closed, paracompact set. Then Y - K is an open set with paracompact complement and, therefore, $f^{-1}(Y - K) = X - f^{-1}(K)$ is open. So $f^{-1}(K)$ is closed in X.

(c) \rightrightarrows (b). Let $V \subseteq Y$ be an open set with paracompact complement. Then Y - V is a closed, paracompact set and therefore $f^{-1}(Y - V) = X - f^{-1}(V)$ is closed. So $f^{-1}(V)$ is open in X. Proposition 2. Let $f: X \longrightarrow Y$ be a p-continuous closed function from a normal space X onto a space Y. If either of the spaces X and Y is T_1 , then Y is Hausdorff.

Proof. (Case I). If the space Y is T_1 , let y_1 , y_2 be any two distinct points in Y, then $\{y_1\}$ and $\{y_2\}$ are closed, paracompact subsets of Y. So by proposition 1, $f^{-1}(y_1)$ and $f^{-1}(y_2)$ are disjoint closed subsets of X. By normality of X, there exist disjoint open sets U_1 and U_2

containing $f^{-1}(y_1)$ and $f^{-1}(y_2)$ respectively. Since f is closed, the sets $V_1 = Y - f(X - U_1)$ and $V_2 = Y - f(X - U_2)$ are open in Y. It is easily verified that V_1 and V_2 are disjoint and contain y_1 and y_2 respectively.

(Case 1). If the space X is T_1 , let $f(x) \cong Y$. Since $\{x\}$ is closed in X, $\{f(x)\}$ is a closed subset of Y. So Y is T_1 , The rest follows from case I.

Lemma 1 [2]. The product of a paracompact space and a compact space is paracompact.

Definition 2. Let $f: X \longrightarrow Y$ be any function. Then the function $g: X \longrightarrow X \setminus Y$, defined by g(x) = (x, f(x)) is called the graph function with respect to f.

Proposition 3. If $f: X - \longrightarrow Y$ is a function from a compact space X into a space Y such that the graph function g is p-continuous, then f is p-continuous.

Proof. Let $x \in X$ and V be an open set containing f(x) such that Y - V is paracompact. Let $p_Y : (X \times Y) - \neg Y$ be a projection. Since projections are continuous, $p_Y^{-1}(V)$ is open in $X \times Y$. Again, X is compact and Y - V is paracompact, therefore, by Lemma 1, $X < (Y - V) = (X \times Y) - p_Y^{-1}(V)$ is paracompact. Thus $p_Y^{-1}(V)$ is an open set in $X \cap Y$ having paracompact complement. Therefore, there exists an opan set U containing X such that $g(U) \subset p_Y^{-1}(V)$. It follows that $p_Y(g(U))^{-1}f(U) \subset V$, so that f is p-continuous.

Proposition 4. Let $f: X \longrightarrow Y$ be any function, \wedge and \wedge' are index sets. Then the following statements are true.

- (a) If f is p-continuous and $A \subseteq X$, then f/A: $A \longrightarrow Y$ is p-continuous.
- (b) If $\{U_{\alpha}: \alpha \in \Lambda\}$ is an open cover of X and if for each α , $f_{\alpha}=f/U_{\alpha}$ is p-continuous, then f is p-continuous.
- (c) If $\{F_{\beta}: \beta \in \Lambda'\}$ is a locally finite closed cover of X and if for each β , $f_{\beta}=f/F_{\beta}$ is p-continuous, then f is p-continuous.

Proof: (a). Let U be an open subset of Y

with paracompact complement. Then $f^{-1}(U)$ is open and hence $(f/A)^{-1}(U)=f^{-1}(U)\cap A$ is open subset of A.

(b) Let U be an open subset of Y with paracompact complement. Then $f^{-1}(U) = \bigcup \{f_{\alpha}^{-1}(U) : \alpha \in \Lambda\}$ and since each f_{α} is p-continuous, each $f_{\alpha}^{-1}(U)$ is open in X and so $f^{-1}(U)$ is open in X.

(c) Let F be a closed and paracompact subset of Y. Then $f^{-1}(F) = \bigcup \{f_{\beta}^{-1}(F) : \beta \subseteq \bigwedge'\}$, since each f_{β} is p-continuous, each $f_{\beta}^{-1}(F)$ is closed in F_{β} and hence in X. Again, since $\{F_{\beta} : \beta \subseteq \bigwedge'\}$ is locally finite closed cover of X, the collection $\{f_{\beta}^{-1}(F) : \beta \subseteq \bigwedge'\}$ is a locally finite collection of closed sets. Thus $f^{-1}(F)$ being the union of a locally finite collection of closed sets is closed [4].

Proposition 5. Let $f: X \longrightarrow Y$ be p-continuous and $A \subset X$ be such that f(A) is closed in Y, then $f/A: A \longrightarrow f(A)$ is p-continuous.

Proof. Let F be closed and paracompact in f(A). Since f(A) is closed in Y, F is closed in Y. By proposition 1. $f^{-1}(F)$ is closed in X and hence $(f/A)^{-1}(F)=f^{-1}(F)\cap A$ is closed in A.

Proposition 6. Let $f: X - \longrightarrow Y$ be continuous and $g: Y \longrightarrow Z$ be a *p*-continuous, then $g \circ f: X - \longrightarrow Z$ is *p*-continuous.

Proof. Let K be a closed and paracompact subset of Z. Then $g^{-1}(K)$ is closed and since f is continuous, $(gof)^{-1}(K) = f^{-1}(g^{-1}(K))$ is closed.

Proposition 7. Let $f: X \longrightarrow Y$ be a quotient map [4]. Then a function $g: Y \longrightarrow Z$ is p-continuous if and only if $g \circ f$ is p-continuous.

Proof: Necessity follows from proposition 6. To prove sufficiency, let U be an open subset of Z with paracompact complement. Then $(gof)^{-1}(U)=f^{-1}(g^{-1}(U))$ is open in Y. Since f is a quotient map, $g^{-1}(U)$ is open in Y. So g is p-continuous.

II. Comparision of p-continuity

We begin this section with producing two examples which suffice to show the relationship of p-continuous function, c-continuous, H-continuous and continuous functions.

Example 1. Let E be an infinite set and $f:(E,\mathcal{F})\longrightarrow (E,\mathcal{D})$ be the identity function with \mathcal{F} , the cofinite topology, and \mathcal{D} , the discrete topology. Then f is c-continuous and H-continuous but not p-continuous.

Example 2. Let R be the set of reals and \mathcal{T} usual topology on R. Let \mathcal{T}^* be the right ray topology on R. That is, $\mathcal{T}^* = \{\emptyset, R, \{(r, +\infty) : r \in R)\}$. Now define $f: (R, \mathcal{T}) \longrightarrow (R, \mathcal{T}^*)$ by f(x) = x if $x \neq 0$ and f(x) = 1 if x = 0. Let $(-\infty, r) = Y$ be a closed subset of (R, \mathcal{T}^*) and $Q = \{(x, r) : x \leq r\}$ be a \mathcal{T}_r^* -open covering of Y. Then Q is not locally finite at the point r. Since no proper closed subset of (R, \mathcal{T}^*) is paracompact, therefore, by proposition 1, f is p-continuous. But this function is neither H-continuous nor continuous [6, example 4].

One may note that a continuous function is p-continuous and a p-continuous function is c-continuous. However, Examples 1 and 2 show that the converse in the both cases may not be true, and further that p-continuity is independent of H-continuity.

Proposition 8. Let $f: X \longrightarrow Y$ be p-continuous function and Y be paracompact. Then f is continuous.

Proof. Let K be closed subset of Y. Since closed subspace of paracompact space is paracompact[2], so K is closed and paracompact. And hence by proposition 1, $f^{-1}(K)$ is closed in X.

Proposition 9. Let f be a p-continuous function from X into Y. If f(X) is a subset of some closed paracompact subset of Y, then f is continuous.

Proof. Let D be a closed paracompact subset of Y containing f(X) and let U be any open subset of Y. Since D is closed, Y-D is open. Thus $U \cup (Y-D)$ is open. But complement of $U \cup (Y-D)$ is a closed subset of D and thus it is paracompact. Now by proposition 1, $f^{-1}(U \cup (Y-D))$ is open and equals to $f^{-1}(U)$. Hence f is continuous.

Definition 3[1]. A subset M of a topological space (X, \mathcal{F}) is α -paracompact if every open cover by member of \mathcal{F} has an open locally finite refinement by member of \mathcal{F} .

Lemma 2[4]. Let $\{A: A = Q\}$ be a locally finite family of subsets, then $cl[\bigcup \{A: A = Q\}]$ $\cup \{cl \ A: A = Q\}$.

Definition 4[5]. A function $f: X \longrightarrow Y$ is said to be weakly continuous if for each $x \in X$ and each neighbourhood V of f(x) there is a neighbourhood U of x such that $f(U) \subset cl\ V$. (cl denotes the closure operator).

Remark 1. Weakly continuous functions may not imply *p*-continuous functions. For,

Example 3. Let $X = \{a, b, c\} = Y$, $\mathcal{F} = \{\emptyset, X, \{a\}, \{b\}, \{a, b\}\}$ and $Q = \{\emptyset, Y, \{b, c\}\}$. Let $f: (X, \mathcal{F}) \longrightarrow (Y, Q)$ be identity function then f is weakly continuous but not p-continuous.

Proposition 10. Let f be a weakly continuous function on X into a Hausdorff space Y. Then f is p-continuous.

Proof. Let $x \in X$ and N be an open neighbourhood of f(x) having paracompact complement. Let Y - N = M. Now corresponding to each $m \in M$, there exist disjoint open sets $U_m(f(x))$ and V(m) containing f(x) and m respectively, therefore $U_m(f(x)) \cap cl\ V(m) = \emptyset$. By construction, $M \subset \bigcup_{m \in M} \{V(m)\}$. Since M is paracompact it is α -paracompact [1]. By definition of α -paracompact, $\{V(m)\}$ has a locally finite \mathcal{F} -open (\mathcal{F}) is a topology defined in Y) refinement $\{V^{\pi}(m): m \in M\}$. Clearly $U_m(f(x)) \cap cl\ V^{\pi}$

 $(m) = \emptyset$ for each $m \in M$. By Lemma 2, $cl \cup V^*$ $(M) = \bigcup \{clV^*(m) : m \in M\}$. Now $f(x) \in cl \cup \{V^*(m)\}$. Let $Y - cl \cup \{V^*(m) = U^*$. Then $f(x) \in U^*$ $\subset cl \ U^* \subset Y - \bigcup_{m \in M} \{V^*_{(m)}\} \subset Y - M$. By definition of weakly continuity there exists an open set O containing x such that $f(O) \subset cl \ U^* \subset Y - M = N$. Hence f is p-continuous.

Lemma 3[4]. A metacompact T_1 -space is countably compact if and only if it is compact.

Proposition 11. Let $f: X \longrightarrow Y$ be a c-continuous function. If Y is T_1 and countably compact then f is p-continuous.

Proof. Let $x \in X$ and V be an open subset of Y containing f(x) having paracompact complement. Since Y-V is paracompact it is metacompact [4]. And T_1 is a hereditary property, therefore, Y-V is T_1 . Also Y-V being a closed subset of countably compact space is countably compact. Hence by Lemma 3, Y-V is compact. By definition of c-continuity there exists an open set N containing x such that $f(N) \subset V$.

여 논문은 인도교수들과 6차 공원논문업.

References

- Aull, C.E.: Paracompact subsets. Proceedings of the second Prague Topological Symposium (1966). 45-51.
- [2] Gaal, S.A.: Point set Topology, Academic Press, New York and London, 1964.
- [3] Gentry, K.R. and H.B. Hoyle, III: c-continuous functions. The Yokohama Math. Jr., 18(1970), 71-76.
- [4] Kelley, J.L.: General Topology Van Nostrand, New York, 1955.
- [5] Levine, N.: A decomposition of continuity,Amer. Math. Monthly, 68(1961), 44-46.
- [6] Long, P. E. and T. R. Hamlett: H-continuous functions, Boll. U. M. I., 11(1975), 552-558.