Sl stm AFeEA A184 Akl =) -

T &4) A 135 pp.21~24., 1987,

UOQU Report Vol. 18, (Natural Science and Enginecring) No.1. pp.21~24, 1987.

University of Ulsan.

A Study on Lisp Compiler Implementation
and Some Extensions to It

Bae, Jae-Hak
Dept. of Computer Science
(Received September 30, 1986)

{Abstract)

A Lisp compiler is implemented in muLISP on IBM PC AT. Iis original form is Henderson's

LISPKIT complier.

It is extended to include delayed evaluation primitives, nondeterministic

primitives, and the ability to compile elseless IF expressions and three logical expressions.

With nondeterministic primitives we can avoid the explicit programming of backtracking. Not

only funciional equivalents of the notion of a coroutine but also functional programs which

process infinite structures are expressed with delayed evaluation primitives.

Has derle TEA A Fo BF AT

o

st

R

(1986, 9.

' %

A o) Aazole AR
AAA A3 A4 HAA
& oA Sgeh ARA A
S £% FHE £ QA e

_I

ST ﬁ'—lfﬂ

2 & F 9A vk

1. Introduction

In Henderson’s book [1980] he explains the
functional style of programming, the structure
of functional languages, their application and
implementation, and such advanced concepts
as delayed evaluation, nondeterministic pro-
grams and high-order {unctions. He notes that
with delayed evaluation we can take a

227 IBM PC AT o Fd31ge), melx o] =
% J‘Jf’if} 4 9 A dtg.ond else ¥-4o] gl IF A3 37tA18 =4S dAdgd
e 4 A FenA yyrew
E R e T
A Hsiek. E‘ﬂ_ else 0] Q4= IF 23 ra] A& Aty 7158 +A4070e 24 B}

30 A=)

A1 BAAA o

HEY S g A Ao oelsA
o]-4ste} HAdAE AAL Hazz FHAY
A3 Hea

functional approach to parallelism. He also
touches on that in more complex problems,
where the nondeterminism is introduced in
many places, the direct formulation in terms
of nondeterministic primitives will have a
substantial advantage over the explicit pro-
gramming of backtracking.

Following his implementation description a
prototype LISP compiler is implemented in
muLISP on IBM PC AT. Its original from is

2 Bae, Jae-Hak

Henderson's LISPKIT compiler. The LISPKIT
compiler is augmented with delayed evaluation
primitives, nondeterministic primitives, ana
the ability 1o compile elseless IIF expressions

and 3 logical expressions.

. Lisp Compiler Implementation and
the SECD machine

LISPKIT
LISP programs into object programs which run
on the SECD machine. This abstract machine

Henderson’s compiler 1iranslates

was invented by Ladin [1964].

The complete set of instructions for the SECD
machine with their mnemonics is as [ollows.
LD load
LDC load constant
LbF load function

AP apply function

RI'N return

DUM create dummy environment
RAP recursive apply

SEL select subcontrol

JOIN rejoin main conirol

CAR take car of item on top of stack

ChR take «dr of item on top of stack
ATOM apply atom predicate to top stack item

CONS Jorm cons of top two stack items

EQ apply cq predicate to top two stack
items

ADD

SUB

MUL apply arithmetjc operation to top Llwo

DIV stack items

REM)

LTQ apply “less than or cqual 10" predicate
to top two stack items

STOP stop

Henderson describes the object code which is
generated for each well-formed cxpression as
follows. If ¢ 1s a wclldormed expression and
is a namclist, then il is denoted by e*n the
code which is generated when e is compiled

with respect to the name list ».

x*n: (LD #) where {=location(x, #)

(QUOTE s)*#: (LDC s)

CADD el e2): el*n/e2*n/(ADD)

where x/y means append(x, y)

(SUB ¢l e2)*n: el*n/e2n/(SUB)

(MUL el e2)*n: el*n/e2*n/(MUL)

(DIV el e2)*n: el*n/e2*n/(DIV)

(REM el e2)*n: el*n/e2*n/(REM)

(EQ el e2)*n: el*n/e2*n/(EQ)

(LEQ el e*n: el*n/e2*n/(1LEQ)

(CAR e)*n: e*n/(CAR)

(CDR &)*n: e*n/(CDR)

(CONS el e2)*n: e2*n/el*n/(CONS)

(ATOM e)*n: e*n/(ATOM)

(IF el e2 e3)*n: el*n/(SEL e23n/(JOIN)
e3*n/(JOINY)

(LAMBDA (x1.--xk) ¢)*n:
(LDF e*((x1---xk). #)/(RTN))

(e el-ek)*n: (LDC NIL)/ek*n/(CONSY/ -/
el*n/(CONS)/e*u/(AP)

(LET e(x1, e1) «(xk.ek))*n:
(1.DC NLL)/ek*n/(CONS)/ - /el u/(CONS)/
(LLDF e*m/(RTN) AP) where m—={{xl---
xk).n)

(LETREC e (x1. el) - (xk.ek))'u:
(DUM LDC NIL)/ek*m/(CONS)/ /el*m/
(CONS)Y/(LDT e*m/(RTN) RAP) where
m ((xl xk).n)

. Implementation Technique of the
Extensions

1. Delayed Evaluation Primitives

To give the LISPKIT compiler the alnlity to
compile delayed cvaluation primitives we need
3 new wmachine instructions. They arc LDE(load
expression), UPD(return and update), and APO
(apply parameterless function)., Their machine
codes are 22, 23, and 24 respectively.

The well-formed cxpressions (DELAY e) and
(FORCE e) are complicd as follows.

(DETLAY e)*n: (LDE ¢*n/(1I1D))

(FORCE e)*n e*n/(APO)

A Study on Lisp Compiler Implementation and Some Extensions to It 3

In the augmented LISPKIT
compilation is represented as shown below.
(IP(EQ(CAR EYDELAY)
(CONS22(CONSCOMP(CARCDR EY)N'(23)
C

compiler this

)
(IF(EQ(CAR EYTORCI)
(COMP(CAR(CDR E))N(CONS 724 C))

2. Nondeterministie Primitives

To compile nondeterministic primilives it is
required for the LISPKIT compiler to include
2 new machine nstructions. SOR and NON are
they., Their machine codes are 25 and 26
respectively,

The well-formed expressions (NONDET el e2)
and (NONE) arc compiled as written below.

(NONDET el e2)*n: (SOR el*n/(JOIN) e2*n/

(JOIND)

(NONE)*n: (NON)

This compilation is represented 1n the aug-
mented LISPKIT compiler as follows.

(IF(EQ(CAR EY'NONDET)

(LET((EXPRI(COMPCARCDRE)N'(9)))
(EXPR2(COMP(CAR(CDR(CDR E)))

N'(9))
D)
(CONS25(CONS EXPRI(CONS EXPR2
(690D
D)
(IF(IZQ(CAR E)'NONL)
(CONS26 €)

3. Logical Expressions and Elscless IF
Expressions

We adopt a textual transformation techniquc
to compile logical expressions and elseless I
expressions. Aflter trans{ormation the compiler
transfermed

compiles the cxpression. The

transformation technique is described as

follows.

(AND el ¢2) : (IF(EQ e1(QUOTE T))
(IF(EQ €2(QUOTE T))
(QUOTE T)
(QUOTE F))
(QUOTE F)
)
(OR et €2) : (IFCEQ e1(QUOTE T))
(QUOTE T)
(IF(EQ ¢2(QUOTE T))
(QUOTE T)
(QUOTE F)

J
(NOT &) : (IF(EQ e(QUOTE T
(QUOTE F)
(QUOTE T
J
(IF el e2) 1 (IF €l e2(QUOTE NIL))

7. Conclusion and Further Research

Topics

Our LISP compiler is written in LISP, so
that it can be exiended to include various
primitives which are required in some appli-
cation area. Viewed in this light our approach
acts as a guide to include application-dependent
primitives in a L181* compiler.

There remain many jnteresting rescarch topics
for us to study further. Some of them are
listed bclow.

a. ‘I'o include primitives tor supporting high-

order {function definitions and evaluation

b. To make a simulator of a LISP machine

in LISP

¢. To generate target codes in assembly

language of a real machine

d. To generate optimized codes

¢. To include Error Recovery ability

f. To include I/O primitives

4 Bae, Jae-Hak

Prentice-Hall International, Inc., London.

References [2] Ladin, P.J. (1963), The Mechanical Eva-
luation of Expressions, Computer Journal,
[1] Henderson, 1. (1980), Functional Pro- 6(4), 308—20.

gramming Application and Implementation,

—_ 24 —

