Some notes about Hausdorff µ-space

Chung, In Jae Dept. of Electrical Engineering

(Abstract)

In this paper we define a Hausdorff μ -space and study its properties. In section 2, we consider some properties between the given topology and the μ -extention topology. In section 3, we investigate the necessary condition and the sufficient condition for the Hausdorff μ -space. In section 4, we prove that a locally μ -space is a μ -space and any closed subspace of μ -spaces is a μ -space,

Hausdorff μ-space에 관한 연구

징 **인** 자 전기 공학과

〈요 약〉

본 논문에서는 Hausdorff μ -space를 정의하여 이들이 갖는 몇가지 성질들을 안아 보았다. 제 2 절에서는 일반 Hausdorff인 위상궁간에서 이돌 보다 finer한 \mathcal{F}_{μ} -공간을 정의하여 본래 주어진 위상공간과의 관계를 비교하였고, 제 3 길에서는 Hausdorff μ -space의 필요조건과 충분조건을 찾아 보았다. 제 4 절에서 국소 μ -space를 정의하여 국소 μ -space이던 μ -space임을 중명하였고 일의의 μ -space의 개부분 공간은 μ -space임을 증명하였다.

I. Introduction

In this paper we are concerned with a Hausd-orff μ -space. By a μ -space is meant a topological space which is coherent with its metacompact closed subsets, i.e. X is a μ -space if open subsets of X are exactly those sets which intersect every metacompact closed subset M of X in an open subset of M. In section 2, we consider some properties between the given topology and the μ -extention topology. In section 3, we investigate two topological properties which are closely related to μ -space. One of them ensures a space to be a μ -space, while the other proved to be a necessary condition to become a μ -space. In section 4, we proved that locally

 μ -space is μ -space and every closed subset of a μ -space is a μ -space. Unless otherwise mentioned, the word "space" is used to meant a Hausdorff space.

II. The μ -extention of a topology.

Let (X, \mathcal{F}) be a Hausdorff space. The μ -extention of \mathcal{F} is defined to be the family \mathcal{F}_{μ} of all subsets U of X such that $U \cap M$ is open in M for every metacompact closed subset M

Proposition 2.1. If M is a \mathcal{F} -metacompact closed subset of X, then the relativization of \mathcal{F} to M is identical with that of \mathcal{F}_{μ} . Consequently a set is \mathcal{F} -metacompact closed subset iff it is \mathcal{F}_{μ} -metacompact closed subset.

Proof. Suppose M is \mathcal{T} -metacompact closed

subset. Since M is \mathcal{F}_{μ} -closed as \mathcal{F}_{μ} is finer than \mathcal{F} , a subset A of M is \mathcal{F}_{μ} -closed in the whole space whenever it is relatively \mathcal{F}_{μ} -closed in M. Hence a subset A of M is closed in M with respect to \mathcal{F}_{μ} , then its intersection with any metacompact closed subset must be \mathcal{F} -closed. $A=A\cap M$ is \mathcal{F} -closed, and \mathcal{F} is finer than \mathcal{F}_{μ} on M.

Proposition 2.2. The space (X, \mathcal{T}_u) is a μ -space.

Proposition 2.3. A function on X is \mathcal{F}_{μ} -continuous iff it is \mathcal{F} -continuous on every metacom-pact closed subset of X.

Proof. If f is continuous on every metacompact closed subset, then $(f|M)^{-1}(C)=f^{-1}(C)\cap M$ is \mathcal{F} -closed for C closed in Y whenever M is a metacompact closed subset. Hence $f^{-1}(C)$ is closed with respect to \mathcal{F}_{μ} , i.e. f is \mathcal{F}_{μ} -continuous. Since $\mathcal{F}=\mathcal{F}_{\mu}$ on every metacompact closed subset, the converse is true.

Proposition 2.4. The topology \mathcal{F}_{μ} is the largest topology which agrees with \mathcal{F} on metacompact closed subsets.

Proof. By proposition 2.3, the identity function of X is continuous of (X, \mathcal{F}_{μ}) to $(X, \overline{\mathcal{F}})$ if $\overline{\mathcal{F}}$ agrees with \mathcal{F} on metacompact closed subsets.

II. Necessary condition and sufficient condition for μ -space.

Proposition 3.1. A space is a μ -space if for any subset A of X having $p \in X$ as a limit point there is a metacompact closed subset M of X such that p is a limit point of $A \cap M$.

Proof. Let A be a nonclosed subset of X. We must show that for some metacompact closed subset M the intersection $A \cap M$ is not closed. Suppose p is a limit point of A which does not belong to A. There is a metacompact closed subset M of X such that p is a limit point of $A \cap M$. But the point p cannot be contained in $A \cap M$ as p is not contained in A. Hence $A \cap M$ is not closed.

Proposition 3.2. If a space X is a μ -space,

then for any closed subset C of X having p as a limit point there is a metacompact closed subset M of X with p as a limit point of $C \cap M$.

Proof. Suppose that the proposition is false, and let X be a μ -space which does not satisfy the condition that there is a metacompact closed subset M of X with p as a limit point of $C \cap M$ whenever C is a closed subset of X having $p \in X$ as a limit point. Then there is a point p and a closed subset C of X having p as a limit point such that p is not a limit point of $C \cap M$ whenever M is a metacompact closed subset of X. This implies that $(C - \{p\}) \cap M = (C \cap M) - \{p\}$ is closed in X. Since X is a μ -space, $C - \{p\}$ is also a closed subset of X and X cannot be a limit point of X. This contradiction proves the proposition.

V. Locally μ -space and free union of the spaces.

Let X be a Hausdorff space and p be a point of X. By a μ -neighborhood of p, we mean a closed neighborhood of p which is a μ -space as a subspace of X. We call a space is a locally μ -space iff every point p of X has a μ -neighborhood.

Proposition 4.1. A space is a μ -space if and only if it is a locally μ -space.

Proof. For sufficiency, let A be a non-closed subset of a μ -space X. Then there is a point p of A which is not in A. Let N be a μ -neighborhood of p. The intersection $A \cap N$ has p as a limit point with $p \in A \cap N$. Thus $A \cap N$ is not closed in the μ -space and there is a metacompact closed subset M of N such that $(A \cap N) \cap M$ is not closed in N. This means that $A \cap M$ is not closed since $A \cap N \cap M = A \cap M$. Necessity is obvious.

Proposition 4.2. The free union of the μ -spaces is also a μ -space.

Proof. The proof is obvious from proposition 4.1.

Proposition 4.3. Every closed subset of μ -space is a μ -space.

Proof. Let C be a closed subspace of a μ -space, and let S be a subset of C such that $S \cap M$ is closed in M whenever M is a metacompact closed subset of C. Then, for any metacompact closed subset N of X, $(S \cap C) \cap N = S \cap (N \cap C)$ is closed in $N \cap C$ as $N \cap C$ must be a metacompact closed subset of C. Since $N \cap C$ is closed in N, $(S \cap C) \cap N$ is closed in N. This means

that $S \cap C$ is closed in X. Therefore S is closed in C.

Reference

- James Dugundji. Topology, Allyn and Bacon, INC., Boston (1966) p. 160~180.
- John L. Kelley. General Topology, D. Van Nostrand company, INC., (1955) p. 217~249