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Weakly Completely Continuous Functions
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{Abstract)

The authors introduce a new class of functions called weakly completely continuous and inves-
tigate the relation among the concepts of completely continuous, weakly completely continuous
and faintly continuous functions.
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I. Introduction

In 1974, Arya and Gupta®™ introduced the
concept of completely continuous functions in
topological spaces and showed that complete
continuity is between continuity and strong
continuity due to Levine®®. The investigation
of complete continuity was continued by the
second author® of the present note. Recently,
Reilly and Vamanamurthy®® have improved
upon several results established in® and ®.
The purpose of the present note is to introduce
a new class of functions, called weakly comple-
tely continuous functions, as a generalization
of completely continuous functions.

Throughout this note spaces will always mean
topological spaces and f : X—Y denotes a func-
tion of a space X into a space Y. A subset S

of a space X is said to be regular open(resp.
regular closed) if Int(C1(S))=S (resp. Cl(Int
(8))=S), where CI(S) and Int(S) denote the
closure of S and the interior of S, respectively.
A subset S of a space X is called ¢-open(resp.
d-open) if for each x&S, there exists an open
set U such that x&UcCIU)CTS(resp. x=UC
Int(CI(U))S). The complement of a #-open
(resp. 6-open) set is called @-closed(resp. o-
closed)®,

. Weakly Completely Continuous
Functions

Definition 2.1. A function f: X-»Y is said to
be completely continuous™ if for each open set
Vof Y, f4(V) is regular open in X.

A function f: XY is said to be sirongly
continnous™® if for each subset A of X, f(Cl
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(ANCf(A.

continuity implies complete continuity and

It was shown in® that strong

complete continuity implies continuity and also
the converses are not true in general.

Definition 2.2. A function f: X—-Y is said
to be weakly completely continuous (briefly
WCC) if for each #-open set V of Y, f4(V)
is regular open in X.

Theorem 2.3. A function f:X-Y is WCC
if and only if for each @-closed set F of Y,
f~Y(F) is regular closed in X.

Theorem 2.4. If f: X—Y is WCC, then the
following equivalent properties hold:

(a) For each x=X and each #-open set V
containing f(x), there exists a regular open set
U containing x such that f(U)CV.

(b) For each =X and each #-open set V
containing f(x). there exists a d-open set U
containing x such that f(U)YcV.

(c) For any #-open set V of ¥', f~Y(V) is -
open in X.

(d) For any f-closed set F of ¥, f~Y(F) is
d-closed in X.

Proof. It is obvious that weak complete con-
tinuity implies (a). Since a §-open set is the
union of regular open sets, it follows that (a)
implies (b) and (c) implies (a).
union of §-open sets is g-open, we observe that
(b) implies (c¢). It is obvious that (¢) and (d)
are equivalent.

Remark 2.5. In Theorem 2.4, (a) does not
necessarily imply WCC, In Example 3. 5(below),
since X is regular, “open,” “s-open” and “6-
open” are equivalent and hence f satisfies (a)
but it is not WCC.

Lemma 2.6. Let A be either dense or open

Since the

in a space X. If U is a regular open set of X,
then ANU is regular open in the subspace A.
Proof. This follows from [17, Lemma] and
[8, Theorem 4].
Theorem 2.7. If f: X—-Y is WCC and A is
either open or dense in a space X, then the
restriction f]|A : A-Y is WCC.

Proof. Let V' be a #-open sct of Y. Then
It follows from
that (fIAV)=/(V)IN4 is
regular open in the subspace A. Therefore,
1A is WCC,

Remark 2.8. Let F: X—Y be WCC and 4, B
subsets of X. Then, the restriction f|4 ; 4—
S(A) need not be WCC. Moreover, flAUB:
AUB—f(AUB) is not always WCC even if
fIA I A—f(A), fIB:B—f(B) and f are all
WCC,

Example 2.9. Let X={a,b,¢,d}, =={0, {a},
{6}, {a,b}, X} and o¢={9, {a}, {8}, {c}, {a,
b}, {b,c}, {c.a} {a, b, ¢}, X}. Let A={a, b}
and B={c}. Then, the identity function f: (X,
(X, 0), fIA:A—f(A) and f|B:B—f(B)
are WCC, However, flAUB: AUB—f(AUB)
is not WCC,

Remark 2.10. There exists a WCC function

under which the inverse image of a regular

(V) is regular open in X.
Lemma 2.6

open set is not always regular open, as Example
3. 6(below) shows. Therefore, we can conjecture
that the composition of WCC functions is not
always WCC. However, the present authors
don’t have the counterexample.

We shall obtain some conditions for the
composiion of two functions to be WCC,

Definition 2.11. A function f: X-Y is said
to be #-continuous® if for each *<X and each
neighborhood V' of f(x), there exists a neigh-
borhood U of x such that f(CL(U))CI(V).

It will be shown below that §-continuity and
weak complete continuity are independent of
each other.

Lemma 2.12. (Jankovie®), If f: XY is -
continous and V is #-closed in ¥ then f~Y(V)
is #-closed in X.

Theorem 2.13. If f: XY is WCC and g:
Y —Z is #-continous, then gof : X—Z is WCC.

Proof. Let W be a 6-closed set of Z. By
Lemma 2.12, g~(W) is #-closed in ¥. Since f
is WCC, by Theorem 2.3 f~1 (g~ {(W))=(g-f)
(W) is regular closed in X. It follows from
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Theorem 2.3 that g-f is WCC,

Definition 2.14. A function f : XY is called
an R-map® if for each regular open set V of
Y. fY(V) is regular open in X.

It was shown in® that R-map and continuity
are independent of each other, Every completely
continuous function is an R-map but the con-
verse is not true because complete continuity is
strictly stronger than continuity [1, Example
6.2]. It will be shown below that WCC and
R-map are independent of each other.

Theorem 2.15. If f: X—Y is an R-map and
g:Y—Z is WCC, then gof : X—Z is WCC.

Proof. Let W be a d-open set of Z. Then
g~ '(W) is regular open in ¥ and hence (gof)™
(W)H=f-1(g~(W)) is regular open in X.

A space X is said to be extremally disconne-
cted if the closure of each open set of X is
open in X. A space X is said to be almost-
regulart® if for each regular closed set F and
each point x=X —F, there exist disjoint open
sets U and V such that x<=U and FCV. It was
shown in®% that almost-regularity is implied
by regularity and independent of semi-regula-
rity, and also an almost-regular and semi-
regular space is regular. Every open set of a
regular space is g-open. However, a g-open set
in a regular space is not necessarily regular
open, as the following example shows.

Example 2.16. Let X be the real numbers
with the usual topology and A=(0,1)U(1,2).
Then, A is open and hence #-open in X, but
it is not regular open in X.

Long and Herrington showed that a regular
open set of an almost-regular space is §-open
[7, Theorem 3). However, a regular open set
of a semi-regular space is not necessarily -
open, as the following example shows.

Example 2.17. Let X={a,b,¢} and =={0, {a},
{4}, {e,b}), X}. Then (X,7) is semi-regular
and {a} is regular open in (X,<), but it is not
g-open in (X,7).

Lemma 2.18. If a space X is extremally

disconnected, every regular open set of X is
f#~open.

Proof. Let X be extremally disconnected and
V regular open in X. Then, we have V=Int
(CV)=CU(V) and hence V is open closed in
X. Therefore, V is #-open.

Theorem 2.19. Let Y be either extremally
disconnected or almost-regular. If 1 X—Y and
g:Y—Z are WCC, then gof is WCC.

Proof. Let W be a #-open set of Z. Then
g Y(W) is regular open inY and hence g (W)
is #-open in ¥ by Lemma 2.18 or [7, Theorem
3]. Therefore, (gof){ (W)= (g *(W)) is
vegular open in X. This shows that geof is
WCC.

A space X is said to be weakly-Hausdorfft®
if each point of X is the intersection of regular
closed sets of X.

Theorem 2.20. Let f: X—Y bea WCC injec-
tion. If Y is Hausdorff, then X is weakly-
Hausdorff.

Proof. Let x=X. Then {f(x)} is a compact
set of a Hausdorff space Y and hence {f{(x)}
is -closed in ¥ {4, Theorem 4.3]. Since f is
WCC and injective, {x}=s"'(f(x)) is regular
closed in X by Theorem 2.3. Therefore, X is
weakly-Hausdorff.

Theorem 2.21. Let f: X—Y be a function and
g: XY given by g(x)=(x.f(x)) for each
¥=X, be the graph function. If g is WCC,
then f is WCC.

Proof. Let V be a ¢-open set of Y. It follows
from Theorem 5 of™ that XXV is a é-open
set of XXY. Since g is WCC, g(XXV) is
regular open in X. However, by a simple
calculation we obtain g (X XV)=f"4(V). The-
refore, f is WCC.

. Comparisons
Definitior 3.1. A function f:X-—Y is said

to be faintly-continuous™ if for each x=X and
each 6-open set V containing f(x), there exists
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an open set U containing x such that f(U)CV.
Int® Prasad, Chae and Singh called faintly-
continous functions weakly 4-continuous.

Theorem 3.2. For a function the following
implications hold: complete continuity—weak
complete continuity—faint-continuity.

Proof. Since every 6¢-open set is open, the
first implication holds. The second implication
follows from the result that a function is
faintly-continuous if and only if the inverse
image of each #-open set is an open set {7,
Theorem 9].

Definition 3.3. A function f: X-Y is said
to be 6-continuous® (resp. almost-continuous™,
weakly-continuous®)] if for each ¥=X and each
open neighborhood V of f(x), there exists an
open neighborhood U of x such that f(Int(Cl
UNHcInt (CVH) FUZInt (CI(V)),
FOHCUV D).

Remark 3.4. For a function the following
implications hold, but none cof these implica-

tions is reversiblet*,,7,

(resp.

(1) completely continuous—R-map—gd-contin-
uous—almost-continuous.

(2) continuous—almost-continuous— #-contin-
uous—weakly-continuous — faintly-continuous.

We shall show that weak complete continuity
is independent of each one of R-map, j-contin-
uity, continuity, almost-continuity, #-continuity
and weak-continuity.

Example 3.5. Let X be the real numbers
with the usual topology and f: X—Y the iden-
tity function. Then f is continuous and also
an R-map, but it is not WCC. Let A=(0,1)
U(1,2), then A is #-open but it is not regular
open in X.

Example 3.6. Let X=1{a,b,¢c,d}, =10, {c},
{a,d}, {a,c,d}, X} and ¢={0, {a}, {b,c}, {a,
b,¢}, X}. Define a function f: (X,r)— (X, o)
as follows: f(a)=f()=f(c)=a and f{d)=b.
Then fis WCC but it is not weakly-continuous.

By Theorem 3.2, Remark 3.4 and Examples

3.5 and 3.6, we have the following diagram:

WCC

where “A—B” represents that 4 dces not
always imply B,
R=R-map,

continuous, acS=almost-continuous, #=¢-cont-

moreover, cc=completely

continuous, §=g-continucus, c=
inuous, wec=weakly-continuous, and fc=faintly-
continuous.

In Theorem 11 of¢?,

showed that if f:X—Y is faintly continuous

Long and Herrington

and Y is almost-regular then f is almost-conti-
nuous. Similarly to the above theorem, we have

Theorem 3.7. Let Y be either almost-regular
or extremally disconnected. If £ : X—Y is WCC,
then it is an R-map.

Proof. Let V be a regular open set of Y. [t
follows from Lemma 2.18 or {7, Theorem 3}
that V is a #-open set of ¥. Since f is WCC,
F~3(V) is regular open in X. This shows that
f is an R-map.

Theorem 3.8. If f: X—>Y isWCC and Y isa
regular space, then f is completely continuons.

Proof. Let V be an open set of Y. Since Y
is regular, V is f-open in ¥ and hence f~3(V)
is regular open in X. Therefore, f is completely

continuous.
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