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SYMPTOTIC BEHAVIOR OF NUMERICAL SOLUTION
FOR THE VISCOUS CAHN-HILLIARD EQUATION
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ABSTRACT. — Numerical solutions for the viscous Cahn-Hilliard equation are considered
using Crank-Nicolson type finite difference method. The corresponding stability and error
analysis of the scheme are shown. The decay speeds of the solution in H1-norm are shown.
Keywords— Viscous Cahn-Hilliard equation, conservation of mass, decay property, nonlinear
difference scheme.

1. Introduction

Consider the viscous Cahn-Hilliard equation

Ou &u o'u  9%¢(u)

— =0 - Q, 0<t 1.1
o ‘oot T oA~ om0 T 0<h (1.1a)
with an initial condition
u(z,0) =ug(z), z€Q, (1.1b)
and boundary conditions
ou 8u
—= — =0 Q, 0<t. .
o S , €08, < (1.1c)

The constants §, a and «y are positive, 2 = (0, 1) with its boundary 8. Here § and « are
coefficients of viscosity and gradient energy, respectively. The function ¢(u) = yu® — f%u
is an intrinsic chemical potential and u(z,t) is the concentration of one of two components
of the system.

The equation (1.1) with § > 0 arises as a phenomenological continuum model for phase
separation in glass and polymer systems where intermolecular friction forces may be ex-
pected to be of importance. See Novick-Cohen[12] for a derivation of the model and
Novick-Cohen and Pego [13] for more physical motivation. The viscous Cahn-Hilliard
equation, which is viewed as a singular limit of the phase field model of phase transition,
has been studied by Bai, Elliott, Gardiner, Spence, and Stuart [2]. They have studied
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the similarities and differences between the Cahn-Hilliard equation(§ = 0) and Allen-Cahn
equation by using the viscous Cahn-Hilliard equation. Metastable pattern for the viscous
Cahn-Hilliard equation has been studied by Reyna and Ward[14]. Using explicit energy
calculations, Grinfeld and Novick-Cohen[11] have established a Morse decomposition of
the stationary solutions of the viscous Cahn-Hilliard equation. Existence theory of the
solution of (1.1) has been shown in Elliott and Stuart[9]. Choo and Chung(3] have investi-
gated the exponential decay of the classical solutions of (1.1) and compared decay speeds
of the viscous Cahn-Hilliard equation with that of the Cahn-Hilliard equation analytically.

Compared to numerical studigs for the Cahn-Hilliard equation by Elliot and French|6]-
[7], Elliot, French and Milner[8] with finite element methods and Furihata, Onda, and
Mori[10], Sun{15], Choo and Chung{4], Choo, Chung and Kim (5] with finite difference
methods, there is no numerical study for the viscous Cahn-Hilliard equation.

In this paper, a nonlinear difference scheme for (1.1) is considered which inherits mass
conservation and dissipation property. We show numerically that the solutions of the
corresponding nonlinear difference scheme have decay properties.

The outline of this paper is as follows. In section 2, a nonlinear conservative difference
scheme for the viscous Cahn-Hilliard equation is introduced. In section 3, existence and
error analysis of the scheme are shown. In section 4, we show the decay property of
numerical solutions of the viscous Cahn-Hilliard equation. The speeds of the decay and
energy dissipation property are shown. .

2. Nonlinear finite difference scheme

Let h = Tlxi be the uniform step size in the spatial direction for a positive integer M and
Q, ={z, =ihli=0,...,M}. Let k= % denote the uniform step size in the temporal
direction for any positive integer N. Denote V[ = V(z,,t,,) for ¢, = mk,m =0,1,--- .

For a function V™ = (V§™, V™, - ,Vj}) defined on Q4, define the difference operators as
R AR R Y
Ve(V_V™), for1<i<M-1,
ViV = QY“M—,;-‘—/"Y:, for i =0,
o¥iz Vi fori= M,
and

V4V;m — VZ(v2‘/im).
Define difference operators V™+1/2 and 8,V™, respectively, as

2 vt v

Vm+1 = ‘/im
7 2 ’ —_——

at‘Vim — p
Then the approximate solution U™ for (1.1) is defined as a solution of

QUM — 68, VUM + aVAUT2 = V2p(UT™E),  0<i< M, 0<m, (21a)
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with initial conditions
U? = uy(z,) (2.1b)

and boundary conditions

V_ Uy =0=V,Uy. (2.1c)

We now introduce the discrete L? inner product and the corresponding discrete -
norm, respectively,.

M-—1
1 1
(V, W)h = h{E(VQWo -+ VMWM) + E ViWi}, ”V”h = (V, V),i

=1

for functions V = (V4,...,Var) and W = (Wh,..., W) defined on Q4. And ||V =
maxg<i<a |Vi|. Whenever there is no confusion, (:,-) and || - || will denote (-,-); and || ||,
respectively.

From summation by parts the following identities are obtained.

Lemma 2.1. If V and W are functions defined on ), with V_Vy = 0 = V Vy and
V_Wy =0=V, Wy, then

1) (V2V,W) = —~h X (V_V)(V_W)).
(2) (V2V,W) = (V, V’W).
(3) (VAV, W) = (V2V, V2W).

The following lemma can be verified by summation by parts and minimum eigenvalue
of a symmetric matrix(see [1]).

Lemma 2.2. Let M be any positive integer. Then
M M

(1) If‘/o = 0, then {QSin 2—(-21‘7/;—4_1)}2 Z ‘/,:2 < E(‘/l b ‘/;_1)2.
i=1 i=1

M M+1
(2) If Vo = V41 = 0, then {2sin 7(#1)}21-; V2 < ig,l (Vi = Vi)

Then the following discrete Poincaré inequalities are obtained.

Lemma 2.3. Let U be a discrete function defined on Q. Then, for 0 < h < 1,

2
IUIP <20 V-U* + 5 M2,

where M = h{%(Uo + UM) -+ Z Uz}.

=1
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Proof. Replacing V; = U; — Up in (1) of Lemma 2.2, we obtain

M
1 . T 2 2 . ™ 2772
L riosin—" 12N U2 4 Mh{2sin— "
rz 25 oorr oy ZU’ T Mh{2sin oy} ol

<hZV U -+ {2SIH——(‘2m} ZUO

=1

< 2, Lo 20772, Y2
<2QV_U|*+ {2$1n———————~2(2M+1)} (U0+4UM)

h2 {2 sin m}22( UO M2) hd ;1,‘-{2 sin }2U0 . (22)

Thus it follows from (2.2) that

2(2M +1)

e
{—S‘—‘*ﬂ}zuvnz <AV_UIP + 2{—“—%}21\42

Since 0 < 41i21h <gand1< hsm I +2h < %, we obtain the desired result. O

Lemma 2.4. If V is a function defined on Qy, with V_V,y = 0, then
1) V-V < S|V

(2) V2V < &V

(3) V-Vl < [V2V]|.

(4) IV_VIZ, < SIIVAVP.

(5) VI, < 3|V + V-V,

Proof. Using the definition of discrete norms, we obtain the discrete inverse inequalities
(1) and (2). Since (3) comes directly from Lemma 2.2, we have only to prove the inequality
(4) and (5).

Since V_V; = 0, adding and subtracting, we obtain

(V_-Vi)? = {(V_V)? = (V_ Vi1 )’} + - + (Vo) = (V_V5)%}
= VRV, \Vh(V_V,+V_ Vi) + -+ \/E%VZVO\/E(V_V1 +V_V)
< SIVPVIR + 219V

Thus [[V_VI|Z, < 3IIV2VI? +2|V_V]?.
To prove the inequality (5), we can assume Vi# < V2 for all 4 without loss of generality.
Since

V2 = VRV, + Vi )WWR(V_V;) + -+ + VRV + Vo )VA(V_V3) + V2
<3| VIR VoV,
we obtain the desired results. 0O

It is clear that the conservation of mass for (2.1) holds as for the classical solution.

- 10 -
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Theorem 2.1. Let U™ be the solution of (2.1). Then the conservation of mass holds.

That is,
M—1

1 n ny
h{5(Ug +Ugy) + ; Urt = M.
3. Convergence of approximate solution

In this section, we show existence and stability of solutions for the difference scheme
(2.1). We also consider the error analysis for (2.1). The proof of the following lemma can
be seen in Choo and Chungl4].

Lemma 3.1. IfU is a function defined in Q, and ¢(U) = v(U)® — B°U, then
—(V2¢(U),U) > B*(V?U,U), and — (V2$(U),U — M) > g*(V?U,U).

We now prove the existence of solutions for (2.1) using the Brouwer fixed point theorem.
Theorem 3.1. The solution U™ of the finite difference scheme (2.1) exists when o > 2(32.

Proof. In order to prove this theorem by the induction, assume that U®,U?,..., U™ exist.
Let g be a function defined by

g(W) =2W —2U™ — 26V2W + 26V2U™ 4 kaV*W — EV2$(W).

Then g is clearly continuous. Taking an inner product of g(W) with W and applying
Young’s inequality, we have

(W), W) 2 2[WIj? — 2|lU™ W]l ~ 28(V>W, W) — 25| V2U™ || W]
+ka|| VAW|? — k(V2$(W), W).

It follows from Lemma 3.1, Lemma 2.1 and Lemma 2.4 that
(W), W) > [WI* = 26(V2W, W) + k(e — 26°)| V> W |
—2Um|? - 282 V2T 2. (3.1)
Since (V2W,W) = ~A "M (V_W;)? and a > 262, (3.1) becomes
(g(W), W) > W] — 2[U™|? - 26%| V2U™|2.

The Brouwer fixed point theorem implies the existence of W for g(W) = 0. Then U™+! =
2W — U™ satisfies (2.1). O

Remark 3.1. Since —(V2¢(W),W) > B2(V*W,W) > —a|[V2W|2 — £ |W|2, the solu-

tion of (2.1) exists if k < max{%%, 3—2 )

11 -
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Remark 3.2. Since —(V2¢(W), W) 2 BA(VEW,W) > ~fpplapss | VPW)?, the

7z (2sin 5335

solution of (2.1) exists if o > g; and 0 < & < hg such that

wh
2+ 2h

5 ma-— 3

2
2o )

1
T S ']:2—(2 sin

We now show that the finite difference scheme (2.1) preserves dissipation property as
the classical solution of (1.1) does.

Theorem 3.2. Let o > 26% and U™ be the solution of (2.1 ). Then

o™ = 6(v?U™,um) < [UnH| - §(VPUnL U,

Proof. Forming an inner product between (2.1) and U™*'/2 and applying Lemma 2.1 and
Lemma 2.4, we obtain

]

1
—2-8t|]Um]|2 — Eat(\ﬂU"*,Um) + (o - 26%)||V2U™H1/2)2 < 0. (3.2)

Since the last term on the left is positive, the proof is completed. O

Remark 3.3. It follows from Theorem 3.2 that the scheme (2.1) is unconditionally stable

and
O™+ IV_U™P < 4|U°| - 45(V2U°, U°). (3.3)

Let u™ = u(-,t,) and U™ be solutions for (1.1) and (2.1), respectively. Let e” = u™ — U™
be the error. Then we obtain the following error estimates for (2.1).

Theorem 3.3. Assume a > 26°. Then there exists a constant C such that

fle™t + IV _e™|| < C(k? + A?).

Proof. Replacing U™ = u™ — €™ in (2.1) and forming the inner product with e™+1/2 we
obtain

1 o2

5OAlle™I° = 5(V2e™, ™)} + o[V

8%y 9ty
= (ue(tp 1) — 56T;(tm+%) + o (tmsy) + O(h? + k?),em+1/2)

_ (v2¢(Um+l/2),em+l/2)
< (,yv2(um+1/2)3 . ’7V2(Um+1/2)3 _ ﬁ2v26m+1/2’em+1/2)
+ Hem+1/2”2 + O(h4 + k4)
< ,7([(um+1/2)2 +um+1/2Um+1/2 + (Um+1/2)2]€m+1/2,V26m+1/2)

_ 62(v26m+1/2,8m+1/2) + “em+1/2“2 +O(h4 +k4).

- 12 -
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It follows from (3.3) and Lemma 2.4 that there exists a constant C such that
ae{lle™|* — 6(V2e™, e™)} < C([le™ | + [le™ ) + C(h* + k).
Summing from m = 0 to n — 1, we obtain

(1-Ck)|[e™]|? —6(V2e™, e™) < (1 - Ck)||e°||* ~ 6(V3e2,e%) +Ck ni: lle™ ]| + Ck(h* + &%)
m=0

Applying Lemma 2.1 and the discrete Gronwall inequality with small &k such that 1 - Ck >
0, we complete the proof. [

4. Asymptotic behavior of approximate solution
In this section, we show the decay property of solutions for the difference scheme (2.1).
Theorem 4.1. Let U™ be the solutions of (2.1) and assume o > 23%. Then we have

Co+C1

U™ = M + —HV Un|? < i
1 +k2m“l Com+01

1
{IV-U2)2 + 2IV-(U* = UO)1*}

whero Co = (5 + )k + 2058} and €, = 2049

proof. Forming the inner product between (2.1) and U™ — M, it follows from Lemma 3.1
Lemma 2.1 and Lemma 2.4 that

k)

OA{IU™ = M2 = §(VEU™, U™)} + 2(a - 28%)|V_U™+/?|2 < 0. (4.1)
Let m*(0 < m* < m) be the number such that
Z VU™ = max {Z Iv_uit|2. (42)
1=0 =0
Then we obtain for m > 1

nt

at{ > {IU? = M|? - §(V2U?, U}
7=0

m—1 1
+ 2k(a — 28%) Z Z{—“UJ M2 — (VU U +z)}}
7=0 =0
+2(a - 2682)||\V_U™ /22 < 0. (4.3)

- 13 -



8 S. M. CHOO

Adding 2(a — 28*){(V_U™*1,V_U™) — (V_U™*1,V_U™)} to the left hand side of
(4.3), we obtain

Bt{ff’” + i{HU’” — M2 = §(VEU™,U™)}

=0
m—1 1
1 i* 4 2 2 i i " 41
+2k(a = 26%) 3 3 {FI07 = MIP — (VUL U7
J'—‘—:O i=0
+2(a— 262)41HV_U""+1 VU™ <0 (4.4)

where U™ = 2k(a — 28%) Z}'_L__Bl (V_UT+1 v_U7") with U° = 0. It follows from (4.3) and
(4.4) that

0 zat{f]m +2> (U7 = M|? - 8(V2U9,U%)}

=0
el
k(o268 3 S - M - (VU 9
+2(a - 2YIVU™ R 4 LIV U™ VU |P)
= 8,A(U™) + B(U™). (4.5)
Note that for 0 < j < m,
(a = 28°)(IV-U7 |2 + ||V_U7|") < BU™) < BU™™). (46)
Since
m—1
AU™) = K~ 26%) 3 {IV-U7 P+ 2V 07 VU7 + VU7
J=0
m—1 1
+ k(o — 252) Z Z{—HV_U”"J”'HZ _ 4(V2Uj'+i,UJ'+z)}
;=0 =0
m m-~1 1
+23 (107 = MI? — 8(V3U7, U7} + 4k = 26%) 30 3 507 = M,
j=0 j=0 i=0 (47)

AU™) = 2{|jU™ = M|? = §(VPU™, U™} 2 2{|[U™ - M| + gl(V—U’”Hz}-

- 14 -
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It follows from (4.6)—(4.7) and Lemma 2.1 that

m m 1
AU™Y) < k(a—26%) Y VU7 + ak(a— 26%) ) 0D 2l|VoUTH?
=0 7=0i=0
m+1 m 1 1
2 912 - 57 +i) 2
+22}(2+5-2)nv_m{| + 4k(o 2;3);_:02;6”&7_(1 I
J= =0 =

i%%gzl(m +2)+ %k(m +1IBU™)

= {Co(m+1)+C1}BU™) (4.8)

< {Slm+1) +8k(m+1) +

where Co = (1—27- + %)k + i(_lggg and C; = %g_l—;%sé)-. The inequality (4.5) implies

AU™) - AU™)+EkB(U™) <0,
and using (4.8), we obtain A(U™) < éf‘ﬂ_—gf—ﬁA(U m™=1), This completes the proof. [J
Remark 4.1. Replacing (4.1) by (3.2), we obtain from (4.5)
BAU™) + (= 28°2){IVU™P + |V2U™|*} < 0.
Thus ||[V2U™||? - 0 as n — oo.

Remark 4.2. Assume o > 2(3°. Forming the inner product between (2.1) and 8,U™, we
obtain ||8,U™||? — §(V23.U™,8,U™) + %aBtHV?UmIP = (V2p(U™H1/2), 5,U™). It follows
from Lemmas 2.2-2.4 that for some mg > 0

n--1
k> {lI8U™P - 8(V28.U™,8,U™)} + o VEU™|?
<V 1 20 4 A T 4 g S VR
= ok 4 = '

Since the right hand side in the above inequality is less than a constant independent of n,
we obtain ||6,U™|| — §(V28,U™,8,U™) — 0 as n — oo.

5. Concluding remarks

A nonlinear finite difference scheme is considered to obtain approximate solutions of
the viscous Cahn-Hilliard equation. The existence of the numerical solution, and the
unconditional stability and error analysis of the scheme are shown. This scheme inherits
mass conservation and dissipation property as for the classical solution. We showed that
the solution of the viscous Cahn-Hilliard equation decays.

There has been an open question to compare the early stages of evolution of the viscous
Cahn-Hilliard equation with the Cahn-Hilliard equation in Novick-Cohen. In order to an-
swer this open question, I will compare the evolution of the viscous Cahn-Hilliard equation
with that of the Cahn-Hilliard equation numerically and computationally in a preparing
paper.

- 15 -
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