On the Cesàro Sequence Spaces

Kwang Ho Shon
Dept. of Applied Mathematics
(Received April 9, 1980)

(Abstract)

The Cesàro sequence spaces Ces(p), $1 and Ces(<math>\infty$) was introduced by J.S. Shiue (1969) and he showed that they have an analytic structure like spaces l_p and l_{∞} .

In this paper we consider various topological relationships between the Cesàro sequence spaces Ces(p), 1 and we give conditions of a nature which are equivalent to the statement that <math>Ces(p) = Ces(q).

Cesàro Sequence Spaces 에 과하 역구

〈요 약〉

Cesàro sequence spaces Ces(p)와 $Ces(\infty)$ 는 J.S. Shiue (1969)가 처음 소개한 sequence space로서 l_{p} space와 l_{∞} space들과 유사한 해석적 구조를 가지고 있음이 연구되었다.

본 논문에서는 Cesàro sequence spaces Ces(p), 1 들 사이의 몇가지 위상적 관계를 규명하고 <math>Ces(p) = Ces(q)가 성립할 필요중분 조건을 구하였다.

I. Introduction.

Let S be the linear space of all infinite sequences $x = \{x_n\}$ of complex numbers over complex field. The Cesàro sequence spaces Ces(p), $1 , and <math>Ces(\infty)$ are defined in [2] respectively as

$$\operatorname{Ces}(p) = \{ \{x_n\} : \{x_n\} \subset S, \sum_{n=1}^{\infty} \left(\frac{1}{n} \sum_{k=1}^{n} |x_k|\right)^{p} < \infty \}$$

with a norm defined by

$$||x||_{L(p)} = \left(\sum_{n=1}^{\infty} \left(\frac{1}{n}\sum_{k=1}^{n}|x_k|\right)^p\right)^{\frac{1}{p}},$$

and

$$\operatorname{Ces}(\infty) = \{ \{x_n\} : \{x_n\} \in S, \sup_{n} \left\{ \frac{1}{n} \sum_{k=1}^{n} |x_k| \right\} < \infty \}$$

with a norm defined by

$$||x||_{c(\infty)} = \sup_{n} \left\{ \frac{1}{n} \sum_{k=1}^{n} |x_k| \right\}.$$

We write u(p) for the topology on $\operatorname{Ces}(p)$ induced by the norm $\|\cdot\|_{c(p)}$, $v(\infty)$ for the topology on $\operatorname{Ces}(\infty)$ induced by the $\|\cdot\|_{c(\infty)}$ (see [2]), and we also write w(p) for the topology on l_p space induced by the norm $\|\cdot\|_p$, 1 .

It has been shown ([2], [5]) that the Cesàro sequence spaces $(Ces(p), \|\cdot\|_{c(p)})$ and $(Ces(\infty), \|\cdot\|_{c(\infty)})$ are Banach spaces and l_p spaces are contained in Ces(p) with 1 .

In this paper we investigate some relationships between the Ces(p) spaces and relationships between l_p and Ces(p), 1 .

We now employ some notation which will be used in this paper. The set C is the set of all complex numbers. If convenience, we identify e^n with the vector

$$e^{n}=(0,\cdots,0,1,0,\cdots),$$

where the nonzero entry is in n-th position. If

A is a countable dense subset of C, then the set φ_A is the set of all sequence in A with at most finitely many nonzero entries. For $x = \{x_n\} \in S$, the sequence $\{\sigma(x)_m\}$ is the sequence of the averaging means $(\sigma(x))_m = \frac{1}{m} \sum_{i=1}^m |x_k|$ of the absolute value sequence of $\{x_n\}$.

II. The Cesàro sequence spaces Ces(p), 1 .

In this section we consider various relationships between the Ces(p) spaces, 1 . In Theorems 2.4 and 2.6, we give conditions of a topological nature which are equivalent to the statement that <math>Ces(p) = Ces(q).

Definition 2.1. A sequence $\{\alpha_n\}$ in a Banach space E is called a Schauder basis if each $x \in E$ has a unique representation $x = \sum_{n=1}^{\infty} x_n \alpha_n$, where the series converges in E, and the coefficient functionals are continuous.

Lemma 2.2. If $1 , <math>\{e^n\}$ forms a Schauder basis for Banach space $(Ces(p), \|\cdot\|_{c(p)})$. Consequently, $(Ces(p), \|\cdot\|_{c(p)})$ is separable.

Proof. We first show that if $x = \{x_n\} \in \text{Ces}(p)$, then $\sum_{k=1}^{n} x_k e^k$ converges to x in Ces(p). To show this, let $\tau(x)_m$ be the averaging mean for the absolute value sequence of $x - \sum_{k=1}^{n} x_k e^k = (0, \dots, 0, x_{m+1}, x_{m+2}, \dots)$. Then

$$(\tau(x))_m=0$$
 for $1 \le m \le n$.

$$(\tau(x))_{n+k} = \frac{|x_{n+1}| + \cdots + |x_{n+k}|}{n+k}$$
 for $k=1,2,\cdots$

Clearly, $(\tau(x))_{n+k} \le (\sigma(x))_{n+k}$. Hence the norm of $x - \sum_{k=0}^{n} x_k e^k$ in Ces(p) is

$$\begin{split} \left(\sum_{k=1}^{\infty} (\tau(x))_{n+k}^{\rho}\right)^{\frac{1}{p}} & \leqslant \left(\sum_{k=1}^{\infty} (\sigma(x))_{n+k}^{\rho}\right)^{\frac{1}{p}} \\ & = \left(\sum_{m=n+1}^{\infty} (\sigma(x))_{m}^{\rho}\right)^{\frac{1}{p}}. \end{split}$$

Since the tails of a convergent series approach 0, and since $\sum_{m=1}^{\infty} (\sigma(x))_m^{\rho}$ is convergent, we have

$$\lim_{n\to\infty} \left\| x - \sum_{k=1}^n x_k e^k \right\|_{c(n)} = 0.$$

Hence $x = \sum_{n=1}^{\infty} x_n e^n$ and the representation is

unique. The continuity of the coefficient functionals follows from an inequality

$$||x||_{c(p)} > |x_n| \Big(\sum_{k=0}^{\infty} \Big(\frac{1}{n+k}\Big)^p\Big)^{\frac{1}{p}}$$
 for each $n=1,2, \dots$

Lemma 2.3. If 1 , then the following statements are true.

- (1) $Ces(p) \subseteq Ces(q)$,
- (2) the inclusion map $(Ces(p), u(p)) \longrightarrow (Ces(q), u(q))$ is continuous,
- (3) the inclusion map $(l_p, w(p)) \longrightarrow (Ces(p), u(p))$ is continuous,
- (4) Ces(p) is dense in (Ces(q), u(q)),
- (5) l_p is dense in (Ces(p), u(p)).

Proof. (1): If $x = \{x_n\} \in \text{Ces}(p)$, then $\{(\sigma(x))_n\} \in I_p$. Since

$$\left(\sum_{n=1}^{\infty} (\sigma(x))_n^q\right)^{\frac{1}{q}} \leqslant \left(\sum_{n=1}^{\infty} (\sigma(x))_n^p\right)^{\frac{1}{p}} \text{ (see [1], p.4),}$$

it follows that $\{(\sigma(x))_n\} \subseteq l_q$. This means that $x = \{x_n\} \subseteq \text{Ces}(q)$.

- (2): For given $\varepsilon > 0$, if $\|x\|_{\varepsilon(p)} < \varepsilon$, then $\|x\|_{\varepsilon(q)} < \varepsilon$. This means that the inclusion map $(\operatorname{Ces}(p), u(p)) \longrightarrow (\operatorname{Ces}(q), u(q))$ is continuous at 0. Since the inclusion map is linear, it is continuous everywhere [6, p.37].
- (3): The proof follows from the inequality [1, p. 248]

$$\left(\sum_{n=1}^{\infty}\left(\frac{1}{n}\sum_{k=1}^{n}\left|x_{k}\right|\right)^{p}\right)^{\frac{1}{p}} \leqslant \frac{p}{p-1}\left(\sum_{k=1}^{\infty}\left|x_{k}\right|^{p}\right)^{\frac{1}{p}}.$$

- (4): Let A be a countable dense subset of C. Then it can be shown that Φ_A is dense in $(\operatorname{Ces}(q), u(q))$ and $\Phi_A \subset \operatorname{Ces}(p) \subset \operatorname{Ces}(q)$. Hence the set $\operatorname{Ces}(p)$ is dense in $(\operatorname{Ces}(q), u(q))$.
- (5): The proof follows from the fact that $\phi_1 \subset l_p \subset \text{Ces}(p)$, where A is the same set as in the proof of (4).

Theorem 2.4. If 1 , then the following four statements are equivalent:

- (1) u(p) is the topology induced on Ces(p) by u(q).
- (2) If $\{x^N\}(N=1,2,\cdots) \in Ces(p)$ and $x^N \longrightarrow 0$ in u(q) then $x^N \longrightarrow 0$ in u(p).
- (3) Ces(p) is closed in (Ces(q), u(q)).
- (4) Ces(p) = Ces(q).

Proof. (1) \Longrightarrow (3): If (1) is true, then $\|\cdot\|_{\mathcal{C}(\mathfrak{p})}$

and $\|\cdot\|_{\varepsilon(q)}$ give the same definition of Cauchy sequence in $\operatorname{Ces}(p)$. So, by Lemma 2.2, (Ces (p), $\|\cdot\|_{\varepsilon(q)}$) is complete. Hence (3) follows.

(3) \Longrightarrow (4): The proof follows immediately from Lemma 2.3(4).

(4) \Longrightarrow (1): The proof follows from Lemma 2.3(2), the fact that the inclusion map Ces(p) \Longrightarrow Ces(q) is now onto and the open mapping theorem [4, p. 195].

(1) \Longrightarrow (2): The proof is clear from the fact two norms $\|\cdot\|_{c(p)}$, $\|\cdot\|_{c(q)}$ induce the same topology on Ces(p).

(2) \Longrightarrow (1): If (2) is true, then the inclusion map $(\operatorname{Ces}(p), u(q)) \longrightarrow (\operatorname{Ces}(p), u(p))$ is continuous at 0, hence continuous everywhere. Hence we have $u(p) \subset u(q) \cap \operatorname{Ces}(p)$. By Lemma 2.3(2), the inclusion map $(\operatorname{Ces}(p), u(p)) \longrightarrow (\operatorname{Ces}(q), u(q))$ is continuous. Hence $u(q) \cap \operatorname{Ces}(p) \subset u(p)$. Therefore, (1) follows.

Remark 2.5. The spaces Ces(p) for distinct p are distinct. For the proof of this, see [2, p. 153].

Theorem 2.6. If $1 < p, q < \infty$, then (1),(2) and (3) are equivalent, and (4),(5) and (6) are equivalent:

- (1) $Ces(p) \subseteq Ces(q)$.
- (2) u(p) induces a topology on $Ces(p) \cap Ces(q)$ as fine as u(q) does.
- (3) If $\{x^N\}(N=1,2,\cdots) \in Ces(p) \cap Ces(q)$ and $x^N \longrightarrow 0$ in u(p), then $x^N \longrightarrow 0$ in u(q).
- (4) $\operatorname{Ces}(p) = \operatorname{Ces}(q)$.
- (5) u(p) and u(q) induce the same topology on $Ces(p) \cap Ces(q)$.
- (6) If $\{x^N\}(N=1,2, \dots) \in \text{Ces}(p) \cap \text{Ces}(q)$ then $x^N \longrightarrow 0$ in u(p) if and only if $x^N \longrightarrow 0$ in u(q).

Proof. Clearly it suffices to show the equivalence of (1),(2) and (3).

(1) \Longrightarrow (2): If (1) is true, then $Ces(p)=Ces(p)\cap Ces(q)$. Hence by Lemma 2.3(2) the topology u(p) on Ces(p) is as fine as the topology u(q) on Ces(p), i.e. $u(q)\cap Ces(p)\subset u(p)$.

 $(2) \Longrightarrow (3)$: The proof is obvious.

(3) \Longrightarrow (1): By Lemma 2.3(1), it is enough to show that p < q. Suppose q < p; then by Lemma 2.3(1) we have $Ces(q) \subset Ces(p)$. Thus $Ces(p) \cap Ces(q) = Ces(q)$. Hence it follows from Theorem 2.4 (equivalence (2) and (4)) that we must have Ces(p) = Ces(q). This implies that p = q (by Remark 2.5), which contradicts the assumption q < p. Therefore (1) follows.

References

- G.H. Hardy, J.E. Littlewood, G. Pòlya, Inequalities, Cambridge at the University Press, New York, 1959.
- 2. G.M. Leibowitz, A note on the Cesàro Sequence Spaces, Tamkang J. of Math. 2 (1971), 151-157.
- 3. H.H. Schaefer, Topological Vector Spaces, Graduate Texts in Math., Springer Verlag, New York, 1964.
- 4. H. L. Royden, Real Analysis, 2nd ed., The MacMillan Co., New York, 1971.
- Jau-Shyong Shiue, On the Cesaro Sequence Spaces, Tamkang J. of Math. 1(1970), 19-25.
- J. L. Kelley, I. Namioka, Linear Topological Spaces, D. Van Nostrand Co., New York, 1963.