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{Abstract)

The Cesaro sequence spaces Ces(p), 1<p<lco and Ces(co) was introduced by J.S. Shiue (1969)
and he showed that they have an analytic structure like spaces !, and /.

In this paper we consider various topological relationships between the Cesiro sequence spaces
Ces(p), 1<p<(co and we give conditions of a nature which are equivalent to the statement that

Ces(p)=Ces(g).
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1. Introduction.

Let S be the linear space of all infinite
sequences x={x,} of complex numbers over
complex freld. The Cesiro sequence spaces
Ces(p), 1< p<o, and Ces(o0) are defined in
[2] rerpectively as

o0 1" ?
Ces(#)={{xs} : {mbesS. (55 1l ) <oo}

with a norm defined by

" “ /1 2 N
I#lan=( (52 1m )Y,

and
Ces(oo)={{x.} 1 (rabeS.sup( &L= 1l | <o}

with a norm defined by

\]x”c(m)zsup{w—l‘Z |xk|}-
” N k=1

We write u(p) for the topology on Ces(p)
induced by the norm [+|cp, v(c0) for the
topology on Ces(ce) induced by the [[+]c) (see
[2]), and we also write w(p) for the topology
on [, space induced by the norm ||+],, 1<p<co,

It has been shown ([2], [5]) that the Cesaro
sequence spaces (Ces(p),[[*f.») and (Ces(co),
[+llcr) are Banach spaces and !, spaces are
contained 1n Ces(p) with 1<p<(co.

In this paper we investigate some relationships
between the Ces(p) spaces and relationships
between I, and Ces(p), 1<p<oo.

We now employ some notation which will be
used in this paper. The set C 1s the set of all
complex numbers. If convenience, we 1dentify
e" with the vector

e":(o’ ...,0, 1,0’ ...),

where the nonzero entry 1s in n-th position. If
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A 1s a countable dense subset of C, then the set
P4 18 the set of all sequence in A with at most
For x={x,} &S,

the sequence {o(x).} 1s the sequence of the

i)_llflx;z[ of the ab-
mi-

finitely many nonzero cntries.

averaging means (¢(x))n=

solute value sequence of {x,}.

II. The Cesiro sequence spaces Ces(p),
1{p{oo.

In this section we consider various relation-
ships between the Ces(p) spaces, 1< p<co. In
Theorems 2.4 and 2.6, we give conditions of a
topological nature which are equivalent to the
statement that Ces(p)=Ces(q).

Definition 2.1. A sequence [o,} 1n a Banach

space E 1s called a Schauder basis 1f each x=

E has a unique representation x= Z‘x,,oc,, where

n=

the series converges in E, and the coefficient

functionals are continuous.

Lemma 2.2. If 1<p<oco, {e"} forms a Schau-
der basis for Banach space (Ces(p), [+l.n).

Consequently, (Ces(), |-ll«») 15 separable,
Proof. We first show that if x=1{x,} =Ces(p),

n
then El'xke” converges to x 1 Ces(p). To show
this, let z(x)m be the averaging mean for the

n
absolute value sequence of x— Y xef=(0, -, 0
k=1

Xuit, Xnt2, ). Then
(z(2))»=0 for 1<m<n.
. o x4 o X _
(E(DDis= SRS for A=1,2,- -,

Clearly, (v(x)),4#<(g(2))n:s Hence the norm

of x—Exke‘ in Ces(p) is
(S (S
=(Z ).

Since the tails of a convergent series approach

o
2 »

0, and since 37 (o(x))w 15 convergent, we have
m=1

| -
c(p)

. " ‘

| =) i
Im ‘x— 3 a6t
n—ool] k=1

Hence x=X"x,6" and the representation 1
n-1

unique. The continuity of the coefficient f{unc-

tionals follows from an inequality

"ﬂ\r(p)//inn‘( <n+k
Lemma 2.3. If 1<p<g< oo, then the following

statements are true.

(1) Ces(p)=Ces(q).

(2) the inclusion map (Ces(p), u(p))— >(Ces(q),
u#(g)) 1s contmuous,

(3) the incluston map (7, w(p))——(Ces(p),
u(p)) is continuous,

(4) Ces(p) 1s dense in (Ces(q), u(q)),

(5) I, 1s dense in (Ces(p), u(p)).
Proof. (1) :If x={x.}&Ces(p), then {((a(x)).}

&l,. Since

oo 1
(o)< (eGP see 111, p.0).
1t follows that {(¢(x)).} &L,
x={x.}<=Ces(g).
(2) : For given >0, 1f {xlcpn <e, then (x|~
e. This means that the inclusion map (Ces(p),

u(p))—-(Ces(g), u(g)) 15 continuous at 0. Since

the inclusion map 1s linear,

>P for each n=1, 2,

This means that

it 1s continuous
everywhere [6, p.37].

(3) : The proof follows from the inequality [1,
D. 248]

e a w | s
(n1<n‘k\:xlx">> L (kzu'x”>

(4) : Let A be a countable dense subset of C.
Then 1t can be shown that @, is dense in
(Ces(g),u(q)) and @,CCes(p)Ces(g).
the set Ces(p) 1s dense m (Ces(g), u(g)).
(5) : The proof follows from the fact that ¢,C
1,cCes(p), where A 1s the same set as mn the
proof of (4).

T heorem 2.4. 1f 1 p<g<oo, then the follow-

Hence

ing {our statements are equivalent:

(1) u(p) 18 the topology induced on Ces(p) by
u(g).

@) If {x8}(N =1,2,---)=Ces(p) and zxV-—0
in #(g) then x*——0 mn u(p).

(3) Ces(p) 1s closed 1n (Ces(g), u(g)).

(4) Ces(p)=Ces(g).
Proof. (1)—/>(3):

If (1) 1s true, then |«
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and ||-|. give the same defimtion of Cauchy
sequence in Ces(p). So, by Lemma 2.2, (Ces
(), l+l.q) 15 complete. Hence (3) follows.
(3)=—>(4) : The proof follows immediately from
Lemma 2.3(4).

W=—=):
2.3(2), the fact that the inclusion map Ces(p)
»Ces(g) 15 now onto and the open mapping
theorem [4, p.195].

(D=>(2) : The proof 1s clear from the fact
two norms |+fecm, I+ fleip 1nduce the same topolo-
gy on Ces(p).

(2)==>(1) : If (2) 1s true, then the inclusion
map {(Ces(p), u(q))-—-{Ces(p), u(p)) 15 contin-
uous at 0, hence contmnuous everywhere. Hence
we have #(p)Cu(g) NCes(p). By Lemma 2.3(2),
the nclusion map (Ces(p),u(p))—>(Ces(g).u
(g))is continuous. Hence u#(g)NCes(p)u(p).
Therefore, (1) follows.

Remark 2.5. The spaces Ces(p) for distinct p
are distinct. For the proof of this, see [2,p.
153].

T heorem2.6. If 1<p,q<co, then (1),(2) and
(3) are equivalent, and (4),(5) and (6) are
equivalent:

(1) Ces(p)=Ces(q).

(2) u(p) induces a topology on Ces(p)NCes(q)
as fine as #(q) does.

3 If {x"}(N=1,2,:--)=Ces(p)NCes(g) and

4N ——0 in u(p), then xVN—0 1n u(g).

(4) Ces(p)=Ces(q).
(5) u(p) and u(q) nduce the same topology on

Ces(p) NCes(g).

(6) If {x"}(N=1,2, --)e=Ces(p) MNCes(g) then x¥

——0 m #(p) if and only 1f x¥

The proof follows from Lemma

0 1n #(q).

Proof. Clearly 1t sulfices to show the equiva-
lence of (1),(2) and (3).
(D=>(2) : If (1) 1s true, then Ces(p)=Ces
($)NCes(g). Hence by Lemma 2.3(2) the
topology #(p) on Ces(p) is as fine as the topology
u(q) on Ces(p), i.e. u(g)NCes(p)u(p).
(2)—>(3) : The proof 1s obvious.
(3)—>(@1): By Lemma 2. 3(1), 1t 1s enough to
show that p<g. Suppose g<#; then by Lemma
2.3(1) we have Ces(¢)TCes(p). Thus Ces(P)N
Ces{(g)=Ces(g). Hence 1t follows from Theorem
2. 4 (equivalence (2) and (4)) that we must have
Ces(p)=Ces(g). This 1mplies that p=g¢ (by
Remark 2.5), which contradicts the assumption
g<p. Therefore (1) follows.
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