UOU Report Vol.16. No.2. pp.207~210. 1985

ATFEa] A164 A 25 pp. 207~210. 1985

Another Approach to The Finiteness Problem in
Context-free Grammars.

Lee, Myung-Joon
Dept, of Computer Science
(Received April 30, 1985)

(Abstract

In this paper the general finiteness problem in context-free grammars is defind and related

definitions and theorems are developed. The solvability of this problem is showed by the property
of ¢ relation which is the key concept of the developed formalism. Moreover a testing algorithm

for this problem can be easily derived by this formalism.

Context-free grammarel] /2] 3k FAlo o 3
A g ded 47

ol

=z
a

7 &} AL s
(1985, 4.30 <)

8 %

¥ =¥ A Context-free grammar o] A& dubd -4 FA7F AY=gon] oo Augde AR
Ao YW Ak A gl of M A FE erelation & o] &8t T H & o] ¢ relation
o] Adel ¥ A T2 Wl ol A b Fodt d3-E abAskAl "ol =g W Aol Al testing
algorithm & si7a-HatA o vhehtA g de Aok A AdstdAE add22 PP $

et

[. Introduction

The finiteness problem in a grammar G is
“Can it be determined that L({(G) is finite or
not ?” The solvability of this preblem in con-
text-free grammars is a known property. &4
These traditional approaches are based on
“uvwxy theorem”. But possible testing algori-
thms developed from these approaches are
very inefficient, and this inefficiency will be
enlarged in the environments of the general
finiteness problem in context-free grammars

which will be defined later.,

We will introduce some new definitions and
developed theorems, where ¢ relation is the
key concept of our formalism and will play an
important role in proving the solvability of the
general finiteness problem in context-free
grammars and in developing efficient testing

algorithms.

I. Notations and Preliminaries

The basic definitions and theorems in this
paper are consistent with those of Aho and

2 Lee, Myung-Joon

Ullman. @
stated.

A context-free grammar(CFG) is a quadruple
(N, T,P,S), where N, T,P, and S stand, resp-

ectively, for a set of nonterminal svmbols, a

Notational conventions are also

set of teminal symbols, a set of productions
(each of which is of the form A—a), and a
start symbol in N. Given a grammar G, V(the
vocabulary) stands for NU7 and V* for the
the reflexive-transitive closure of V and the
transitive closure is denoted by ¥*. The lang-
uage generated by G is denoted by L(G).
Lower-case Greek letters such as «, 3,7 and
@ denote strings in V*, lower-case Roman
letters toward the beginning of the alphabet(a,
b, and c) are terminals, whereas those near the
end(%,v,and w) are strings in T*: upper-case
letters toward the beginning of the alphabet
(4, B, and C) are nonterminals, whereas
those near the end(X, Y, and Z) are symbols
in V. An empty string is denoted by .l
[Definition 2.1] We say that a symbol X<V

is useless in a CFG G=(N,T,P,S) if there
does not exist a derivation of the form Sé
wa:*imvxy where w,x, and y in T*.
{Definition 2.2) We say that a CFG G=(N,
T,P,S) is A-free if either
(1) P has no A-productions, or
(2) There is exactly one .I-production S—
A and S does not appear on the right
side of any production in P.

[Definition 2.3] We say that a CFG G=(N,
T,P,S) is cycle-free if there is no derivation
of the form A:+>A for any A4 in N.

[Definition 2.4] We say that G is proper if it
is cycle-free, is A-free, and has no useless
symbols,

[Theorem 2.1] Given a CFG G, we can find
a proper CFG G’ which is L(G)=L(G’) and
equivalently L(G,S)=L(G’,S) if we use the
notation of Definition 3. 1.

[Definition 2.5] A labeled ordered tree D is a

derivation tree with root 4 for a CFG if

(1) The root of D is labeled A.

(2) If Dy,.., D, are the subtrees of the direct
descendants of the root of D; is labeled
X, then A—X,..X, is a production in
P. D; must be a derivation tree with root
X; for G if X, is a nonterminal, and D;
is a single node labeled X, if X, isa
terminal.

(3) alternatively, if D, is the only subtree
of the root D and the root of D, is labeled
4, then A—/4 is a production in P.

M. General Finiteness Problem in
Context-free Grammars.

In this section, we will introduce the exte-
nded language concept in G and the general
finiteness problem in CFG and related new
definitions and developed theorems.
(Definition 3.1]

Let a=X X, .. X, =V* The language gen-
erated by « in G, denoted by L(G,a), is
defined to be

L(G, o) ={w|w=T* and w=w,ws.. .« Wy

where X,rgw,- for each 7, 1<0/< n}.

In addition, the language generated by 1is

L(G, H)={A}. This definition comes from(3).

And the traditional language notation L(G)

with G=(N,T,P,S) can be denoted by L(G,

S). The following Lemma is immediate from

Definition 3.1 and the well-known language

concatenation.

[Lemma 3.1] L(G, a\c..... a,)=L(G,) - L(G,
o2)een. . L(G, &x,)

[Definition 3.2] The general finiteness problem
in CFG is “Can it be determined for a given
CFG G that L(G, a) is finite or infinite?”.

[Definition 3.3] Let ¢ be a relation such that
¢S N XN and ApB if and only if 4—aBs=P.

The reflexive transitive closure of ¢ is denoted

by ¢* and the transitive closure of ¢ is denoted

— 208 —

Another Approach To The Finiteness Problem in Context-free Grammars 3

by ¢*.
Then the following Lemma is obvious by
the concept of .

[Lemma 8.2] Ag*B if and only if A—>aBp.
[Lemma 3.3] Let G be a proper CFG,
Then L(G, 4) is infinite if Ap*A.

proof. Assume that A¢*A4. Then there exists
a derivation
A?:flii“,-aAﬁ for some k.1 since by Lamma 3.

2, Ai‘§'>aA,9. Since this derivation step can

be applied infinitely, there exists a derivation

Ai‘g}a"Aﬁ“ for any #72»1. Hence there exists

a derivation .4::’:;,:‘?n"A,S"::f>W,W2 W, where

W, AW, g W, where WETY,

since G has no useless symbols. Notice that

either «r or §can not be .1since & is cycle-free.

Hence Length of W W,W, is greater than or

equal to (#+1) by the fact that G is A-free.

Therefore the length of W, W,W; becomes infin-

ity when 7 becomes infinity. This completes

the proof.

[Theorem 3.1] Let G be a proper CFG. Then
L(G, B) is infinite if and only if there exists
a nonterminal A such that Bg*A4 and 4 ¢*A.

proof. Suppose that there exists a nonterminal

A such that B ¢*A and A4 ¢* A. Then there

exists a derivation B:‘EbaA,S. and from this,
L(G, B)2L(G, aAp) is immediate from Defi-
nition 3.1.
But, L(G,«ApB) is infinite since
L(G, ¢ AB)=L(G, a)- L(G, A)- L(G, B)
(by Lemma 3.1) and
L(G, 4) is infinite (by A ¢* A and
Lemma 3.3).
Thus L(G, B) is infinite.
if-part of this theorm.

This proves the
To complete our proof, we will prove the
contraposition of the only-if part. Suppose that
there does not exist a nonterminal A such that
B ¢* A and A ¢+ A. Then the depth of any
derivation tree with root B for G is at most
the number of nonterminals in N since any

path from the root to a leaf can have
each nonterminal at most once. Further any
node in a derivation tree can have a finite
number of child nodes since the length of the
righthand side in any production is finite.
Thus L(G, B) is finite. -
This complete our proof.
{Theorem 3,2] Let G be a proper CFG. Then
L(G, «) is infinite if and only if there exist
a nonterminal B in N such that

Bg*A and
A ¢+ A for some nonterminal 4 in N.
proof. Immediate from Lemma 3.1 and
Theorem 3.1
And the following Lemma is trivial from

Lemma 3.1

(Lemma 3.4] Let G be a CFG. Then L(G, o)
is infinite if and only if there exists a non-
terminal B such that
a=XXs..X.w B=X, for some i (1<i<n)

and L(G, B) is infinite.

[Lemma 3.5]) Let G=(N,T,P,S) be a CFG.
Then it can be determined that L(G,B) is
finite or infinite for any nonterminal B in N.

proof. In virtue of Theorem 2.1 and Definition
3.1 we can find a proper CFG G’ such that
L(G,B)=L(G’, B) for any Bin N. And then
by Theorem 3.1, we can determine L(G’, B)
is finite or not.

Consequently Lemma 3.4 and Lemma 3.5 give
us the following theorem.

{Theorem 3.3] The general finiteness problem
in CFG is solvable.

. Conclusion

The general finiteness problem in CFG is
defined with the extended language concept in
G, and the solvability of the general finiteness
problem in CFG is showed by the property of
¢ relation which is the key concept of our
formalism. Moreover, a testing algorithm for

— 200 —

4 Lee, Myung-Joon

the problem can be easily derived by using a
transformation algorithm from a CFG to the
corresponding proper CFG and an algorithm
for computing the transitive closure of ¢.

References

1. Aho, A.V., and Ullman, J.D., “The The-
ory of parsing, Translation, and Compiling,”

Volume 1: Parsing, Frentice-Hall, Inc. 1972,
2. Hopcroft, J.E., and Ullman, [.D., “Formal
Languages and their relation to automata,”
Addison-Wesley, Inc. 1969.
2. Back house, L.C., “Svntax ¢f Programming
languages, ” Prentice-Hall, Inc.1979.
4. Harrison, M.A., “Introduction tc Formal
Language Theory.”
1978.

Addison-Wesley, Inc.

— 210 —

