On Weakly θ -continuous Functions

R. Prasad* · Chae, Gyu Ihn · I. J. Singh*

Dept. of Mathematics

(Received October 30, 1982)

(Abstract)

The concept of θ -closed sets is due to N.V. Velicko [12]. Complement of θ -closed set is said to be θ -open set. Mamta Deb[2] has studied weakly continuous functions [6] and seen that if $f: X \longrightarrow Y$ is a function for which the inverse image of every θ -open set is open, then f is not necessary weakly continuous, however, weakly continuous function implies this type of function.

In this note we named these type of functions by weakly θ -continuous functions and present its study.

Weakly θ -연속함수에 관하여

R. Prasad* · 채 규인 · I. J. Singh* 수 학 과 (1982. 10. 30 접수)

(요 약)

논문 [12]와 [2]에서, 이 논문에서 명명한 Weakly θ-인속함수이면 Weakly 연속함수가 될 필요가 없으 나 그 역과정은 성립될이 알려졌다.

이 논문에서는 이 Weakly heta-연속함수에 관한 연구이다.

I. Preliminary

For a topological space X and $A \subset X$, the θ -closure [12] of A denoted as cl_{θ} A, is $\{x \in X : \text{every closed neighbourhood of } x \text{ meets } A\}$. The subset A is θ -closed [12] if cl_{θ} A = A. Similarly, a subset A of a space X is said to be θ -open [2] if for every point $x \in A$ there exists an open set G such that $x \in G \subset clG \subset A$ (cl denotes the closure operator). A subset is regular open if it is the interior of the closure of itself. Complement of a regular open set is called regular closed. The concept of weakly continuity is due to N. Levine [6]. A function $f: X \longrightarrow Y$ is said to be weakly continuous if

for each $x \in X$ and each neighbourhood V of f(x), there is a neighbourhood U of x such that $f(U) \subset cl$ V. Fomin [4] defined θ -continuous functions on replacing f(U) by $f(cl\ U)$ in the definition of weakly continuous functions.

It is known that θ -continuity implies weakly continuity but converse is not true. Weakly θ -continuous functions generalize weakly continuous functions. In the present note we define weakly θ -continuous functions and present their study.

I. Properties of weakly θ -continuous functions

Definition 1.1: A function $f: X \longrightarrow Y$ is said

^{*} Professors of Dept. of Math., University of Saugar, India.

to be weakly θ -continuous if and only if inverse image of each θ -open set in Y is open in X.

Theorem 1.1. Let $f: X \longrightarrow Y$ be a function from a topological space X into a topological space Y. Then the following statements are equivalent:

- (a) f is weakly θ -continuous.
- (b) For each $x \in X$ and each θ -open set V containing f(x) there is an open set U containing x such that $f(U) \subset V$.
- (c) If V is a θ -closed subset of Y, then $f^{-1}(V)$ is closed subset of X.

Proof. (a) \Rightarrow (b) Let $x \in X$ and V be a θ -open set of Y containing f(x). Then $f^{-1}(V)$ is an open set containing x and $f(f^{-1}(V)) \subset V$.

(b)=(a) If V is a θ -open subset of Y, then for each $x \in f^{-1}(V)$, V is a neighbourhood of f(x). Hence there is an open neighbourhood U of x such that $f(U) \subset V$. Thus $f^{-1}(V)$, being a neighbourhood of each of its points, is open.

(a) \Rightarrow (c) Let $K \subset Y$ be a θ -closed set. Then Y - K is a θ -open set and therefore, $f^{-1}(Y - K) = X - f^{-1}(K)$ is open. So $f^{-1}(K)$ is closed in X.

(c) $\overrightarrow{}$ (a) Let $V \subset Y$ be a θ -open set. Then Y-V is a θ -closed set and therefore, $f^{-1}(Y-V)=X-f^{-1}(V)$ is closed. So $f^{-1}(V)$ is open in X.

Lemma 1.1. A space X is Hausdorff if and only if $\{x\}$ is θ -closed for all $x \in X$.

Theorem 1.2. Let $f: X \longrightarrow Y$ be a weakly θ -continuous, one to one function. If Y is Hausdorff, then X is T_1 .

Proof. Let $x \in X$. Then by Lemma 1.1, $\{f(x)\}$ is θ -closed in Y. Hence by Theorem 1.1 (c), $f^{-1}(f(x)) = \{x\}$ is closed. Therefore X is T_1 .

Theorem 1.3. Let $f: X \longrightarrow Y$ be any funtion, \wedge and \wedge' be index sets. Then the following statements are true;

(a) If f is weakly θ -continuous and $A \subset X$.

Then $f/A:A\longrightarrow Y$ is weakly θ -continuous.

- (b) If $\{U_{\alpha} : \alpha \in \Lambda\}$ is an open cover of X and if for each α , $f_{\alpha} = f/U_{\alpha}$ is weakly θ -continuous, then f is weakly θ -continuous.
- (c) If $\{F_{\beta}: \beta \in \Lambda'\}$ is a locally finite closed cover of X and if for each β , $f_{\beta}=f/F_{\beta}$ is weakly θ -continuous, then f is weakly θ -continuous.

Proof. (a) Let U be a θ -open subset of Y. Then $f^{-1}(U)$ is open and hence $(f/A)^{-1}(U) = f^{-1}(U) \cap A$ is an open subset of A.

- (b) Let U be a θ -open subset of Y. Then $f^{-1}(U) = \bigcup \{f_{\alpha}^{-1}(U) : \alpha \in \Lambda\}$ and since each f_{α} is weakly θ -continuous, each $f_{\alpha}^{-1}(U)$ is open in X and so $f^{-1}(U)$ is open in X.
- (c) Let F be a θ -closed subset of Y. Then $f^{-1}(F) = \bigcup \{f_{\beta}^{-1}(F) : \beta \in \Lambda'\}$. Since each f_{β} is weakly θ -continuous, by theorem 1.1(c), each $f_{\beta}^{-1}(F)$ is closed in F_{β} and hence in X. Again, since $\{F_{\beta} : \beta \in \Lambda'\}$ is locally finite closed cover of X, the collection $\{f_{\beta}^{-1}(F) : \beta \in \Lambda'\}$ is a locally finite collection of closed sets. Thus $f^{-1}(F)$ being the union of a locally finite collection of closed sets is closed.

Definition 1.2. Completely separable, H-closed spaces are called θ -bicompacta. A space is completely separable if every two distinct points have nonintersecting closed neighbourhoods.

Lemma 1.2. Let Y be an open subspace of a space X. If $U \subset Y$ is regular open in Y, then $U = Y \cap \text{Int } cl \ U$. (Int denotes the interior operator).

Lemma 1.3. In a θ -bicompacta each regular closed set is θ -closed.

Remark 1.1. A weakly θ -continuous function $f: X \longrightarrow Y$ need not have the restriction $f/A: A \longrightarrow f(A)$ to be weakly θ -continuous. For,

Example 1.1. Let $X = \{a, b, c\} = Y$ and $\mathscr{F} = \{\emptyset, X\}$ and $Q = \{\emptyset, Y, \{a\}, \{b\}, \{a, b\}\}$. Let $f: (X, \mathscr{F}) \longrightarrow (Y, Q)$ be identity function and $A = \{a, b\}$. Then f is weakly θ -continuous but $f/A: A \longrightarrow f(A)$ is not weakly θ -continuous.

Theorem 1.4. Let f be a weakly θ -continuous function from a space X into a θ -bicompacta Y and $A \subset X$ be such that f(A) is open in Y. Then $f/A: A \longrightarrow f(A)$ is weakly θ -continuous.

Proof. Let $x \in A$ and U be θ -open in f(A) containing f(x). By definition of θ -open sets, there exists an open set V in f(A) such that $f(x) \in V \subset cl_{f(A)}V \subset U$. Let $Int_{f(A)} \ cl_{f(A)}V = W$. Then W is regular open in f(A) and by Lemma 1.2, $W = f(A) \cap Int \ cl \ W$. By Lemma 1.3, $Y - Int \ cl \ W$ is θ -closed, therefore $Int \ cl \ W$ is θ -open in Y. Now,

$$f/A^{-1}(W) = f/A^{-1}(f(A) \cap Int \ cl \ W)$$

$$= f/A^{-1}(f(A)) \cap f/A^{-1}(Int \ cl \ W)$$

$$= A \cap f/A^{-1}(Int \ cl \ W).$$

Since f is weakly θ -continuous, $f^{-1}(Int\ cl\ W)$ is open in X and hence $f/A^{-1}(W)$ is open in the subspace A and $x \in f/A^{-1}(W)$. And f/A $(f/A^{-1}(W)) \subset W \subset U$. Hence by Theorem I.1(b), $f/A: A \longrightarrow f(A)$ is weakly θ -continuous.

Theorem 1.5. If $f: X \longrightarrow Y$ is continuous and $g: Y \longrightarrow Z$ is weakly θ -continuous, then $g \circ f: X \longrightarrow Z$ is weakly θ -continuous.

Proof. Let U be a θ -open subset of Z. Then $g^{-1}(U)$ is open in Y and since f is continuous, $(g\circ f)^{-1}(U)=f^{-1}(g^{-1}(U))$ is open in X.

Theorem 1.6. If $f: X \longrightarrow Y$ is weakly θ -continuous and $g: Y \longrightarrow Z$ is θ -continuous, then $gof: X \longrightarrow Z$ is weakly θ -continuous.

Proof. Let U be a θ -open subset of Z. If $x \in g^{-1}(U)$ then $g(x) \in U$. By definition of θ -open sets, there exists an open set V in Z such that $g(x) \subset V \subset cl \ V \subset U$. By θ -continuity of g there exists an open set W in Y such that $x \in W$ and $g(cl \ W) \subset cl \ V$. Therefore $x \in W \subset cl \ W \subset g^{-1}(U)$. Hence $g^{-1}(U)$ is θ -open in Y and since f is weakly θ -continuous, $(g \circ f)^{-1}(U) = f^{-1}(g^{-1}(U))$ is open in X.

Definition 1.3. Let $f: X \longrightarrow Y$ be any function. Then the function $g: X \longrightarrow X \times Y$, defined by g(x) = (x, f(x)) is called the graph function with respect to f.

Lemma 1.4. If $f: X \longrightarrow Y$ is a continuous function, then inverse image of θ -open set is θ -open.

Proof. Let V be θ -open subset of Y. Then for each $x \in f^{-1}(V)$, $f(x) \in V$ and since V is θ -open there exists an open set U such that $f(x) \in U \subset cl \ U \subset V$. $f^{-1}(U)$ is open and cl $f^{-1}(U) \subset f^{-1}(cl \ U) \subset f^{-1}(V)$. Therefore $x \in f^{-1}(U) \subset cl \ f^{-1}(U) \subset f^{-1}(V)$. Hence $f^{-1}(V)$ is θ -open in X.

Theorem 1.7. If $f: X \longrightarrow Y$ is a function such that the graph function g is weakly θ -continuous, then f is weakly θ -continuous.

Proof. Let $x \in X$ and V be a θ -open set containing f(x). Since projection map p_r is continuous, by Lemma 1.4, $p_r^{-1}(V)$ is θ -open in $X \times Y$. Therefore, by Theorem 1.1(b), there exists an open set U containing x such that $g(U) \subset p_r^{-1}(V)$. It follows that $p_r(g(U)) = f(U) \subset V$, so that f is weakly θ -continuous.

Lemma 1.5. A compact subset of a Hausdorff space is θ -closed.

Theorem 1.8. Let $f: X \longrightarrow Y$ be a weakly θ -continuous function from a compact space X in a Hausdorff space Y. Then inverse image of compact set is compact.

Proof. Let K be a compact subset of Y. Then by Lemma 1.5, K is θ -closed in Y. By Theorem 1.1(c), $f^{-1}(K)$ is closed in X and since X is compact, $f^{-1}(K)$ is compact.

Theorem 1.9. Let $f: X \longrightarrow Y$ be a weakly θ -continuous onto function. If X is connected so is Y.

Proof. Suppose Y is disconnected, then there exists a proper closed open set K in Y. Then K is both θ -open and θ -closed. And by Theorem 1.1, $f^{-1}(K)$ is open and closed. Also $f^{-1}(K)$ is proper subset of X. This gives a contradiction.

II. Comparision

Definition 2.1. A subset A of a space X is an H-set if every cover of A by sets open in X has a finite subfamily whose closures in X

cover A. H-sets are equivalent to H-closed [9] sets.

Lemma 2.1. A function $f: X \longrightarrow Y$ is c-continuous if and only if for each closed and compact subset V of Y, $f^{-1}(V)$ is closed in X.

Lemma 2.2. A function $f: X \longrightarrow Y$ is H-continuous if and only if for each closed and H-closed subset V of Y, $f^{-1}(V)$ is closed in X.

Lemma 2.3. A function $f: X \longrightarrow Y$ is almost continuous if and only if inverse image of regular open subset of Y is open in X.

Definition 2.2. A function $f: X \longrightarrow Y$ is said to be θ -compact if $f^{-1}(K)$ is H-set in X whenever K is H-set in Y.

Remark 2.1. Continuity ⇒almost continuity ⇒ θ-continuity ⇒ weakly continuity.

We know that weakly continuity implies weakly θ -continuity, however, converse is not true. It follows from Remark 2.1 that continuity and almost continuity imply weakly θ -continuity, however, the converse in both cases may not be true.

Also, the function defined in Example 1.1 is weakly θ -continuous but neither c-continuous nor H-continuous.

Thus by Examples 2.2 and 1.1 weakly θ -continuous function is independent of c-continuous function and of H-continuous functions. And by Examples 2.1 and 2.2 weakly θ -continuous function is independent of θ -compact function.

Example 2.1. Let $f:(R,\mathscr{D})\longrightarrow (R,\mathscr{F})$ be the identity function with \mathscr{F} , the cofinite topology and \mathscr{D} , the discrete topology. Then f is weakly θ -continuous but not θ -compact.

Example 2.2. Let $f:(R,\mathcal{F})\longrightarrow (R,\mathcal{D})$ be the identity function with \mathcal{F} , the cofinite topology and \mathcal{D} , the discrete topology. Then f is c-continuous, H-continuous and θ -compact but not weakly θ -continuous.

Defintion 2.3. A space in which every closed subset is an H-set is called C-compact.

Lemma 2.4. Each H-set in a completely

separable space is θ -closed.

Proof. Let P be an H-set in a completely separable space X. Let $x \in (X-P)$. For each point $y \in P$ there exists a closed neighbourhood W_x not intersecting with some closed neighbourhood W_x of the point x. There exist finite number of sets W_{yi} ; $i=1,2,\cdots n$ which cover P. The neighbourhood $W_x = \bigcap_{i=1}^n Wx_i$ of the point x is closed and does not intersect P. Therefore X-P is θ -open. Hence P is θ -closed.

Theorem 2.1. Let $f: X \longrightarrow Y$ be a weakly θ -continuous function. If Y is completely separable and C-compact, then f is continuous.

Proof. Let F be closed subset of Y, then by definition of C-compactness, F is an H-set in Y. By Lemma 2.4. F is θ -closed. And by Theorem 1.1(c), $f^{-1}(F)$ is closed in X.

Theorem 2.2. Let $f: X \longrightarrow Y$ be a weakly θ -continuous function. If Y is θ -bicompacta then f is almost continuous.

Proof. Let U be regular open subset of Y, then Y-U is regular closed and by Lemma 1.3, U is θ -open. Hence $f^{-1}(U)$ is open. Therefore, by Lemma 2.3, f is almost continuous.

Definition 2.4. A space X is said to be almost regular if for every regular closed set F and a point $x \not\in F$, there exist disjoint open sets U and V such that $F \subset U$ and $x \in V$.

Theorem 2.3. Let $f: X \longrightarrow Y$ be a weakly θ -continuous function. If Y is almost regular then f is almost continuous.

Proof. Let U be a regular open subset of Y and $x \in U$. Since Y is almost regular there exist disjoint open sets M and N containing x and Y-U respectively. And so Y-N is closed and $(Y-N)\subset U$. Therefore $x\in M\subset \operatorname{cl} M\subset (Y-N)\subset U$. Hence U is θ -open and so $f^{-1}(U)$ is open. By Lemma 2.3, f is almost continuous.

Theorem 2.4. Let $f: X \longrightarrow Y$ be weakly θ -continuous function. If Y is Hausdorff, then f is c-continuous.

Proof. Let F be closed and compact subset

of Y. By Lemma 1.5, F is θ -closed. And so by Theorem 1.1(c), $f^{-1}(F)$ is closed. Therefore by Lemma 2.1, f is c-continuous.

Theorem 2.5. Let $f: X \longrightarrow Y$ be weakly θ -continuous function. If Y is completely separable then f is H-continuous.

Proof. Let F be closed and H-closed subset of Y. Since H-sets are equivalent to H-closed subsets, by Lemma 2.4, F is θ -closed. And by Theorem 1.1(c), $f^{-1}(F)$ is closed. Hence by Lemma 2.2, f is H-continuous.

Lemma 2.5. $A \theta$ -closed subset of an H-closed space is an H-set.

Theorem 2.6. Let $f: X \rightarrow Y$ be an H-continuous function. If Y is H-closed, then f is weakly θ -continuous.

Proof. Let F be θ -closed subset of Y. By Lemma 2.5, F is H-closed subset of Y. And by Lemma 2.2, $f^{-1}(F)$ is closed in X.

Theorem 2.7. Let f be a θ -compact function from a Hausdorff space X into an H-closed space Y. Then f is weakly θ -continuous.

Proof. Let F be a θ -closed subset of Y. Then by Lemma 2.5, F is an H-set in Y. By definition of θ -compact function, $f^{-1}(F)$ is an H-set in X. Since H-sets [9] in a Hausdorff space are closed, therefore, $f^{-1}(F)$ is closed. And so by Theorem 1.1(c), f is weakly θ -continuous.

Theorem 2.8. Let f be a weakly θ -continuous function from a C-compact space into a completely separable space Y. Then f is θ -compact.

Proof. Let F be an H-set in Y. Then by Lemma 2.4, f is θ -closed. By Theorem 1.1(c), $f^{-1}(F)$ is closed. And by definition of C-compactness, $f^{-1}(F)$ is an H-set in X. Hence f is θ -compact.

이 논문은 인도교수들과 7차 공동논문인.

References

- D'aristotile, Λ. J.: On θ-perfect mappings,
 Boll. U.M.I., 9(1974), 655-661.
- 2. Deb, Mamta: A study of Certain types of Mappings on Topological spaces. Ph.D. Dissertation, Univ. of Delhi, (1971).
- Dickman, R.F. and J.R. Porter: θ-closed subsets of Hausdorff spaces, Pacific Jr. Math., 59(1975), 407-415.
- 4. Formin, S. V.: Extensions of topological spaces, Annals. of Maths., 44(1943), 471-480.
- 5. Gentry, K.R. and H.B. Hoyle, III: C-Continuous Functions, The Yokohama Math. Jr., 18(1970), 71-76.
- 6. Levine, N.: A decomposition of continuity, Amer. Math. Monthly, 68(1961), 44-46.
- 7. Long, P.E. and T.R. Hamlett: H-Continuous Functions. Boll. UMI, 11(1975), 552-556.
- 8. Long, P.E. and L. Herrington: Properties of almost continuous functions Boll. UMI, 10(1974), 336-342.
- Porter, J.R. and J.D. Thomas: On H-closed and minimal Hausdorff spaces. Trans. Amer. Math. Soc., 438(1969), 159-170.
- Singal, M.K. and S.P. Arya: On almost regular spaces, Glasnik Mat., 24(1969), 89– 99.
- 11. Singal, M.K. and A.R. Singal: Almost continuous mappings, The Yokohama Math. Jr, 16(1968), 63-73.
- Velicko, N. V.: H-closed topological spaces, Amer, Math. Soc. Transl., 78(1968), 103— 118.
- Viglino, G.: C-Compact Spaces, Duke Mather Jr., 36(1964) 761-764.