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Feebly open sets and feebly-continuity in topological spaces

Do Won Lee and Gyu Ihn Chae
Dept. of Mathematics
(Receive April 30, 1984)

{Abstract;

Maheshwari [6] defined a feebly open set and introduced a notion of feebly-continuity. The

purpose of this note is to investigate their properties and to find the necessary and sufficient

conditions for a mapping to he feebly continuous.
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[. Introduction

S.N. Maheshwari [6] defined a feebly-open
set in a topological space. A set A is said to
be semiopen [3] if there exists an open set O
such that OZACcl O, where ¢l denotes the
closure operator in a topological space X. A
set is semiclosed if its complement is semionen.
The smallest semiclosed set containing 4 is
called the semiclesure of 4 and denoted by scl
A.

A set A is termed feebly open [6] if there
exists an open set O such that OCACscl O,
Every open se: is feebly open and every feebly
open set is semiopen. However, the converses
need not be true. A set is feebly closed if its
complement is feebly open.

A mapping of a topological space X into a

topological space ¥ is termed feebly continuous
if the inverse image of every open set of ¥ is
feebly open in X.

The purpose of this note is to investigate
the properties of feebly open sets and feebly

continuous mappings.

i. Preliminary

In this section we shall investigate some pr-
operties of feebly open sets.

Definition 2. 1. A set N in a space X is said
to be a feeble neighborhood of a point 2 in
X if there exists a feebly open set A such
that ps=ACN.

Theorem 2.2. Any union of feebly open sets
is feebly open.

Thecrem 2.8. A set is feebly open iff it is a
feeble neighborhood of each of its points,
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From Theorem 2.2. it follows that any
intersection of feebly closed sets is feebly
closed.

Definition 2.4. A point p in X is said to ke
a feebly interior point of 4 if A is & feeble
neighborhood of 2.

The set of all feebly interior points of A is
called feeble interior of 4 and dencte it by
fint A.

Remark: fint AcA. The equality may not
hold, in general.

Theorem 2.5. A set A is feebly open iff fint
A=A. Thus fint (fint A)=fint A.

Definition 2.6. A point p in X is said to be
a feebly limit point of 4 if for any feebly
open set U containing p, U (A4—-p)#0. The
set of all feebly limit points of A is called
feebly derived set of A and denoted by fd
A.

Remark: Every feebly limit point of A is a
limit point of A, but the converse may be
false.

Theorem 2.7. A is feebly closed iff it contains
its feebly derived set.

Definition 2.8. A U fdA is defined to be the
feeble closure of A and denote it by fcl A.
Theorem 2.9. A set A is feebly closed iff fcl

A=A. Thus fcl (fcl 4)=fcl A.

Theorm 2.10. The feeble closure of A is the
smallest feebly closed set containing A.

Theorem 2.11. fint A=A- fd(X—-A).

Proof: Let x=A— fd(X — A4). Then xZ fd(X -
A) iff there exists a feebly open set U such
that UN(X-A)) =@ iff x=UNA iff x=
fint 4.

Corollary: (a) X—fint A=fcl(X-A)and (b)
X —fcl A=fint(X—4).

Theorem 2.12. fcl A ( felB < fel{AUB) and
fel (AN B) « fcl A N fcl B.

The equality may not, in general, hold.

As a consequence of the above theorems 2. 11
and 2.12, it follows that if ACB, then {int
4 < fint B and fcl 4 < fel B.

We shall omit the proofs since they can be
proved easily.

Theorem 2.13. If ACX, then int ACTint «C
sint ACACscl Acfel Accel A, where sint
denotes semi-interior operator in X.

Proof: The results are casy from definiti~ns

and we refer to {5].

. Feebly open sets

By F.0.(X) we shall denote the class of

all feehly open sets in a space X.

Theorem 3.1. If A is feebly cpen in a space
X and AcBcscl A, then B is feebly open.

Proof: Since A is feebly open, there exists an
open set O such that OcCAcCsclO. Then OCB
and scl ACscl(scl O)=sclO. Thus BcsclO
and hence, B is feebly open.

Theorem 3.2. Let _v"'={A4,} be 2 collection of
sets in a space (X,T) such that (1) TC.s#
and (2) A= and AcCBcCscl A4, then B=
/. Then F.O.(X)C”. Thus F.O.(X) is
the smallest class of sets satisfying (1) and
(2.

Proof: Let V ke in F.O.(X). Then there ¢x-
ists an open set O such that OcVsel O.
Then 0= by (1) and so, Ve by (2).
Intersection of twe semiopen sets need not

bLe semiopen and union of two semiclosed sets

may not te semiclosed. However, referring to

[2), we can see that if A is semiopen in X

and U is cpen in X, then ANU is semiojen in

X and if A is semiopen in X and U is open in

X, then ANU is semiopen in U. And so, if

B is semiclosed and F is closed, then B_F is

semiclosed in X (or inF).

Theorem 8.3. If U and O are open in X, and
OcAcscl O (4 is feebly open), then (U
0)3 ¢ implies that (UNA)=E.

Proof: OC(X—~U) implies that scl OZ(X~U)
since U is semiopen. But AcCscl O, thus OC
(X —A4) implies that AC(X-U). The preof

— 368 —



Feebly open sets anc feebly-continuity 3

is complete.

Lemma: Let A be a subset of a space X and
U be open in X. Then UNscl Acscl (UNA).

Proof: For x=Uscl A and any semiopen ne-
ighborhood V() of x, UNV(x) is again a
semiopen neighborhood of x and hence (UN
AN V(x)¢@, so that xesscl (UNA).

Theorem 8.4, If U is open and 4 is feebly op-
en, then (UNA) is feebly open.

Proof: Since A is feebly open, there is an open
set O with OCAcscl 0. Then UNOcUNAC
UnNscl 0. From the above Lemma, UNscl
Ocscl (UNO). Hence UNA is feebly open.

Remark: If ACYCX and if ¥ is semiopen in
X, then scixANYcsclyA where scly denotes
the semiclosure operator in X. The equality
holds if ¥ is open.

Theorem 3.5. Let ACYCTX where ¥ is a sub-
space of X and let A=F.0.(X). If Y is se-
miopen in X, then A=F.Q.(Y).

Proof: Let A=F.0.(X). Then for some open-
set 0, OCACsclx0. Now OCY and 0=0
YcANY cscliONY. Thus OcAcsch,0 by
Remark. Since O=0NY is open in Y, A=
F.0.(Y).

Remark: The converse of Theorem 3.5 is false,
as shown by

Example 3.6. Let R be the usual space of
reals, Y={0}, and A={0}., Then 4 is feebly
open in Y but A is not feebly open in R.

Theorem 3.7. Let ¥ be an open subspace of a
space X. Then every feebly open set in ¥ is
feebly open in X.

Proof: Let A be feebly open in Y and Y be
open in X. Then for some open set Oy of Y,
Oy ACsclyOr. Let O be an open set of X
such that 0-=0NY. Then ONYCACscly (O
NY)=scly (ONY)INYsclx(ONY). Hence A4
is feebly open in X by Theorem 3.1.

Lemma: Let O be open in X. Then sclO—~ 0
is nowhere dense in X.

Proof: The result is obvious since clO— O is
nowhere dense.

Theorem 3.8. Let (X.T) be a space and A<
F.0,(X). Then A=0UB where (1) O=T,
(2) ONB=y and (3) B is nowhere dense.

Proof: Since A=F.0.(X), OCAcscl O for
some open set O of X, But A=0U(4-0).
Let B=A—0. Then BCsclO — O and thus is
nowhere dense by Lemma. Hence A=0B,
and (1) and (2) follow.

Remark: The converse of Theorem 3.8 is false
as shown by

Example 8.9. Let R he the space of reals and
A={2]10<x<1}U{2}. Then A&F.0.(X) alt-
hough (1), (2) and (3) in Theorem 3.8. hold.

Remark: (scl A)X(scl B)=scl (AXB).

Theorem 3.10. Let X, and X, be spaces and
XXX be the topological product. Let 4,
F.0.(X,) and A,=F.0.(X;). Then A,XA4,
is feebly-open in X, X X.,.

Proof: For each open set O, of X, (:=1,2), by
Theorem 3.8, A;=0.;U B, where B;,Csclx, O,
0, Then A;XA4;=(0,X0)U(B,X0)U0,X
B) U(B,XB;). But (0,%x0,) is open in XX
X, and (B,X0:)U(0,XB)U (B, X By (scly,
0,) X (sclx,05) =58clx,xx, (0,X0;). Hence A4,%
AEF. 0. (X X XD

. Feebly-continuous mappings

A mapping f: X
a space Y is said to be semi-continuous if for

Y from a space X into

each open set V of ¥, f(V) is semiopen in

X.

Definition 4.1. A mapping f : X—Y is term-
ed feebly-continuous if for every open set V
of ¥, f~'(V) is feebly-open in X

Remark: Continuity = Feebly-continuity =
Semi-continuity. But the implications may
not be conversible, as shown by

Example 4.2. Let R be the space of reals. Let
a mapping f ! R— R be defined by f(x)=1
if £=0 and f(x)=0 if x>>0. Then £ is semi-
continus, but neither continuous nor feebly
continuous.
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Example 4.3. Let X={a, b, c} be the space with
a topology T={X,{,{a}}. Define f:X—>
X by f(a@)=f(c)=a and f(b)=b Then f is
fecbly-continuous, but not continucus.

Theorem 4.4. Let X and Y be spaces and f: X

»Y be a mapping. Then the followings are

equivalent.

(a) f is feebly continuous

(L) The inverse image of each closed set of
Y is feebly closed.

(¢) For each p=X and each neighborhood
V(f(®)) of f(p) inY, there exists a feeble
neighborhood U(p) of p in X such that
SU@HV (D).

Proof: Since for any AcCY, f (Y —-4)=X-
f71(A), one has (a)<=(b).

(a)=—>(c): Since f~Y(V(f(}))) is feebly-open,
we can use it for U(Z).

(e)=—>(a): Let V be an cpen set of ¥ con-
taining f(#») in X. Then by (c¢), there
exists a feebly open set U(p) containing p
in X such that f(U®))V. And so, p=U
(p)c (V). Therefore, f~«(V) is a union
of feebly open sets in X. Hence by Theor-
em 2.2, f~Y(V) is feebly-open in X. Thus
(a) holds.

Theorem 4.5. Let a mapping f : X—-Y be fe-
ebly-continuous and ¥ Le a second countable
space. Let P be the set of points of discon-
tinuity of f. Then P is of first category.

Proof: Let p=P and {V.} Le a countable open
basis for Y. Then, since f is discontinuous at
b, there exists a V,={V,} such that p=U
open in X implies f(U)ZV,. By Theorem
4.4-(c), there exists an A,=F.0.(X) such
that p==A4; and f(4)CV.. And by Theorem
3.8, A,=0,;UB; where O, is open and B,Cscl

0,—0,. Hence p0; and so p=B.. Then PC
U B, and each B, is nowhere dense. Thus
;):1:12 proof is complete since U B, is of first
category. e

Remark: The converse of Theorem 4.5 is, in

general, false, as shown by

Example 4.6, Let X=(0,1] and ¥Y=[0,1]. Let

F(x)=0 if x is irraticnal and f(x):—}]— it x

:% where (#,¢)=1. Then f is continuous
at cach irrational, but not continuous at ca-
ch rational. Thus f is continuous at the ir-
rationals and discontinuous at the rationals.
Hence the set of points of discontinuity of
f is of f{irst category. But f:X-——VY is
nov feebly continuous because f"’<<%, 1]>

is & subset of rationals and so is not feebly

open.

Theorem 4.7. Let f, : X,—Y, be feebly cont-
inwous for 7=1,2 Let f:X, < X,—>Y XY:
Le defined by f(xy, 22) =(F:(x), f2(x)). Then
f is feebly continuous.

Proof: Let V., V.V, Y, where V. is open
in ¥, for t=1,2. Then f«(V,xXV)=f"4V
X fo (Vy). But fiY(V)) and fo7'(Vs) are fe-
ebly-open since each £, is feebly continuous.
Thus by Theorem 3.10, f,"'(V)Xf'(V2) is
feebly-open in X,<X. If V is an open set
in ¥, XY, then f“(V)zf"(L‘JVaJ where Vs
is of the form V 4.V, Then f~1(V)= Lan‘L
(V) which is fecbly-open since (V) is
feehly-open.

Theorem 4.8. Let f:X—X XX, be feebly
continuous. Let f,:X——X, be defined by
f.(x)=x, for x&=X, f(x)=(x,%.). Then f,:

XX, is feebly-continuous for 7=1,2.

Proof: It is enough to show that f,:X—
X, is fechly continuous. Let V, be open in
X,. Then VXX,
£t (V< X.) is feebly open in X. And f,
(V) =f(V,xX:) and thus fiiX-—X, is

feehly continuous.

is open in X,xX. and
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